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ABSTRACT

It is a long-standing open problem whether the Minimum Circuit

Size Problem (MCSP) and related meta-complexity problems are

NP-complete. Even for the rare cases where the NP-hardness of
meta-complexity problems are known, we only know very weak

hardness of approximation.

In this work, we prove NP-hardness of approximating meta-

complexity with nearly-optimal approximation gaps. Our key idea

is to use cryptographic constructions in our reductions, where the

security of the cryptographic construction implies the correctness

of the reduction. We present both conditional and unconditional

hardness of approximation results as follows.

1. Assuming subexponentially-secure witness encryption exists,

we prove essentially optimal NP-hardness of approximating con-

ditional time-bounded Kolmogorov complexity (K𝑡 (𝑥 | 𝑦)) in the

regime where 𝑡 ≫ |𝑦 |. Previously, the best hardness of approx-

imation known was a |𝑥 |1/poly(log log |𝑥 |) factor and only in the

sublinear regime (𝑡 ≪ |𝑦 |).
2. Unconditionally, we show that for any constant 𝑐 > 1, the

Minimum Oracle Circuit Size Problem (MOCSP) is NP-hard to ap-

proximate, where Yes instances have circuit complexity at most 𝑠 ,

and No instances have circuit complexity at least 𝑠𝑐 . Our reduction

builds on a witness encryption construction proposed by Garg,

Gentry, Sahai, and Waters (STOC’13). Previously, it was unknown

whether it is NP-hard to distinguish between oracle circuit com-

plexity 𝑠 versus 10𝑠 log𝑁 .

3. Finally, we define a “multi-valued” version of MCSP, called
mvMCSP, and show that w.p. 1 over a random oracle 𝑂 , it is NP-
hard to approximate mvMCSP𝑂 under quasi-polynomial-time re-

ductions with an 𝑂 oracle. Intriguingly, this result follows almost

directly from the security of Micali’s CS Proofs (Micali, SICOMP’00).

In conclusion, we give three results convincingly demonstrating

the power of cryptographic techniques in proving NP-hardness of
approximating meta-complexity.

CCS CONCEPTS
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1 INTRODUCTION

Given an object (such as a string or a Boolean function), how hard

is it to compute the “computational complexity” of this object? Such

questions can be formalised by meta-complexity problems which

aim to capture the “complexity of complexity” [4]. A prominent

example of a meta-complexity problem is the Minimum Circuit

Size Problem (MCSP) [57]. In MCSP, one is given the length-2
𝑛

truth table of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} as well as a
size parameter 𝑠 , and the goal is to determine whether 𝑓 can be

computed by a circuit of size at most 𝑠 .

Characterising the precise computational complexity of many

meta-complexity problems, especially MCSP, remains elusive. It is

easy to see thatMCSP is aNP (simply guess a circuit of size at most

𝑠 and check, by brute force
1
, that it computes the given truth table).

On the other hand, building on the natural proofs framework [36, 39,

74], Kabanets and Cai [57] showed that if one-way functions exist,

then MCSP is not in P. Therefore, MCSP is an intractable problem

in NP under standard cryptographic assumptions. However, the

question of whether MCSP is NP-complete remains wide open.

Indeed, Levin is reported to have delayed publishing his theory of

NP-completeness [66] in hopes of showingMCSP isNP-complete.
2

Since then, there have been many works investigating whether

MCSP and related problems are NP-complete (e.g., [6–8, 10–13, 31,

41–44, 46–50, 53, 57, 59, 70, 72, 78]).

1.1 Why Care About NP-Hardness of

Meta-Complexity?

Since we already know that MCSP and other meta-complexity

problems are intractable under standard cryptographic assumptions,

one maywonder what the motivation is for showing these problems

are NP-hard. Perhaps surprisingly, researchers have discovered

1
This guess and check are non-deterministically efficient since every Boolean function

on 𝑛-bits has a trivial circuit of size 𝑂 (𝑛2𝑛) and we are given the length 2
𝑛
truth

table as input.

2
Allender and Das [8] cite a personal communication from Levin regarding this and a

discussion can be found on Levin’s webpage (https://www.cs.bu.edu/fac/lnd/research/

hard.htm, accessed March 26, 2023).
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a growing number of important motivations for showing meta-

complexity problems are actually NP-hard. We list some that we

find compelling:

Eliminating Heuristica. Heuristica is the name Impagliazzo [52]

gives to a world where P ≠ NP but NP is easy on average. Unlike

other complexity classes such as EXP, PSPACE, or NC1
[16, 18, 30,

86], there is no known worst-case to average-case reduction for NP.
Indeed, there are barrier results against any NP-complete problem

having a “black-box” worst-case to average-case reduction [21, 30].

In a breakthrough result, Hirahara [40] overcomes this barrier by

giving a non-black-box worst-case to average-case reduction for

approximatingMCSP. If one could show this approximation version

of MCSP is NP-hard, then this would imply that NP does have a

worst-case to average-case reduction and thus rule out Heuristica.

Later work of Hirahara [43] further extends this result by show-

ing that, to eliminate Heuristica, it suffices to show that a certain

additive approximation to GapMINcKT (roughly speaking, a “con-

ditional” version of meta-complexity) is NP-hard.

Basing One-way Functions on P ≠ NP. A longstanding goal in

cryptography is to base the existence of one-way functions on

worst-case assumptions such as P ≠ NP (or rather NP ⊈ BPP).
Recently, an approach to showing this has emerged using meta-

complexity [7, 51, 67–70, 75]. In a breakthrough paper, Liu and

Pass [67] show that one-way functions exist if and only if time-

bounded Kolmogorov complexity is mildly hard on average over the

uniform distribution. As mentioned previously, Hirahara’s worst-

case to average-case reduction [40] also holds for approximating

time-bounded Kolmogorov complexity. Thus, if one “just” combines

these two results and also shows that approximating time-bounded

Kolmogorov complexity is NP-hard, then we would have that one-

way functions exist if and only if P ≠ NP. Unfortunately, the results
of [40] and [67] do not yet compose, as the types of average-case

hardness that they consider are different ([40] considered errorless

heuristics while [67] considered error-prone heuristics).

Proving Circuit Lower Bounds. Any reduction from SAT toMCSP
needs to generate No instances of MCSP, which is equivalent to

circuit lower bounds; therefore, NP-hardness of meta-complexity

has a strong connection to circuit lower bounds. This argument

was formalized by Kabanets and Cai [57], who show that if MCSP
is NP-complete under “natural” reductions

3
, then E does not have

polynomial-size circuits. Murray and Williams [72] show that any

deterministic many-one reduction from SAT to MCSP implies a

breakthrough complexity separation: EXP ≠ ZPP. Note that both
these results have consequences that we believe but seem hard to

show.

We also mention an instance where new circuit lower bounds

are proved along the way of pursuing the NP-hardness of meta-

complexity. Ilango [49] showed that for every constant 𝑑 there is

a constant Y > 0 and a function whose depth-𝑑 and depth-(𝑑 + 1)
formula complexity are 2

Y𝑛
apart. This follows from the techniques

3
That is, deterministic reductions whose output length and numerical parameters only

depend on the input length (instead of the particular input), and the sizes of the inputs

and the outputs are polynomially related. Almost all known NP-complete problems

are NP-hard under “natural” reductions.

used to prove the NP-hardness of MCSP for constant-depth for-

mulas; note that the standard switching lemma arguments [38]

are unable to prove such strongly-exponential (2
Ω (𝑛)

) size lower

bounds.

Curiosity. MCSP and its time-bounded Kolmogorov complexity

variants are simple and important computational problems that

have been studied since at least the 1960s [85]. It is remarkable that

despite this long history of study, these problems (unlike thousands

of other problems) have thoroughly eluded attempts at classify-

ing their complexity (in particular, completeness for some natural

complexity class). Indeed, we lack compelling evidence either for

or against the existence of a polynomial-time mapping reduction

from SAT to MCSP or many other meta-complexity problems. The

situation is especially lacklustre when considering hardness of ap-

proximation. Essentially no NP-hardness is known for any even

moderately strong model (e.g. depth-3 formulas) beyond logarith-

mic factors
4
in the truth table [43, 49, 59]. Are these problems

NP-complete or not? Are they NP-hard to approximate or not?

