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ABSTRACT

We show broad equivalences in the average-case complexity of

many different meta-complexity problems, including Kolmogorov

complexity, time-bounded Kolmogorov complexity, and the Min-

imum Circuit Size Problem. These results hold for a wide range

of parameters (various thresholds, approximation gaps, weak or

strong average-case hardness, etc.) and complexity notions, show-

ing the theory of meta-complexity is very robust in the average-case

setting.

Our results are shown by establishing new and generic connec-

tions between meta-complexity and the theory of pseudorandom-

ness and one-way functions. Using these connections, we give the

first unconditional characterization of one-way functions based on

the average-case hardness of the Minimum Circuit Size Problem.

We also give a surprising and clean characterization of one-way

functions based on the average-case hardness of (the worst-case

uncomputable) Kolmogorov complexity. Moreover, the latter is the

first characterization of one-way functions based on the average-

case hardness of a fixed problem on any samplable distribution.

We give various applications of these results to the foundations

of cryptography and the theory of meta-complexity. For exam-

ple, we show that the average-case hardness of deciding 𝑘-SAT

or Clique on any samplable distribution of high enough entropy

implies the existence of one-way functions. We also use our results

to unconditionally solve various meta-complexity problems in CZK

(computational zero-knowledge) on average, and give implications

of our results for the classic question of proving NP-hardness for

the Minimum Circuit Size Problem.
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1 INTRODUCTION

In general, meta-complexity studies the complexity of computing

various complexity measures, such as the Kolmogorov complexity

of a string and the circuit complexity of a function given by its truth

table. The study of these problems dates back decades [55], but in

recent years there has been a surge of interest in the area, with sev-

eral breakthrough results being shown. These include NP-hardness

and ETH-hardness results for various complexity measures [24ś

26, 40], łhardness magnificationž results showing that even weak

lower bounds for some of these measures can lead to breakthrough

complexity separations [13, 14, 43, 46, 48], and connections with

learning [12, 47] and proof complexity [50]. Allender’s 2020 survey

[2] summarizes much of this work.

In this paper, we are interested in average-case meta-complexity,

an area in which some of the most exciting recent progress has

happened. For example, in a sequence of works [20ś22], Hirahara

uses meta-complexity to present new non-black-box worst-case to

average-case reductions for problems in NP and PH, and several

recent works [4, 38, 41, 52] characterize the existence of one-way

functions based on the average-case hardness of meta-complexity

problems on the uniform distribution.

We address two fundamental questions:

Question 1: Is there a characterization of one-way functions by

some natural average-case complexity assumption about

MCSP? (MCSP is the minimum circuit size problem [32]:

given a Boolean function 𝐹 represented as its truth table,

decide whether 𝐹 can be computed by a circuit of size at

most 𝑠 , where 𝑠 is a complexity threshold parameter.)

Question 2: Is average-case meta-complexity robust in the sense

that it does not depend critically on the parameters of the

meta-complexity problem (such as the complexity threshold

or approximation gap), the precise notion of average-case

hardness, or even the precise complexity measure being

computed?

Question 1 has been the focus of much work since the seminal

paper of Kabanets and Cai [32], who build on the Natural Proofs

framework [51] to show thatMCSP is hard if one-way functions

exist. Question 1 essentially asks if there is a converse to this fact.

Santhanam [53] showed an equivalence between the zero-error

average-case hardness of MCSP on the uniform distribution and

the existence of one-way functions under a certain assumption on

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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optimal pseudo-random generators, but there has been no progress

on establishing that assumption, and we seek an unconditional

result. The recent work of Liu and Pass [38] gives a characteriza-

tion of one-way functions based on the average-case hardness of

polynomial-time-bounded Kolmogorov complexity on the uniform

distribution, but their technique does not generalize easily to other

complexity measures such as circuit size. More recent follow-up

works [4, 52] do give implications from average-case hardness as-

sumptions onMCSP and its variants to the existence of one-way

functions, but these implications are not known to be equivalences.

In this work, we give the first such (unconditional) equivalence.

Theorem 1.1 (Informal version of Theorem 2.1). One-way

functions exist if and only if there is a łlocally samplablež distribu-

tion on truth tables on which łapproximatingž circuit complexity is

intractable.

We discuss the features of this theorem in more detail in the

results section (in particular, the notion of locally samplable and

the precise degree of approximation). However, we would like to

specifically highlight that the techniques we use to prove Theo-

rem 1.1 are very different from those used in previous connections

between meta-complexity and one-way functions. Moreover, while

the proof of Theorem 1.1 is technically involved, it has a quite

intuitive high-level approach.

In fact, only after proving Theorem 1.1 did we realize that this

simple high-level approach is actuallymuchmore broadly applicable.

Indeed, the approach applies to almost any reasonable complexity

measure on distributions that satisfies a łcoding theoremž with re-

spect to that complexity measure (in hindsight, the bulk of the proof

of Theorem 1.1 is actually spent proving this coding condition).

