
Maintaining Exact Distances under Multiple Edge Failures
Ran Duan

Tsinghua University

Beijing, China

duanran@mail.tsinghua.edu.cn

Hanlin Ren

University of Oxford

Oxford, UK

hanlin.ren@cs.ox.ac.uk

ABSTRACT

We present the first compact distance oracle that tolerates mul-

tiple failures and maintains exact distances. Given an undirected

weighted graphG = (V ,E) and an arbitrarily large constant d , we
construct an oracle that given vertices u,v ∈ V and a set of d edge

failures D, outputs the exact distance between u and v in G − D
(that is,G with edges in D removed). Our oracle has space complex-

ity O (dn4) and query time dO (d)
. Previously, there were compact

approximate distance oracles under multiple failures [Chechik, Co-

hen, Fiat, and Kaplan, SODA’17; Duan, Gu, and Ren, SODA’21], but

the best exact distance oracles under d failures require essentially

Ω(nd) space [Duan and Pettie, SODA’09]. Our distance oracle seems

to require nΩ(d)
time to preprocess; we leave it as an open question

to improve this preprocessing time.

CCS CONCEPTS

• Theory of computation→ Data structures design and anal-

ysis.

KEYWORDS

Distance sensitivity oracles, dynamic data structures, shortest paths

ACM Reference Format:

RanDuan andHanlin Ren. 2022.Maintaining Exact Distances underMultiple

Edge Failures. In Proceedings of the 54th Annual ACM SIGACT Symposium

on Theory of Computing (STOC ’22), June 20–24, 2022, Rome, Italy. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3519935.3520002

1 INTRODUCTION

Real-life networks are dynamic. Sometimes a link or node suffers

from a crash failure and has to be removed from the network. Occa-

sionally a new link or node is added to the network. This motivates

the study of dynamic graph algorithms: algorithms that receive

a stream of updates to the graph and needs to simultaneously re-

spond to queries about the current graph. The field of dynamic

graph algorithms is both classical and vibrant that we will not be

able to survey here.

However, in many situations, the network is not “too” dynamic

in the sense that the graph will always remain close to a “base”

graph. Thus, by preprocessing this base graph, one might obtain

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06.

https://doi.org/10.1145/3519935.3520002

better query time bounds than what is possible in the fully dynamic

setting. One example is the d-failure model: in each query, there

is a (small) set of failures (which are either vertices or edges), and

we are interested in the graph with the failures removed. After this

query was done, the failures are repaired and do not influence the

next query.

In this paper, we consider the problem of maintaining distances

in the d-failure model. More precisely, given a graphG = (V ,E), we
want to build an oracle that answers the following queries quickly:

given a set of edge failures D ⊆ E with size at most d and two

vertices u,v ∈ V , what is the distance from u to v inG −D (i.e., the

graph with edges in D removed)?

1.1 Previous Works

The case of d = 1 (i.e., only one failure) is well-understood. There

is an oracle of size O (n2 logn) and query time O (1) that maintains

exact distances in a directed graph under one edge or vertex failure

[11]. A long line of work [3, 4, 6, 16, 18, 19, 22, 26] has focused on

optimising the space or preprocessing time of this oracle.

The case of d = 2 was considered by Duan and Pettie [13]: they

presented an oracle of size O (n2 log3 n) and query time O (logn)
that maintains exact distances in directed graphs under two vertex

or edge failures. Unfortunately, their techniques do not seem to

generalise to even 3 failures. They even concluded that “moving be-

yond dual-failures will require a fundamentally different approach

to the problem.”

The problem becomes significantly harder whend becomes large.

In fact, previous works in this regime had to weaken the query

requirements: instead of exact distance queries, they could only

handle connectivity queries or approximate distance queries.

(1) Pǎtraşcu and Thorup [21] presented an oracle for handling

connectivity queries under d edge failures in an undirected

graph. Their oracle has size Õ (m)1 and query time Õ (d). Duan
and Pettie [14, 15] presented oracles that answer connectivity

queries under d vertex failures
2
, which has size Õ (m) and query

time Õ (d2).
(2) Chechik, Langberg, Peleg, and Roditty [8] designed O (kd)-

approximate distance oracles under d edge failures in an undi-

rected graph, which has size O (dkn1+1/k log(nW)) and query

time Õ (d); here k is an arbitrary constant andW is an upper

bound on the edge weights. Bilò, Gualà, Leucci, and Proietti [5]

improved the approximation ratio to (2d + 1), with the expense

of a larger query time of Õ (d2).

1Õ hides polylog(n) factors. In particular, Õ (d) means d · polylog(n), instead of

d · polylog(d).
2
Edge failures are always no harder than vertex failures, as we can always insert a

vertex in the middle of every edge to simulate an edge failure by a vertex failure.

However, in many cases [12, 14], dealing with vertex failures requires significantly

new ideas compared to edge failures.

1093

https://orcid.org/0000-0002-7632-7574
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1145/3519935.3520002

STOC ’22, June 20–24, 2022, Rome, Italy Ran Duan and Hanlin Ren

(3) If we are willing to tolerate a space complexity bound exponen-

tial ind , thenwe could even achieve (1+ϵ)-approximation for ev-

ery ϵ > 0. Chechik, Cohen, Fiat, and Kaplan [7] designed (1+ϵ)-
approximate distance oracles underd edge failures in undirected

graphs, which has sizeO (n2 (logn/ϵ)d ·d logW) and query time

O (d5 logn log logW). Duan, Gu, and Ren [12] generalised this

oracle to also handle vertex failures; their oracle has size n2.01 ·
(logn/ϵ)O (d) · logW and query time poly(d, logn, log logW).

(4) The harder case of directed weighted graphs was also studied.

Weimann and Yuster [26] designed exact distance oracles of size

Õ (n3−α) and query time Õ (n2−2(1−α)/d); here α ∈ (0, 1) is an
arbitrary parameter. Using an algebraic technique, Brand and

Saranurak [25] designed both reachability and exact distance

oracles: their reachability oracle has size Õ (n2) and query time

O (dω), while their distance oracle has size Õ (Wn2+α) and query
time O (Wn2−αd2 +Wndω). Here ω < 2.3728596 is the matrix

multiplication exponent [2, 9, 17, 23, 27].

Exact distances? Despite significant efforts on thed-failuremodel,

our understanding about the setting where exact distances need to

bemaintained is still quite primitive. One reason is that the structure

of shortest paths after d failures appears to be very complicated:

[13] used heavy case analysis to deal with two failures, and three

failures appear to be even harder! (We also think this complexity

provides further motivation for studying exact distance oracles in

the d-failure model, as a good oracle enhances our understanding

of the structure of d-failure shortest paths.)
All oracles in the above list could only answer connectivity or

approximate distance queries. The only exceptions are the distance

oracles in (4), but these oracles have query time polynomial in n and

W . Ideally, we want an oracle with query time poly(logn, logW).
Thus the following question is open:

Problem 1. Fix a large constant d . Is there a d-failure oracle for
handling exact distance queries in undirected graphs with query

time poly(logn, logW) and a reasonable size bound?