1.2 Can Cryptography Help?

The starting point of our work is the following question:

Can cryptography be useful in showing theNP-hardness
of meta-complexity?

In some sense, prior work already shows that the answer to this

question is yes. For example, a trivial corollary of Kabanets and

Cai [57] is that if one-way functions exist, thenMCSP ∈ P if and

only if P = NP. One can view this as a kind of NP-completeness

result, but the proof is somewhat unsatisfying: if one-way functions

exist, then both P ≠ NP andMCSP ∉ P.
Another (more satisfying) example is a result by Impagliazzo,

Kabanets, and Volkovich [53], who show that if indistinguishability

obfuscation (𝑖O) exists, thenMCSP ∈ ZPP if and only if NP = ZPP.
Their proof can be viewed as a non-black box reduction from SAT to

MCSP. However, one drawback is that assuming 𝑖O exists is very

close to assuming that one-way functions exist. In particular, if 𝑖O
exists andNP is not in BPP infinitely often, then one-way functions

exist [64].

Thus, while these results are interesting, in both cases it is some-

what unclear what the takeaway should be. Do these results really

suggest thatMCSP is NP-hard, or rather perhaps just thatMCSP
is intractable based on plausible cryptographic and complexity-

theoretic assumptions?

To address this, one can refine the original question.

Can cryptography be useful in showing black-box NP-
hardness of meta-complexity?

Here by a black-box reduction, we mean showing, for example, that

one can solve SAT in polynomial time given an oracle to MCSP.
Such a result would constitute perhaps the strongest evidence yet

that MCSP is indeed NP-complete under the usual definition of

NP-completeness.

4
The only exception to this that we are aware of is Hirahara’s recent result that

it is NP-hard to compute an 𝑛1/poly log log𝑛
factor approximation to the conditional

time-bounded Kolmogorov complexity. But even this is in a weaker sublinear-time

model.
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It may seem counter-intuitive that cryptography could be help-

ful in proving black-box NP-completeness results. While the exis-

tence of one-way functions implies that problems likeMCSP are

intractable [39, 57, 74], it is not at all clear how to turn this into a

black-box reduction from say SAT toMCSP.5

Intriguingly, a recent breakthrough result by Hirahara [42] uses

tools from information-theoretic cryptography, such as secret shar-

ing schemes and one-time encryptions, to show theNP-hardness of
many important meta-complexity problems. Indeed, Hirahara’s re-

sult convincingly demonstrates the power of information-theoretic

cryptography for proving NP-hardness of meta-complexity prob-

lems.

In this paper, we focus on notions from computational cryptog-

raphy, instead of information-theoretic cryptography. There is a

natural intuition for why such cryptography could be useful: it

gives structured computational hardness one could hope to exploit.

In more detail, one potential reason it is difficult to prove the NP-
hardness of MCSP is that we lack strong enough circuit lower

bounds. Indeed, just deterministically generating a No instance of

MCSP requires proving circuit lower bounds! It is hard to imag-

ine giving an NP-hardness result when we cannot even generate

an explicit No instance. Moreover, this argument is made formal

by several works [57, 72, 78], who showed that NP-hardness of
MCSP under certain types of reductions would imply separations

in complexity theory such as EXP ⊈ P/poly.
Thus, since NP-hardness of MCSP (at least in some settings)

implies circuit lower bounds, it is natural to wonder whether we can

go in the opposite direction: assumingwe have circuit lower bounds,

can we show meta-complexity problems are NP-hard? So far the

answer appears to be no. For example, we have subexponential-size

lower bounds against AC0
[1, 32, 38, 88] and AC0 [𝑝] where 𝑝 is a

prime [73, 83, 84], but the NP-hardness of AC0
-MCSP and AC0 [𝑝]-

MCSP remain important open problems.
6
Apparently, to show that

MCSP is NP-complete, one needs hardness with some “structure.”

Can cryptography give such structured hardness?

2 OUR RESULTS

We show three main results, each one using a cryptographic con-

struction (i.e. JLS’s indistinguishability obfuscation
7
[54], GGSW’s

witness encryption [35], or Micali’s CS proofs [71]) to get either

a conditional or an unconditional NP-hardness result in meta-

complexity. Moreover, our results imply NP-hardness of approx-
imation with large approximation gaps. In our view, the central

conceptual takeaway from our results is a strongly positive answer

to the question above:

Cryptography is indeed a powerful tool for showing

black-box NP-hardness of meta-complexity!

5
One potential way of doing this is to show that there is a one-way function that is

NP-hard to invert. But, as discussed earlier, constructing such a one-way function

remains a major open question.

6
Ilango [49] showed that the formula version of AC0

-MCSP is NP-hard under quasi-

polynomial-time randomised Turing reductions, but the circuit versions of AC0
-MCSP

is not known to be NP-hard [24]. Prior to these results, the largest circuit class C for

which NP-hardness of C -MCSP was known is only DNF ◦ XOR [44].

7
More specifically, we use that the JLS construction implies the existence of witness

encryption from well-founded assumptions.

2.1 Witness Encryption and Conditional

Time-Bounded Kolmogorov Complexity

The 𝑡-time-bounded Kolmogorov complexity of a string 𝑥 ∈ {0, 1}𝑛 ,
denoted K𝑡 (𝑥), is the minimum length of any program that outputs

𝑥 in time at most 𝑡 [61, 63, 82]. Similarly, the conditional 𝑡-time-

bounded Kolmogorov complexity of a string 𝑥 ∈ {0, 1}𝑛 given a

string 𝑦 ∈ {0, 1}𝑚 , denoted K𝑡 (𝑥 | 𝑦), is the minimum length of

any program that outputs 𝑥 in time 𝑡 when given oracle access to

𝑦. (See Section 2.4 of the full version for formal definitions of K𝑡 (·)
and K𝑡 (· | ·).)

In a recent work Hirahara [43] shows that it is NP-hard to ap-

proximate K𝑡 (𝑥 | 𝑦) to a factor of 𝑛1/poly log log𝑛 . This improves

on prior work, which could only show an 𝑂 (log𝑛) factor hard-
ness of approximation for conditional time-bounded Kolmogorov

complexity and related problems [7, 48, 70].

In all of the aboveNP-hardness results, the instances of K𝑡 (𝑥 | 𝑦)
are in the sublinear time regime, i.e. where 𝑡 ≪ |𝑦 | and thus one

does not even have enough time to read all the bits of𝑦. Intriguingly,

Hirahara [43] shows that if one could improve these NP-hardness
results to show a certain additive hardness of approximation in the

superlinear regime where 𝑡 ≫ |𝑦 | (so one has time to read all of 𝑦),

then this would eliminate Heuristica!

This strongly motivates understanding the complexity of con-

ditional time-bounded Kolmogorov complexity in the superlinear

regime. Should we expect this problem to be NP-hard? Even if it is,

is it NP-hard in the rather specific approximation regime Hirahara

needs?

We show that, conditioned on a widely believed cryptographic

assumption, this problem is indeed NP-hard with essentially opti-

mal hardness of approximation.

Theorem 2.1 (Informal). Assume subexponentially-secure wit-

ness encryption exists. Then the following promise problem is NP-
hard under randomized polynomial-time (black-box) reductions: given

strings (𝑥,𝑦) where |𝑥 | = 𝑛 and |𝑦 | = poly(𝑛), output
• Yes if Kpoly(𝑛) (𝑥 | 𝑦) ≤ 𝑛.01;

• No if K2
𝑛2 (𝑥 | 𝑦) ≥ 𝑛 −𝑂 (1).

We will discuss the notion of witness encryption and its plau-

sibility in a few paragraphs, but before we do that we make some

remarks about this theorem. First, we emphasize that, under the

assumption, we get a standard, black-box, randomized many-one

reduction from NP to the promise problem stated above. To our

knowledge, this is the first time an NP-hardness result has been
proven conditioned on a cryptographic assumption.