Theorem 1.2 (Informal version of Theorem 2.2). Let C be

a łnicež complexity measure, and let D be an efficiently samplable

distribution that has a łcoding theoremž with respect to C. Then one-

way functions exist if approximating C is hard on average on D.

One way to interpret this result is as an intriguing converse

to theorems showing that if one-way functions exist, then many

meta-complexity problems are hard on average. Those results fol-

low roughly because if one-way functions exist, one can generate

low-complexity łpseudorandomž strings that are computationally

indistinguishable from random strings, which have high complexity

[3, 17, 19, 32, 51]. A major conceptual takeaway from this paper

is that in many settings there is, in fact, a general method for go-

ing in the reverse direction, i.e., from the average-case hardness

of approximating a complexity measure to the existence of one-

way functions. Moreover, as we will discuss later, the high-level

approach for doing this is surprisingly simple.

Theorem 1.2 allows us to make progress on the aforementioned

Question 2. An unfortunate theme throughout theorems in meta-

complexity is that results are often fragile with respect to the precise

notion of meta-complexity. Proofs and results can depend on the

precise notion of complexity (e.g. what gates are allowed in cir-

cuits for MCSP), or settings of a size threshold. To illustrate the

importance of this łlack of robustnessž consider that in recent years

researchers have shown all of the following (informally stated):

• we know certain variants ofMCSP and time-bounded Kol-

mogorov complexity are NP-complete [24ś26, 40],

• we know certain variants ofMCSP and time-bounded Kol-

mogorov complexity have worst-case to average-case reduc-

tions [20, 21, 53], and

• we know time-bounded Kolmogorov complexity is average-

case hard if and only if one-way functions exist [38].1

Now, if all these results held for the same meta-complexity prob-

lem, then we could compose them to get an amazing implication:

that the worst-case hardness of NP is equivalent to the existence

of one-way functions2! This would solve a major open question in

the foundations of cryptography, and rule out two of Impagliazzo’s

five possible worlds of average-case complexity: Heuristica and

Pessiland [28]. Thus there is a strong motivation to prove łmore

robustž versions of the results mentioned above.

Making progress on the aforementioned robustness issue, we

use Theorem 1.2 to prove a broad equivalence on the average-case

complexity of meta-complexity problems through connections to

one-way functions. These problems include approximation versions

ofMCSP, (unrestricted) Kolmogorov complexity, and time-bounded

Kolmogorov complexity. (For technical reasons, in order to include

time-bounded Kolmogorov complexity in our equivalence, we need

to switch to the infinitely-often setting and assume complexity-

theoretic derandomization.)

Theorem 1.3 (Informal version). All of the following are equiv-

alent.

(1) Infinitely-often one-way functions exist.

(2) There exists a locally samplable distribution on which łapprox-

imatingž circuit complexity is intractable infinitely often.

(3) There exists a samplable distribution onwhich łapproximatingž

K-complexity is intractable infinitely often.

(4) There exists a samplable distribution onwhich łapproximatingž

Kpoly(𝑛) -complexity is intractable infinitely often (assuming

a standard derandomization assumption, namely that linear

exponential time requires linear-exponential-sized circuits).

Perhaps themain feature of this theorem is the robustness of these

equivalences. Although we have stated these results informally,

they hold for a wide range of complexity thresholds, approximation

gaps, and average-case error tolerances (i.e., for weak average-case

hardness and strong average-case hardness). We discuss this in

greater detail in Section 2.

Finally, we specifically highlight the equivalence between Item 1

and Item 3, as we find it to be both surprising and elegant: one

can characterize the existence of cryptography by the average-case

complexity of approximating Kolmogorov complexity (a worst-case

uncomputable problem!).

Theorem 1.4 (Eqivalence between Item 1 and Item 3 re-

stated). One-way functions exist if and only if there exists a sam-

plable distribution on which łapproximatingž K-complexity is in-

tractable.3

1Unlike the previous two items, this was only known for variants of time-bounded
Kolmogorov complexity and not for variants ofMCSP.
2In order to actually get this implication, we would need the same notion of average-
case hardness in the second and third item. Current results give zero-error average-case
hardness for the second item, but require bounded-error average-case hardness for
the third.
3This theorem holds in both infinitely-often and almost-everywhere settings and does
not need the complexity-theoretic derandomization assumption.
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Perhaps surprisingly, the proof of this result is quite simple and

relies only on basic facts about Kolmogorov complexity and one-

way functions. To our knowledge, however, this result was never

shown previously (we later discuss some possible reasons why

in Section 3.1). Indeed, we view the simplicity of the proof as a

significant feature of this result.

We also note that this gives the first characterization of the

existence of one-way functions by the average-case hardness of a

problem on any samplable distribution. Previous characterizations

such as Levin’s universal one-way function [36, 37] and the results

of Liu and Pass [38] require average-case hardness on a specific

distribution in order to infer the existence of one-way functions.

