Approximating All-Pair Bounded-Leg Shortest Path and APSP-AF in Truly-Subcubic Time

Ran Duan, Hanlin Ren
Institute for Interdisciplinary Information Sciences
Tsinghua University

July 12, 2018

Outline

(1) Introduction

- Motivation
- Our results
(2) The algorithm
- 1. Exact product for small distances
- 2. Approximate product for arbitrary distances
- 3. Main procedure
(3) (Sketch of) a faster algorithm
(4) Conclusions and open problems

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:
- what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:
- what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

A graph G.

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:
- what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

Bounded-leg shortest path

- Motivation 1: the bounded-leg shortest path problem
- Given a weighted directed graph, answer the following queries:
- what's the shortest path from s to t, if only edges of length $\leq L$ are considered?

- Motivation 2: the APSP-AF problem.
- All-Pair-Shortest-Path for All Flows.
- Motivation 2: the APSP-AF problem.
- All-Pair-Shortest-Path for All Flows.
- Given a graph, in which each edge has a length I and a capacity c, answer the following queries:
- what's the shortest path from s to t, if only edges of capacity $\geq f$ are considered?

APSP-AF

- Motivation 2: the APSP-AF problem.
- All-Pair-Shortest-Path for All Flows.
- Given a graph, in which each edge has a length I and a capacity c, answer the following queries:
- what's the shortest path from s to t, if only edges of capacity $\geq f$ are considered?
- A generalization of bounded-leg shortest path.

Our results

- A simple algorithm for $(1+\epsilon)$-approximating APSP-AF in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right)$ preprocessing time ${ }^{1}$ and $O\left(\log \frac{\log (n W)}{\epsilon}\right)$ query time
- where W is the maximum edge length,
- and $\omega<2.373$ is the matrix-multiplication exponent.

[^0]
Our results

- A simple algorithm for $(1+\epsilon)$-approximating APSP-AF in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right)$ preprocessing time ${ }^{1}$ and $O\left(\log \frac{\log (n W)}{\epsilon}\right)$ query time
- where W is the maximum edge length,
- and $\omega<2.373$ is the matrix-multiplication exponent.
- An algorithm in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$ preprocessing time

[^1]
Our results

- A simple algorithm for $(1+\epsilon)$-approximating APSP-AF in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right)$ preprocessing time ${ }^{1}$ and $O\left(\log \frac{\log (n W)}{\epsilon}\right)$ query time
- where W is the maximum edge length,
- and $\omega<2.373$ is the matrix-multiplication exponent.
- An algorithm in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$ preprocessing time
- This is the first truly-subcubic ${ }^{2}$ time algorithm for such problems.

[^2]
Various Matrix Products

- Distance product: $(A \star B)_{i j}=\min _{k}\left\{A_{i k}+B_{k j}\right\}$.

Various Matrix Products

- Distance product: $(A \star B)_{i j}=\min _{k}\left\{A_{i k}+B_{k j}\right\}$.
- The shortest path from u_{i} to w_{j}.

Various Matrix Products

- Distance product: $(A \star B)_{i j}=\min _{k}\left\{A_{i k}+B_{k j}\right\}$.
- The shortest path from u_{i} to w_{j}.
- Max-min product:
$(A \otimes B)_{i j}=\max _{k} \min \left\{A_{i k}, B_{k j}\right\}$.

Various Matrix Products

- Distance product: $(A \star B)_{i j}=\min _{k}\left\{A_{i k}+B_{k j}\right\}$.
- The shortest path from u_{i} to w_{j}.
- Max-min product:
$(A \otimes B)_{i j}=\max _{k} \min \left\{A_{i k}, B_{k j}\right\}$.
- The maximum flow that can be pushed from u_{i} to w_{j}.

