

Hanlin Ren University of Oxford

Range Avoidance Problem (Avoid)

- Input: a circuit $C: \{0,1\}^n \rightarrow \{0,1\}^\ell$, where $\ell > n$
- **Output:** any string $y \in \{0,1\}^{\ell}$ not in range(C) • That is, for any $x \in \{0,1\}^n$, $C(x) \neq y$
- "Dual Weak Pigeonhole Principle": if you throw 2^n pigeons into 2^{ℓ} holes, then there is an empty hole
- The problem is easy for randomised algorithms, so the point is to design **deterministic** algorithms

Background: Explicit constructions

"How difficult could it be to find a hay in a haystack?"

- ----- Howard Karloff Deterministic constructions of pseudorandom objects:
- Ramsey graphs, rigid matrices, extractors, hard truth tables
 - Existence (abundance) proven by the probabilistic method
 - Explicit construction: big open problems!
 - For many problems, even **FP**^{NP}-explicit constructions are notoriously open.
- [Korten'21]: Avoid captures explicit constructions (whose existences are proven by the probabilistic method)

Example: Circuit Lower Bounds

- **Problem:** find the truth table of a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by size- $2^{0.5n}$ circuits
- Consider the "truth table" circuit TT: $\{0,1\}^{\tilde{O}(2^{0.5n})} \rightarrow \{0,1\}^{2^n}$: Length: 2^n The truth table of C tt(C)

- **Problem:** find an $n \times n$ matrix that is $0.1n^2$ -far from rank- $M = A^{\mathrm{T}}B + S$ Length: n^2 0.1n matrices (over \mathbb{F}_2) Solving Avoid for C_{rigid} *L*_{rigid}
- deterministically implies rigid matrix construction!

A, B, S

The Algorithmic Method

[Williams'11]: $\mathbf{E}^{\mathbf{NP}} \not\subseteq \mathbf{ACC}^{\mathbf{0}}$. Ideas: (1) Design non-trivial $(2^n/n^{\omega(1)}$ -time) derandomisation algorithms for ACC⁰ (2) Prove such algorithms imply lower bounds

- [Alman-Chen'19]: **FP**^{NP}-explicit construction of rigid matrices using this method!
- Treat low-rank matrices as a special type of circuit class, then prove avg-case LB against them

Can we apply the Algorithmic Method to more explicit construction problems?

Our Result 1: An Algorithmic Method for Avoid

Theorem: non-trivial data structures for HamEst imply **FP**^{NP} algorithms for Avoid

HamEst: Hamming Weight Estimation

Preprocessing: Given a multi-output circuit $C: \{0,1\}^n \to \{0,1\}^{\ell}$, runs in **DTIME**[poly(ℓ)]^{NP}, produces a data structure $DS \in \{0,1\}^{\text{poly}(\ell)}$ **Query:** Given $x \in \{0,1\}^n$, estimate the Hamming weight of C(x) in deterministic non-trivial $(\ell / \log^{\omega(1)} \ell)$ time, with random access to DS

Our Result 2: Characterisation of Circuit Lower Bounds for E^{NP}

Theorem: the following are equivalent: • $\mathbf{E}^{\mathbf{NP}} \not\subseteq \mathbf{TC}^{\mathbf{0}}$

- Non-trivial derandomisation for **TC**⁰ with **E**^{NP} preprocessing
- Subexponential-time derandomisation for TC^{0} with E^{NP} preprocessing
- **E**^{NP}-computable PRG fooling **TC**⁰ Results extend to larger $(2^{n^{\epsilon}})$ size bounds

Technique: Rectangular PCPP

seed =

Conceptual Message

https://eccc.weizmann.ac.il/report/2022/048/

- E^{NP} is avg-case hard for TC^{0}
- and smaller circuit classes $(ACC^{0})...$

Rectangular PCP [BHPT'20]: query patterns are in a "rectangular" fashion • Proof is an $H \times W$ matrix • seed = (seed.row, seed.col) (randomness of the verifier) $(irow[1], ..., irow[q]) \leftarrow V_{row}(seed.row)$ $(icol[1], ..., icol[q]) \leftarrow V_{col}(seed. col)$ Query indices are $\{(irow[i], icol[i])\}_{i=1}^{q}$ Rectangular PCPP (PCP of Proximity): Both proof and input are matrices, queries to both are in a "rectangular" fashion Almost rectangular PCPP: there is also a short portion *seed*. *shared* which both V_{row} and V_{col} can see seed.shared seed.col seed.row

Technical ingredient: an almost rectangular PCPP with short proof length!

FP^{NP}-explicit constructions are worth studying! Potentially easier than **FP**-explicit constructions Still open for many important cases We have a clearer understanding ([Korten'21]) and more tools (this paper)