Next, we note that the gap in Theorem 2.1 is essentially maximal

NP-hardness of approximation. The complexity of the Yes instances

is at most 𝑛.01 and the constant .01 can be made arbitrarily small

(one cannot hope for Yes instances with complexity subpolynomial

in 𝑛 without giving a subexponential time algorithm for SAT). On
the other hand, the No instances have complexity at least 𝑛 −𝑂 (1),
which is an additive constant away from the maximum complexity

of any𝑛-bit string. Moreover, the gap in the time bound is extremely

large: poly(𝑛) in the Yes case versus 2
𝑛2

in the No case. (In fact,

the choice of 𝑛2 in the exponent is for brevity. In the full version,

we show the 𝑛2 in the exponent can be made into an arbitrary

polynomial in 𝑛)
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Finally, we return to Hirahara’s approach to eliminating Heuris-

tica. Despite the strong hardness of approximation Theorem 2.1

gives, it does not give the hardness of approximation needed to

eliminate Heuristica. The precise reason is somewhat technical (we

refer a curious reader to Section 3 of the full version for the details).

At a high level, the reason is that the specific additive hardness

of approximation Hirahara needs has a somewhat non-standard

dependence on the instance (𝑥 | 𝑦), in particular on the “compu-

tational depth” of 𝑦. The upshot of this is that one needs to give

hardness of approximation on instances (𝑥 | 𝑦), where 𝑦 has low

computational depth. It is unclear whether the instances produced

by the reduction in Theorem 2.1 have this property. In fact, they

likely do not.

Nevertheless, we overcome this, under a further assumption.

Assuming the existence of subexponentially secure injective one-

way functions, we can modify the reduction in Theorem 2.1 so that

with high probability an output (𝑥 | 𝑦) of the reduction will have a

𝑦 with low computational depth.

Theorem 2.2 (Informal). Assume subexponentially secure injec-

tive one-way functions and subexponentially secure witness encryp-

tion exists. Then the promise problem, whose NP-completeness was

shown to exclude Heuristica by Hirahara [43], is in fact NP-complete

(under randomized polynomial-time many-one reductions).

We find Theorem 2.2 rather surprising. One can interpret this

result as saying that, under widely believed assumptions in cryp-

tography, Hirahara’s approach to eliminating Heuristica provably

works! Of course, for the purpose of eliminating Heuristica this

Theorem 2.2 by itself is not so interesting since if subexponentially

secure one-way functions exist, then NP is (automatically) hard

on average. Even so, we find this result enlightening, especially

because the “ground truth” of whether this problem was in fact

NP-hard was not at all clear.

Before we continue, we discuss the notion of witness encryption

informally (see Section 2 of the full version for a formal definition).

Introduced in [35], witness encryption is a cryptographic primitive

that encrypts a message using a (public) instance of some NP-
complete language. Let 𝜑 be a formula (for example, any satisfying

assignment of 𝜑 is a proof of Riemann Hypothesis of at most 10,000

pages long). We can encrypt a secret message 𝑚 (e.g., a Bitcoin

address for a prize awarded towhoever proves RiemannHypothesis)

using 𝜑 such that:

(1) If𝜑 is satisfiable, then any party with a satisfying assignment

of 𝜑 (e.g., any mathematician with a valid proof of Riemann

Hypothesis) could decrypt the message in polynomial time,

and

(2) if 𝜑 is unsatisfiable, then the encryption of two different

messages should be computationally indistinguishable.

Witness encryption turns out to be a very powerful primitive.

It was shown in [35] that witness encryption can be used to build

public-key encryption [25, 37], Identity-Based Encryption [22, 80],

and Attribute-Based Encryption [77] for circuits. The witness en-

cryption in [35] also yielded the first candidate for Rudich-type

secret sharing scheme [19, 65]. In this work, we show an unex-

pected application of witness encryption in complexity theory: it

implies the NP-hardness of meta-complexity problems!

Finally, we discuss the plausibility of witness encryption. Subex-

ponentially secure witness encryption is implied [34] as a special

case by the existence of subexponentially secure indistinguisha-

bility obfuscators (𝑖O) [17]. In a recent breakthrough paper, Jain,

Lin, and Sahai [54] show that subexponentially secure
8 𝑖O exists

assuming four standard “well-founded” assumptions (later work of

Jain, Lin, and Sahai reduced this to three assumptions [56]). As a

result, the existence of the witness encryption used in Theorem 2.1

has now become a widely-believed assumption.

We also remark that witness encryption is a plausibly weaker

assumption than 𝑖O. However, the only known constructions (from

well-founded assumptions) of subexponentially-secure witness en-

cryption are from 𝑖O (see the recent paper of Vaikuntanathan, Wee,

and Wichs [87] for a discussion of this).

2.2 Oracle Witness Encryption andMOCSP
Our second result is about MOCSP, the conditional variant of

MCSP. In MOCSP, we are given a truth table of a function 𝑓 :

{0, 1}𝑛 → {0, 1} and a truth table of an oracle 𝑂 : {0, 1}𝑂 (𝑛) →
{0, 1}, and we are asked to compute the minimum size of any oracle

circuit 𝐶 : {0, 1}𝑛 → {0, 1} that computes 𝑓 with oracle access to

𝑂 ; we denote by CC𝑂 (𝑓 ) this minimum size. Ilango [48] showed

thatMOCSP is NP-hard to approximate to roughly a logarithmic

factor in the input length. Uncertain as to whether or not current

techniques could prove stronger hardness of approximation, Ilango

left as an open question to either show an 𝑁 𝜖
factor hardness of

approximation forMOCSP for some constant 𝜖 > 0, where 𝑁 is the

length of the input toMOCSP, or to show a barrier against proving

such strong inapproximability results [48, Open Question 1.5].

We resolve this open question by unconditionally showing that

MOCSP isNP-hard to approximate with a very large approximation

factor as follows.

Theorem 2.3 (Informal). For any Y > 0, the following promise

problem is NP-hard under polynomial-time randomised mapping

reduction: given a truth table 𝑓 of length ℓ and an oracle truth table

𝑂 of length poly(ℓ), distinguish between the following two cases:

(Yes instances) CC𝑂 (𝑓 ) ≤ ℓY ;

(No instances) CC𝑂 (𝑓 ) ≥ ℓ1/2−Y .

Before we discuss the proof techniques, we comment a bit more

on the problem MOCSP. As Ilango [48] suggested, MOCSP is a

nice “testing ground” for hardness results we conjecture forMCSP.
Similar toMCSP,MOCSP is also inNP; it is easy to see thatMOCSP
is no easier than MCSP. And it is also pointed out by [48] that,

essentially the same proof as in [72] shows that ifMOCSP is NP-
hard under deterministic polynomial-time reductions, then EXP ≠

ZPP. We will see another example of MOCSP being a “testing

ground” for MCSP later (Theorem 2.6). We hope that our results

shed some light on the complexity ofMCSP.
Perhaps surprisingly, the key idea underlying our proof is again

witness encryption, despite our proof being unconditional. In more

detail, our proof utilises the notion of witness encryption in oracle

worlds, where both the encryption and decryption algorithms have

8
Wenote that the definition of subexponentially secure that we need is slightly different

from the one explicitly used by Jain, Lin, and Sahai [56], although their result readily

generalizes to our definition [55]. See Remark 2.5 of the full version for a detailed

discussion of this.
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access to an oracle. We show that exponentially-secure witness

encryption exists, unconditionally, in a carefully constructed oracle

world. We also show that such a secure oracle witness encryption

scheme implies Theorem 2.3: roughly speaking, we map a formula𝜑

to a function 𝑓 and an oracle 𝑂 , where𝑂 contains the oracle world

as well as a lot of ciphertexts encrypted using 𝜑 . If 𝜑 is satisfiable,

then a small circuit with a satisfying assignment hardcoded can

compute 𝑓 from these ciphertexts easily; if 𝜑 is unsatisfiable, then

any small circuit computing 𝑓 would violate the security of witness

encryption.

We now discuss how we construct a witness encryption scheme

in oracle worlds. A natural approach is to consider candidate wit-

ness encryption schemes in the literature and build oracles that

make them secure. Fortunately, the original candidate proposed

by [35] already suffices. As this candidate uses multilinear maps

[23, 33], we replace it with an oracle implementing the generic mul-

tilinear map model (which is the multilinear map version of the

generic group model [81]). It turns out that the security of [35] is

provable in the generic multilinear map model! See Sections 4.3

and 4.4 of the full version for details.