Various Matrix Products

- Distance product: $(A \star B)_{i j}=\min _{k}\left\{A_{i k}+B_{k j}\right\}$.
- The shortest path from u_{i} to w_{j}.
- Max-min product:
$(A \otimes B)_{i j}=\max _{k} \min \left\{A_{i k}, B_{k j}\right\}$.
- The maximum flow that can be pushed from u_{i} to w_{j}.
- $A \otimes B$ can be computed in $O\left(n^{\frac{3+\omega}{2}}\right)$ time [Duan and Pettie, 2009].

Query Time

- We compute a matrix whose entries $A_{i j}$ are sets of (d, f) pairs.
- $A_{i j}=\left\{\left(d_{k}, f_{k}\right)\right\}$
- Intuitively, an entry $(d, f) \in A_{i j}$ indicates a path from i to j, with minimum capacity f and distance $\approx d$.

Query Time

- We compute a matrix whose entries $A_{i j}$ are sets of (d, f) pairs.
- $A_{i j}=\left\{\left(d_{k}, f_{k}\right)\right\}$
- Intuitively, an entry $(d, f) \in A_{i j}$ indicates a path from i to j, with minimum capacity f and distance $\approx d$.
- We call such a matrix "df-matrix".

Query Time

- We compute a matrix whose entries $A_{i j}$ are sets of (d, f) pairs.
- $A_{i j}=\left\{\left(d_{k}, f_{k}\right)\right\}$
- Intuitively, an entry $(d, f) \in A_{i j}$ indicates a path from i to j, with minimum capacity f and distance $\approx d$.
- We call such a matrix "df-matrix".
- To answer a query (s, t, f), simply find

$$
\min \left\{d:\left(d, f^{\prime}\right) \in A_{s t}, f^{\prime} \geq f\right\} .
$$

Query Time

- We compute a matrix whose entries $A_{i j}$ are sets of (d, f) pairs.
- $A_{i j}=\left\{\left(d_{k}, f_{k}\right)\right\}$
- Intuitively, an entry $(d, f) \in A_{i j}$ indicates a path from i to j, with minimum capacity f and distance $\approx d$.
- We call such a matrix "df-matrix".
- To answer a query (s, t, f), simply find

$$
\min \left\{d:\left(d, f^{\prime}\right) \in A_{s t}, f^{\prime} \geq f\right\} .
$$

- Query time $O\left(\log \left|A_{s t}\right|\right)$, and $\left|A_{s t}\right|=O\left(\frac{\log (n W)}{\epsilon}\right)$.
- For a $d f$-matrix A and a flow f, define $A(f)$ be the matrix satisfying $A(f)_{i j}=\min \left\{d: \exists\left(d, f^{\prime}\right) \in A_{i j}, f^{\prime} \geq f\right\}$.
- Given flow constraint f, what's the best path in $A_{i j}$?
- For a $d f$-matrix A and a flow f, define $A(f)$ be the matrix satisfying $A(f)_{i j}=\min \left\{d: \exists\left(d, f^{\prime}\right) \in A_{i j}, f^{\prime} \geq f\right\}$.
- Given flow constraint f, what's the best path in $A_{i j}$?

1. Exact product for small distances

- Given two $d f$-matrices A, B, where all distances $d \leq R$ and R is a small number.

1. Exact product for small distances

- Given two $d f$-matrices A, B, where all distances $d \leq R$ and R is a small number.
- We'd like to compute some $d f$-matrix C, such that $\forall f, C(f)=A(f) \star B(f)$.
- Recall \star is the distance product.

1. Exact product for small distances

- Given two $d f$-matrices A, B, where all distances $d \leq R$ and R is a small number.
- We'd like to compute some $d f$-matrix C, such that $\forall f, C(f)=A(f) \star B(f)$.
- Recall \star is the distance product.
- Also let's say $C=A \star B$ for brevity.

1. Exact product for small distances

- Given two $d f$-matrices A, B, where all distances $d \leq R$ and R is a small number.
- We'd like to compute some $d f$-matrix C, such that $\forall f, C(f)=A(f) \star B(f)$.
- Recall \star is the distance product.
- Also let's say $C=A \star B$ for brevity.
- This takes $O\left(n^{\frac{3+\omega}{2}} R^{2}\right)$ time.