In fact, before our work, the best d-failure exact distance oracle
with a reasonable query time requires size Ω̃(nd) [13], only slightly

better than the trivialO (nd+2) bound.3 The trivial bound is obtained
as follows: for every set of failuresD with size at mostd , we store the
all-pairs shortest path matrix for the graph G − D, which requires(n
d

)
· O (n2) ≤ O (nd+2) space complexity. Duan and Pettie [13]

observed that their dual-failure oracle helps shave a factor of about

n2 from this trivial bound: for every set of failures D with size at

most d − 2, we build a dual-failure exact distance oracle for G − D
which occupies size Õ (n2), and the total space complexity becomes(n
d−2

)
· Õ (n2) ≤ Õ (nd). However, even the answer to the following

problem was unknown:

Problem 2. Is there a 100-failure exact distance oracle for undi-

rected graphs with query time poly(logn, logW) and sizeO (n99.9)?

1.2 Our Results

Our main result is an exact distance oracle under d edge failures,

for every constant d ≥ 1.

3
For simplicity, this particular paragraph only considers vertex failures. The naïve

bound for edge failures is O (md−2n2) which is even worse than the naïve bound for

vertex failures.

Theorem 1.1. Let G = (V ,E) be an undirected weighted graph.

For every constant d ≥ 1, there is an oracle that handles exact distance

queries inG underd edge failures. The oracle has sizeO (n4) and query
time O (1).

Our oracle is the first one that maintains exact distances under

multiple (say 100) failures while having reasonable size and query

time bounds (O (n4) andO (1) respectively). In particular, we answer
Problems 1 and 2 affirmatively. Unfortunately, we do not know how

to preprocess our oracle in less than nΩ(d)
time. We leave it as an

open problem to improve the preprocessing time of our oracle.

Our oracle also extends to super-constant d . In this case, our

oracle has query time dO (d)
and size O (dn4). We note that an ex-

ponential dependence on d also occurs in the best data structures

for maintaining (1 + ϵ)-approximate distances [7, 12] (albeit in the

space complexity bounds instead of the query time bounds).

1.3 Notation

Let G = (V ,E,w) be an undirected graph with edge weights w :

E → R. WhenD ⊆ E, we useG−D to denote the graphG with edges

inD removed. For a graphH and two verticesu,v ∈ V (H), πH (u,v)
denotes the shortest path from u to v in H , and |πH (u,v) | denotes
the length of this shortest path. WhenH = G is the input graph, we

may omit the subscript H , i.e., π (u,v) = πG (u,v). Although this

paper only considers undirected graphs, the paths will be directed,

i.e., πH (u,v) is a path from u to v and u (or v) is the first (or last)
vertex on it.

We assume that the shortest paths in G are unique. If not, we

could randomly perturb the edge weights ofG by a small value; the

correctness follows from the isolation lemma [20, 24]. Alternatively,

we could use a method described in [10, Section 3.4] to obtain

unique shortest paths. We omit the details here.

We will also consider shortest path trees (in the input graphG).
For vertices v,v ′ ∈ V ,Tv denotes the shortest path tree rooted at v ,
and Tv (v

′) denotes the subtree of Tv rooted at v ′ (which contains

all verticesw such that v ′ is on the path π (v,w)).

2 AN OVERVIEW OF OUR ORACLE

In this section, we present a high-level overview of our exact dis-

tance oracle.

A recursive approach. Our starting point is the following struc-

tural theorem for the shortest paths in an undirected graph with d
edge failures [1, Theorem 2]. (See also Theorem 3.1.)

Theorem 2.1. Let G be an undirected graph, D be a set of d edge

failures. Any shortest path in G − D can be decomposed into the

concatenation of at most d + 1 shortest paths inG interleaved with at

most d edges.

Given a query (u,v,D), wewant to find Pans = πG−D (u,v). From
Theorem 2.1, Pans is divided intod+1 segments where each segment

is a shortest path inG . Our strategy is to find an arbitrary vertexw ∈
Pans which is neither on the first nor on the last segment, recursively

find πG−D (u,w) and πG−D (w,v), and concatenate these two paths.
If Pans can be decomposed into k segments andw is neither on the

first nor on the last segment, then both πG−D (u,w) and πG−D (w,v)
can be decomposed into at most d − 1 segments. It follows that the

recursion depth is at most d + 1.

1094

Maintaining Exact Distances under Multiple Edge Failures STOC ’22, June 20–24, 2022, Rome, Italy

We do not know how to find a single vertexw , but we are able to

find a “hitting set” consisting of poly(d) many verticesw such that

at least onew sits on Pans and is neither on the first nor on the last

segment of Pans. Therefore, the query time is poly(d)d = dO (d)
.

Finding a hitting set. Now, it remains to design a procedure for

finding such a hitting set. It suffices to find a set H ⊆ V such that:

(I) there is a vertexw ∈ H that lies on Pans;
(II) |H | should be small; and

(III) every vertexw ∈ H that lies on Pans does not lie on the first

or the last segment of Pans.

As a warm-up, we present a (very simple!) hitting set satisfying

(I) and (II). Of course it is (III) that enables us to upper bound the

recursion depth; we will address (III) later.

For every u,v ∈ V , we simply let D[u,v] be the set of d edge

failures whose removal maximises the distance from u tov . Note that
D[u,v] does not depend on D and therefore can be preprocessed in

advance. Since |D[u,v]| ≤ d , (II) is true. Now we claim that either

D[u,v] hits Pans, or πG−D[u,v] (u,v) and Pans are exactly the same

path. Indeed, if D[u,v] does not hit Pans, then Pans is no shorter

than the path πG−D[u,v] (u,v), which means D should be as good

as the best candidate for D[u,v]! And πG−D[u,v] (u,v) and Pans
should coincide in this case.

4

We regard the latter case (i.e. πG−D[u,v] (u,v) = Pans) as “trivial”
since it can be handled in preprocessing. Therefore, in this informal

overview, we will ignore this case and simply say that D[u,v] is a
hitting set of Pans.

Unfortunately, we are not aware of any fast algorithm for com-

puting (any reasonable approximation of) D[u,v], therefore we
are currently unable to obtain a fast preprocessing algorithm for

our data structure.

Achieving (III) via cleanness. Suppose we have found a hitting

set H satisfying (I) and (II) but not (III). Without loss of generality,

suppose that there is a vertexw ∈ H on the first segment of Pans.
This implies that π (u,w) is intact from failures (as it lies entirely

inside the first segment of Pans). Our first insight is that if w is

“u-clean”, then we could find another hitting set satisfying (I) and

(II) and avoiding the first segment of Pans.
The definition of cleanness is as follows: We sayw is u-clean if

both π (u,w) and Tu (w) are intact from failures.
5
(Recall that Tu is

the shortest path tree rooted at u, and Tu (w) is the subtree of Tu
with rootw .) Now supposew is u-clean and Pans goes throughw .