A lesson from this result is that unconditional security results

in idealised models are not only heuristic arguments that certain

cryptographic protocols “seem secure”; they also have (rigorous)

implications in complexity theory.

One last aspect we find interesting and worth noting is that,

unlike previous results (e.g., [42, 48]), our proof of Theorem 2.3

does not rely on the PCP theorem [14, 15]. Nevertheless, we obtain

much stronger hardness of approximation results! The construction

in [35] works directly for the NP-complete language ExactCover

[58], so our result is also a direct reduction from ExactCover to

GapMOCSP. This is in contrast to previous results (e.g., [42, 48])

that need to start with a hardness-of-approximation result (e.g.,

set cover [27] or the Minimum Monotone Satisfying Assignment

problem [2, 26]), which relies on the PCP theorem.

2.3 CS Proofs and A Multi-Valued Version of

MCSP with Random Oracles

Our third result is about a “multi-valued” version of MCSP, which
we denote as mvMCSP. In mvMCSP, we are given the truth table

of a “multi-valued” function 𝑓 ⊆ {0, 1}𝑛 × {0, 1}𝑚 , where for each

input 𝑥 ∈ {0, 1}𝑛 , any 𝑦 ∈ {0, 1}𝑚 such that (𝑥,𝑦) ∈ 𝑓 is a valid

output. The goal is to compute the size of the smallest circuit 𝐶 :

{0, 1}𝑛 → {0, 1}𝑚 that computes 𝑓 , i.e.,

∀𝑥 ∈ {0, 1}𝑛, (𝑥,𝐶 (𝑥)) ∈ 𝑓 .

Let 𝑘 ≥ 1 be a constant, Gap𝑘 -mvMCSP denotes the following

promise problem: given the length-2
𝑛+𝑚

truth table of a “multi-

valued” function 𝑓 ⊆ {0, 1}𝑛×{0, 1}𝑚 and a parameter 𝑠 , distinguish

between the following two cases:

(Yes instances) there is a circuit 𝐶 of size 𝑠 such that

Pr

𝑥←{0,1}𝑛
[(𝑥,𝐶 (𝑥)) ∈ 𝑓 ] = 1;

(No instances) for any circuit 𝐶 of size 𝑠𝑘 ,

Pr

𝑥←{0,1}𝑛
[(𝑥,𝐶 (𝑥)) ∈ 𝑓 ] ≤ 1/𝑠𝑘 .

Theorem 2.4. For every constant 𝑘 > 1, with probability 1 over

a random oracle 𝑂 , the problem Gap𝑘 -mvMCSP𝑂 is NP-hard under
TIME[2polylog(𝑛) ]𝑂 (deterministic quasi-polynomial time with an 𝑂

oracle) mapping reductions.

Perhaps intriguingly, Theorem 2.4 essentially follows from the

security of Micali’s CS proofs [71] in the random oracle model. We

think this is the interesting aspect of Theorem 2.4, as it illustrates

the connection between cryptography and NP-hardness of meta-

complexity in a direct and straightforward way.

Let 𝐿 ∈ NP, an argument system for 𝐿 involves a prover and a

verifier, where both parties know an instance 𝑥
?∈ 𝐿 and the prover

wants to convince the verifier that 𝑥 ∈ 𝐿. If 𝑥 is indeed in 𝐿, then

an efficient prover (with a witness of 𝑥 ∈ 𝐿) could convince the

verifier with certainty; if 𝑥 ∉ 𝐿, then any prover of a certain size

could only convince the verifier with small probability.

If one looks carefully at this definition, one realises that this is

nothing but a reduction from 𝐿 to a “meta-complexity” problem! In

particular, this is a “meta-complexity” problem about the complexity

of convincing the verifier. If 𝑥 ∈ 𝐿, then this complexity should

be small, while if 𝑥 ∉ 𝐿, then this complexity should be large.

Therefore, if every language in NP admits an argument system (of

some kind), then some meta-complexity problem (related to this

argument system) is NP-complete. This is exactly what happens in

Theorem 2.4: since every problem inNP has a SNARG (succinct non-

interactive argument) in the random oracle model [71], a certain

meta-complexity problem should be NP-complete. When we work

out the definition of this meta-complexity problem, it becomes

exactly mvMCSP.
Moreover, this approach gives us NP-hardness of approximation

with “the largest gap possible”. If 𝑥 ∈ 𝐿, then the complexity of

“convincing the verifier” is a fixed polynomial of |𝑥 |, since the prover
essentially needs to hardwire a witness for 𝑥 ; if 𝑥 ∉ 𝐿, then by the

security of the argument system, the complexity of “convincing the

verifier” can be made arbitrarily large (by adjusting the security

parameter).

This idea also shows that if (subexponentially-secure) SNARGs

exist (in the unrelativised world), then mvMCSP is NP-hard to

approximate.

Corollary 2.5. Suppose that subexponentially-secure SNARGs

exist. Then for every 𝑘 ∈ N, Gap𝑘 -mvMCSP is NP-hard under deter-
ministic quasi-polynomial time reductions.

One technical complication of Theorem 2.4 is that, in order to

transform a SNARG into NP-hardness of mvMCSP, one needs the
security of the SNARG in the common random string (CRS) model.

That is, both the prover and the verifier receives a (short) CRS be-

fore the protocol starts; w.h.p. over the random oracle, for every

efficient malicious prover, the probability over a random CRS that

the malicious prover proves a false statement successfully is negli-

gible. In contrast, [71] only showed the (weaker) security guarantee

in the (plain) random oracle model: for every efficient malicious

prover, the probability over a random oracle that the malicious

prover proves a false statement successfully is negligible. (Notice

the quantifier change here: in the plain model, we fix an adversary

and require that a random oracle is secure against this particular
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adversary. In contrast, in the CRS model, we want the random ora-

cle to be secure against every efficient adversary.) For this reason, a

large part of Section 5 of the full version is devoted to proving the

security of CS proofs in the CRS model, which we view as an addi-

tional technical contribution. See Section 5.1.5 of the full version

for more details.

2.4 Applications

Using the ideas developed in this paper, we also make progress

on two other problems: pseudorandom self-reductions for NP-
complete languages and heuristics for Complexity.

Pseudorandom self-reductions forNP-complete languages. In 2017,

Hirahara and Santhanam [45] observed that if exponentially-hard

one-way functions exist, thenMCSP admits a pseudorandom self-

reduction: a self-reduction that maps a worst-case instance to a

distribution that is indistinguishable from the uniform distribution.

In contrast, if PH does not collapse, then NP-complete problems

do not admit (non-adaptive) random self-reductions [21]. Hirahara

and Santhanam viewed this result as a property that “distinguishes

the MCSP problem from natural NP-complete problems” [45].

Thus it may come as a surprise when Elrazik, Robere, Schuster,

and Yehuda [28] showed that NP-complete problems could also

admit pseudorandom self-reductions. In particular, under a non-

uniform version of the Planted Clique Conjecture, the Clique prob-

lem admits a non-adaptive pseudorandom self-reduction. There

might be some property that distinguishesMCSP from natural NP-
complete problems, but having pseudorandom self-reductions is

not one of them!

One weakness of the results in [28] is that they need to assume

the Planted Clique Conjecture, which is much stronger than the

existence of one-way functions. Moreover, the Planted Clique prob-

lem can be solved in 𝑛𝑂 (log𝑛) time, which means their distributions

are not pseudorandom against adversaries of quasi-polynomial size.

OurNP-hardness results onMOCSP allow us to achieve the best

of both worlds: assuming the existence of one-way functions, there

is an NP-complete problem with pseudorandom self-reductions.

Theorem 2.6 (Informal). Assuming one-way functions exist,

there is an NP-complete problem (namely GapMOCSP) that admits

pseudorandom self-reductions.

We remark that hardness of approximation is crucial for this

application, as our self-reduction blows up the circuit complexity

of the input truth tables in MOCSP by a multiplicative factor. (The

hardness of approximating Clique is also crucial to the results in

[28].)