1. Exact product for small distances

- Given d, what's the largest f s.t. $C_{i j}(f) \leq d$?

1. Exact product for small distances

- Given $d_{1}+d_{2}=d$, what's the largest f s.t. $A_{i j}(f) \leq d_{1}$ and $B_{i j}(f) \leq d_{2}$?

1. Exact product for small distances

- Given $d_{1}+d_{2}=d$, what's the largest f s.t. $A_{i j}(f) \leq d_{1}$ and $B_{i j}(f) \leq d_{2}$?
- Let's define $A_{i j}^{(d)}=\max \left\{f:\left(d^{\prime}, f\right) \in A_{i j}, d^{\prime} \leq d\right\}$.

1. Exact product for small distances

- Given $d_{1}+d_{2}=d$, what's the largest f s.t. $A_{i j}(f) \leq d_{1}$ and $B_{i j}(f) \leq d_{2}$?
- $\max _{k} \min \left\{A_{i k}^{\left(d_{1}\right)}, B_{k j}^{\left(d_{2}\right)}\right\}$
- Let's define $A_{i j}^{(d)}=\max \left\{f:\left(d^{\prime}, f\right) \in A_{i j}, d^{\prime} \leq d\right\}$.

1. Exact product for small distances

- Given d, what's the largest f s.t. $C_{i j}(f) \leq d$?
- $\max _{d_{1}+d_{2}=d} \max _{k} \min \left\{A_{i k}^{\left(d_{1}\right)}, B_{k j}^{\left(d_{2}\right)}\right\}$
- Let's define $A_{i j}^{(d)}=\max \left\{f:\left(d^{\prime}, f\right) \in A_{i j}, d^{\prime} \leq d\right\}$.

1. Exact product for small distances

- Given d, what's the largest f s.t. $C_{i j}(f) \leq d$?
- $\max _{d_{1}+d_{2}=d}\left(A^{\left(d_{1}\right)} \otimes B^{\left(d_{2}\right)}\right)_{i j}$
- Recall that \otimes is max-min product.
- Let's define $A_{i j}^{(d)}=\max \left\{f:\left(d^{\prime}, f\right) \in A_{i j}, d^{\prime} \leq d\right\}$.

1. Exact product for small distances

- Given d, what's the largest f s.t. $C_{i j}(f) \leq d$?
- $\max _{d_{1}+d_{2}=d}\left(A^{\left(d_{1}\right)} \otimes B^{\left(d_{2}\right)}\right)_{i j}$
- Recall that \otimes is max-min product.
- Let's define $A_{i j}^{(d)}=\max \left\{f:\left(d^{\prime}, f\right) \in A_{i j}, d^{\prime} \leq d\right\}$.
- $O\left(R^{2}\right)$ max-min products suffice to compute the $d f$-matrix C !
- $C_{i j}=\left\{\left(\max _{d_{1}+d_{2}=d}\left(A^{\left(d_{1}\right)} \otimes B^{\left(d_{2}\right)}\right)_{i j}, f\right)\right.$: $1 \leq d \leq 2 R\}$

- Given two $d f$-matrices A, B, compute $C \approx A \star B$.
- Now d can be large($d \leq M$), but we only want C to be approximately correct.

2. Approximate product for arbitrary distances

- Given two $d f$-matrices A, B, compute $C \approx A \star B$.
- Now d can be large($d \leq M$), but we only want C to be approximately correct.
- Approximation guarantee: $\forall f, i, j$, $(A(f) \star B(f))_{i j} \leq C(f)_{i j} \leq\left(1+\frac{4}{R}\right)(A(f) \star B(f))_{i j}$.

2. Approximate product for arbitrary distances

- Given two $d f$-matrices A, B, compute $C \approx A \star B$.
- Now d can be large($d \leq M$), but we only want C to be approximately correct.
- Approximation guarantee: $\forall f, i, j$, $(A(f) \star B(f))_{i j} \leq C(f)_{i j} \leq\left(1+\frac{4}{R}\right)(A(f) \star B(f))_{i j}$.
- time complexity: $O\left(n^{\frac{3+\omega}{2}} R^{2} \log M\right)$.
- $O(\log M)$ exact products in which $d \leq R$.

