
Approximating All-Pair Bounded-Leg Shortest Path and
APSP-AF in Truly-Subcubic Time

Ran Duan, Hanlin Ren

Institute for Interdisciplinary Information Sciences
Tsinghua University

July 12, 2018

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 1 / 23

Outline

1 Introduction
Motivation
Our results

2 The algorithm
1. Exact product for small distances
2. Approximate product for arbitrary distances
3. Main procedure

3 (Sketch of) a faster algorithm

4 Conclusions and open problems

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 2 / 23

Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?

2

3

��

6

&&
1

5

88

3

4

4

ff 7

RR

4

88

A graph G .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 3 / 23

Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?

2

3

��

6

&&
1

5

88

3

4

4

ff 7

RR

4

88

A graph G .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 3 / 23

Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?

2

3

��

6

&&
1

5

88

3

4

4

ff 7

RR

4

88

A graph G .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 3 / 23

Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?

2

6

&&
3

��

1

5

4<

3

4

4

ff 7

RR

4

4<

Query(s = 1, t = 3, L = 5)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 3 / 23

Introduction Motivation

Bounded-leg shortest path

Motivation 1: the bounded-leg shortest path problem

Given a weighted directed graph, answer the following queries:

what’s the shortest path from s to t, if only edges of length ≤ L are
considered?

2

3

��

6

&&
1

5

4<

3

4

4

bj 7

RR

4

88

Query(s = 4, t = 2, L = 6)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 3 / 23

Introduction Motivation

APSP-AF

Motivation 2: the APSP-AF problem.

All-Pair-Shortest-Path for All Flows.

Given a graph, in which each edge has a length l and a capacity c,
answer the following queries:

what’s the shortest path from s to t, if only edges of capacity ≥ f are
considered?

A generalization of bounded-leg shortest path.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 4 / 23

Introduction Motivation

APSP-AF

Motivation 2: the APSP-AF problem.

All-Pair-Shortest-Path for All Flows.

Given a graph, in which each edge has a length l and a capacity c,
answer the following queries:

what’s the shortest path from s to t, if only edges of capacity ≥ f are
considered?

A generalization of bounded-leg shortest path.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 4 / 23

Introduction Motivation

APSP-AF

Motivation 2: the APSP-AF problem.

All-Pair-Shortest-Path for All Flows.

Given a graph, in which each edge has a length l and a capacity c,
answer the following queries:

what’s the shortest path from s to t, if only edges of capacity ≥ f are
considered?

A generalization of bounded-leg shortest path.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 4 / 23

Introduction Our results

Our results

A simple algorithm for (1 + ε)-approximating APSP-AF in

Õ(n
3+ω
2 ε−2 logW) preprocessing time1 and O(log log(nW)

ε) query time

where W is the maximum edge length,
and ω < 2.373 is the matrix-multiplication exponent.

An algorithm in Õ(n
3+ω
2 ε−3/2 logW) preprocessing time

This is the first truly-subcubic2 time algorithm for such problems.

1Õ hides polylog(n) factors
2O(n3−δpolylog(ε,W)) for some δ > 0

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 5 / 23

Introduction Our results

Our results

A simple algorithm for (1 + ε)-approximating APSP-AF in

Õ(n
3+ω
2 ε−2 logW) preprocessing time1 and O(log log(nW)

ε) query time

where W is the maximum edge length,
and ω < 2.373 is the matrix-multiplication exponent.

An algorithm in Õ(n
3+ω
2 ε−3/2 logW) preprocessing time

This is the first truly-subcubic2 time algorithm for such problems.

1Õ hides polylog(n) factors
2O(n3−δpolylog(ε,W)) for some δ > 0

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 5 / 23

Introduction Our results

Our results

A simple algorithm for (1 + ε)-approximating APSP-AF in

Õ(n
3+ω
2 ε−2 logW) preprocessing time1 and O(log log(nW)

ε) query time

where W is the maximum edge length,
and ω < 2.373 is the matrix-multiplication exponent.

