Approximating All-Pair Bounded-Leg Shortest Path and APSP-AF in Truly-Subcubic Time

Ran Duan, <u>Hanlin Ren</u>

Institute for Interdisciplinary Information Sciences Tsinghua University

July 12, 2018

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF

Outline

- Motivation
- Our results
- The algorithm
 - 1. Exact product for small distances
 - 2. Approximate product for arbitrary distances
 - 3. Main procedure
- (Sketch of) a faster algorithm
- 4 Conclusions and open problems

Motivation

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:

Motivation

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:
 - what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Bounded-leg shortest path

• Motivation 1: the bounded-leg shortest path problem

Introduction

- Given a weighted directed graph, answer the following queries:
 - what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Motivation

Bounded-leg shortest path

• Motivation 1: the bounded-leg shortest path problem

Introduction

- Given a weighted directed graph, answer the following queries:
 - what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Motivation

Bounded-leg shortest path

• Motivation 1: the bounded-leg shortest path problem

Introduction

- Given a weighted directed graph, answer the following queries:
 - what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Motivation

APSP-AF

- Motivation 2: the APSP-AF problem.
 - All-Pair-Shortest-Path for All Flows.

APSP-AF

- Motivation 2: the APSP-AF problem.
 - All-Pair-Shortest-Path for All Flows.
- Given a graph, in which each edge has a *length I* and a *capacity c*, answer the following queries:
 - what's the shortest path from s to t, if only edges of capacity $\geq f$ are considered?

APSP-AF

- Motivation 2: the APSP-AF problem.
 - All-Pair-Shortest-Path for All Flows.
- Given a graph, in which each edge has a *length I* and a *capacity c*, answer the following queries:
 - what's the shortest path from s to t, if only edges of capacity $\geq f$ are considered?
- A generalization of bounded-leg shortest path.

Our results

- A simple algorithm for $(1 + \epsilon)$ -approximating APSP-AF in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W)$ preprocessing time¹ and $O(\log \frac{\log(nW)}{\epsilon})$ query time
 - where W is the maximum edge length,
 - $\bullet\,$ and $\omega < 2.373$ is the matrix-multiplication exponent.

¹ \tilde{O} hides polylog(n) factors ² $O(n^{3-\delta}polylog(\epsilon, W))$ for some $\delta > 0$ Ran Duan, <u>Hanlin Ren</u> (IIIS, THU) Approximating apBLSP and APSP-AF

Our results

- A simple algorithm for $(1 + \epsilon)$ -approximating APSP-AF in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W)$ preprocessing time¹ and $O(\log \frac{\log(nW)}{\epsilon})$ query time
 - where W is the maximum edge length,
 - $\bullet\,$ and $\omega < 2.373$ is the matrix-multiplication exponent.
- An algorithm in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ preprocessing time

¹ \tilde{O} hides polylog(n) factors ² $O(n^{3-\delta}polylog(\epsilon, W))$ for some $\delta > 0$ Ran Duan, <u>Hanlin Ren</u> (IIIS, THU) Approximating apBLSP and APSP-AF

Our results

- A simple algorithm for $(1 + \epsilon)$ -approximating APSP-AF in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W)$ preprocessing time¹ and $O(\log \frac{\log(nW)}{\epsilon})$ query time
 - where W is the maximum edge length,
 - $\bullet\,$ and $\omega < 2.373$ is the matrix-multiplication exponent.
- An algorithm in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ preprocessing time
- This is the first truly-subcubic² time algorithm for such problems.

¹ \tilde{O} hides $\operatorname{polylog}(n)$ factors ² $O(n^{3-\delta}\operatorname{polylog}(\epsilon, W))$ for some $\delta > 0$ Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF

Various Matrix Products

• Distance product: $(A \star B)_{ij} = \min_k \{A_{ik} + B_{kj}\}.$

Our results

Various Matrix Products

- Distance product: $(A \star B)_{ij} = \min_k \{A_{ik} + B_{kj}\}.$
 - The shortest path from u_i to w_j .