In summary, we make three main contributions:

(1) Giving the first unconditional characterization of the exis-

tence of one-way functions based onMCSP.

(2) Showing the robustness of average-case meta-complexity

with respect to many different parameters (e.g. size thresh-

olds, approximation gaps, error tolerances) and notions (e.g.

Kolmogorov complexity, time-bounded Kolmogorov com-

plexity, and circuit size).

(3) Giving a simple and elegant characterization of one-way

functions based on (unrestricted) Kolmogorov complexity.

Moreover, this is the first characterization of the existence of

one-way functions by the average-case hardness of a prob-

lem on any samplable distribution.

In the next section, we describe our results more formally and

mention some additional applications to cryptography and meta-

complexity as well.

2 OUR RESULTS

2.1 Equivalences

We give the first equivalence between the average-case hardness of

MCSP and the existence of one-way functions. In order to do this,

we consider a samplability notion that we believe is interesting in its

own right: local samplability4. A 𝑡-local sampler is a sampler that, in

order to compute a given bit of its output, runs in time 𝑡 with random

access to its input5. Here 𝑡 is typically some sub-linear function.

Several natural distributions, such as the uniform distribution and

distributions induced by pseudorandom function generators [17],

are 𝑡-locally samplable for small 𝑡 . Further motivating the notion is

the fact that for most pairs 𝐿, 𝐿′ of natural NP-complete problems,

there is a local reduction from 𝐿 to 𝐿′, and hence the hardness of

𝐿 with respect to some locally samplable distribution translates

to the hardness of 𝐿′ also with respect to some locally samplable

distribution.

In what follows, let GapMCSP[𝑠, 𝑐] denote the promise problem

of distinguishing between truth tables of Boolean functions with

circuit complexity at most 𝑠 and Boolean functions with circuit

complexity at least 𝑐 . We say that a problem is weakly average-case

hard on a distribution D if every probabilistic polynomial-time

algorithm fails to solve it with probability 1/𝑛𝑂 (1) (over D and the

randomness of the algorithm) on almost all input lengths, and we

4Indeed, the notion of local samplability has been studied previously. See for example
[15].
5Consequently, a 𝑡 -local sampler can access at most 𝑡 bits of its input while computing
a specific output bit.

say that a problem is strongly average-case hard on a distribution

D if every probabilistic polynomial-time algorithm fails to solve it

with probability 1/2 − 1/𝑛𝜔 (1) on almost all input lengths.

Theorem 2.1. The following are equivalent:

(1) One-way functions exist.

(2) For some constant 𝛿 > 0 and 𝑠 = Ω(𝑛𝛿 ), there is an (𝑛𝛿 )-

locally samplable distributionD such thatGapMCSP[𝑠, 𝑠𝑛5𝛿 ]

is weakly average-case hard on D.

(3) For every constant 𝛿 > 0, there is an (𝑛𝛿 )-locally samplable

distribution D such that GapMCSP[𝑛𝛿 , 𝑜 ( 𝑛
log𝑛

)] is strongly

average-case hard on D.

Theorem 2.1 shows that in the setting of average-case complexity

with respect to locally samplable distributions, GapMCSP is very

robust with respect to the complexity parameters 𝑠, 𝑐 as well as the

error tolerance (i.e., weak or strong average-case hardness).

Only after proving Theorem 2.1 did we realize that the high-

level approach works for not onlyMCSP but also many different

meta-complexity problems. The essential condition we need is a

coding theorem [34]: if there is an efficiently samplable distribution

that generates a string 𝑥 w.p. at least 𝑝 , then the complexity of 𝑥 is

at most log(1/𝑝) +𝑂 (log |𝑥 |). The notion of łefficiently samplablež

and łcomplexityž may vary here; for every definition of them that

satisfies the coding theorem (with some mild restrictions on the

definition of łcomplexityž), hardness of approximating the łcom-

plexityž of a string under an łefficiently samplablež distribution

imply one-way functions.

Theorem 2.2. Let 𝐶 be a łnicež complexity measure6 and 𝑆 be a

class of polynomial-time samplable distributions. Suppose the follow-

ing coding theorem holds:

• For every string 𝑥 ∈ {0, 1}𝑛 that is sampled with probability

𝑝 from a distribution 𝐷 ∈ 𝑆 , we have 𝐶 (𝑥) ≤ log(1/𝑝) +

𝑂 (log𝑛).

Let Δ = 𝜔 (log𝑛) be the approximation gap. If there is a distribution

in 𝑆 on which it is weakly average-case hard to approximate𝐶 within

an additive factor of Δ, then one-way functions exist.

For example, we will prove a coding theorem where łcomplex-

ityž is interpreted as the circuit complexity of a truth table and

łefficiently samplablež means locally samplable.7 Given the coding

theorem, the implication from the second item to the first item in

Theorem 2.1 essentially follows from the machinery of Theorem 2.2.