Let D⋆ be the maximiser of |πG−D′ (u,v) | such that

both π (u,w) and Tu (w) are intact from D ′. (σ)

Again,D⋆ depends onu,v,w but not onD, so it can be preprocessed
in advance. Asw is u-clean, D also satisfies (σ). Therefore D⋆ hits

Pans by the above reasoning.

Now consider a vertex w ′ incident to some edge in D⋆ and

suppose that Pans also goes through w ′. If π (u,w ′) is intact from
D, then either π (u,w ′) does not go through w (in this case Pans
does not go through w either) or w ′ is in Tu (w) (violating (σ)), a
contradiction. Therefore we only need to consider verticesw ′ ∈ D⋆

4
Note that D[u, v] is a set of edges. To find a hitting set consisting of vertices, simply

take both endpoints of every edge in D[u, v]. The hitting set still have size O (d).
5
To be more precise, “Tu (w) is intact from failures” means that every vertex in Tu (w)
is not incident to any failed edge.

such that π (u,w ′) is not intact from D; such verticesw ′ can never

hit the first segment of Pans.
One can similarly define the notion of v-cleanness (which we

omit here). The above discussion generalises to the following state-

ment: If we know two vertices u ′ and v ′ such that u ′ is u-clean,
v ′ is v-clean, and Pans goes through both u ′ and v ′, then we can

find a hitting set satisfying all three conditions above. Note that we

need to store a set D⋆ for each possible (u,v,u ′,v ′), therefore our
oracle requires O (dn4) space complexity.

Finding a clean vertex. Now, the problem reduces to finding

u-clean and v-clean vertices that hit Pans. For simplicity, in this

overview, we consider the scenario where we already know a v-
clean vertex v ′ that is on Pans, and want to find a u-clean vertex u ′

that also hits Pans. We believe this scenario already captures our

core technical ideas.

Consider the following naïve attempt. Suppose we have a vertex

u ′ but Tu (u
′) contains some failures. Our goal is to “push” u ′ to a

deeper vertex in Tu so that eventually Tu (u
′) will be intact from D.

Let D⋆ be the maximiser of |πG−D′ (u,v) | such that

all of π (v ′,v), Tv (v
′), and π (u,u ′) are intact from D ′. (τnaïve)

Consider any vertexw incident to some edge inD⋆. It turns out

that ifw is not a strict descendant of u ′ (i.e.w < Tu (u
′) orw = u ′)

then we can deal withw easily. Ifw is a strict descendant ofu ′, then
we assign u ′ ← w (i.e. push u ′ down to w) and repeat. We have

made some progress as we pushed u ′ to w and Tu (w) is a subset
Tu (u

′). But after how many steps wouldTu (w) become intact from

D? It seems that we might need Ω(n) steps before we push u ′ down
to some vertexw which is u-clean.

Our second insight is the following modification to (τnaïve). Let
uLCA be the least common ancestor of all failures inTu (u

′), i.e., the
lowest vertex in Tu which is the ancestor of (both endpoints of)

every failure in Tu (u
′). If D is intact from π (u,u ′), then D should

also be intact from π (u,uLCA). Now, let D⋆ be the maximiser of

|πG−D′ (u,v) | such that

all of π (v ′,v), Tv (v
′), and π (u,uLCA) are intact from D ′. (τ)

Note that D still satisfies (τ) which means D⋆ is still a valid

hitting set. We can push u ′ down to some vertex w which is a

strict descendant of uLCA. Now comes the crucial observation: the

number of failures in Tu (w) is strictly smaller than the number

of failures in Tu (u
′). Since there are at most d failures in Tu (u

′),
it takes at most d steps of “pushing u ′ down” before u ′ becomes

u-clean (i.e. Tu (u
′) becomes intact from D).

We remark that in the formal proof in Section 4.2.2 there is no

implementation of “pushing u ′ down”. Instead, we enumerate the

portion of Tu where the last step of pushing happens (i.e., u ′ “be-
comes” u-clean). Nevertheless, the two formulations are equivalent,

and we find the above description more intuitive.

3 AN EXACT DISTANCE ORACLE FOR EDGE

FAILURES

In this section, we describe the framework for our exact distance

oracle that handles d edge failures and prove Theorem 1.1.

As mentioned in Section 2, we use the structural theorem of

shortest paths under edge failures in [1]. We say that a path is

1095

STOC ’22, June 20–24, 2022, Rome, Italy Ran Duan and Hanlin Ren

a k-decomposable path if it is the concatenation of at most k + 1

shortest paths in G, interleaved with at most k edges. (Here two

adjacent original shortest paths in G can be directed concatenated

or linked by an edge.) We have:

Theorem 3.1 (Theorem 2 of [1]). For any set D of d edge failures

in the graph and any vertices u,v ∈ V , the path πG−D (u,v) is a
d-decomposable path.

For a set D of d edge failures and vertices u,v ∈ V , we define
rankG−D (u,v) as the smallest number i such that πG−D (u,v) is an
i-decomposable path. For example, rankG−D (u,v) = 0 if and only

if the shortest u-v path contains no failures. Thus, the conclusion

of Theorem 3.1 can be interpreted as “rankG−D (u,v) ≤ |D |.”
Our query algorithm relies on a subroutine HitSet(u,v,D),

whose details will be given in Section 4. Given u,v ∈ V and a

set of d edge failures D, the output of HitSet(u,v,D) consists of
an upper bound L of |πG−D (u,v) | and a set of vertices H ⊆ V , such

that the following holds.

(a) Either |πG−D (u,v) | = L, or πG−D (u,v) goes through some

vertex in H .

(b) |H | ≤ O (d6).
(c) For every vertex w ∈ H , both π (u,w) and π (w,v) contain

failures in D.

Note that Item (c) ensures the following property:

Claim 3.2. Let u,v ∈ V , D be a set of d edge failures, and r =
rankG−D (u,v). Supposew is a vertex inH that is also on πG−D (u,v).
Then rankG−D (u,w) ≤ r − 1 and rankG−D (w,v) ≤ r − 1.

u w v

Figure 1: An example of Claim 3.2. Here rankG−D (u,v) = 4

and πG−D (u,v) is decomposed into 5 shortest paths in G (de-

picted as bold segments) interleaved with 3 (≤ rankG−D (u,v))
edges.

Proof. We decompose πG−D (u,v) into r+1 shortest paths inter-
leaved with at most r edges. It is easy to see thatw is neither on the

first shortest path nor on the last shortest path, as otherwise either

π (u,w) or π (w,v) is intact from D, contradicting our assumption

thatw ∈ H .