An algorithm in Õ(n
3+ω
2 ε−3/2 logW) preprocessing time

This is the first truly-subcubic2 time algorithm for such problems.

1Õ hides polylog(n) factors
2O(n3−δpolylog(ε,W)) for some δ > 0

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 5 / 23

Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.

The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2)

time [Duan and Pettie, 2009].

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 6 / 23

Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.
The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2)

time [Duan and Pettie, 2009].

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 6 / 23

Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.
The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2)

time [Duan and Pettie, 2009].

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 6 / 23

Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.
The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2)

time [Duan and Pettie, 2009].

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 6 / 23

Introduction Our results

Various Matrix Products

A B

Ai4

Ai3

Ai2

Ai1

B4j

B3j

B2j

B1j

ui vk
wj

Distance product: (A ? B)ij = mink{Aik + Bkj}.
The shortest path from ui to wj .

Max-min product:
(A > B)ij = maxk min{Aik ,Bkj}.

The maximum flow that can be pushed from ui to wj .

A > B can be computed in O(n
3+ω
2)

time [Duan and Pettie, 2009].

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 6 / 23

Introduction Our results

Query Time

We compute a matrix whose entries Aij are sets of (d , f) pairs.

Aij = {(dk , fk)}
Intuitively, an entry (d , f) ∈ Aij indicates a path from i to j , with
minimum capacity f and distance ≈ d .

We call such a matrix “df -matrix”.

To answer a query (s, t, f), simply find

min{d : (d , f ′) ∈ Ast , f
′ ≥ f }.

Query time O(log |Ast |), and |Ast | = O(log(nW)
ε).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 7 / 23

Introduction Our results

Query Time

We compute a matrix whose entries Aij are sets of (d , f) pairs.

Aij = {(dk , fk)}
Intuitively, an entry (d , f) ∈ Aij indicates a path from i to j , with
minimum capacity f and distance ≈ d .
We call such a matrix “df -matrix”.

To answer a query (s, t, f), simply find

min{d : (d , f ′) ∈ Ast , f
′ ≥ f }.

Query time O(log |Ast |), and |Ast | = O(log(nW)
ε).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 7 / 23

Introduction Our results

Query Time

We compute a matrix whose entries Aij are sets of (d , f) pairs.

Aij = {(dk , fk)}
Intuitively, an entry (d , f) ∈ Aij indicates a path from i to j , with
minimum capacity f and distance ≈ d .
We call such a matrix “df -matrix”.

To answer a query (s, t, f), simply find

min{d : (d , f ′) ∈ Ast , f
′ ≥ f }.

Query time O(log |Ast |), and |Ast | = O(log(nW)
ε).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 7 / 23

Introduction Our results

Query Time

We compute a matrix whose entries Aij are sets of (d , f) pairs.

Aij = {(dk , fk)}
Intuitively, an entry (d , f) ∈ Aij indicates a path from i to j , with
minimum capacity f and distance ≈ d .
We call such a matrix “df -matrix”.

To answer a query (s, t, f), simply find

min{d : (d , f ′) ∈ Ast , f
′ ≥ f }.

Query time O(log |Ast |), and |Ast | = O(log(nW)
ε).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 7 / 23

Introduction Our results

A(f)

For a df -matrix A and a flow f , define A(f) be the matrix satisfying
A(f)ij = min{d : ∃(d , f ′) ∈ Aij , f

′ ≥ f }.
Given flow constraint f , what’s the best path in Aij?

i◦
d=2,f=3

55d=4,f=5 //
d=5,f=7)) ◦j ⇒

i◦

f 1 ∼ 3 4 ∼ 5 6 ∼ 7 8

d 2 4 5 +∞
// ◦j

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 8 / 23

Introduction Our results

A(f)

For a df -matrix A and a flow f , define A(f) be the matrix satisfying
A(f)ij = min{d : ∃(d , f ′) ∈ Aij , f

′ ≥ f }.
Given flow constraint f , what’s the best path in Aij?

i◦
d=2,f=3

55d=4,f=5 //
d=5,f=7)) ◦j ⇒

i◦

f 1 ∼ 3 4 ∼ 5 6 ∼ 7 8

d 2 4 5 +∞
// ◦j

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 8 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given two df -matrices A,B, where all distances d ≤ R and R is a
small number.