Our results

Various Matrix Products

- Distance product: $(A \star B)_{ij} = \min_k \{A_{ik} + B_{kj}\}.$
 - The shortest path from u_i to w_j .
- Max-min product: $(A \odot B)_{ij} = \max_k \min\{A_{ik}, B_{kj}\}.$

Our results

Various Matrix Products

- Distance product: $(A \star B)_{ij} = \min_k \{A_{ik} + B_{kj}\}.$
 - The shortest path from u_i to w_j .
- Max-min product:

 $(A \otimes B)_{ij} = \max_k \min\{A_{ik}, B_{kj}\}.$

• The maximum flow that can be pushed from u_i to w_j .

Our results

Various Matrix Products

- Distance product: $(A \star B)_{ij} = \min_k \{A_{ik} + B_{kj}\}.$
 - The shortest path from u_i to w_j .
- Max-min product:

 $(A \otimes B)_{ij} = \max_k \min\{A_{ik}, B_{kj}\}.$

- The maximum flow that can be pushed from u_i to w_j .
- A ⊗ B can be computed in O(n^{3+ω}/₂) time [Duan and Pettie, 2009].

Query Time

- We compute a matrix whose entries A_{ij} are sets of (d, f) pairs.
 - $A_{ij} = \{(d_k, f_k)\}$
 - Intuitively, an entry $(d, f) \in A_{ij}$ indicates a path from *i* to *j*, with minimum capacity *f* and distance $\approx d$.

Query Time

- We compute a matrix whose entries A_{ij} are sets of (d, f) pairs.
 - $A_{ij} = \{(d_k, f_k)\}$
 - Intuitively, an entry $(d, f) \in A_{ij}$ indicates a path from *i* to *j*, with minimum capacity *f* and distance $\approx d$.
 - We call such a matrix "df-matrix".

Introduction Our results

Query Time

- We compute a matrix whose entries A_{ij} are sets of (d, f) pairs.
 - $A_{ij} = \{(d_k, f_k)\}$
 - Intuitively, an entry $(d, f) \in A_{ij}$ indicates a path from *i* to *j*, with minimum capacity *f* and distance $\approx d$.
 - We call such a matrix "df-matrix".
- To answer a query (s, t, f), simply find

$$\min\{d: (d, f') \in A_{st}, f' \geq f\}.$$

Introduction Our results

Query Time

- We compute a matrix whose entries A_{ij} are sets of (d, f) pairs.
 - $A_{ij} = \{(d_k, f_k)\}$
 - Intuitively, an entry $(d, f) \in A_{ij}$ indicates a path from *i* to *j*, with minimum capacity *f* and distance $\approx d$.
 - We call such a matrix "df-matrix".
- To answer a query (s, t, f), simply find

$$\min\{d: (d, f') \in A_{st}, f' \geq f\}.$$

• Query time $O(\log |A_{st}|)$, and $|A_{st}| = O(\frac{\log(nW)}{\epsilon})$.

- For a *df*-matrix *A* and a flow *f*, define A(f) be the matrix satisfying $A(f)_{ij} = \min\{d : \exists (d, f') \in A_{ij}, f' \ge f\}.$
 - Given flow constraint f, what's the best path in A_{ij} ?

A(f)

- For a *df*-matrix *A* and a flow *f*, define A(f) be the matrix satisfying $A(f)_{ij} = \min\{d : \exists (d, f') \in A_{ij}, f' \ge f\}.$
 - Given flow constraint f, what's the best path in A_{ij} ?

$$i \circ \underbrace{\begin{array}{c} d=5, f=7 \\ d=4, f=5 \\ d=2, f=3 \end{array}}_{i \circ j} \circ j \Rightarrow i \circ \underbrace{\begin{array}{c} f & 1 \sim 3 & 4 \sim 5 & 6 \sim 7 & 8 \\ d & 2 & 4 & 5 & +\infty \end{array}}_{i \circ j} \circ j$$

Given two *df*-matrices *A*, *B*, where **all distances** *d* ≤ *R* and *R* is a small number.

- Given two *df*-matrices *A*, *B*, where **all distances** *d* ≤ *R* and *R* is a small number.
- We'd like to compute some df-matrix C, such that $\forall f, C(f) = A(f) \star B(f)$.
 - Recall \star is the distance product.