Sincew is not on the last shortest path, the portion of the decom-

position from u tow includes at most r shortest paths interleaved
with at most r −1 edges, therefore rankG−D (u,w) ≤ r −1. Similarly,

sincew is not on the first shortest path, rankG−D (w,v) ≤ r −1. □

We illustrate the query algorithm in Algorithm 1. Roughly speak-

ing, the idea is to enumerate a hitting vertexw ∈ H and recursively

find πG−D (u,w) and πG−D (w,v).
In Section 4, we will show that an invocation of HitSet(u,v,D)

takes poly(d) time. Therefore, our query algorithm runs inO (d6)d ·

poly(d) ≤ dO (d)
time. The following theorem demonstrates the

correctness of our query algorithm.

Theorem 3.3. Assuming the correctness of the HitSet structure,

the query algorithm is correct.

Algorithm 1 Query Algorithm for the Exact Distance Oracle

1: functionQuery-r(u,v,D, r) ▷We assume that

rankG−D (u,v) ≤ r .
2: if π (u,v) ∩ D = ∅ then return |π (u,v) |
3: if r = 0 then return +∞

4: (L,H) ← HitSet(u,v,D)
5: ans ← L
6: for eachw in H do

7: ans ← min{ans,Query-r(u,w,D, r − 1) +
Query-r(w,v,D, r − 1)}

8: return ans
9: functionQuery(u,v,D)
10: returnQuery-r(u,v,D, |D |)

Proof. We show that for every u,v,D, r , if rankG−D (u,v) ≤ r ,
thenQuery-r(u,v,D, r) = |πG−D (u,v) |. The theorem follows from

Theorem 3.1.

Actually, it is easy to see thatQuery-r(u,v,D, r) ≥ |πG−D (u,v) |
as we could always construct a u-v path in G − D with length

Query-r(u,v,D, r). Therefore it suffices to show that

Query-r(u,v,D, r) ≤ |πG−D (u,v) |.

We use induction on r . Our assertion is clearly true for r = 0. Let

r ≥ 1 and (L,H) = HitSet(u,v,D). If |πG−D (u,v) | = L thenwe are
done, asQuery-r(u,v,D, r) ≤ L in this case. Otherwise by Item (a)

in the correctness of HitSet, πG−D (u,v) hits some vertexw ∈ H .

By Claim 3.2, rankG−D (u,w) ≤ r − 1 and rankG−D (w,v) ≤ r − 1.
By induction, we have that

Query-r(u,w,D, r − 1) = |πG−D (u,w) |

and Query-r(w,v,D, r − 1) = |πG−D (w,v) |.

It follows that

Query-r(u,v,D, r) ≤ |πG−D (u,w) |+|πG−D (w,v) | = |πG−D (u,v) |.
□

4 THE HitSet STRUCTURE

In this section, we describe the implementation of HitSet. Recall

that given u,v ∈ V and a set of d edge failures D, it should output

an upper bound L of |πG−D (u,v) | and a set of vertices H ⊆ V , such

that the following items hold.

(a) Either |πG−D (u,v) | = L, or πG−D (u,v) goes through some

vertex in H .

(b) |H | ≤ O (d6).
(c) For every vertex w ∈ H , both π (u,w) and π (w,v) contain

failures in D.

Warm-up. Suppose that we drop Item (c) above, then it is easy to

present a data structure for HitSet with space complexity O (dn2).
For every two vertices u,v ∈ V , letD[u,v] be the set of d edge fail-

ures that maximises |πG−D[u,v] (u,v) |. The data structure simply

stores D[u,v] and ℓmax (u,v) = |πG−D[u,v] (u,v) |. In each query

HitSet(u,v,D), for every edge e ∈ D[u,v], we arbitrarily pick an

endpoint of e and add it into H . Then we return L = ℓmax (u,v) and
H . Item (b) holds since |D[u,v]| ≤ d . Therefore it suffices to prove

that Item (a) holds:

1096

Maintaining Exact Distances under Multiple Edge Failures STOC ’22, June 20–24, 2022, Rome, Italy

Claim 4.1. For every set ofd edge failuresD, either |πG−D (u,v) | =
ℓmax (u,v), or πG−D (u,v) goes through some vertex in H .

Proof. Actually, we show that either |πG−D (u,v) | = ℓmax (u,v)
or πG−D (u,v) goes through some edge in D[u,v]. Suppose that
πG−D (u,v) does not intersectD[u,v]. That is, πG−D (u,v) is a valid
path from u to v that does not go through D[u,v]. It follows that

|πG−D (u,v) | ≥ |πG−D[u,v] (u,v) | = ℓmax (u,v).

However, we also have |πG−D[u,v] (u,v) | ≥ |πG−D (u,v) | by the

definition of D[u,v]. Therefore

|πG−D (u,v) | = ℓmax (u,v). □

The warm-up case demonstrates that it is easy to satisfy Items

(a) and (b). All technical complications introduced in the rest of this

section deals with Item (c).

4.1 The Data Structure

For every four vertices u,v,u ′,v ′ ∈ V and two Boolean variables

b1,b2 ∈ {0, 1}, our data structure contains a size-d edge set

D[u,v,u ′,v ′,b1,b2],

corresponding to the scenario where we want to find πG−D (u,v)
(where D is a set of failures given in the query), and we know two

intermediate vertices u ′,v ′ satisfying the following properties:

(i) The paths π (u,u ′) and π (v ′,v) are intact from D.
(ii) We assume that πG−D (u,v) goes through both u ′ and v ′; in

other words, π (u,u ′) is a prefix of πG−D (u,v), and π (v ′,v) is
a suffix of πG−D (u,v).

(An intuitive interpretation of u ′ and v ′ is as follows. We are

trying to find a hitting vertexw such that both π (u,w) and π (w,v)
intersect D, so we can add w into our hitting set H ; u ′ and v ′

represent our failed attempts, i.e., hitting verticesw where π (u,w)
or π (w,v) did not happen to intersect D.)

The meaning of Boolean variables b1 and b2 are as follows. If
b1 = 1, then we require thatTu (u

′) ∩V (D) = ∅, whereV (D) is the
set of vertices incident to some failure in D. (Recall that Tu is the

shortest path tree rooted atu, andTu (u
′) is the subtree ofTu rooted

at u ′.) If b1 = 0, we do not impose any condition on Tu (u
′) ∩V (D).

Similarly, if b2 = 1 then Tv (v
′) ∩V (D) = ∅, while if b2 = 0 then

we do not impose any condition on Tv (v
′) ∩V (D).