A lemma

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0,1, \ldots, M,+\infty\}, C=A \star B$.

A lemma

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0,1, \ldots, M,+\infty\}, C=A \star B$. Let R be a power of $2, \operatorname{Scale}(A, M, R)$ be a matrix A^{\prime} such that

$$
A_{i j}^{\prime}=\left\{\begin{array}{ll}
\left\lceil R A_{i j} / M\right\rceil & \text { if } 0 \leq A_{i j} \leq M \\
+\infty & \text { otherwise }
\end{array} .\right.
$$

A lemma

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0,1, \ldots, M,+\infty\}, C=A \star B$. Let R be a power of $2, \operatorname{Scale}(A, M, R)$ be a matrix A^{\prime} such that

$$
A_{i j}^{\prime}=\left\{\begin{array}{ll}
\left\lceil R A_{i j} / M\right\rceil & \text { if } 0 \leq A_{i j} \leq M \\
+\infty & \text { otherwise }
\end{array} .\right.
$$

Define C^{\prime} as:

$$
\begin{aligned}
C^{\prime}= & \min _{\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A, 2^{r}, R\right) \star \operatorname{SCALE}\left(B, 2^{r}, R\right)\right)\right\},
\end{aligned}
$$

A lemma

Lemma ([Zwick, 1998])

Let A, B be two matrices with entries in $\{0,1, \ldots, M,+\infty\}, C=A \star B$. Let R be a power of $2, \operatorname{Scale}(A, M, R)$ be a matrix A^{\prime} such that

$$
A_{i j}^{\prime}= \begin{cases}\left\lceil R A_{i j} / M\right\rceil & \text { if } 0 \leq A_{i j} \leq M \\ +\infty & \text { otherwise }\end{cases}
$$

Define C^{\prime} as:

$$
\begin{aligned}
C^{\prime}= & \min _{\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A, 2^{r}, R\right) \star \operatorname{SCALE}\left(B, 2^{r}, R\right)\right)\right\},
\end{aligned}
$$

then for any $i, j, C_{i j} \leq C_{i j}^{\prime} \leq\left(1+\frac{4}{R}\right) C_{i j}$.

2. Approximate product for arbitrary distances

$$
\begin{aligned}
C(f)= & \min _{\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A(f), 2^{r}, R\right) \star \operatorname{SCALE}\left(B(f), 2^{r}, R\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
C(f)= & \left.\min _{\left\lfloor\log _{2} R\right] \leq r \leq \log }^{2} M\right\rceil \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A(f), 2^{r}, R\right) \star \operatorname{SCALE}\left(B(f), 2^{r}, R\right)\right)\right\}
\end{aligned}
$$

- Define $\operatorname{Scale}(A, M, R)_{i j}=\left\{(\lfloor R \cdot d / M\rfloor, f):(d, f) \in A_{i j}\right\}$.
- Scale down every d.

$$
\begin{aligned}
C(f)= & \min _{\left\lfloor\log _{2} R\right] \leq r \leq\left[\log _{2} M\right\rceil} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A(f), 2^{r}, R\right) \star \operatorname{SCALE}\left(B(f), 2^{r}, R\right)\right)\right\}
\end{aligned}
$$

- Define $\operatorname{Scale}(A, M, R)_{i j}=\left\{(\lfloor R \cdot d / M\rfloor, f):(d, f) \in A_{i j}\right\}$.
- Scale down every d.
- $(\operatorname{Scale}(A, M, R))(f)=\operatorname{Scale}(A(f), M, R)$.