We’d like to compute some df -matrix C , such that
∀f ,C (f) = A(f) ? B(f).

Recall ? is the distance product.
Also let’s say C = A ? B for brevity.

This takes O(n
3+ω
2 R2) time.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 9 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given two df -matrices A,B, where all distances d ≤ R and R is a
small number.

We’d like to compute some df -matrix C , such that
∀f ,C (f) = A(f) ? B(f).

Recall ? is the distance product.

Also let’s say C = A ? B for brevity.

This takes O(n
3+ω
2 R2) time.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 9 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given two df -matrices A,B, where all distances d ≤ R and R is a
small number.

We’d like to compute some df -matrix C , such that
∀f ,C (f) = A(f) ? B(f).

Recall ? is the distance product.
Also let’s say C = A ? B for brevity.

This takes O(n
3+ω
2 R2) time.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 9 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given two df -matrices A,B, where all distances d ≤ R and R is a
small number.

We’d like to compute some df -matrix C , such that
∀f ,C (f) = A(f) ? B(f).

Recall ? is the distance product.
Also let’s say C = A ? B for brevity.

This takes O(n
3+ω
2 R2) time.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 9 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d , what’s the largest f s.t. Cij(f) ≤ d?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d1 + d2 = d , what’s the largest f s.t. Aij(f) ≤ d1 and
Bij(f) ≤ d2?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d1 + d2 = d , what’s the largest f s.t. Aij(f) ≤ d1 and
Bij(f) ≤ d2?

Let’s define A
(d)
ij = max{f : (d ′, f) ∈ Aij , d

′ ≤ d}.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d1 + d2 = d , what’s the largest f s.t. Aij(f) ≤ d1 and
Bij(f) ≤ d2?

maxk min{A(d1)
ik ,B

(d2)
kj }

Let’s define A
(d)
ij = max{f : (d ′, f) ∈ Aij , d

′ ≤ d}.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d , what’s the largest f s.t. Cij(f) ≤ d?

maxd1+d2=d maxk min{A(d1)
ik ,B

(d2)
kj }

Let’s define A
(d)
ij = max{f : (d ′, f) ∈ Aij , d

′ ≤ d}.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d , what’s the largest f s.t. Cij(f) ≤ d?

maxd1+d2=d(A(d1) > B(d2))ij
Recall that > is max-min product.

Let’s define A
(d)
ij = max{f : (d ′, f) ∈ Aij , d

′ ≤ d}.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 1. Exact product for small distances

1. Exact product for small distances

A B

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)

(d, f)
ui vk

wj

Given d , what’s the largest f s.t. Cij(f) ≤ d?

maxd1+d2=d(A(d1) > B(d2))ij
Recall that > is max-min product.

Let’s define A
(d)
ij = max{f : (d ′, f) ∈ Aij , d

′ ≤ d}.
O(R2) max-min products suffice to compute
the df -matrix C !

Cij = {(maxd1+d2=d(A(d1) > B(d2))ij , f) :
1 ≤ d ≤ 2R}

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 10 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

Given two df -matrices A,B, compute C ≈ A ? B.

Now d can be large(d ≤ M), but we only want C to be approximately
correct.

Approximation guarantee: ∀f , i , j ,
(A(f) ? B(f))ij ≤ C (f)ij ≤ (1 + 4

R)(A(f) ? B(f))ij .

time complexity: O(n
3+ω
2 R2 logM).

O(logM) exact products in which d ≤ R.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 11 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

Given two df -matrices A,B, compute C ≈ A ? B.

Now d can be large(d ≤ M), but we only want C to be approximately
correct.