Naturally, we defineD[u,v,u ′,v ′,b1,b2] as the set D
′
that max-

imises |πG−D′ (u,v) |, subject to Item (i) and the conditions imposed

by b1 and b2. For example, D[u,v,u ′,v ′, 0, 1] is the maximiser of

|πG−D′ (u,v) | among all size-d edge sets D ′ where (See also Fig. 2)

π (u,u ′) ∩ D ′ = ∅,π (v ′,v) ∩ D ′ = ∅, and Tv (v
′) ∩V (D ′) = ∅.

u u′ v′ v
Tv(v

′)

Figure 2: An illustration of D[u,v,u ′,v ′, 0, 1]. The red bold

edges are a possible set of edge failures D ′ that does not in-
tersect π (u,u ′), π (v ′,v), and Tv (v

′).

Our data structure occupies O (dn4) space. It is easy to see that

our data structure can be preprocessed in timemd+O (1)
. We leave

it as an open problem to improve this preprocessing time.

4.2 The HitSet Algorithm

In what follows, we say that a vertexw ∈ V is u-clean if π (u,w) ∩
D = ∅ andTu (w)∩V (D) = ∅. Similarly, we say that a vertexw ∈ V
is v-clean if π (w,v) ∩ D = ∅ and Tv (w) ∩V (D) = ∅.

We present HitSet from special cases to the most general case.

• In Case I, we assume that we know two “helper” vertices

u ′,v ′ such that u ′ is u-clean, v ′ is v-clean, and πG−D (u,v)
goes through bothu ′ andv ′. This case is similar to the warm-

up case and is essentially one invocation of the data structure

D[·].

• In Case II, we assume that we know one “helper” vertex v ′

(such thatv ′ is v-clean and lies on πG−D (u,v)), but we need
to find the other “helper” vertex (u ′). We will find a small

number of candidate vertices u ′, thus reducing this case to
Case I. Most of our new techniques will appear in this case.

• Case III is the most general case where we do not have

any “helper” vertices and need to find them on our own.

Nevertheless, using techniques similar to Case II, we can still

find a small number of such “helper” vertices and reduce this

case to Case II.

4.2.1 Case I. In this case, we assume that we already know vertices

u ′,v ′ ∈ V such that u ′ is u-clean, v ′ is v-clean, and πG−D (u,v)
goes through both u ′ and v ′. (See Fig. 3.)

u u′ v′ v
Tv(v

′)Tu(u
′)

Figure 3: An illustration of Case I. Here, the red bold edges

denote D. As π (u,u ′) ∩ D = ∅ and Tu (u
′) ∩ V (D) = ∅, u ′

is u-clean. Similarly, v ′ is v-clean. The dashed path denotes

πG−D (u,v), which goes through both u ′ and v ′.

This case can be solved similarly as in the warm-up case. Let

D⋆ = D[u,v,u ′,v ′, 1, 1], thenD⋆ is themaximiser of |πG−D′ (u,v) |
over all size-d edge sets D ′ such that

π (u,u ′),π (v ′,v),Tu (u
′), and Tv (v

′) are intact from D ′. (α)

Let L = |πG−D⋆
(u,v) | and

H = {w ∈ V (D⋆) : both π (u,w) and π (w,v) contain failures in D}.

It is easy to see that Items (b) and (c) hold, so it suffices to show

Item (a), i.e.:

Claim 4.2. Either |πG−D (u,v) | = L or πG−D (u,v) goes through
some vertex in H .

Proof. We first show that if πG−D (u,v) goes through some

edge in D⋆, then it also goes through some vertex in H . Suppose

that πG−D (u,v) goes through some edge e = (x ,y) ∈ D⋆, we claim

that π (u,x) is not intact from D. Since πG−D (u,v) goes through

1097

STOC ’22, June 20–24, 2022, Rome, Italy Ran Duan and Hanlin Ren

u ′ and π (u,u ′) is intact from D, π (u,u ′) coincides with the path

from u to u ′ in Tu . Suppose π (u,x) is also intact from D, then x
has to be either an ancestor or a descendant of u ′ in Tu . Since
Tu (u

′) ∩ V (D⋆) = ∅, x cannot be a descendant of u ′. Therefore,
x is a strict ancestor of u ′. However, as e is an incident edge of

x in the path πG−D (u,v), it has to be on the path π (u,u ′), which
contradicts the fact that π (u,u ′) ∩ D⋆ = ∅. (See Fig. 4.)

u u′xy

Figure 4: Illustration of Claim 4.2.

Therefore, π (u,x) cannot be intact from D. Similarly, π (x ,v)
cannot be intact from D either. It follows that x ∈ H .

Now the argument is essentially the same as Claim 4.1. Suppose

that πG−D (u,v) does not go through any edge in D⋆, then

|πG−D (u,v) | ≥ |πG−D⋆
(u,v) | = L.

However,D⋆ is the maximiser of |πG−D′ (u,v) | over all size-d edge

sets D ′ satisfying the condition (α). Since u ′ is u-clean and v ′ is
v-clean, D also satisfies (α), thus

|πG−D (u,v) | = |πG−D⋆
(u,v) | = L. □

4.2.2 Case II. In this case, we assume that we know a vertexv ′ ∈ V
such that v ′ is v-clean, and πG−D (u,v) goes through v ′. The goal
of this case is to find a small number of candidates u ′, such that

every u ′ is u-clean and πG−D (u,v) goes through one of these u ′.
In this way, we can reduce this case to Case I.

First, we add a new vertex uroot, add an edge (uroot,u) to con-

nect it to Tu , and make uroot the root of Tu . This step is solely for

convenience.

Denote Tinduced the induced subtree of V (D) ∪ {uroot} over Tu ,
i.e. an edge is in Tinduced if it is on some path between two vertices

in V (D) ∪ {uroot}. We say a vertex v is a key vertex if either v ∈
V (D) ∪ {uroot} or the degree of v in Tinduced is at least 3. Let Key
be the set of key vertices, then |Key| ≤ O (d). By contracting every

non-key vertex in Tinduced (note that these vertices have degree

exactly 2), we obtain a smaller tree Tkey over Key where each edge

(x ,y) in Tkey corresponds to a path from x to y in Tinduced; here x
and y are key vertices and all the intermediate vertices on the path

have degree 2.

Let e∆ be the last edge on πG−D (u,v) such that the portion

from u to e∆ in πG−D (u,v) is entirely in Tinduced. Note that e∆
always exists since we added the auxiliary uroot. (In particular, if

πG−D (u,v) does not intersect Tinduced at all, we assume e∆ is the

edge between uroot and u.)
We enumerate an edge (p, c) ∈ E (Tkey) with the hope that e∆ is

on the path from p to c inTinduced. Note that there areO (d) possible
choices of (p, c). Let D⋆ = D[u,v, c,v ′, 0, 1], then D⋆ maximises

|πG−D⋆
(u,v) | over all size-d sets of edge failures such that

D⋆ ∩ π (u, c) = ∅,D⋆ ∩ π (v ′,v) = ∅, and V (D⋆) ∩Tv (v
′) = ∅.