2. Approximate product for arbitrary distances

$$
\begin{aligned}
C(f)= & \min _{\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A(f), 2^{r}, R\right) \star \operatorname{SCALE}\left(B(f), 2^{r}, R\right)\right)\right\}
\end{aligned}
$$

- Define $\operatorname{Scale}(A, M, R)_{i j}=\left\{(\lfloor R \cdot d / M\rfloor, f):(d, f) \in A_{i j}\right\}$.
- Scale down every d.
- $(\operatorname{Scale}(A, M, R))(f)=\operatorname{Scale}(A(f), M, R)$.

$$
\begin{aligned}
C_{i j}= & \bigcup_{\substack{ \\
\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil}}\left\{\left(\left(2^{r} / R\right) \cdot d, f\right):\right. \\
& \left.(d, f) \in\left(\operatorname{SCALE}\left(A, 2^{r}, R\right) \star \operatorname{SCALE}\left(B, 2^{r}, R\right)\right)_{i j}\right\}
\end{aligned}
$$

2. Approximate product for arbitrary distances

$$
\begin{aligned}
C(f)= & \min _{\left\lfloor\log _{2} R J \leq r \leq\left\lceil\log _{2} M\right\rceil\right.} \\
& \left\{\left(2^{r} / R\right) \cdot\left(\operatorname{SCALE}\left(A(f), 2^{r}, R\right) \star \operatorname{SCALE}\left(B(f), 2^{r}, R\right)\right)\right\}
\end{aligned}
$$

- Define $\operatorname{Scale}(A, M, R)_{i j}=\left\{(\lfloor R \cdot d / M\rfloor, f):(d, f) \in A_{i j}\right\}$.
- Scale down every d.
- $(\operatorname{Scale}(A, M, R))(f)=\operatorname{Scale}(A(f), M, R)$.

$$
\begin{aligned}
C_{i j}= & \bigcup_{\left\lfloor\log _{2} R\right\rfloor \leq r \leq\left\lceil\log _{2} M\right\rceil}\left\{\left(\left(2^{r} / R\right) \cdot d, f\right):\right. \\
& \left.(d, f) \in\left(\operatorname{ScALE}\left(A, 2^{r}, R\right) \star \operatorname{SCALE}\left(B, 2^{r}, R\right)\right)_{i j}\right\}
\end{aligned}
$$

- (This \star is the previous exact product.)

3. Main procedure

- We're ready to approximate the APSP-AF problem.

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward:

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward: just take $\log n$ matrix powers!

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward: just take $\log n$ matrix powers!
- Let $\tilde{D}^{(0)}=G, \tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward: just take $\log n$ matrix powers!
- Let $\tilde{D}^{(0)}=G, \tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}\left(\left\lceil\log _{2} n\right\rceil\right)$ is an $\left(1+\frac{4}{R}\right)^{\left\lceil\log _{2} n\right\rceil}$-approximation of APSP-AF distances.

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward: just take $\log n$ matrix powers!
- Let $\tilde{D}^{(0)}=G, \tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}\left(\left\lceil\log _{2} n\right\rceil\right)$ is an $\left(1+\frac{4}{R}\right)^{\left\lceil\log _{2} n\right\rceil}$-approximation of APSP-AF distances.
- We set R the smallest power of 2 greater than $4\left\lceil\log _{2} n\right\rceil / \ln (1+\epsilon)$, and we're done.

3. Main procedure

- We're ready to approximate the APSP-AF problem.
- Recall that we're given a graph G where $G_{i j}=\{(d, f)$: there is an edge with length d and capacity f between i and $j\}$.
- Given the approximation algorithm, our main procedure is very straightforward: just take $\log n$ matrix powers!
- Let $\tilde{D}^{(0)}=G, \tilde{D}^{(i)}$ be an approximation of $\tilde{D}^{(i-1)} \star \tilde{D}^{(i-1)}$.
- It can be proved by induction that $\tilde{D}\left(\left\lceil\log _{2} n\right\rceil\right)$ is an $\left(1+\frac{4}{R}\right)^{\left\lceil\log _{2} n\right\rceil}$-approximation of APSP-AF distances.
- We set R the smallest power of 2 greater than $4\left\lceil\log _{2} n\right\rceil / \ln (1+\epsilon)$, and we're done.
- Time complexity: $O\left(n^{\frac{3+\omega}{2}} R^{2} \log M \log n\right)=\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log M\right)$.