- Given two *df*-matrices *A*, *B*, where **all distances** *d* ≤ *R* and *R* is a small number.
- We'd like to compute some df-matrix C, such that $\forall f, C(f) = A(f) \star B(f)$.
 - Recall \star is the distance product.
 - Also let's say $C = A \star B$ for brevity.

- Given two *df*-matrices *A*, *B*, where **all distances** *d* ≤ *R* and *R* is a small number.
- We'd like to compute some df-matrix C, such that $\forall f, C(f) = A(f) \star B(f)$.
 - Recall \star is the distance product.
 - Also let's say $C = A \star B$ for brevity.
- This takes $O(n^{\frac{3+\omega}{2}}R^2)$ time.

• Given d, what's the largest f s.t. $C_{ij}(f) \leq d$?

Ran Duan, Hanlin Ren (IIIS, THU) Approximatir

Approximating apBLSP and APSP-AF

• Given $d_1 + d_2 = d$, what's the largest f s.t. $A_{ij}(f) \le d_1$ and $B_{ij}(f) \le d_2$?

Ran Duan, Hanlin Ren (IIIS, THU) Approximating

Approximating apBLSP and APSP-AF

• Given $d_1 + d_2 = d$, what's the largest f s.t. $A_{ij}(f) \le d_1$ and $B_{ij}(f) \le d_2$? • Let's define $A_{ii}^{(d)} = \max\{f : (d', f) \in A_{ij}, d' \le d\}$.

• Given $d_1 + d_2 = d$, what's the largest f s.t. $A_{ij}(f) \le d_1$ and $B_{ij}(f) \le d_2$? • $\max_k \min\{A_{ik}^{(d_1)}, B_{kj}^{(d_2)}\}$ • Let's define $A_{ii}^{(d)} = \max\{f : (d', f) \in A_{ij}, d' \le d\}$.

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF

- Given d, what's the largest f s.t. $C_{ij}(f) \leq d$?
 - $\max_{d_1+d_2=d} \max_k \min\{A_{ik}^{(d_1)}, B_{kj}^{(d_2)}\}$
- Let's define $A_{ij}^{(d)} = \max\{f : (d', f) \in A_{ij}, d' \leq d\}.$

- Given d, what's the largest f s.t. $C_{ij}(f) \leq d$?
 - $\max_{d_1+d_2=d} (A^{(d_1)} \odot B^{(d_2)})_{ij}$
 - Recall that \odot is max-min product.
- Let's define $A_{ij}^{(d)} = \max\{f : (d', f) \in A_{ij}, d' \leq d\}.$

- Given d, what's the largest f s.t. $C_{ij}(f) \leq d$?
 - $\max_{d_1+d_2=d} (A^{(d_1)} \odot B^{(d_2)})_{ij}$
 - Recall that \odot is max-min product.
- Let's define $A_{ij}^{(d)} = \max\{f : (d', f) \in A_{ij}, d' \leq d\}.$
- $O(R^2)$ max-min products suffice to compute the *df*-matrix *C*!

•
$$C_{ij} = \{(\max_{d_1+d_2=d}(A^{(d_1)} \otimes B^{(d_2)})_{ij}, f) : 1 \le d \le 2R\}$$

2. Approximate product for arbitrary distances

- Given two *df*-matrices *A*, *B*, compute $C \approx A \star B$.
- Now d can be large(d ≤ M), but we only want C to be approximately correct.
- Given two *df*-matrices *A*, *B*, compute $C \approx A \star B$.
- Now d can be large(d ≤ M), but we only want C to be approximately correct.
- Approximation guarantee: $\forall f, i, j, (A(f) \star B(f))_{ij} \leq C(f)_{ij} \leq (1 + \frac{4}{R})(A(f) \star B(f))_{ij}.$

- Given two *df*-matrices *A*, *B*, compute $C \approx A \star B$.
- Now d can be large(d ≤ M), but we only want C to be approximately correct.
- Approximation guarantee: $\forall f, i, j, (A(f) \star B(f))_{ij} \leq C(f)_{ij} \leq (1 + \frac{4}{R})(A(f) \star B(f))_{ij}.$
- time complexity: $O(n^{\frac{3+\omega}{2}}R^2 \log M)$.
 - $O(\log M)$ exact products in which $d \leq R$.

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0, 1, \dots, M, +\infty\}$, $C = A \star B$.