(β)
IfD∩π (u, c) , ∅, then we discard the edge (p, c). This is because

the following claim shows that e∆ cannot appear on the path from

p to c:

uroot u

⇓

uroot u

e∆

p

q c

p

c

Figure 5: Top: a possible shortest path tree Tu . Hatched ver-

tices are vertices inV (D), and bold edges are edges inTinduced.
The dash curve corresponds to πG−D (u,v), and e∆ is the edge

between p and q. Bottom: the corresponding Tkey. Note that

(p, c) is the edge in Tkey such that e∆ is on the path from p to

c in Tinduced.

Claim 4.3. If D ∩ π (u, c) , ∅, then e∆ cannot appear on the path

from p to c .

u cpe∆ vfirst

πG−D(u, v)

Figure 6: Illustration of Claim 4.3.

Proof. Let vfirst be the first vertex on π (u, c) which is incident

to a failed edge in D on π (u, c). Since πG−D (u,v) avoids the failed
edge on π (u, c), e∆ has to be before vfirst. On the other hand, since

vfirst ∈ V (D) ⊆ Key, vfirst does not lie after p (as otherwise there

will be some key vertices between p and c). This means that e∆ is

strictly before p on the path π (u, c). □

If D ∩ π (u, c) = ∅ then D also satisfies (β). It is now valid to

update

L ← min{L, |πG−D⋆
(u,v) |}.

By the same reasoning as Claim 4.1, if |πG−D (u,v) | < |πG−D⋆
(u,v) |,

then πG−D (u,v) should go through some edge in D⋆.

Now we construct a set Helper of candidate “helper” vertices

u ′ by examining every edge e ∈ D⋆ \ D one by one. Suppose e is
an edge between x and y:

(Case i) If π (x ,v) ∩ D = ∅ or π (y,v) ∩ D = ∅, we discard e .
The reason is that πG−D (u,v) cannot go through e . Oth-
erwise, suppose w.l.o.g. that π (x ,v) ∩ D = ∅. Since
πG−D (u,v) goes through e , in particular it also goes

throughx . It follows thatπ (x ,v) is a suffix ofπG−D (u,v).

1098

Maintaining Exact Distances under Multiple Edge Failures STOC ’22, June 20–24, 2022, Rome, Italy

u v′ v

p c x

y

e

Figure 7: Case II.i.

u

x

y

e

Figure 8: Case II.iv.

u p c

x
y Tu(y)

e

e∆

Figure 9: Case II.vi.

Note that π (v ′,v) is also a suffix of πG−D (u,v). There-
fore x is either an ancestor or a descendant of v ′ in
Tv .
• If x is a descendant of v ′ in Tv , then x is both in

V (D⋆) and Tv (v
′), violating (β).

• If x is an ancestor of v ′ in Tv , then e has to be on the

path π (v ′,v) in order for πG−D (u,v) to go through

e , but this also violates (β).
(Case ii) Otherwise, if π (u,x) ∩ D , ∅, we add x into H .

Note that in this case, both π (u,x) and π (x ,v) intersect
D, therefore it is safe to add x into H .

(Case iii) Otherwise, if π (u,y) ∩ D , ∅, we add y into H .

This case is similar as (Case ii).

(Case iv) Otherwise, if e is not a tree edge in Tu , we discard e .
This is because in this case, both π (u,x) and π (u,y)
are intact from D, and πG−D (u,v) does not need to

go through e at all. (For example, if πG−D (u,v) goes
through e and x appears just before y, then πG−D (u,v)
should use the path π (u,y) instead of the concatenation
of π (u,x) and e .)

(Case v) Otherwise, e is a tree edge inTu . W.l.o.g. we assume that

x is the parent of y in Tu . If Tu (y) ∩V (D) = ∅, we add
y into Helper.

Note that y is u-clean in this case, so it is safe to add it

into Helper.

(Case vi) Otherwise, we discard e .
We need to prove that it is valid to discard e in this

case, i.e. πG−D (u,v) cannot go through e . Note that

since Tu (y) ∩ V (D) , ∅, y lies on Tinduced (i.e. has

non-zero degree in Tinduced). Since π (u,y) ∩ D = ∅,
if πG−D (u,v) goes through y, then π (u,y) must be a

prefix of πG−D (u,v). It follows that e∆ is either equal

to e or in the subtree Tu (y). Since (β) implies that e is

not on the path π (u, c), e∆ cannot be on the path π (p, c)
either, a contradiction.

Summary. In Case II, we first construct the trees Tinduced and

Tkey inO (d) time. Then we enumerate an edge (p, c) ∈ E (Tkey). Let
D⋆ = D[u,v, c,v ′, 0, 1], then for each edge e ∈ D⋆ \ D, according
to the above case analysis, we either discard e , add a vertex into

H , or add a vertex into Helper. Note that for every u ′ ∈ Helper,
(D,u ′,v ′) satisfies (α).

After enumerating all edges in E (Tkey), we have that |H | ≤ O (d2)

and |Helper| ≤ O (d2). Then for each u ′ ∈ Helper, we invoke

the algorithm for Case I where we assume that πG−D (u,v) goes
through both u ′ and v ′. Each invocation returns a hitting set of

size O (d) and an upper bound L of |πG−D (u,v) |. Finally, we let L
be the smallest upper bound found during the entire execution of

the algorithm, and H be the union of all hitting sets (which has size

O (d3)). It is easy to see that Case II takes O (d3) time.

4.2.3 Case III. Case III is the most general case: We only know the

query (u,v,D) but no “helper” vertices u ′ or v ′. The goal is to find

a few intermediate verticesw which are either u-clean or v-clean,
such that πG−D (u,v) goes through one of the verticesw .

We construct the trees Tuinduced, T
u
key, T

v
induced, and T

v
key. Let e∆

be the last edge on πG−D (u,v) such that the portion from u to e∆
on πG−D (u,v) is entirely in Tuinduced, and e∇ be the first edge such

that the portion from e∇ to v on πG−D (u,v) is entirely in Tvinduced.

We enumerate edges (pu , cu) ∈ E (Tukey) and (cv ,pv) ∈ E (Tvkey)

such that e∆ is on the path from pu to cu in Tuinduced, and e∇ is

on the path from cv to pv in Tvinduced. Note that there are O (d2)

possible choices of (pu , cu) and (pv , cv).

uroot u vrootv

e∆

e∇

Figure 10: The trees Tuinduced (left) and Tvinduced (right). Again,

the hatched vertices are vertices in V (D), and the dashed

curve corresponds to πG−D (u,v). Note that in this particular

figure, e∆ coincides with the edge between uroot and u.

uroot

u

vrootv (= pv)cv
(= pu)

(= cu)

Figure 11: The trees Tukey (left) and T
v
key (right).