Building on Theorem 2.2 and the well-known coding theorem

for Kolmogorov complexity, we give a surprising characterization

of the existence of one-way functions by the average-case hard-

ness of unbounded Kolmogorov complexity. Below, let GapK[𝑠, 𝑐]

denote the promise problem of distinguishing between strings of

Kolmogorov complexity at most 𝑠 and of Kolmogorov complexity

at least 𝑐 .

Theorem 2.3. The following are equivalent:

(1) One-way functions exist.

6See the full version for the exact definition of łnicež complexity measures.
7Actually, since the coding theorem forMCSP is not tight and circuit complexity is not
łnice enoughž, we only show the existence of one-way functions assuming hardness of
GapMCSP under a multiplicative gap, instead of an additive gap as in Theorem 2.2.
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(2) For some 𝑠 = 𝑛Ω (1) and Δ = 𝜔 (log(𝑛)), there is a samplable

distributionD such thatGapK[𝑠, 𝑠+Δ] is weakly average-case

hard on D.

(3) For every 𝜖 > 0, there is a samplable distribution D such that

GapK[𝑛𝜖 , 𝑛 −𝜔 (log(𝑛))] is strongly average-case hard on D.

The fact that the average-case hardness of approximating Kol-

mogorov complexity implies the existence of one-way functions

might seem especially surprising, given that candidate one-way

functions are usually defined based on problems in NP, while Kol-

mogorov complexity is uncomputable. While most constructions

of one-way functions based on the average-case hardness of some

computational problem use the structure of the problem to define

the one-way function and argue security based on the distribu-

tional average-case hardness, our construction does the reverse8:

the one-way function is defined based on the distribution, while

the proof of security exploits the structure of the problem assumed

to be hard, i.e., Kolmogorov complexity.

A natural question is whether there is a version of Theorem 2.3

where the equivalence involves the hardness of a meta-complexity

problem known to be in NP, such as the K𝑡 problem considered in

[38].9 We are able to achieve this with a more complicated proof,

but only under a complexity-theoretic derandomization assumption

and for infinitely-often one-way functions.

Theorem 2.4. Assume that E ∉ ioSIZE[2.01𝑛]. The following are

equivalent:

(1) Infinitely-often one-way functions exist.

(2) For some 𝑠 = 𝑛Ω (1) and Δ = 𝜔 (log(𝑛)), there is a samplable

distribution D such that for every large enough polynomial 𝜏 ,

GapK𝜏 [𝑠, 𝑠+Δ] is weakly average-case hard onD on infinitely

many input lengths.

(3) For every 𝜖 > 0, there is a samplable distribution D such

that for every large enough polynomial 𝜏 , GapK𝜏 [𝑛𝜖 , 𝑛 −

𝜔 (log(𝑛))] is strongly average-case hard on D on infinitely

many input lengths.

As can be seen from the statement of Theorems 2.1, 2.3 and 2.4,

our results are extremely robust with respect to the parameters of

the underlying meta-complexity problem. For example, it follows

from Theorem 2.3 that the average-case complexity of GapK[𝑠, 𝑐]

under samplable distributions remain the same regardless of the

complexity threshold (𝑠 could be any polynomial), the gap parame-

ter (𝑐 − 𝑠 could be as small as log2 𝑛 or as large as 𝑛 − 𝑛0.1), and the

error tolerance (weak or strong average-case hardness).

Finally, by strengthening the samplability assumption in Theo-

rem 2.3 and using the influential localization technique of [9], we

can also characterize one-way functions computable in NC0.10

Theorem 2.5. The following are equivalent:

8There are precedents for this, such as [29]. In [29], they prove that if NP is hard over
some samplable distribution, then NP is also hard over the uniform distribution. One
of the cases they consider is that the sampler itself already implements a one-way
function; in this case, a hard NP language over the uniform distribution follows easily.
9Intuitively K𝑡 is an easier problem than K, therefore basing one-way functions on
hardness of K𝑡 should be easier than basing one-way functions on hardness of K. This
is not the case, though, for the proof techniques we use.
10NC0 is the class of (multi-output) functions computable by uniform circuits such
that each output bit is connected to a constant number of input bits. It was proved in

[9] that logspace-computable one-way functions exist if and only if NC0-computable
one-way functions exist.

(1) There are one-way functions computable in NC0.

(2) For some 𝑠 = 𝑛Ω (1) and Δ = 𝜔 (log(𝑛)), there is a logspace-

samplable distribution D such that GapK[𝑠, 𝑠 + Δ] is weakly

average-case hard on D.

(3) There is anNC0-samplable distributionD such thatGapK[𝑛−

𝑛0.99, 𝑛 − 𝜔 (log(𝑛))] is strongly average-case hard on D.

2.2 Applications

Our new connections between the hardness of meta-complexity

problems on samplable distributions and the existence of one-way

functions have several applications in cryptography and the theory

of meta-complexity.

