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Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?
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Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?
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Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?
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Introduction Motivation

APSP-AF

Motivation 2: the APSP-AF problem.

All-Pair-Shortest-Path for All Flows.

Given a graph, in which each edge has a length l and a capacity c,
answer the following queries:

what’s the shortest path from s to t, if only edges of capacity ≥ f are
considered?

A generalization of bounded-leg shortest path.
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Introduction Our results

Our results

A simple algorithm for (1 + ε)-approximating APSP-AF in

Õ(n
3+ω
2 ε−2 logW ) preprocessing time1 and O(log log(nW )

ε ) query time

where W is the maximum edge length,
and ω < 2.373 is the matrix-multiplication exponent.

An algorithm in Õ(n
3+ω
2 ε−3/2 logW ) preprocessing time

This is the first truly-subcubic2 time algorithm for such problems.

1Õ hides polylog(n) factors
2O(n3−δpolylog(ε,W )) for some δ > 0
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Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.

The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2 )

time [Duan and Pettie, 2009].
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Introduction Our results

Query Time

We compute a matrix whose entries Aij are sets of (d , f ) pairs.

Aij = {(dk , fk)}
Intuitively, an entry (d , f ) ∈ Aij indicates a path from i to j , with
minimum capacity f and distance ≈ d .

We call such a matrix “df -matrix”.

To answer a query (s, t, f ), simply find

min{d : (d , f ′) ∈ Ast , f
′ ≥ f }.

Query time O(log |Ast |), and |Ast | = O( log(nW )
ε ).
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Introduction Our results

A(f )

For a df -matrix A and a flow f , define A(f ) be the matrix satisfying
A(f )ij = min{d : ∃(d , f ′) ∈ Aij , f

′ ≥ f }.
Given flow constraint f , what’s the best path in Aij?

i◦
d=2,f=3

55d=4,f=5 //
d=5,f=7 )) ◦j ⇒

i◦

f 1 ∼ 3 4 ∼ 5 6 ∼ 7 8

d 2 4 5 +∞
// ◦j
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The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )
ui vk

wj

Given two df -matrices A,B, where all distances d ≤ R and R is a
small number.

We’d like to compute some df -matrix C , such that
∀f ,C (f ) = A(f ) ? B(f ).

Recall ? is the distance product.
Also let’s say C = A ? B for brevity.

This takes O(n
3+ω
2 R2) time.
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A B

(d, f )

(d, f )

(d, f )

(d, f )
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(d, f )
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ui vk
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Given d , what’s the largest f s.t. Cij(f ) ≤ d?
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A B

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )
ui vk

wj

Given d1 + d2 = d , what’s the largest f s.t. Aij(f ) ≤ d1 and
Bij(f ) ≤ d2?
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1. Exact product for small distances

A B

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )

(d, f )
ui vk
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Given d1 + d2 = d , what’s the largest f s.t. Aij(f ) ≤ d1 and
Bij(f ) ≤ d2?

Let’s define A
(d)
ij = max{f : (d ′, f ) ∈ Aij , d

′ ≤ d}.
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Given d1 + d2 = d , what’s the largest f s.t. Aij(f ) ≤ d1 and
Bij(f ) ≤ d2?

maxk min{A(d1)
ik ,B

(d2)
kj }

Let’s define A
(d)
ij = max{f : (d ′, f ) ∈ Aij , d

′ ≤ d}.
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Given d , what’s the largest f s.t. Cij(f ) ≤ d?

maxd1+d2=d(A(d1) > B(d2))ij
Recall that > is max-min product.

Let’s define A
(d)
ij = max{f : (d ′, f ) ∈ Aij , d

′ ≤ d}.
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Given d , what’s the largest f s.t. Cij(f ) ≤ d?

maxd1+d2=d(A(d1) > B(d2))ij
Recall that > is max-min product.

Let’s define A
(d)
ij = max{f : (d ′, f ) ∈ Aij , d

′ ≤ d}.
O(R2) max-min products suffice to compute
the df -matrix C !

Cij = {(maxd1+d2=d(A(d1) > B(d2))ij , f ) :
1 ≤ d ≤ 2R}
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The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

Given two df -matrices A,B, compute C ≈ A ? B.

Now d can be large(d ≤ M), but we only want C to be approximately
correct.

Approximation guarantee: ∀f , i , j ,
(A(f ) ? B(f ))ij ≤ C (f )ij ≤ (1 + 4

R )(A(f ) ? B(f ))ij .

time complexity: O(n
3+ω
2 R2 logM).

O(logM) exact products in which d ≤ R.
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The algorithm 2. Approximate product for arbitrary distances

A lemma

Lemma ([Zwick, 1998])

Let A,B be two matrices with entries in {0, 1, . . . ,M,+∞}, C = A ? B.

Let R be a power of 2, Scale(A,M,R) be a matrix A′ such that

A′ij =

{
dRAij/Me if 0 ≤ Aij ≤ M

+∞ otherwise
.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r ,R) ? Scale(B, 2r ,R))},

then for any i , j , Cij ≤ C ′ij ≤ (1 + 4
R )Cij .
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2. Approximate product for arbitrary distances

C (f ) = min
blog2 Rc≤r≤dlog2 Me
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The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f ) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R )dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).
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3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23



The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f ) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R )dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n
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(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε:

there is an

Õ(n
3+ω
2 ε−3/2 logW )-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2 )

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.
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Speedup: O(tR2nω)⇒ Õ(tRnω).
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Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.

Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW )⇒ Õ(n

3+ω
2 ε−3/2 logW ).

Open problems

Reducing dependency on n(i.e. 3+ω
2 ) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW )?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23



Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];

distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
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Õ(n

3+ω
2 ε−2 logW )

⇒ Õ(n
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Õ(n

3+ω
2 ε−2 logW )⇒ Õ(n
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Questions are welcome!
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