Now let

D⋆ = D[u,v, cu , cv , 0, 0],

1099

STOC ’22, June 20–24, 2022, Rome, Italy Ran Duan and Hanlin Ren

u pu cu

x
y Tu(y)

e

e∆

Figure 12: Case III.iii.b.

then D⋆ maximises |πG−D⋆
(u,v) | over all size-d set of edge fail-

ures such that

D⋆ ∩ π (u, cu) = ∅, and D⋆ ∩ π (cv ,v) = ∅. (γ)

By Claim 4.3, if D ∩ π (u, cu) , ∅, then e∆ cannot appear in the

path from pu to cu . Similarly, if D ∩ π (cv ,v) , ∅, then e∇ cannot

appear in the path from cv to pv . Therefore we may assume D
satisfies Eq. (γ), as otherwise we can discard (pu , cv) and (pv , cv).
This means that it is safe to update

L ← min{L, |πG−D⋆
(u,v) |}.

If |πG−D (u,v) | < |πG−D⋆
(u,v) |, then πG−D (u,v) should go

through some edge in D⋆ \ D. Now we compute a hitting set H
and a set Helper of “helper” vertices by inspecting every edge in

D⋆ \ D. In particular, we enumerate this edge e = (x ,y) ∈ D⋆ \ D,
and assume that x appears before y on the path πG−D (u,v). (That
is, every edge (x ,y) is considered twice, once for (x ,y) and once

for (y,x).)

(Case i) Suppose that π (u,x) ∩ D = ∅ and π (y,v) ∩ D = ∅.
We can immediately updateL ← min{L, |π (u,x) |+w (e)+
|π (y,v) |}. (Herew (e) is the weight of the edge e .)

(Case ii) Suppose that π (u,x) ∩ D , ∅ and π (y,v) ∩ D , ∅.
If π (x ,v) ∩D = ∅, then y cannot appear on πG−D (x ,v),
which means the edge e is invalid. Otherwise we can

safely add x into H .

(Case iii) Suppose that π (u,x) ∩ D = ∅ but π (y,v) ∩ D , ∅.
(Case iii.a) Suppose that (x ,y) is not a tree edge in Tu .

If π (u,y) ∩ D , ∅, then we can safely add

y into H . Otherwise, a similar argument as

(Case iv) in Section 4.2.2 shows that we can

discard e .
(Case iii.b) Suppose that (x ,y) is a tree edge inTu . Since

x appears beforey on πG−D (u,v), x has to be

the parent of y in Tu (otherwise we discard

(x ,y)). If Tu (y) ∩ V (D) = ∅, we add y into

Helper; otherwise we discard y.
It is easy to see that if we add y into Helper,

then y is u-clean. Now we need to show that

whenever we discard y, πG−D (u,v) cannot
go through the edge (x ,y) (in the order of

first x and then y). This is essentially the

same as (Case vi) in Section 4.2.2. Note that

since Tu (y) ∩ V (D) , ∅, y lies on the tree

Tuinduced. Since π (u,y)∩D = ∅, if πG−D (u,v)
goes through y, then π (u,y) must be a pre-

fix of πG−D (u,v). It follows that e∆ is either

equal to e or in the subtreeTu (y). By (γ), e is

not on the path π (u, cu), therefore e∆ cannot

be on the path π (pu , cu) either, a contradic-
tion.

(Case iv) Suppose that π (u,x) ∩ D , ∅ but π (y,v) ∩ D = ∅.
This case is symmetric to (Case iii), so we only provide

a sketch. If (x ,y) is not a tree edge in Tv , then we add

x into H if π (x ,v) ∩ D , ∅ and discard e otherwise. If
(x ,y) is a tree edge inTv , then (assuming y is the parent

of x in Tv) we add x into Helper if Tv (x) ∩ V (D) = ∅
and discard e otherwise.

Summary. In Case III, we first construct Tuinduced, T
v
induced, T

u
key,

and Tvkey in Õ (d) time. Then we enumerate an edge (pu , cu) ∈ Tukey
and an edge (pv , cv) ∈ Tvkey. Let D⋆ = D[u,v, cu , cv , 0, 0], then

for each edge e ∈ D⋆ \ D and each of its two possible orientations,

according to the above case analysis, we either discard e , add a

vertex into H , or add a vertex into Helper.

After this procedure, we have that |H | ≤ O (d3) and |Helper| ≤
O (d3). In this way, we can reduce Case III toO (d3) instances of Case
II. Note that an instance of Case II runs in O (d3) time, therefore an

invocation of Case III runs in O (d6) time.

5 CONCLUSIONS AND OPEN PROBLEMS

In this paper, we presented the first exact distance oracle that toler-

ates d edge failures and has reasonable size and query time bounds.

Our oracle has size O (dn4) and query time dO (d)
. However, our

oracle still has some drawbacks:

(1) We think the biggest drawback of our oracle is its prepro-

cessing time. Is there a faster preprocessing algorithm for

our oracle? In particular, can we preprocess it in O (nc) time

for some constant c independent of d?
(2) Can we maintain exact distances under d vertex failures?

Our oracle relies heavily on Theorem 3.1 which only works

for edge failures.
6

(3) Can we improve the size of our oracle to (say) Õ (dn2)? Cur-
rently our oracle is trivial when d = 3 or d = 4 and only

non-trivial when d > 4. Such an improvement would imply

non-trivial solutions for all d .

ACKNOWLEDGMENTS

We thank Yong Gu and Tianyi Zhang for helpful discussions during

the initial stage of this research. We are grateful to Yaowei Long and

Lijie Chen for helpful comments on a draft version of this paper. We

also thank the anonymous STOC reviewers for helpful comments.

REFERENCES

[1] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt.

2002. Restoration by path concatenation: fast recovery of MPLS paths. Distributed

Computing 15, 4 (2002), 273–283. https://doi.org/10.1007/s00446-002-0080-6

[2] Josh Alman and Virginia VassilevskaWilliams. 2021. A Refined Laser Method and

Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021. 522–539.

https://doi.org/10.1137/1.9781611976465.32

6
[12, Section 4.1] proved a version of Theorem 3.1 for approximate distances under

vertex failures. As the authors observe in their Footnote 15, a version for exact distances

under vertex failures is unlikely to exist.

1100

https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.1137/1.9781611976465.32

Maintaining Exact Distances under Multiple Edge Failures STOC ’22, June 20–24, 2022, Rome, Italy

[3] Aaron Bernstein and David R. Karger. 2008. Improved distance sensitivity oracles

via random sampling. In Proceedings of the Nineteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January

20-22, 2008. SIAM, 34–43. http://dl.acm.org/citation.cfm?id=1347082.1347087

[4] Aaron Bernstein and David R. Karger. 2009. A nearly optimal oracle for avoiding

failed vertices and edges. In Proceedings of the 41st Annual ACM Symposium on

Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. ACM,

101–110. https://doi.org/10.1145/1536414.1536431

[5] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. 2016. Multiple-

Edge-Fault-Tolerant Approximate Shortest-Path Trees. In 33rd Symposium on The-

oretical Aspects of Computer Science (STACS 2016) (Leibniz International Proceed-

ings in Informatics (LIPIcs), Vol. 47). Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik, Dagstuhl, Germany, 18:1–18:14. https://doi.org/10.4230/LIPIcs.STACS.

