
On the Range Avoidance Problem for Circuits
Hanlin Ren

University of Oxford

Rahul Santhanam

University of Oxford

Zhikun Wang

Xi’an Jiaotong University

Range Avoidance Problem (𝐀𝐯𝐨𝐢𝐝)

• Input: a circuit 𝐶: 0,1 𝑛 → 0,1 ℓ, where ℓ > 𝑛
• Output: any string 𝑦 ∈ 0,1 ℓ not in range 𝐶

• That is, for any 𝑥 ∈ 0,1 𝑛, 𝐶 𝑥 ≠ 𝑦

• “Dual Weak Pigeonhole Principle”: if you throw 2𝑛 pigeons 

into 2ℓ holes, then there is an empty hole

• The problem is easy for randomised algorithms, so the point 

is to design deterministic algorithms

Example: Circuit Lower Bounds

• Problem: find the truth table of a function 𝑓: 0,1 𝑛 → 0,1
that cannot be computed by size-20.5𝑛 circuits

• Consider the “truth table” circuit TT: 0,1 ෨𝑂 20.5𝑛 → 0,1 2𝑛:

• Solving Avoid for TT deterministically implies circuit LBs!

TT

𝐶

tt 𝐶 The truth table of 𝐶Length: 2𝑛

Length: ෨𝑂 20.5𝑛 Description of a circuit 𝐶

Background: Explicit constructions

“How difficult could it be to find a hay in a haystack?”

------ Howard Karloff

• Deterministic constructions of pseudorandom objects: 

Ramsey graphs, rigid matrices, extractors, hard truth tables
• Existence (abundance) proven by the probabilistic method

• Explicit construction: big open problems!

• For many problems, even 𝐅𝐏𝐍𝐏-explicit constructions are 

notoriously open.

• [Korten’21]: Avoid captures explicit constructions (whose 

existences are proven by the probabilistic method)

The Algorithmic Method

[Williams’11]: 𝐄𝐍𝐏 ⊈ 𝐀𝐂𝐂0.

Ideas: (1) Design non-trivial (2𝑛/𝑛𝜔 1 -time)

derandomisation algorithms for 𝐀𝐂𝐂0

(2) Prove such algorithms imply lower bounds

[Alman-Chen’19]: 𝐅𝐏𝐍𝐏-explicit construction of 

rigid matrices using this method!
• Treat low-rank matrices as a special type of circuit 

class, then prove avg-case LB against them

This algo-to-LB-connection works for any 

“well-behaved” circuit class, not only 𝐀𝐂𝐂0!

Our Result 1: An Algorithmic Method for 

𝐀𝐯𝐨𝐢𝐝

Theorem: non-trivial data structures for HamEst
imply 𝐅𝐏𝐍𝐏 algorithms for Avoid

HamEst: Hamming Weight Estimation

Preprocessing: Given a multi-output circuit 

𝐶: 0,1 𝑛 → 0,1 ℓ, runs in 𝐃𝐓𝐈𝐌𝐄 poly ℓ 𝐍𝐏, 

produces a data structure 𝐷𝑆 ∈ 0,1 poly ℓ

Query: Given 𝑥 ∈ 0,1 𝑛, estimate the Hamming 

weight of 𝐶 𝑥 in deterministic non-trivial 

(ℓ/ log𝜔 1 ℓ) time, with random access to 𝐷𝑆

Our Result 2: Characterisation of 

Circuit Lower Bounds for 𝐄𝐍𝐏

Theorem: the following are equivalent:

• 𝐄𝐍𝐏 ⊈ 𝐓𝐂0

• 𝐄𝐍𝐏 is avg-case hard for 𝐓𝐂0

• Non-trivial derandomisation for 𝐓𝐂0 with 

𝐄𝐍𝐏 preprocessing

• Subexponential-time derandomisation for 

𝐓𝐂0 with 𝐄𝐍𝐏 preprocessing

• 𝐄𝐍𝐏-computable PRG fooling 𝐓𝐂0

Results extend to larger (2𝑛
𝜖
) size bounds 

and smaller circuit classes (𝐀𝐂𝐂0)…

𝐄𝐍𝐏 ⊈ 𝐀𝐂𝐂0+
Non-trivial 

algorithms for 

𝐀𝐂𝐂0

Algorithms 

imply lower 

bounds
⇒

Example: Rigid Matrices

• Problem: find an 𝑛 × 𝑛 matrix that is 0.1𝑛2-far from rank-

0.1𝑛 matrices (over 𝔽2)

• Solving Avoid for 𝐶rigid
deterministically implies

rigid matrix construction!

Can we apply the Algorithmic Method to 

more explicit construction problems?

𝐅𝐏𝐍𝐏-explicit 

constructions
+

Non-trivial 

algorithms for 

ℭ − HamEst

Algorithms 

imply explicit 

constructions
⇒

Technique: Rectangular PCPP

Rectangular PCP [BHPT’20]: query patterns 

are in a “rectangular” fashion
• Proof is an 𝐻 ×𝑊 matrix

• 𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑. 𝑟𝑜𝑤, 𝑠𝑒𝑒𝑑. 𝑐𝑜𝑙
• 𝑖𝑟𝑜𝑤 1 ,… , 𝑖𝑟𝑜𝑤 𝑞 ← 𝑉𝑟𝑜𝑤 𝑠𝑒𝑒𝑑. 𝑟𝑜𝑤
• 𝑖𝑐𝑜𝑙 1 , … , 𝑖𝑐𝑜𝑙 𝑞 ← 𝑉𝑐𝑜𝑙 𝑠𝑒𝑒𝑑. 𝑐𝑜𝑙

• Query indices are 𝑖𝑟𝑜𝑤 𝑖 , 𝑖𝑐𝑜𝑙 𝑖 𝑖=1
𝑞

Rectangular PCPP (PCP of Proximity): Both 

proof and input are matrices, queries to both 

are in a “rectangular” fashion

Almost rectangular PCPP: there is also a 

short portion 𝑠𝑒𝑒𝑑. 𝑠ℎ𝑎𝑟𝑒𝑑 which both 𝑉𝑟𝑜𝑤
and 𝑉𝑐𝑜𝑙 can see

Technical ingredient: an almost 

rectangular PCPP with short proof length!

https://eccc.weizmann.ac.il/report/2022/048/

Conceptual Message

𝐅𝐏𝐍𝐏-explicit constructions are worth studying!
• Potentially easier than 𝐅𝐏-explicit constructions

• Still open for many important cases

• We have a clearer understanding ([Korten’21]) 

and more tools (this paper)

𝑠𝑒𝑒𝑑. 𝑟𝑜𝑤 𝑠𝑒𝑒𝑑. 𝑐𝑜𝑙

𝑠𝑒𝑒𝑑. 𝑠ℎ𝑎𝑟𝑒𝑑

𝑠𝑒𝑒𝑑 =

(randomness of the verifier)

𝑉𝑟𝑜𝑤 𝑉𝑐𝑜𝑙

𝐶rigid

𝐴, 𝐵, 𝑆

𝑀 𝑀 = 𝐴T𝐵 + 𝑆Length: 𝑛2

Length: 0.31𝑛2
𝐴, 𝐵 ∈ 𝔽0.1𝑛×𝑛,

𝑆 sparse

This paper!