Approximation guarantee: ∀f , i , j ,
(A(f) ? B(f))ij ≤ C (f)ij ≤ (1 + 4

R)(A(f) ? B(f))ij .

time complexity: O(n
3+ω
2 R2 logM).

O(logM) exact products in which d ≤ R.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 11 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

Given two df -matrices A,B, compute C ≈ A ? B.

Now d can be large(d ≤ M), but we only want C to be approximately
correct.

Approximation guarantee: ∀f , i , j ,
(A(f) ? B(f))ij ≤ C (f)ij ≤ (1 + 4

R)(A(f) ? B(f))ij .

time complexity: O(n
3+ω
2 R2 logM).

O(logM) exact products in which d ≤ R.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 11 / 23

The algorithm 2. Approximate product for arbitrary distances

A lemma

Lemma ([Zwick, 1998])

Let A,B be two matrices with entries in {0, 1, . . . ,M,+∞}, C = A ? B.

Let R be a power of 2, Scale(A,M,R) be a matrix A′ such that

A′ij =

{
dRAij/Me if 0 ≤ Aij ≤ M

+∞ otherwise
.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r ,R) ? Scale(B, 2r ,R))},

then for any i , j , Cij ≤ C ′ij ≤ (1 + 4
R)Cij .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 12 / 23

The algorithm 2. Approximate product for arbitrary distances

A lemma

Lemma ([Zwick, 1998])

Let A,B be two matrices with entries in {0, 1, . . . ,M,+∞}, C = A ? B.
Let R be a power of 2, Scale(A,M,R) be a matrix A′ such that

A′ij =

{
dRAij/Me if 0 ≤ Aij ≤ M

+∞ otherwise
.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r ,R) ? Scale(B, 2r ,R))},

then for any i , j , Cij ≤ C ′ij ≤ (1 + 4
R)Cij .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 12 / 23

The algorithm 2. Approximate product for arbitrary distances

A lemma

Lemma ([Zwick, 1998])

Let A,B be two matrices with entries in {0, 1, . . . ,M,+∞}, C = A ? B.
Let R be a power of 2, Scale(A,M,R) be a matrix A′ such that

A′ij =

{
dRAij/Me if 0 ≤ Aij ≤ M

+∞ otherwise
.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r ,R) ? Scale(B, 2r ,R))},

then for any i , j , Cij ≤ C ′ij ≤ (1 + 4
R)Cij .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 12 / 23

The algorithm 2. Approximate product for arbitrary distances

A lemma

Lemma ([Zwick, 1998])

Let A,B be two matrices with entries in {0, 1, . . . ,M,+∞}, C = A ? B.
Let R be a power of 2, Scale(A,M,R) be a matrix A′ such that

A′ij =

{
dRAij/Me if 0 ≤ Aij ≤ M

+∞ otherwise
.

Define C ′ as:

C ′ = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A, 2r ,R) ? Scale(B, 2r ,R))},

then for any i , j , Cij ≤ C ′ij ≤ (1 + 4
R)Cij .

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 12 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

C (f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A(f), 2r ,R) ? Scale(B(f), 2r ,R))}

Define Scale(A,M,R)ij = {(bR · d/Mc, f) : (d , f) ∈ Aij}.
Scale down every d .
(Scale(A,M,R)) (f) = Scale(A(f),M,R).

Cij =
⋃

blog2 Rc≤r≤dlog2 Me

{((2r/R) · d , f) :

(d , f) ∈ (Scale(A, 2r ,R)?Scale(B, 2r ,R))ij}

(This ? is the previous exact product.)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 13 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

C (f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A(f), 2r ,R) ? Scale(B(f), 2r ,R))}

Define Scale(A,M,R)ij = {(bR · d/Mc, f) : (d , f) ∈ Aij}.
Scale down every d .

(Scale(A,M,R)) (f) = Scale(A(f),M,R).