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0, 1, ..., M, +\infty\}$, $C = A \star B$. Let R be a power of 2, SCALE(A, M, R) be a matrix A' such that

$$egin{aligned} \mathsf{A}'_{ij} = egin{cases} \lceil \mathsf{R}\mathsf{A}_{ij}/\mathsf{M}
ceil & ext{if } 0 \leq \mathsf{A}_{ij} \leq \mathsf{M} \ +\infty & ext{otherwise} \end{aligned}$$

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0, 1, ..., M, +\infty\}$, $C = A \star B$. Let R be a power of 2, SCALE(A, M, R) be a matrix A' such that

$$egin{aligned} A_{ij}' = egin{cases} \lceil RA_{ij}/M \rceil & \textit{if } 0 \leq A_{ij} \leq M \ +\infty & \textit{otherwise} \end{aligned}$$

Define C' as:

$$C' = \min_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{(2^r/R) \cdot (\operatorname{SCALE}(A, 2^r, R) \star \operatorname{SCALE}(B, 2^r, R))\},\$$

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0, 1, ..., M, +\infty\}$, $C = A \star B$. Let R be a power of 2, SCALE(A, M, R) be a matrix A' such that

$$egin{aligned} A_{ij}' = egin{cases} \lceil RA_{ij}/M \rceil & \textit{if } 0 \leq A_{ij} \leq M \ +\infty & \textit{otherwise} \end{aligned}$$

Define C' as:

$$C' = \min_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{(2^r/R) \cdot (\operatorname{SCALE}(A, 2^r, R) \star \operatorname{SCALE}(B, 2^r, R))\},\$$

then for any $i, j, C_{ij} \leq C'_{ij} \leq (1 + \frac{4}{R})C_{ij}$.

$$C(f) = \min_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{(2^r/R) \cdot (\operatorname{SCALE}(A(f), 2^r, R) \star \operatorname{SCALE}(B(f), 2^r, R))\}$$

13 / 23

2. Approximate product for arbitrary distances

$$C(f) = \min_{\substack{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil}} \{(2^r/R) \cdot (\operatorname{SCALE}(A(f), 2^r, R) \star \operatorname{SCALE}(B(f), 2^r, R))\}$$

- Define SCALE $(A, M, R)_{ij} = \{(\lfloor R \cdot d/M \rfloor, f) : (d, f) \in A_{ij}\}.$
 - Scale down every d.

$$C(f) = \min_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{(2^r/R) \cdot (\operatorname{SCALE}(A(f), 2^r, R) \star \operatorname{SCALE}(B(f), 2^r, R))\}$$

• Define SCALE $(A, M, R)_{ij} = \{(\lfloor R \cdot d/M \rfloor, f) : (d, f) \in A_{ij}\}.$

- Scale down every d.
- (SCALE(A, M, R))(f) = SCALE(A(f), M, R).

$$C(f) = \min_{\substack{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil}} \{(2^r/R) \cdot (\operatorname{SCALE}(A(f), 2^r, R) \star \operatorname{SCALE}(B(f), 2^r, R))\}$$

• Define SCALE $(A, M, R)_{ij} = \{(\lfloor R \cdot d/M \rfloor, f) : (d, f) \in A_{ij}\}.$

• Scale down every d.

•
$$(\operatorname{SCALE}(A, M, R))(f) = \operatorname{SCALE}(A(f), M, R).$$

$$C_{ij} = \bigcup_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{ ((2^r/R) \cdot d, f) : \\ (d, f) \in (SCALE(A, 2^r, R) \star SCALE(B, 2^r, R))_{ij} \}$$

$$C(f) = \min_{\substack{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil}} \{(2^r/R) \cdot (\operatorname{SCALE}(\mathcal{A}(f), 2^r, R) \star \operatorname{SCALE}(\mathcal{B}(f), 2^r, R))\}$$

• Define SCALE $(A, M, R)_{ij} = \{(\lfloor R \cdot d/M \rfloor, f) : (d, f) \in A_{ij}\}.$

- Scale down every d.
- (SCALE(A, M, R))(f) = SCALE(A(f), M, R).

$$C_{ij} = \bigcup_{\lfloor \log_2 R \rfloor \le r \le \lceil \log_2 M \rceil} \{ ((2^r/R) \cdot d, f) : \\ (d, f) \in (SCALE(A, 2^r, R) \star SCALE(B, 2^r, R))_{ij} \}$$

• (This * is the previous exact product.)