One-way functions from hardness of SAT and Clique. First, they

allow us to show that one-way functions follow from the average-

case hardness of NP-complete problems such as SAT and Clique

under more general assumptions than were known before. Specif-

ically, average-case hardness of SAT or Clique on any samplable

distribution of high enough entropy implies the existence of one-

way functions. Candidate one-way functions based on SAT and

Clique are often based on very specific distributions, which lead to

hardness assumptions that are not very robust. By showing that

one-wayness can be derived from more general classes of distribu-

tions, we make progress towards basing one-way functions simply

on the average-case hardness of NP.

Below, the entropy deficiency of a distribution on𝑚 bits is the

difference between𝑚 and the entropy.

Theorem 2.6. Given an integer 𝑘 , let Δ ≥ 2𝑘+3 be a large enough

integer, and let 𝑡 : N→ N be any function such that 𝑡 (𝑛) = 𝜔 (log𝑛).

If

• 𝑘-SAT on Δ𝑛 clauses is strongly average-case hard w.r.t. some

samplable (resp. logspace-samplable) distribution D with en-

tropy deficiency at most Δ𝑛/2𝑘+1, or

• 𝑡-Clique is strongly average-case hard w.r.t. some samplable

(resp. logspace-samplable) distribution D with entropy defi-

ciency at most 0.99
(𝑡
2

)

,

then one-way functions (resp. one-way functions computable in NC0)

exist.

It is natural to wonder if the hardness assumptions in Theorem

2.6 are reasonable. We show that in fact, the hardness assumption

for Clique follows from the well-studied Planted Clique Hypothesis

[5, 31, 33], while the hardness assumption for SAT follows from

pseudo-randomness of random local functions (often referred to

asłGoldreich’s PRG") [7, 8, 16]. Thus our assumptions generalize

hypotheses that have been intensively studied.

Unconditional CZK protocols for meta-complexity. Turning to

the theory of meta-complexity, our characterizations imply un-

conditional average-case simulations of the corresponding meta-

complexity problems in CZK (Computational Zero Knowledge)

infinitely often. As far as we are aware, these are the first natural

examples of approximation problems shown to be unconditionally

in CZK (on average) without also being shown to be in SZK (Sta-

tistical Zero Knowledge).

Below, we say that a problem is infinitely often in CZK on a

distribution D if for each 𝑘 > 0, there is a CZK protocol that is
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correct with probability at least 1 − 1/𝑛𝑘 on inputs sampled from

D, for infinitely many 𝑛.

Theorem 2.7. For every 𝑠 : N→ N such that 𝑠 (𝑛) = 𝑛Ω (1) and for

every samplable distribution D, GapK[𝑠, 𝑠 + 𝜔 (log(𝑛))] is infinitely

often in CZK on D.

For every 𝛿 > 0, 𝑠 = Ω(𝑛𝛿 ), and (𝑛𝛿 )-locally samplable distribu-

tion D, GapMCSP[𝑠, 𝑠𝑛5𝛿 ] is infinitely often in CZK on D.

We note that the proof of Theorem 2.7 builds on two common

themes in previous work on CZK: connections with one-way func-

tions and win-win arguments (see e.g. [49, 56]).

Non-NP-hardness of GapMCSP under randomized local reduc-

tions. Finally, we use our results to shed some light on the long-

standing open question of whetherMCSP is NP-complete. Based

on the assumption that one-way functions inNC0 exist, we rule out

NP-hardness of GapMCSP under randomized local reductions. To

the best of our knowledge, this is the first piece of evidence against

randomized reductions from SAT to GapMCSP. We note that Mur-

ray and Williams [44] unconditionally ruled out NP-hardness of

MCSP under deterministic local reductions.

Theorem 2.8. Suppose there are one-way functions computable in

NC0. Then for each 𝛿 > 0 and 𝑠 = Ω(𝑛𝛿 ), there are no randomized

(𝑛𝛿 )-local reductions from SAT to GapMCSP[𝑠, 𝑠𝑛4𝛿 ].

3 TECHNIQUES

Here we discuss the main ideas used in our proofs. We restrict

ourselves to high-level arguments in this section, and do not delve

too deeply into the choice of parameters.

3.1 Meta-Complexity and One-Way Functions

In this subsection, we outline how to prove the equivalences be-

tween the average-case hardness of approximating various com-

plexity measures and the existence of one-way functions.