Cij =
⋃

blog2 Rc≤r≤dlog2 Me

{((2r/R) · d , f) :

(d , f) ∈ (Scale(A, 2r ,R)?Scale(B, 2r ,R))ij}

(This ? is the previous exact product.)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 13 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

C (f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A(f), 2r ,R) ? Scale(B(f), 2r ,R))}

Define Scale(A,M,R)ij = {(bR · d/Mc, f) : (d , f) ∈ Aij}.
Scale down every d .
(Scale(A,M,R)) (f) = Scale(A(f),M,R).

Cij =
⋃

blog2 Rc≤r≤dlog2 Me

{((2r/R) · d , f) :

(d , f) ∈ (Scale(A, 2r ,R)?Scale(B, 2r ,R))ij}

(This ? is the previous exact product.)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 13 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

C (f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A(f), 2r ,R) ? Scale(B(f), 2r ,R))}

Define Scale(A,M,R)ij = {(bR · d/Mc, f) : (d , f) ∈ Aij}.
Scale down every d .
(Scale(A,M,R)) (f) = Scale(A(f),M,R).

Cij =
⋃

blog2 Rc≤r≤dlog2 Me

{((2r/R) · d , f) :

(d , f) ∈ (Scale(A, 2r ,R)?Scale(B, 2r ,R))ij}

(This ? is the previous exact product.)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 13 / 23

The algorithm 2. Approximate product for arbitrary distances

2. Approximate product for arbitrary distances

C (f) = min
blog2 Rc≤r≤dlog2 Me

{(2r/R) · (Scale(A(f), 2r ,R) ? Scale(B(f), 2r ,R))}

Define Scale(A,M,R)ij = {(bR · d/Mc, f) : (d , f) ∈ Aij}.
Scale down every d .
(Scale(A,M,R)) (f) = Scale(A(f),M,R).

Cij =
⋃

blog2 Rc≤r≤dlog2 Me

{((2r/R) · d , f) :

(d , f) ∈ (Scale(A, 2r ,R)?Scale(B, 2r ,R))ij}

(This ? is the previous exact product.)

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 13 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.

Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward:

just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

The algorithm 3. Main procedure

3. Main procedure

We’re ready to approximate the APSP-AF problem.

Recall that we’re given a graph G where Gij = {(d , f) :
there is an edge with length d and capacity f between i and j}.
Given the approximation algorithm, our main procedure is very
straightforward: just take log n matrix powers!

Let D̃(0) = G , D̃(i) be an approximation of D̃(i−1) ? D̃(i−1).

It can be proved by induction that D̃(dlog2 ne) is an
(1 + 4

R)dlog2 ne-approximation of APSP-AF distances.

We set R the smallest power of 2 greater than 4dlog2 ne/ ln(1 + ε),
and we’re done.

Time complexity: O(n
3+ω
2 R2 logM log n) = Õ(n

3+ω
2 ε−2 logM).

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 14 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε:

there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.

Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].

Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

(Sketch of) a faster algorithm

(Sketch of) a faster algorithm

We can reduce the dependency on ε: there is an

Õ(n
3+ω
2 ε−3/2 logW)-time algorithm.

It suffices to compute the exact product in Õ(n
3+ω
2 R3/2) time.

Max-min product [Duan and Pettie, 2009]: O(t)
matrix-multiplications & O(n3/t) extra work

Let t = n
3−ω

2 , then O(tnω + n3/t) = O(n
3+ω
2)

exact product of df -matrices: O(tR2) MMs & O(R2n3/t) extra work

It turns out that these O(tR2) MMs are expressible in O(t) distance
products of matrices whose elements are ≤ R.
Such a distance product can be computed in Õ(Rnω) [Zwick, 1998].
Speedup: O(tR2nω)⇒ Õ(tRnω).

Let t = n
3−ω

2 R1/2 and we’re done.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 15 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.

Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];

distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].