• We're ready to approximate the APSP-AF problem.

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward:

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward: just take log *n* matrix powers!

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward: just take log *n* matrix powers!
- Let $\tilde{D}^{(0)} = G$, $\tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward: just take log *n* matrix powers!
- Let $\tilde{D}^{(0)} = G$, $\tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}^{(\lceil \log_2 n \rceil)}$ is an $(1 + \frac{4}{R})^{\lceil \log_2 n \rceil}$ -approximation of APSP-AF distances.

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward: just take log *n* matrix powers!
- Let $\tilde{D}^{(0)} = G$, $\tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}^{(\lceil \log_2 n \rceil)}$ is an $(1 + \frac{4}{R})^{\lceil \log_2 n \rceil}$ -approximation of APSP-AF distances.
- We set *R* the smallest power of 2 greater than $4\lceil \log_2 n \rceil / \ln(1 + \epsilon)$, and we're done.

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where G_{ij} = {(d, f) : there is an edge with length d and capacity f between i and j}.
- Given the approximation algorithm, our main procedure is very straightforward: just take log *n* matrix powers!
- Let $\tilde{D}^{(0)} = G$, $\tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}^{(\lceil \log_2 n \rceil)}$ is an $(1 + \frac{4}{R})^{\lceil \log_2 n \rceil}$ -approximation of APSP-AF distances.
- We set R the smallest power of 2 greater than $4\lceil \log_2 n \rceil / \ln(1 + \epsilon)$, and we're done.
- Time complexity: $O(n^{\frac{3+\omega}{2}}R^2\log M\log n) = \tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log M).$

(Sketch of) a faster algorithm

• We can reduce the dependency on ϵ :

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

• It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work

• Let
$$t = n^{\frac{3-\omega}{2}}$$
, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work
 - Let $t = n^{\frac{3-\omega}{2}}$, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$
- exact product of df-matrices: $O(tR^2)$ MMs & $O(R^2n^3/t)$ extra work

15 / 23

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work
 - Let $t = n^{\frac{3-\omega}{2}}$, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$
- exact product of df-matrices: $O(tR^2)$ MMs & $O(R^2n^3/t)$ extra work
 - It turns out that these O(tR²) MMs are expressible in O(t) distance products of matrices whose elements are ≤ R.

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work
 - Let $t = n^{\frac{3-\omega}{2}}$, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$
- exact product of df-matrices: $O(tR^2)$ MMs & $O(R^2n^3/t)$ extra work
 - It turns out that these O(tR²) MMs are expressible in O(t) distance products of matrices whose elements are ≤ R.
 - Such a distance product can be computed in $\tilde{O}(Rn^{\omega})$ [Zwick, 1998].

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work

• Let $t = n^{\frac{3-\omega}{2}}$, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$

• exact product of df-matrices: $O(tR^2)$ MMs & $O(R^2n^3/t)$ extra work

- It turns out that these O(tR²) MMs are expressible in O(t) distance products of matrices whose elements are ≤ R.
- Such a distance product can be computed in $\tilde{O}(Rn^{\omega})$ [Zwick, 1998].
- Speedup: $O(tR^2n^{\omega}) \Rightarrow \tilde{O}(tRn^{\omega})$.

• We can reduce the dependency on ϵ : there is an $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W)$ -time algorithm.

(Sketch of) a faster algorithm

- It suffices to compute the exact product in $\tilde{O}(n^{\frac{3+\omega}{2}}R^{3/2})$ time.
- Max-min product [Duan and Pettie, 2009]: O(t) matrix-multiplications & $O(n^3/t)$ extra work

• Let $t = n^{\frac{3-\omega}{2}}$, then $O(tn^{\omega} + n^3/t) = O(n^{\frac{3+\omega}{2}})$

• exact product of df-matrices: $O(tR^2)$ MMs & $O(R^2n^3/t)$ extra work

- It turns out that these $O(tR^2)$ MMs are expressible in O(t) distance products of matrices whose elements are $\leq R$.
- Such a distance product can be computed in $\tilde{O}(Rn^{\omega})$ [Zwick, 1998].
- Speedup: $O(tR^2n^{\omega}) \Rightarrow \tilde{O}(tRn^{\omega})$.
- Let $t = n^{\frac{3-\omega}{2}} R^{1/2}$ and we're done.