2016.18

[6] Shiri Chechik and Sarel Cohen. 2020. Distance sensitivity oracles with subcubic

preprocessing time and fast query time. In Proccedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June

22-26, 2020. ACM, 1375–1388. https://doi.org/10.1145/3357713.3384253

[7] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. 2017. (1 + ϵ)-
Approximate f -Sensitive Distance Oracles. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,

Spain, Hotel Porta Fira, January 16-19. 1479–1496. https://doi.org/10.1137/1.

9781611974782.96

[8] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2012. f -
sensitivity distance oracles and routing schemes. Algorithmica 63, 4 (2012),

861–882. https://doi.org/10.1007/s00453-011-9543-0

[9] Don Coppersmith and Shmuel Winograd. 1990. Matrix Multiplication via Arith-

metic Progressions. J. Symb. Comput. 9, 3 (1990), 251–280. https://doi.org/10.

1016/S0747-7171(08)80013-2

[10] Camil Demetrescu and Giuseppe F. Italiano. 2004. A new approach to dynamic

all pairs shortest paths. J. ACM 51, 6 (2004), 968–992. https://doi.org/10.1145/

1039488.1039492

[11] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ra-

machandran. 2008. Oracles for Distances Avoiding a Failed Node or Link. SIAM

J. Comput. 37, 5 (2008), 1299–1318. https://doi.org/10.1137/S0097539705429847

[12] Ran Duan, Yong Gu, and Hanlin Ren. 2021. Approximate Distance Oracles Subject

to Multiple Vertex Failures. In Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021. SIAM,

2497–2516. https://doi.org/10.1137/1.9781611976465.148

[13] Ran Duan and Seth Pettie. 2009. Dual-failure distance and connectivity oracles. In

Proceedings of the Twentieth Annual ACM-SIAM Symposium onDiscrete Algorithms,

SODA 2009, New York, NY, USA, January 4-6, 2009. SIAM, 506–515. https://doi.

org/10.1137/1.9781611973068.56

[14] Ran Duan and Seth Pettie. 2010. Connectivity Oracles for Failure Prone Graphs.

In Proceedings of the Forty-second ACM Symposium on Theory of Computing

(Cambridge, Massachusetts, USA) (STOC ’10). ACM, New York, NY, USA, 465–474.

https://doi.org/10.1145/1806689.1806754

[15] Ran Duan and Seth Pettie. 2020. Connectivity Oracles for Graphs Subject to

Vertex Failures. SIAM J. Comput. 49, 6 (2020), 1363–1396. https://doi.org/10.1137/

17M1146610

[16] Ran Duan and Tianyi Zhang. 2017. Improved Distance Sensitivity Oracles via Tree

Partitioning. In Algorithms and Data Structures - 15th International Symposium,

WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings (Lecture

Notes in Computer Science, Vol. 10389). Springer, 349–360. https://doi.org/10.1007/

978-3-319-62127-2_30

[17] François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In

International Symposium on Symbolic and Algebraic Computation, ISSAC’14, Kobe,

Japan, July 23-25, 2014. ACM, 296–303. https://doi.org/10.1145/2608628.2608664

[18] Fabrizio Grandoni and Virginia Vassilevska Williams. 2020. Faster Replacement

Paths and Distance Sensitivity Oracles. ACM Trans. Algorithms 16, 1 (2020),

15:1–15:25. https://doi.org/10.1145/3365835

[19] Yong Gu and Hanlin Ren. 2021. Constructing a Distance Sensitivity Oracle in

O (n2.5794M) Time. In 48th International Colloquium on Automata, Languages,

and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Con-

ference) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

76:1–76:20. https://doi.org/10.4230/LIPIcs.ICALP.2021.76

[20] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. 1987. Matching is as

easy as matrix inversion. Comb. 7, 1 (1987), 105–113. https://doi.org/10.1007/

BF02579206

[21] Mihai Pǎtraşcu and Mikkel Thorup. 2007. Planning for Fast Connectivity Updates.

In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),

October 20-23, 2007, Providence, RI, USA, Proceedings. IEEE Computer Society,

263–271. https://doi.org/10.1109/FOCS.2007.59

[22] Hanlin Ren. 2022. Improved distance sensitivity oracles with subcubic prepro-

cessing time. J. Comput. Syst. Sci. 123 (2022), 159–170. https://doi.org/10.1016/j.

jcss.2021.08.005

[23] Andrew James Stothers. 2010. On the complexity of matrix multiplication. Ph. D.

Dissertation. The University of Edinburgh.

[24] NoamTa-Shma. 2015. A simple proof of the Isolation Lemma. Electron. Colloquium

Comput. Complex. (2015). https://eccc.weizmann.ac.il/report/2015/080

[25] Jan van den Brand and Thatchaphol Saranurak. 2019. Sensitive Distance and

Reachability Oracles for Large Batch Updates. In 60th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November

9-12, 2019. IEEE Computer Society, 424–435. https://doi.org/10.1109/FOCS.2019.

00034

[26] Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance

Sensitivity Oracles via Fast Matrix Multiplication. ACM Trans. Algorithms 9, 2,

Article 14 (March 2013), 13 pages. https://doi.org/10.1145/2438645.2438646

[27] Virginia Vassilevska Williams. 2012. Multiplying matrices faster than

Coppersmith-Winograd. In Proceedings of the 44th Symposium on Theory of Com-

puting Conference, STOC 2012, New York, NY, USA,May 19 - 22, 2012. ACM, 887–898.

https://doi.org/10.1145/2213977.2214056

1101

http://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.STACS.2016.18
https://doi.org/10.4230/LIPIcs.STACS.2016.18
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/1.9781611976465.148
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.1145/1806689.1806754
https://doi.org/10.1137/17M1146610
https://doi.org/10.1137/17M1146610
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/3365835
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/BF02579206
https://doi.org/10.1109/FOCS.2007.59
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1016/j.jcss.2021.08.005
https://eccc.weizmann.ac.il/report/2015/080
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2213977.2214056

	Abstract
	1 Introduction
	1.1 Previous Works
	1.2 Our Results
	1.3 Notation

	2 An Overview of Our Oracle
	3 An Exact Distance Oracle for Edge Failures
	4 The HitSet Structure
	4.1 The Data Structure
	4.2 The HitSet Algorithm

	5 Conclusions and Open Problems
	Acknowledgments
	References