Heuristics for Complexity. The Complexity problem [60] asks

the following: given the truth table of an oracle𝑂 , find a truth table

𝑓 such that the 𝑂-oracle circuit complexity of 𝑓 is large. A random

truth table is always hard w.h.p., so there is a trivial randomised

algorithm solving Complexity. On the other hand, a deterministic

algorithm for Complexity, even only for the case that 𝑂 is the

all-zero truth table, is equivalent to circuit lower bounds for E. Thus
deterministic algorithms solving Complexity are of great interest.

We consider deterministic heuristics for this problem. We say a

deterministic algorithm A is a heuristic for Complexity under the

uniform distribution if

Pr

𝑂
[CC𝑂 (𝑓 ) > 2

𝑛/10𝑛 | 𝑓 = A(𝑂)] ≥ 1 − 𝑜 (1),

where 𝑓 is a truth table of length 2
𝑛
.

Inspired by the NP-hardness of Gap-mvMCSP𝑂 for a random

oracle 𝑂 , we design an unconditional heuristic for Complexity:

Theorem 2.7 (Informal). There is, unconditionally, a determin-

istic heuristic for Complexity in certain parameter regimes.

The idea is simple: if𝑂 is a uniformly random input, then solving

Complexity means proving circuit lower bounds in the random

oracle model. Therefore, we can take any proof that E requires large

circuits relative to a random oracle, and turn it into a heuristic for

Complexity. In fact, our construction is extremely simple: Suppose

𝑂 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} is a random oracle over 2𝑛 bits, then

the function 𝑓 : {0, 1}𝑛 → {0, 1} is defined as

𝑓 (𝑥) =
⊕

𝑦∈{0,1}𝑛
𝑂 (𝑥,𝑦) .

It is not hard to show that for a random oracle 𝑂 , the 𝑂-oracle

circuit complexity of 𝑓 is exponential.

3 RELATEDWORK

For a general survey of meta-complexity, we point the reader to

Allender’s recent surveys [4, 5] and the references therein. Below

we discuss the prior works that are mostly related to our results.

NP-hardness of meta-complexity problems. We first discuss works

related to Theorems 2.1 and 2.3, several NP-hardness results have
been shown for conditional meta-complexity problems. Ilango [48]

introduced the problem MOCSP and proved that MOCSP is NP-
hard. Allender, Cheraghchi, Myrisiotis, Tirumula, and Volkovich

[7] proved the NP-hardness ofMcKTP, the problem of computing

conditional KT-complexity,
9
and Liu and Pass [70] showed that

MINcKT, the problem of computing conditional time-bounded Kol-

mogorov complexity, is NP-complete. In all three aforementioned

results, the hardness of approximation given is relatively weak,

namely at most a logarithmic factor. This logarithmic factor arises

because the reductions begin from set cover, where a logarith-

mic factor is optimal [27, 29]. A recent exciting work by Hirahara

[43] greatly improves the hardness of approximation known for

MINcKT, showing it is NP-hard to approximate to a 𝑛1/poly log log𝑛

factor.

Related to Theorem 2.4, Ilango, Loff, and Oliveira [50] showed

that Multi-MCSP is NP-hard under randomised reductions. Here,

Multi-MCSP is the problem of computing the circuit complexity of

a multi-output function. It is easy to see that Multi-MCSP reduces

to mvMCSP. In [50], the number of output bits of the function is

exponential in the number of input bits, but the hard function is

fixed (i.e., any input corresponds to a unique output). On the other

hand, in mvMCSP, the number of output bits is only polynomially

larger than the number of input bits, but there might be many

valid outputs for each input. Thus the two results are not directly

comparable.

9
The KT-complexity is a notion of resource-bounded Kolmogorov complexity defined

in [3, 6].
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Hirahara [42] proved thatMCSP★ is NP-hard under randomised

reductions. Here, MCSP★ is the problem of computing the cir-

cuit complexity of a partial truth table. Since MCSP★ reduces

to mvMCSP, it follows that mvMCSP is also NP-hard under ran-

domised reductions.

However, we emphasise that our NP-hardness results hold for
very large approximation gaps: the Yes instances are computable in

size 𝑠 , while the No instances are inapproximable by size 2
polylog(𝑠)

.

The results in [50] only proved the NP-hardness of approximating

Multi-MCSP within a small additive factor, and the results in [42]

only proved the NP-hardness of approximating MCSP★ within a

multiplicative factor of 𝑛𝛼 for some constant 𝛼 < 1.

Using cryptography to prove hardness of meta-complexity. It is al-

ready known from Kabanets and Cai [57] that we can use anMCSP
oracle to invert any candidate one-way function. By building con-

crete (auxiliary-input) one-way function candidates, it was shown

thatMCSP is hard for discrete logarithm [6, 76], graph isomorphism

[9], and actually the whole class SZK [8].

Impagliazzo, Kabanets, and Volkovich [53] show that, assuming

indistinguishability obfuscation exists, then NP = ZPP if and only

if MCSP ∈ ZPP. We stress that this is a logical equivalence, not

a black-box reduction. We also note that assuming strong crypto-

graphic objects like indistinguishability obfuscation exist is very

close to assuming MCSP ∉ ZPP (since if one-way functions do

exist, then MCSP is not in ZPP).
Intriguingly, we note that Hirahara’s recent NP-hardness results

for MCSP★ [42] and MINcKT [43] utilizes secure secret sharing

schemes, a tool from information theoretic cryptography. In contrast,

our results utilize cryptographic objects that are computationally

secure either based on a computational assumption or given access

to a specifically designed oracle.

Finally, Allender and Hirahara [11] showed that under crypto-

graphic assumptions, a gap version of MCSP is NP-intermediate

(i.e., neither in P nor NP-hard). However, the gap they consider is

so large that if their version of GapMCSP were NP-hard, then SAT
would be in subexponential time.

More comparison with [42]. A recent exciting breakthrough by

Hirahara [42] proved the NP-hardness of many meta-complexity

problems, including MCSP★ and AveMCSP. Here, MCSP★ is the

problem of determining the circuit complexity of a partial function

𝑓 : {0, 1}𝑛 → {0, 1,★}, andAveMCSP is the problem of determining

the average-case hardness of a (total) function 𝑓 : {0, 1}𝑛 → {0, 1}.
These results look tantalisingly close to the NP-hardness ofMCSP!

The current paper addresses a few drawbacks of the results in

[42]. First, we show a much stronger hardness of approximation

than [42]. We prove thatMOCSP isNP-hard to approximate within

a factor of 𝑁Ω (1)
, where 𝑁 is the length of the input truth table.

For comparison, [42] only showed that (log𝑁 )𝛼 -approximation is

NP-hard for some absolute constant 𝛼 > 0. Second, Hirahara’s tech-

niques do not seem to yieldNP-hardness of circuit minimisation for

total functions,
10

while we provedNP-hardness of meta-complexity

for total strings (MINcKT) and total functions (MOCSP).

10
Although AveMCSP is a problem about circuit minimisation for total functions, the

Yes instances in Hirahara’s results are only (1/2 + Y)-approximated by small circuits

for some small factor Y > 0. In contrast, in Theorem 2.1 and 2.3, the Yes instances are

worst-case computable by a small circuit.

It is also interesting to compare our techniques with Hirahara’s

techniques. To establish his results, Hirahara used secret sharing

schemes [20, 79] which is a cryptographic primitive. Both our first

result (conditional time-bounded Kolmogorov complexity) and sec-

ond result (MOCSP) rely on witness encryption [35]. Witness en-

cryption is equivalent to a computational version of secret sharing

[65], but it is unclear if there is a unifying framework behind Hira-

hara’s results and our results. We leave this intriguing question for

future research.

4 DISCUSSIONS ON BARRIERS RESULTS

There are mainly two barriers to showing NP-hardness of meta-

complexity problems: relativisation [62] and oracle independence

[46].

Ko [62] showed that any NP-hardness result for MINLT (which

is some meta-complexity problem that we do not define here) must

be non-relativising. This relativisation barrier was overcome by

[42] using non-relativising techniques such as the PCP theorem.