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ :

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$
- exact product of $d f$-matrices: $O\left(t R^{2}\right) \mathrm{MMs} \& O\left(R^{2} n^{3} / t\right)$ extra work

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$
- exact product of $d f$-matrices: $O\left(t R^{2}\right) \mathrm{MMs} \& O\left(R^{2} n^{3} / t\right)$ extra work
- It turns out that these $O\left(t R^{2}\right) \mathrm{MMs}$ are expressible in $O(t)$ distance products of matrices whose elements are $\leq R$.

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$
- exact product of $d f$-matrices: $O\left(t R^{2}\right) \mathrm{MMs} \& O\left(R^{2} n^{3} / t\right)$ extra work
- It turns out that these $O\left(t R^{2}\right) \mathrm{MMs}$ are expressible in $O(t)$ distance products of matrices whose elements are $\leq R$.
- Such a distance product can be computed in $\tilde{O}\left(R n^{\omega}\right)$ [Zwick, 1998].

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$
- exact product of $d f$-matrices: $O\left(t R^{2}\right) \mathrm{MMs} \& O\left(R^{2} n^{3} / t\right)$ extra work
- It turns out that these $O\left(t R^{2}\right) \mathrm{MMs}$ are expressible in $O(t)$ distance products of matrices whose elements are $\leq R$.
- Such a distance product can be computed in $\tilde{O}\left(R n^{\omega}\right)$ [Zwick, 1998].
- Speedup: $O\left(t R^{2} n^{\omega}\right) \Rightarrow \tilde{O}\left(t R n^{\omega}\right)$.

(Sketch of) a faster algorithm

- We can reduce the dependency on ϵ : there is an $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$-time algorithm.
- It suffices to compute the exact product in $\tilde{O}\left(n^{\frac{3+\omega}{2}} R^{3 / 2}\right)$ time.
- Max-min product [Duan and Pettie, 2009]: $O(t)$ matrix-multiplications \& $O\left(n^{3} / t\right)$ extra work
- Let $t=n^{\frac{3-\omega}{2}}$, then $O\left(t n^{\omega}+n^{3} / t\right)=O\left(n^{\frac{3+\omega}{2}}\right)$
- exact product of $d f$-matrices: $O\left(t R^{2}\right) \mathrm{MMs} \& O\left(R^{2} n^{3} / t\right)$ extra work
- It turns out that these $O\left(t R^{2}\right) \mathrm{MMs}$ are expressible in $O(t)$ distance products of matrices whose elements are $\leq R$.
- Such a distance product can be computed in $\tilde{O}\left(R n^{\omega}\right)$ [Zwick, 1998].
- Speedup: $O\left(t R^{2} n^{\omega}\right) \Rightarrow \tilde{O}\left(t R n^{\omega}\right)$.
- Let $t=n^{\frac{3-\omega}{2}} R^{1 / 2}$ and we're done.

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009];

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
- We furthermore reduced the time dependency on ϵ : $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right)$

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
- We furthermore reduced the time dependency on ϵ : $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right) \Rightarrow \tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$.

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
- We furthermore reduced the time dependency on ϵ : $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right) \Rightarrow \tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$.
- Open problems
- Reducing dependency on $n\left(\right.$ i.e. $\frac{3+\omega}{2}$) requires faster max-min product.

Conclusions and open problems

- Conclusions
- We present an algorithm for $(1+\epsilon)$-approximating APSP-AF problem in truly-subcubic time.
- Main ingredient: faster max-min product [Duan and Pettie, 2009]; distance-product approximation [Zwick, 1998].
- We furthermore reduced the time dependency on ϵ : $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-2} \log W\right) \Rightarrow \tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-3 / 2} \log W\right)$.
- Open problems
- Reducing dependency on n (i.e. $\frac{3+\omega}{2}$) requires faster max-min product. But can APSP-AF be done in $\tilde{O}\left(n^{\frac{3+\omega}{2}} \epsilon^{-1} \log W\right)$?