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009];

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
 - We furthermore reduced the time dependency on $\epsilon: ~~ \tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W)$

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
 - We furthermore reduced the time dependency on ϵ : $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W) \Rightarrow \tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W).$

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
 - We furthermore reduced the time dependency on ϵ : $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W) \Rightarrow \tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W).$
- Open problems
 - Reducing dependency on $n(i.e. \ \frac{3+\omega}{2})$ requires faster max-min product.

- Conclusions
 - We present an algorithm for $(1 + \epsilon)$ -approximating APSP-AF problem in truly-subcubic time.
 - Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
 - We furthermore reduced the time dependency on ϵ : $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-2}\log W) \Rightarrow \tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-3/2}\log W).$
- Open problems
 - Reducing dependency on $n(i.e. \frac{3+\omega}{2})$ requires faster max-min product. But can APSP-AF be done in $\tilde{O}(n^{\frac{3+\omega}{2}}\epsilon^{-1}\log W)$?
Thank you! Questions are welcome!

Ran Duan, Hanlin Ren (IIIS, THU) Approximating apBLSP and APSP-AF

References I

Ausiello, G., Italiano, G. F., Spaccamela, A. M., and Nanni, U. (1991).

Incremental algorithms for minimal length paths. *Journal of Algorithms*, 12(4):615–638.

Baswana, S., Hariharan, R., and Sen, S. (2007). Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths.

Journal of Algorithms, 62(2):74–92.

Bernstein, A. (2016).

Maintaining shortest paths under deletions in weighted directed graphs.

SIAM Journal on Computing, 45(2):548–574.

References II

- Bernstein, A. and Roditty, L. (2011).

Improved dynamic algorithms for maintaining approximate shortest paths under deletions.

In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1355–1365. Society for Industrial and Applied Mathematics.

 Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., and Zeh, N. (2004).
 Approximating geometric bottleneck shortest paths. *Computational Geometry*, 29(3):233–249.

Coppersmith, D. and Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251–280.

References III

Duan, R. and Pettie, S. (2008).

Bounded-leg distance and reachability oracles.

In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 436–445. Society for Industrial and Applied Mathematics.

Duan, R. and Pettie, S. (2009).

Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths.

In Twentieth Acm-Siam Symposium on Discrete Algorithms, SODA 2009, New York, Ny, Usa, January, pages 384–391.

References

References IV

Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T. (2015).

Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture.

In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 21–30. ACM.

Roditty, L. and Segal, M. (2007).

On bounded leg shortest paths problems.

In *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 775–784. Society for Industrial and Applied Mathematics.

References V

 Roditty, L. and Zwick, U. (2004).
 Dynamic approximate all-pairs shortest paths in undirected graphs.
 In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 499–508. IEEE.

 Shinn, T.-W. and Takaoka, T. (2013).
 Efficient graph algorithms for network analysis.
 In First International Conference on Resource Efficiency in Interorganizational Networks-ResEff 2013, page 236.

```
 Shinn, T.-W. and Takaoka, T. (2014a).
 Combining all pairs shortest paths and all pairs bottleneck paths problems.
 In Latin American Symposium on Theoretical Information pages
```

In Latin American Symposium on Theoretical Informatics, pages 226–237. Springer.

References

References VI

- Shinn, T.-W. and Takaoka, T. (2014b).
 Combining the shortest paths and the bottleneck paths problems.
 In Proceedings of the Thirty-Seventh Australasian Computer Science Conference-Volume 147, pages 13–18. Australian Computer Society, Inc.
- Shinn, T.-W. and Takaoka, T. (2015).
 Variations on the bottleneck paths problem. Theoretical Computer Science, 575:10 – 16.
 Special Issue on Algorithms and Computation.

Zwick, U. (1998).

All pairs shortest paths in weighted directed graphs – exact and almost exact algorithms.

In Foundations of Computer Science, 1998. Proceedings. Symposium on, pages 310–319.