Reverse Directions: Average-Case Hardness from One-Way Func-

tions. The reverse directions of these equivalences are relatively

straightforward given previous work. Suppose one-way functions

exist, and we wish to show that, for example, GapK and GapMCSP

are strongly hard on average. By [17, 19], for each 𝜖 > 0 there

are pseudo-random generators with seed length 𝑛𝜖 computable in

polynomial time such that each output of the generator, when inter-

preted as the truth table of a function, has circuit size 𝑛𝑂 (𝜖) . This

also implies that every output of the generator has Kolmogorov

complexity at most 𝑛𝑂 (𝜖) . On the other hand, a random string 𝑥

has K(𝑥) close to 𝑛 and circuit size close to 𝑛/log(𝑛) with high

probability. Thus, we can consider the samplable distribution D

that generates a uniformly random string with probability 1/2 and

a uniformly random output of the pseudo-random generator with

probability 1/2. Any algorithm for GapK or GapMCSP that has a

noticeable advantage over random could be used to distinguish the

uniform distribution from the pseudo-random distribution, contra-

dicting the pseudo-randomness assumption. In order to get average-

case hardness on NC0-samplable distributions from NC0 one-way

functions, we use [18] rather than [19] to build an NC0-computable

pseudo-random generator from theNC0-computable one-way func-

tion.

Forward Directions: One-Way Functions from Average-Case Hard-

ness. Our main technical contribution towards proving these equiv-

alences is giving a generic approach for showing how the average-

case hardness of approximating a complexity measure on specific

distributions can imply the existence of one-way functions. Let

𝐶 : {0, 1}★ → N be a complexity measure. Let 𝐷𝑛 be some effi-

ciently samplable distribution on 𝑛-bit strings. Let 𝑡 ∈ N be some

threshold. We work in the contrapositive, i.e., we show that if

no one-way functions exist, then one can efficiently distinguish

whether a string has𝐶-complexity at most 𝑡 or𝐶-complexity much

larger than 𝑡 on average (with two-sided error) over 𝐷𝑛 . To do this

we introduce some notation: for a string 𝑦 ∈ {0, 1}𝑛 , let 𝑝𝑦 denote

the probability that 𝑦 is sampled from 𝐷𝑛 .

Our framework works by showing the following.

(1) If 𝑝𝑦 is low, then 𝑦 has high complexity (on average

over 𝐷𝑛). By a union bound, if we sample 𝑦 from 𝐷𝑛 , the

probability that 𝑝𝑦 ≤ 𝑞 and 𝑦 has complexity at most 𝑘 is at

most

|{𝑦 ∈ {0, 1}𝑛 : 𝐶 (𝑦) ≤ 𝑘}| · 𝑞.

Assuming our complexity measure 𝐶 has the property that

the number of low-complexity strings is relatively small, the

above quantity will be small, if 𝑞 is also small. Consequently,

we get that when 𝑝𝑦 is low,𝑦 has high complexity on average.

(2) Coding Theorem: If 𝑝𝑦 is high, then 𝑦 has low com-

plexity. Intuitively, if 𝑝𝑦 is large, then to describe 𝑦 (in

the information-theoretic setting), one should need roughly

log(1/𝑝𝑦) bits. We say a coding theorem holds for a com-

plexity measure 𝐶 and a distribution 𝐷𝑛 if for all 𝑦, we have

that 𝐶 (𝑦) is upper bounded by roughly log(1/𝑝𝑦). Assum-

ing we have a coding theorem (which is a non-trivial task

in of itself, especially if the complexity measure is resource-

constrained!), we get that if 𝑝𝑦 is small, then 𝑦 has low com-

plexity.

(3) If one can approximate 𝑝𝑦 , then one can approximate

𝐶-complexity on 𝐷𝑛 on average. Combining (1) and (2),

we get that if we are able to approximate 𝑝𝑦 given 𝑦 on

average over 𝐷𝑛 , then we can approximate𝐶-complexity on

𝐷𝑛 on average: simply output łhigh complexityž if 𝑝𝑦 is low

and łlow-complexityž if 𝑝𝑦 is high.

(4) If one-way functions do not exist, one can approxi-

mate 𝑝𝑦 . Because the distribution𝐷𝑛 is efficiently samplable

by some algorithm 𝐴, one can use the non-existence of one-

way functions and hashing ideas to approximately count the

number of pre-images of 𝑦 under 𝐴 [29, 30]. This gives an

efficient approximation of 𝑝𝑦 on average over 𝐷𝑛 .

(5) If one-way functions do not exist, one can approxi-

mate 𝐶-complexity on 𝐷𝑛 on average. This is by com-

bining (3) and (4).

We now emphasize which parts of the above argument depend

on the choice of complexity measure and distribution. Parts (3) and

(5) hold as long as the remaining parts hold. For part (1), we need

that the complexity measure 𝐶 has relatively few low-complexity

strings (a bound of the form 2𝑘 or even 2𝑘 log𝑘 on the total number

of strings of complexity 𝑘 is fine for us). This condition seems

to hold for all natural complexity measures. Next, part (4) of the

argument holds as long as 𝐷𝑛 is polynomial-time samplable.
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Finally, part (2) is the most delicate part to prove, and the one we

need to work the hardest to show throughout this paper. In the case

of Kolmogorov complexity, it is relatively easy to show that if 𝐷𝑛

is an efficiently samplable distribution, then 𝐶 (𝑦) ≤ log(1/𝑝𝑦) +

𝑂 (log𝑛). However, in general, showing a coding theorem for a class

of distributions and a specific complexity measure can be difficult.