Thank you!

Questions are welcome!

References I

(insiello, G., Italiano, G. F., Spaccamela, A. M., and Nanni, U. (1991).

Incremental algorithms for minimal length paths. Journal of Algorithms, 12(4):615-638.

囯 Baswana, S., Hariharan, R., and Sen, S. (2007).
Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths.
Journal of Algorithms, 62(2):74-92.
围 Bernstein, A. (2016).
Maintaining shortest paths under deletions in weighted directed graphs.
SIAM Journal on Computing, 45(2):548-574.

References II

圖 Bernstein，A．and Roditty，L．（2011）．
Improved dynamic algorithms for maintaining approximate shortest paths under deletions．
In Proceedings of the twenty－second annual ACM－SIAM symposium on Discrete Algorithms，pages 1355－1365．Society for Industrial and Applied Mathematics．

圑 Bose，P．，Maheshwari，A．，Narasimhan，G．，Smid，M．，and Zeh，N． （2004）．
Approximating geometric bottleneck shortest paths．
Computational Geometry，29（3）：233－249．
圊 Coppersmith，D．and Winograd，S．（1990）．
Matrix multiplication via arithmetic progressions． Journal of Symbolic Computation，9（3）：251－280．

References III

Duan, R. and Pettie, S. (2008).
Bounded-leg distance and reachability oracles.
In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 436-445. Society for Industrial and Applied Mathematics.

Duan, R. and Pettie, S. (2009).
Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths.
In Twentieth Acm-Siam Symposium on Discrete Algorithms, SODA 2009, New York, Ny, Usa, January, pages 384-391.

References IV

Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T. (2015).

Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 21-30. ACM.

Roditty, L. and Segal, M. (2007).
On bounded leg shortest paths problems.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 775-784. Society for Industrial and Applied Mathematics.

References V

Roditty, L. and Zwick, U. (2004).
Dynamic approximate all-pairs shortest paths in undirected graphs.
In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 499-508. IEEE.

回 Shinn, T.-W. and Takaoka, T. (2013).
Efficient graph algorithms for network analysis.
In First International Conference on Resource Efficiency in
Interorganizational Networks-ResEff 2013, page 236.
Shinn, T.-W. and Takaoka, T. (2014a).
Combining all pairs shortest paths and all pairs bottleneck paths problems.
In Latin American Symposium on Theoretical Informatics, pages 226-237. Springer.

References VI

目 Shinn, T.-W. and Takaoka, T. (2014b).
Combining the shortest paths and the bottleneck paths problems.
In Proceedings of the Thirty-Seventh Australasian Computer Science Conference-Volume 147, pages 13-18. Australian Computer Society, Inc.
(10) Shinn, T.-W. and Takaoka, T. (2015).

Variations on the bottleneck paths problem.
Theoretical Computer Science, 575:10-16.
Special Issue on Algorithms and Computation.
固 Zwick, U. (1998).
All pairs shortest paths in weighted directed graphs - exact and almost exact algorithms.
In Foundations of Computer Science, 1998. Proceedings. Symposium on, pages 310-319.

[^0]: ${ }^{1} \tilde{O}$ hides polylog(n) factors
 ${ }^{2} O\left(n^{3-\delta} \operatorname{polylog}(\epsilon, W)\right)$ for some $\delta>0$

[^1]: ${ }^{1} \tilde{O}$ hides polylog(n) factors
 ${ }^{2} O\left(n^{3-\delta} \operatorname{polylog}(\epsilon, W)\right)$ for some $\delta>0$

[^2]: ${ }^{1} \tilde{O}$ hides polylog(n) factors
 ${ }^{2} O\left(n^{3-\delta} \operatorname{polylog}(\epsilon, W)\right)$ for some $\delta>0$