Our results are also non-relativising:

• Due to the use of cryptographic assumptions, Theorem 2.1

could show consequences that might be impossible to prove

unconditionally in a relativising way. However, the proof of

Theorem 2.1 (that witness encryption implies NP-hardness
ofMINcKT) is relativising.
• Theorem 2.3 uses the non-relativising fact that ExactCover

isNP-complete. Indeed, the main technical ingredient of The-

orem 2.3 is a witness encryption scheme for ExactCover.

• Theorem 2.4 uses the PCP theorem, which is non-relativising.

We also note that Theorem 2.4 does not show thatmvMCSP𝑂

is NP𝑂 -complete, as we could only reduce NP (instead of

NP𝑂 ) to mvMCSP𝑂 .

It was observed in [46] that most reductions (at their time)

to MCSP are oracle-independent, i.e., they also work for MCSP𝐴

for every oracle 𝐴. Then, [46] showed that under plausible as-

sumptions, NP-hardness ofMCSP cannot be established via oracle-

independent reductions. Hirahara’s results [42] are subject to this

barrier since they showed the NP-hardness of (MKTP★)𝐴 for every

oracle 𝐴.

Unfortunately, Theorems 2.3 and 2.4 are also subject to this

barrier.
11

In particular, to prove the soundness of our reduction (i.e.,

theNo instances we generated are indeed No instances), we proved

strong circuit lower bounds in certain oracle worlds O. These lower
bounds hold for not only O-oracle circuits, but also programs of

bounded query complexity to O (and possibly unbounded time).

Therefore, for every fixed (additional) oracle 𝐴, these lower bounds

also extend to 𝐴-oracle circuits. It is a very intriguing question to

obtain NP-hardness of (approximating) meta-complexity problems

via reductions that are not oracle-independent.

ACKNOWLEDGMENTS

We thank Rahul Santhanam for helpful discussions during the ini-

tial stage of this research. We also thank Yilei Chen, Aayush Jain,

Huijia Lin, Amit Sahai, Neekon Vafa, and Vinod Vaikuntanathan for

11
This barrier does not apply to Theorem 2.1 due to the use of cryptographic

assumptions.

1073



STOC ’23, June 20–23, 2023, Orlando, FL, USA Yizhi Huang, Rahul Ilango, and Hanlin Ren

answering questions about our cryptographic assumptions. Dur-

ing this work, Rahul Ilango was supported by an NSF Graduate

Research Fellowship and NSF CCF-1909429.

REFERENCES

[1] Miklós Ajtai. 1983. Σ1
1
-Formulae on finite structures. Ann. Pure. Appl. Log. 24, 1

(1983), 1–48. https://doi.org/10.1016/0168-0072(83)90038-6

[2] Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann Pitassi. 2001.

Minimum Propositional Proof Length Is NP-Hard to Linearly Approximate. J.

Symb. Log. 66, 1 (2001), 171–191. https://doi.org/10.2307/2694916

[3] Eric Allender. 2001. When Worlds Collide: Derandomization, Lower Bounds,

and Kolmogorov Complexity. In Proc. 21st Foundations of Software Technology

and Theoretical Computer Science (FSTTCS) (Lecture Notes in Computer Science,

Vol. 2245). 1–15. https://doi.org/10.1007/3-540-45294-X_1

[4] Eric Allender. 2017. The Complexity of Complexity. In Computability and

Complexity (Lecture Notes in Computer Science, Vol. 10010). Springer, 79–94.

https://doi.org/10.1007/978-3-319-50062-1_6

[5] Eric Allender. 2021. Vaughan Jones, Kolmogorov Complexity, and the New

Complexity Landscape around Circuit Minimization. New Zealand Journal of

Mathematics 52 (2021), 585–604. https://doi.org/10.53733/148

[6] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef

Ronneburger. 2006. Power from Random Strings. SIAM Journal of Computing 35,

6 (2006), 1467–1493. https://doi.org/10.1137/050628994

[7] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and

Ilya Volkovich. 2021. One-Way Functions and a Conditional Variant ofMKTP.
In FSTTCS (LIPIcs, Vol. 213). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

7:1–7:19. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7

[8] Eric Allender and Bireswar Das. 2017. Zero knowledge and circuit minimization.

Information and Computation 256 (2017), 2–8. https://doi.org/10.1016/j.ic.2017.

04.004

[9] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and

Andrew Morgan. 2018. Minimum Circuit Size, Graph Isomorphism, and Related

Problems. SIAM J. Comput. 47, 4 (2018), 1339–1372. https://doi.org/10.1137/

17M1157970

[10] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E.

Saks. 2008. Minimizing Disjunctive Normal Form Formulas and AC0
Circuits

Given a Truth Table. SIAM J. Comput. 38, 1 (2008), 63–84. https://doi.org/10.

1137/060664537

[11] Eric Allender and Shuichi Hirahara. 2019. New Insights on the (Non-)Hardness of

Circuit Minimization and Related Problems. ACM Transactions on Computation

Theory 11, 4 (2019), 27:1–27:27. https://doi.org/10.1145/3349616

[12] Eric Allender, Dhiraj Holden, and Valentine Kabanets. 2017. The Minimum

Oracle Circuit Size Problem. Comput. Complex. 26, 2 (2017), 469–496. https:

//doi.org/10.1007/s00037-016-0124-0

[13] Eric Allender, Rahul Ilango, and Neekon Vafa. 2019. The Non-hardness of

Approximating Circuit Size. In Proc. 14th International Computer Science Sym-

posium in Russia (CSR) (Lecture Notes in Computer Science, Vol. 11532). 13–24.

https://doi.org/10.1007/978-3-030-19955-5_2

[14] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

1998. Proof Verification and the Hardness of Approximation Problems. Journal

of the ACM 45, 3 (1998), 501–555. https://doi.org/10.1145/278298.278306

[15] Sanjeev Arora and Shmuel Safra. 1998. Probabilistic Checking of Proofs: A

New Characterization of NP. Journal of the ACM 45, 1 (1998), 70–122. https:

//doi.org/10.1145/273865.273901

[16] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. 1993. BPP
Has Subexponential Time Simulations Unless EXPTIME has Publishable Proofs.

Computatioanl Complexity 3 (1993), 307–318. https://doi.org/10.1007/BF01275486

[17] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil P. Vadhan, and Ke Yang. 2012. On the (im)possibility of obfuscating programs.

Journal of the ACM 59, 2 (2012), 6:1–6:48. https://doi.org/10.1145/2160158.2160159

[18] David A. Mix Barrington. 1989. Bounded-Width Polynomial-Size Branching

Programs Recognize Exactly Those Languages in NC1
. J. Comput. Syst. Sci. 38, 1

(1989), 150–164. https://doi.org/10.1016/0022-0000(89)90037-8

[19] Amos Beimel. 2011. Secret-Sharing Schemes: A Survey. In IWCC (Lecture Notes

in Computer Science, Vol. 6639). Springer, 11–46. https://doi.org/10.1007/978-3-

642-20901-7_2

[20] George Robert Blakley. 1979. Safeguarding cryptographic keys. In International

Workshop on Managing Requirements Knowledge (MARK). IEEE, 313–318. https:

//doi.org/10.1109/MARK.1979.8817296

[21] Andrej Bogdanov and Luca Trevisan. 2006. On Worst-Case to Average-Case

Reductions for NP Problems. SIAM Journal of Computing 36, 4 (2006), 1119–1159.

https://doi.org/10.1137/S0097539705446974

[22] Dan Boneh and Matthew K. Franklin. 2003. Identity-Based Encryption from the

Weil Pairing. SIAM J. Comput. 32, 3 (2003), 586–615. https://doi.org/10.1137/

S0097539701398521

[23] Dan Boneh and Alice Silverberg. 2003. Applications of Multilinear Forms to

Cryptography. In Contemporary Mathematics. Vol. 324. American Mathematical

Society, 71–90. https://doi.org/10.1090/conm/324/05731

[24] Marco Carmosino, Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and

Antonina Kolokolova. 2021. Lifting for Constant-Depth Circuits and Applications

to MCSP. In ICALP (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 44:1–44:20. https://doi.org/10.4230/LIPIcs.ICALP.2021.44

[25] Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography.