We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)

⇒ Õ(n
3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Conclusions and open problems

Conclusions

We present an algorithm for (1 + ε)-approximating APSP-AF problem
in truly-subcubic time.
Main ingredient: faster max-min product [Duan and Pettie, 2009];
distance-product approximation [Zwick, 1998].
We furthermore reduced the time dependency on ε:
Õ(n

3+ω
2 ε−2 logW)⇒ Õ(n

3+ω
2 ε−3/2 logW).

Open problems

Reducing dependency on n(i.e. 3+ω
2) requires faster max-min product.

But can APSP-AF be done in Õ(n
3+ω
2 ε−1 logW)?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 16 / 23

Conclusions and open problems

Thank you!
Questions are welcome!

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 17 / 23

References

References I

Ausiello, G., Italiano, G. F., Spaccamela, A. M., and Nanni, U. (1991).

Incremental algorithms for minimal length paths.
Journal of Algorithms, 12(4):615–638.

Baswana, S., Hariharan, R., and Sen, S. (2007).
Improved decremental algorithms for maintaining transitive closure
and all-pairs shortest paths.
Journal of Algorithms, 62(2):74–92.

Bernstein, A. (2016).
Maintaining shortest paths under deletions in weighted directed
graphs.
SIAM Journal on Computing, 45(2):548–574.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 18 / 23

References

References II

Bernstein, A. and Roditty, L. (2011).
Improved dynamic algorithms for maintaining approximate shortest
paths under deletions.
In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1355–1365. Society for Industrial and
Applied Mathematics.

Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., and Zeh, N.
(2004).
Approximating geometric bottleneck shortest paths.
Computational Geometry, 29(3):233–249.

Coppersmith, D. and Winograd, S. (1990).
Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 19 / 23

References

References III

Duan, R. and Pettie, S. (2008).
Bounded-leg distance and reachability oracles.
In Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 436–445. Society for Industrial and Applied
Mathematics.

Duan, R. and Pettie, S. (2009).
Fast algorithms for (max, min)-matrix multiplication and bottleneck
shortest paths.
In Twentieth Acm-Siam Symposium on Discrete Algorithms, SODA
2009, New York, Ny, Usa, January, pages 384–391.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 20 / 23

References

References IV

Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T.
(2015).
Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture.
In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 21–30. ACM.

Roditty, L. and Segal, M. (2007).
On bounded leg shortest paths problems.
In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 775–784. Society for Industrial and Applied
Mathematics.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 21 / 23

References

References V

Roditty, L. and Zwick, U. (2004).
Dynamic approximate all-pairs shortest paths in undirected graphs.
In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 499–508. IEEE.

Shinn, T.-W. and Takaoka, T. (2013).
Efficient graph algorithms for network analysis.
In First International Conference on Resource Efficiency in
Interorganizational Networks-ResEff 2013, page 236.

Shinn, T.-W. and Takaoka, T. (2014a).
Combining all pairs shortest paths and all pairs bottleneck paths
problems.
In Latin American Symposium on Theoretical Informatics, pages
226–237. Springer.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 22 / 23

References

References VI

Shinn, T.-W. and Takaoka, T. (2014b).
Combining the shortest paths and the bottleneck paths problems.
In Proceedings of the Thirty-Seventh Australasian Computer Science
Conference-Volume 147, pages 13–18. Australian Computer Society,
Inc.

Shinn, T.-W. and Takaoka, T. (2015).
Variations on the bottleneck paths problem.
Theoretical Computer Science, 575:10 – 16.
Special Issue on Algorithms and Computation.

Zwick, U. (1998).
All pairs shortest paths in weighted directed graphs – exact and
almost exact algorithms.
In Foundations of Computer Science, 1998. Proceedings. Symposium
on, pages 310–319.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF July 12, 2018 23 / 23

	Introduction
	Motivation
	Our results

	The algorithm
	1. Exact product for small distances
	2. Approximate product for arbitrary distances
	3. Main procedure

	(Sketch of) a faster algorithm
	Conclusions and open problems
	Appendix
	References