Showing Coding Theorems. As mentioned previously, in the case of

(unrestricted) Kolmogorov complexity, showing the corresponding

coding theorem is straightforward. However, in both the case of

MCSP and time-bounded Kolmogorov complexity we need to work

harder.

For time-bounded Kolmogorov complexity, we were not able to

get an unconditional coding theorem for samplable distributions. In-

stead, we prove an average-case coding theorem under the assump-

tions that one-way functions do not exist and complexity-theoretic

derandomization holds. Luckily, this suffices for our purposes. The

details are somewhat intricate, but the main idea (at a high level) is

this: suppose 𝑦 is a high complexity string and, for contradiction,

𝑝𝑦 is large. To achieve a contradiction, we want to come up with a

small, efficient description of𝑦. We will do this by specifying a small

hash 𝑣 of 𝑦 such that this hash is unique among the (not too many)

strings 𝑧 such that 𝑝𝑧 is large. We then use the non-existence of

one-way functions, in two different ways11, and a derandomization

assumption to show that given 𝑣 , one can deterministically recover

𝑦 (on average).

ForMCSP, we show an (unconditional, worst-case) coding the-

orem on locally-samplable distributions.12 In particular, we show

the contrapositive, that is, we show that if 𝑦 is the truth table of a

function with high circuit complexity, then 𝑝𝑦 is low, where 𝑝𝑦 is

the probability that 𝑦 is sampled fromD. The key idea is to łrevealž

bits of the input to the sampler used to compute 𝑦 in stages. Each

stage reveals a small number of bits of the input to the sampler,

by its locality. If after a small number of stages, all bits of 𝑦 can

be correctly computed by an approximate majority over random

choices of the unrevealed bits, then we can argue that we get a small

circuit for 𝑦. Suppose this is not the case. Then there is some bit of

𝑦 for which random choices to the unrevealed bits give the wrong

answer with probability ≥ 1/3. In this case, we can argue that 𝑝𝑦
must decrease by a factor of 2/3. If 𝑦 has large circuit complexity,

the number of stages in this process must be high, and hence 𝑝𝑦
must be low.

Why were these results not shown earlier? Looking at the sim-

plicity of our high-level approach for going from approximating

average-case hardness of complexity measures to the existence

of one-way functions, it is natural to ask why these results were

not shown earlier. Indeed, all the pseudorandomness machinery

we use was developed in the early 90s, and developing stronger

connections between one-way functions and meta-complexity has

been a longstanding question. It is especially surprising that there

11The reason why the K𝑡 result only holds infinitely often is that we need to invert
one-way functions twice, and we need to make sure the input lengths where our two
inverters succeed line up.
12We know thatMCSP is hard to approximate even on locally-samplable distributions
if one-way functions exist, so for the purpose of proving an equivalence, it suffices to
consider locally-samplable distributions.

is such a simple proof showing that the existence of one-way func-

tions is equivalent to the average-case hardness of approximating

(unrestricted) Kolmogorov complexity.

We suggest some heuristic reasons for why these results took so

long to discover. For one, it seems somewhat hard to believe that

there could be a relationship between an uncomputable problem

and the existence of (efficiently computable) one-way functions.

Indeed, for Kolmogorov complexity to even be computable one

needs to consider the simultaneous restriction to approximation

and two-sided error on samplable distributions.

Another contributing factor is that, counter-intuitively, it seems

easier to prove an equivalence via our framework when the com-

plexity measure is more powerful (i.e. like Kolmogorov complexity),

since it is easier to prove coding theorems in this setting. As a

result, while one might think one is starting with łsimpler casesž

like MCSP, in fact, those cases are more difficult to work with in

our framework.

Finally, exciting recent positive results in this area, especially

that of Liu and Pass [38], has led the community to look more

closely at connections between Kolmogorov complexity (and its

variants) and cryptography.

3.2 Applications

Theorem 2.6: One-way functions from hardness of SAT and Clique.

Our proof of Theorem 2.6 is inspired by a zero-error average-case

reduction from SAT to computing KT complexity13 in [23]. The idea

is that random 𝑘-CNF formulas are incompressible, while 𝑘-CNFs

with satisfying assignments can be compressed if they are long

enough. A similar idea gives a zero-error reduction from Clique to

computing KT.

Here we adapt these ideas to the bounded-error average-case

setting. When considering bounded-error average-case complexity,

it is no longer the case that the uniform distribution is a reasonable

one to consider for 𝑘-SAT, since answering łUnsatisfiable" works

with overwhelmingly high probability. However, it is still reason-

able to expect average-case hardness on distributions with high

entropy. We show that if the distribution has high enough entropy,

then there are bounded-error reductions from 𝑘-SAT and Clique to

approximating Kolmogorov complexity. The reductions themselves

are the simplest possible, namely the identity reduction! However,

the proof that they work requires the compressibility argument

from [23] as well as the fact that high entropy distributions must

place noticeable probability on strings of high Kolmogorov com-

plexity. We thereby get a reduction from computing SAT or Clique

on average with noticeable advantage over random on a samplable

distribution D with high enough entropy to computing GapK with

all but inverse polynomial probability on D. The robustness of

GapK on average is crucial to our argument, as the reduction needs

the algorithm for GapK to be correct w.p. 1 − 1/poly(𝑛).