IEEE Transactions on Information Theory 22, 6 (1976), 644–654. https://doi.org/

10.1109/TIT.1976.1055638

[26] Irit Dinur and Shmuel Safra. 2004. On the hardness of approximating label-cover.

Inf. Process. Lett. 89, 5 (2004), 247–254. https://doi.org/10.1016/j.ipl.2003.11.007

[27] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In

STOC. ACM, 624–633. https://doi.org/10.1145/2591796.2591884

[28] Reyad Abed Elrazik, Robert Robere, Assaf Schuster, and Gal Yehuda. 2022.

Pseudorandom Self-Reductions for NP-Complete Problems. In ITCS (LIPIcs,

Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 65:1–65:12. https:

//doi.org/10.4230/LIPIcs.ITCS.2022.65

[29] Uriel Feige. 1998. A Threshold of ln𝑛 for Approximating Set Cover. J. ACM 45,

4 (1998), 634–652. https://doi.org/10.1145/285055.285059

[30] Joan Feigenbaum and Lance Fortnow. 1993. Random-Self-Reducibility of Com-

plete Sets. SIAM J. Comput. 22, 5 (1993), 994–1005. https://doi.org/10.1137/

0222061

[31] Vitaly Feldman. 2009. Hardness of approximate two-level logic minimization

and PAC learning with membership queries. J. Comput. Syst. Sci. 75, 1 (2009),

13–26. https://doi.org/10.1016/j.jcss.2008.07.007

[32] Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity, Circuits, and

the Polynomial-Time Hierarchy. Math. Syst. Theory 17, 1 (1984), 13–27. https:

//doi.org/10.1007/BF01744431

[33] Sanjam Garg, Craig Gentry, and Shai Halevi. 2012. Candidate Multilinear Maps

from Ideal Lattices and Applications. IACR Cryptol. ePrint Arch. (2012), 610.

http://eprint.iacr.org/2012/610

[34] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and

Brent Waters. 2016. Candidate Indistinguishability Obfuscation and Functional

Encryption for All Circuits. SIAM J. Comput. 45, 3 (2016), 882–929. https:

//doi.org/10.1137/14095772X

[35] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. 2013. Witness en-

cryption and its applications. In STOC. ACM, 467–476. https://doi.org/10.1145/

2488608.2488667

[36] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct

random functions. Journal of the ACM 33, 4 (1986), 792–807. https://doi.org/10.

1145/6490.6503

[37] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J. Comput.

Syst. Sci. 28, 2 (1984), 270–299. https://doi.org/10.1016/0022-0000(84)90070-9

[38] Johan Håstad. 1986. Almost Optimal Lower Bounds for Small Depth Circuits. In

STOC. ACM, 6–20. https://doi.org/10.1145/12130.12132

[39] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. 1999.

A Pseudorandom Generator from any One-way Function. SIAM Journal of

Computing 28, 4 (1999), 1364–1396. https://doi.org/10.1137/S0097539793244708

[40] Shuichi Hirahara. 2018. Non-Black-Box Worst-Case to Average-Case Reductions

within NP. In FOCS. 247–258. https://doi.org/10.1109/FOCS.2018.00032

[41] Shuichi Hirahara. 2020. Unexpected hardness results for Kolmogorov complexity

under uniform reductions. In Proc. 52nd Annual ACM Symposium on Theory of

Computing (STOC). 1038–1051. https://doi.org/10.1145/3357713.3384251

[42] Shuichi Hirahara. 2022. NP-Hardness of learning programs and partialMCSP.
In FOCS. https://eccc.weizmann.ac.il/report/2022/119

[43] Shuichi Hirahara. 2022. Symmetry of Information fromMeta-Complexity. In CCC

(LIPIcs, Vol. 234). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 26:1–26:41.

https://doi.org/10.4230/LIPIcs.CCC.2022.26

[44] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. 2018. NP-
hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits. In CCC

(LIPIcs, Vol. 102). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:31.

https://doi.org/10.4230/LIPIcs.CCC.2018.5

[45] Shuichi Hirahara and Rahul Santhanam. 2017. On the Average-Case Complexity

of MCSP and Its Variants. In CCC (LIPIcs, Vol. 79). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 7:1–7:20. https://doi.org/10.4230/LIPIcs.CCC.2017.7

[46] Shuichi Hirahara and Osamu Watanabe. 2016. Limits of Minimum Circuit Size

Problem as Oracle. In Proc. 31st Computational Complexity Conference (CCC)

(LIPIcs, Vol. 50). 18:1–18:20. https://doi.org/10.4230/LIPIcs.CCC.2016.18

[47] John M. Hitchcock and Aduri Pavan. 2015. On the NP-Completeness of the

Minimum Circuit Size Problem. In Proc. 35th Annual Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS) (LIPIcs, Vol. 45).

236–245. https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236

[48] Rahul Ilango. 2020. ApproachingMCSP from Above and Below: Hardness for

a Conditional Variant and AC0 [𝑝 ]. In Proc. 11th Conference on Innovations in

Theoretical Computer Science (ITCS) (LIPIcs, Vol. 151). 34:1–34:26. https://doi.org/

10.4230/LIPIcs.ITCS.2020.34

[49] Rahul Ilango. 2020. Constant Depth Formula and Partial Function Versions of

MCSP are Hard. In Proc. 61st Annual IEEE Symposium on Foundations of Computer

1074

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.2307/2694916
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.53733/148
https://doi.org/10.1137/050628994
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1137/17M1157970
https://doi.org/10.1137/17M1157970
https://doi.org/10.1137/060664537
https://doi.org/10.1137/060664537
https://doi.org/10.1145/3349616
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/978-3-030-19955-5_2
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1007/BF01275486
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1090/conm/324/05731
https://doi.org/10.4230/LIPIcs.ICALP.2021.44
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/j.ipl.2003.11.007
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.4230/LIPIcs.ITCS.2022.65
https://doi.org/10.4230/LIPIcs.ITCS.2022.65
https://doi.org/10.1145/285055.285059
https://doi.org/10.1137/0222061
https://doi.org/10.1137/0222061
https://doi.org/10.1016/j.jcss.2008.07.007
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/BF01744431
http://eprint.iacr.org/2012/610
https://doi.org/10.1137/14095772X
https://doi.org/10.1137/14095772X
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1145/3357713.3384251
https://eccc.weizmann.ac.il/report/2022/119
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.4230/LIPIcs.ITCS.2020.34


NP-Hardness of Approximating Meta-Complexity: A Cryptographic Approach STOC ’23, June 20–23, 2023, Orlando, FL, USA

Science (FOCS). 424–433. https://doi.org/10.1109/FOCS46700.2020.00047

[50] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. 2020. NP-Hardness of Circuit
Minimization for Multi-Output Functions. In CCC (LIPIcs, Vol. 169). 22:1–22:36.

https://doi.org/10.4230/LIPIcs.CCC.2020.22

[51] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. 2022. Robustness of average-

case meta-complexity via pseudorandomness. In STOC. ACM, 1575–1583. https:

//doi.org/10.1145/3519935.3520051

[52] Russell Impagliazzo. 1995. A Personal View of Average-Case Complexity. In

Proc. 10th Annual Structure in Complexity Theory Conference. 134–147. https:

//doi.org/10.1109/SCT.1995.514853

[53] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. 2018. The Power of

Natural Properties as Oracles. In Proc. 33rd Computational Complexity Conference

(CCC) (LIPIcs, Vol. 102). 7:1–7:20. https://doi.org/10.4230/LIPIcs.CCC.2018.7

[54] Aayush Jain, Huijia Lin, and Amit Sahai. 2021. Indistinguishability obfuscation

from well-founded assumptions. In STOC. ACM, 60–73. https://doi.org/10.1145/

3406325.3451093

[55] Aayush Jain, Huijia Lin, and Amit Sahai. 2022. Personal Communication.

[56] Aayush Jain, Huijia Lin, and Amit Sahai. 2022. Indistinguishability Obfuscation

from LPN over F𝑝 , DLIN, and PRGs in NC0
. In EUROCRYPT (1) (Lecture Notes in

Computer Science, Vol. 13275). Springer, 670–699. https://doi.org/10.1007/978-3-

031-06944-4_23

[57] Valentine Kabanets and Jin-Yi Cai. 2000. Circuit minimization problem. In Proc.

32nd Annual ACM Symposium on Theory of Computing (STOC). 73–79. https:

//doi.org/10.1145/335305.335314

[58] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Com-

plexity of Computer Computations (The IBM Research Symposia Series). 85–103.

https://doi.org/10.1007/978-1-4684-2001-2_9

[59] Subhash Khot and Rishi Saket. 2008. Hardness of Minimizing and Learning DNF

Expressions. In FOCS. IEEE Computer Society, 231–240. https://doi.org/10.1109/

FOCS.2008.37

[60] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadim-

itriou. 2021. Total Functions in the Polynomial Hierarchy. In ITCS (LIPIcs,

Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 44:1–44:18. https:

//doi.org/10.4230/LIPIcs.ITCS.2021.44

[61] Ker-I Ko. 1986. On the Notion of Infinite Pseudorandom Sequences. Theor.

Comput. Sci. 48, 3 (1986), 9–33. https://doi.org/10.1016/0304-3975(86)90081-2

[62] Ker-I Ko. 1991. On the Complexity of Learning Minimum Time-Bounded Turing

Machines. SIAM Journal of Computing 20, 5 (1991), 962–986. https://doi.org/10.

1137/0220059

[63] Andrei N Kolmogorov. 1965. Three approaches to the quantitative definition

of information. Problems of information transmission (1965). https://doi.org/10.

1080/00207166808803030

[64] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon

Yogev. 2014. One-Way Functions and (Im)Perfect Obfuscation. In FOCS. IEEE

Computer Society, 374–383. https://doi.org/10.1109/FOCS.2014.47

[65] Ilan Komargodski, Moni Naor, and Eylon Yogev. 2017. Secret-Sharing for NP. J.
Cryptol. 30, 2 (2017), 444–469. https://doi.org/10.1007/s00145-015-9226-0

[66] Leonid Anatolevich Levin. 1973. Universal sequential search problems. Problemy

peredachi informatsii 9, 3 (1973), 115–116.

[67] Yanyi Liu and Rafael Pass. 2020. On One-way Functions and Kolmogorov Com-

plexity. In Proc. 61st Annual IEEE Symposium on Foundations of Computer Science

(FOCS). 1243–1254. https://doi.org/10.1109/FOCS46700.2020.00118

[68] Yanyi Liu and Rafael Pass. 2021. Cryptography from sublinear-time average-case

hardness of time-bounded Kolmogorov complexity. In STOC. ACM, 722–735.

https://doi.org/10.1145/3406325.3451121

[69] Yanyi Liu and Rafael Pass. 2021. On the Possibility of Basing Cryptography on

EXP ≠ BPP. In Proc. 41st Annual International Cryptology Conference (CRYPTO)

(Lecture Notes in Computer Science, Vol. 12825). Springer, 11–40. https://doi.org/

10.1007/978-3-030-84242-0_2

[70] Yanyi Liu and Rafael Pass. 2022. On One-Way Functions from NP-Complete

Problems. In CCC (LIPIcs, Vol. 234). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 36:1–36:24. https://doi.org/10.4230/LIPIcs.CCC.2022.36

[71] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. 30, 4 (2000),

1253–1298. https://doi.org/10.1137/S0097539795284959

[72] Cody D. Murray and R. Ryan Williams. 2017. On the (Non) NP-Hardness of
Computing Circuit Complexity. Theory of Computing 13, 1 (2017), 1–22. https:

//doi.org/10.4086/toc.2017.v013a004

[73] Alexander A. Razborov. 1987. Lower bounds on the size of bounded depth circuits

over a complete basis with logical addition. Mathematical Notes of the Academy

of Sciences of the USSR 41, 4 (1987), 333–338.

[74] Alexander A. Razborov and Steven Rudich. 1997. Natural Proofs. Journal of

Computer and System Sciences 55, 1 (1997), 24–35. https://doi.org/10.1006/jcss.

1997.1494

[75] Hanlin Ren and Rahul Santhanam. 2021. Hardness of KT Characterizes Parallel

Cryptography. In Proc. 36th Computational Complexity Conference (CCC) (LIPIcs,

Vol. 200). 35:1–35:58. https://doi.org/10.4230/LIPIcs.CCC.2021.35

[76] Michael Rudow. 2017. Discrete Logarithm and Minimum Circuit Size. Inf. Process.

Lett. 128 (2017), 1–4. https://doi.org/10.1016/j.ipl.2017.07.005

[77] Amit Sahai and Brent Waters. 2005. Fuzzy Identity-Based Encryption. In EU-

ROCRYPT (Lecture Notes in Computer Science, Vol. 3494). Springer, 457–473.

https://doi.org/10.1007/11426639_27

[78] Michael Saks and Rahul Santhanam. 2020. Circuit Lower Bounds from NP-
Hardness ofMCSP Under Turing Reductions. In Proc. 35th Computational Com-

plexity Conference (CCC) (LIPIcs, Vol. 169). 26:1–26:13. https://doi.org/10.4230/

LIPIcs.CCC.2020.26

[79] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

https://doi.org/10.1145/359168.359176

[80] Adi Shamir. 1984. Identity-Based Cryptosystems and Signature Schemes. In

CRYPTO (Lecture Notes in Computer Science, Vol. 196). Springer, 47–53. https:

//doi.org/10.1007/3-540-39568-7_5

[81] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In EUROCRYPT (Lecture Notes in Computer Science, Vol. 1233). Springer, 256–266.

https://doi.org/10.1007/3-540-69053-0_18

[82] Michael Sipser. 1983. A Complexity Theoretic Approach to Randomness. In STOC.

ACM, 330–335. https://doi.org/10.1145/800061.808762

[83] Roman Smolensky. 1987. Algebraic Methods in the Theory of Lower Bounds

for Boolean Circuit Complexity. In STOC. ACM, 77–82. https://doi.org/10.1145/

28395.28404

[84] Roman Smolensky. 1993. On Representations by Low-Degree Polynomials. In

FOCS. IEEE Computer Society, 130–138. https://doi.org/10.1109/SFCS.1993.

366874

[85] Boris A. Trakhtenbrot. 1984. A Survey of Russian Approaches to Perebor (Brute-

Force Searches) Algorithms. IEEE Annals of the History of Computing 6, 4 (1984),

384–400. https://doi.org/10.1109/MAHC.1984.10036

[86] Luca Trevisan and Salil P. Vadhan. 2007. Pseudorandomness and Average-Case

Complexity Via Uniform Reductions. Comput. Complex. 16, 4 (2007), 331–364.

https://doi.org/10.1007/s00037-007-0233-x

[87] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. 2022. Witness Encryp-

tion and Null-IO from Evasive LWE. IACR Cryptol. ePrint Arch. (2022), 1140.

https://eprint.iacr.org/2022/1140

[88] Andrew Chi-Chih Yao. 1985. Separating the Polynomial-Time Hierarchy by

Oracles (Preliminary Version). In FOCS. IEEE Computer Society, 1–10. https:

//doi.org/10.1109/SFCS.1985.49

Received 2022-11-07; accepted 2023-02-06

1075

https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/FOCS.2008.37
https://doi.org/10.1109/FOCS.2008.37
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1137/0220059
https://doi.org/10.1137/0220059
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1109/FOCS.2014.47
https://doi.org/10.1007/s00145-015-9226-0
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.1016/j.ipl.2017.07.005
https://doi.org/10.1007/11426639_27
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1007/s00037-007-0233-x
https://eprint.iacr.org/2022/1140
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49

	Abstract
	1 Introduction
	1.1 Why Care About NP-Hardness of Meta-Complexity?
	1.2 Can Cryptography Help?

	2 Our Results
	2.1 Witness Encryption and Conditional Time-Bounded Kolmogorov Complexity
	2.2 Oracle Witness Encryption and MOCSP
	2.3 CS Proofs and A Multi-Valued Version of MCSP with Random Oracles
	2.4 Applications

	3 Related Work
	4 Discussions on Barriers Results
	Acknowledgments
	References