To show that our average-case assumptions are reasonable, we

show that they are implied by well-studied hardness assumptions

in average-case complexity and cryptography, namely the Planted

Clique Hypothesis forClique and the pseudorandomness of random

local functions for 𝑘-SAT.

13KT complexity is a meta-complexity notion defined in [1] that is closely related to
circuit complexity.
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Theorem 2.7: Unconditional CZK protocols for meta-complexity.

The proof of Theorem 2.7 uses a win-win argument:

• It is well known that if one-way functions exist, then CZK =

IP = PSPACE [10, 54]. In this case, since 𝑝𝑦 can be com-

puted in polynomial space for any string 𝑦 sampled from the

distribution D, we have that GapK is in CZK on average.

• Suppose, on the other hand, that one-way functions don’t

exist. Then by Theorem 2.3, GapK is infinitely often in prob-

abilistic polynomial time on D. Since CZK trivially contains

probabilistic polynomial time, GapK is infinitely often in

CZK on D in this case as well.

A similar argument works for GapMCSP on locally samplable dis-

tributions, using Theorem 2.1 instead of Theorem 2.3.

Theorem 2.8: Non-NP-hardness of GapMCSP under randomized

local reductions. Finally, to prove Theorem 2.8, we first show that if

a language 𝐿 has randomized local reductions to GapMCSP, then 𝐿

is easy on average over locally samplable distributions. The main in-

gredient of this proof is showing that GapMCSP is easy on average

over a locally samplable distribution when given the randomness of

the sampler, rather than just its output. This argument is similar to

the argument that 𝑝𝑦 is low for strings 𝑦 of high circuit complexity

sampled by a local sampler D. We observe that under the assump-

tion that there are one-way functions inNC0, 𝑘-SAT is average-case

hard on some locally samplable distribution, and combining this

with the lemma about randomized local reductions concludes the

proof.

4 RELATED WORK

There have been several works relating one-way functions to non-

cryptographic notions. Impagliazzo and Levin [29] show that one-

way functions exist if and only if łuniversal extrapolation" does

not, where universal extrapolation is a generic procedure to sample

from continuations of the output of some samplable process. Some

of the ideas we use are similar to theirs, though there does not seem

to be a formal connection between the results. Blum, Furst, Kearns,

and Lipton [11] relate the existence of one-way functions to an

average-case notion of learning. Oliveira and Santhanam [47] show

that exponentially hard (non-uniform) one-way functions exist if

and only if non-trivial (non-uniform) learning is hard.

More recently, there has been a number of papers considering

the average-case hardness of meta-complexity problems on the uni-

form distribution and relating it to one-way functions. Santhanam

[53] showed that under an assumption on universal succinct pseu-

dorandom distributions, MCSP is zero-error hard on average on

the uniform distribution if and only if one-way functions exist.

By considering K𝑡 rather than MCSP and bounded-error hardness

rather than zero-error hardness, Liu and Pass [38] gave an amazing

unconditional equivalence. Characterizations of NC0 cryptogra-

phy by meta-complexity over the uniform distribution are given in

[41, 52]. An implication for one-way functions from the average-

case hardness of the conditional KT-complexity problem is given in

[4]. [40] give a natural NP-complete problem whose average-case

hardness on the uniform distribution is equivalent to the existence

of one-way functions.

This paper is an updated version of [27], which appeared with

a different title and slightly different exposition. Soon after [27]

appeared online, Liu and Pass [39] published a note where they

observed that the argument in the proof of Theorem 2.6 general-

izes to give one-way functions from the average-case hardness of

any sparse enough language with respect to a distribution of high

enough entropy. This is a very interesting observation. However,

we would like to stress their result only generalizes Theorem 2.6

and does not seem applicable to most of our other results. In partic-

ular, the key phenomenon behind our results is not just sparsity,

but rather the interplay between complexity measures and coding

theorems for distributions as captured by our Theorem 2.2.

Indeed, a major part of our work is spent proving coding theo-

rems for various complexity measures and distributions. We remark

that Antunes and Fortnow [6, Lemma 3.2] also proved a coding

theorem for K𝑡 under complexity-theoretic derandomization as-

sumptions. Compared with their results, our coding theorem uses

a weaker derandomization assumption14, but our coding theorem

also requires the non-existence of infinitely-often one-way func-

tions and only works on the average case. Recently, Lu and Oliveira

[42] showed a coding theorem for rKt (a randomized version of

Levin’s Kt complexity [35, 45]).
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