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ABSTRACT
We prove that for all constants a, NQP = NTIME[npolylog(n)] can-
not be (1/2+2− log

a n )-approximated by 2
log

a n
-sizeACC0◦THR cir-

cuits (ACC0
circuits with a bottom layer of THR gates). Previously,

it was even open whether ENP can be (1/2 + 1/
√
n)-approximated

by AC0[⊕] circuits. As a straightforward application, we obtain

an infinitely often (NE ∩ coNE)/1-computable pseudorandom gen-

erator for poly-size ACC0
circuits with seed length 2

log
ε n

, for all

ε > 0.

More generally, we establish a connection showing that, for

a typical circuit class C , non-trivial nondeterministic algorithms

estimating the acceptance probability of a given S-size C circuit

with an additive error 1/S (we call it aCAPP algorithm) imply strong

(1/2 + 1/nω(1)
) average-case lower bounds for nondeterministic

time classes against C circuits. Note that the existence of such

(deterministic) algorithms is much weaker than the widely believed

conjecture PromiseBPP = PromiseP.
We also apply our results to several sub-classes of TC0

cir-

cuits. First, we show that for all k , NP cannot be (1/2 + n−k )-
approximated by nk -size Sum ◦ THR circuits (exact R-linear combi-

nation of threshold gates), improving the corresponding worst-case

result in [Williams, CCC 2018]. Second, we establish strong average-

case lower bounds and build (NE ∩ coNE)/1-computable PRGs for

Sum ◦ PTF circuits, for various regimes of degrees. Third, we show

that non-trivial CAPP algorithms for MAJ ◦ MAJ indeed already

imply worst-case lower bounds for TC0

3
(MAJ ◦MAJ ◦MAJ). Since

exponential lower bounds for MAJ ◦MAJ are already known, this

suggests TC0

3
lower bounds are probably within reach.

Our new results build on a line of recent works, including [Mur-

ray andWilliams, STOC 2018], [Chen andWilliams, CCC 2019], and

[Chen, FOCS 2019]. In particular, it strengthens the corresponding

(1/2 + 1/polylog(n))-inapproximability average-case lower bounds

in [Chen, FOCS 2019].
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The two important technical ingredients are techniques from

Cryptography inNC0
[Applebaum et al., SICOMP 2006], and Proba-

bilistic Checkable Proofs of Proximity withNC1
-computable proofs.
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1 INTRODUCTION
1.1 Background and Motivation
Aholy grail of theoretical computer science is to prove unconditional
circuit lower bounds for explicit functions (such as NP 1 P/poly).
To approach this notoriously hard central open problem, the first

step is to understand the power of various constant depth circuit

classes. Back in the 1980s, there was a lot of significant progress in

proving lower bounds for constant depth circuits. A line of works [2,

22, 28, 53] established exponential lower bounds for AC0
(constant

depth circuits consisting of AND/OR gates of unbounded fan-in),

and [36, 41] proved exponential lower bounds for AC0[p] (AC0

circuits extended with MODp gates) when p is a prime.

However, the progress had stopped there—the power of AC0[m]

for a compositem had been elusive, despite that it had been con-

jectured that they cannot even compute the majority function. In

fact, it had been a notorious long-standing open question in compu-

tational complexity whether NEXP (nondeterministic exponential

time) has polynomial-size ACC0
circuits

1
, until a seminal work by

Williams [49] a few years ago, which proved NEXP does not have

polynomial-size ACC0
circuits, via a new algorithmic approach to

circuit lower bounds [47].

Not only being an exciting new development after a long gap,

the new circuit lower bound is also remarkable as it surpasses all

previous known barriers for proving circuit lower bounds: relativiza-

tion [11], algebrization [1], and natural proofs [37]
2
. Moreover, the

1
It had been stressed several times as one of the most embarrassing open questions in

complexity theory, see [6]. ACC0
denotes the union of AC0[m] for all constantm.

2
We remark that there is no consensus on whether the natural proof barrier applies

to ACC0
: i.e., there is no widely accepted construction of PRFs in ACC0

. A candidate
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underlying method (the algorithmic method) puts many important

classical complexity gems together, ranging from nondeterministic

time hierarchy theorem [38, 54], IP = PSPACE [32, 40], hardness

vs randomness [35], to PCP Theorem [7, 8].

Recent development of the algorithmic approach to circuit lower
bounds. Recently, Murray and Williams [34] significantly advanced

the algorithmic approach by proving that strong enough circuit-

analysis (Gap-UNSAT)3 algorithms can also imply circuit lower

bounds for NQP (nondeterministic quasi-polynomial time) or NP,
instead of the previous gigantic class NEXP. Building on the new

connection and the corresponding algorithms for ACC0 ◦THR [48],

they showed that NQP 1 ACC0 ◦ THR.
Building on [34], [17] recently generalized the connection to

the average-case, by showing that strong enough circuit-analysis

algorithms also imply (1/2 + o(1))-inapproximability average-case

lower bounds for NQP or NP. In particular, it was shown that NQP
cannot be (1/2+ 1/polylog(n))-approximated by ACC0 ◦THR. This
is very interesting for two reasons: first, average-case lower bounds

tend to have other applications such as constructing unconditional

PRGs; second, the proof techniques do not apply the easy-witness

lemma of [34, 49], and follows a more direct approach.

Still, the (1/2 + 1/polylog(n))-inapproximability result is not

enough to get us a non-trivial (say, with no(1) seed length) PRG

construction for ACC0
, which requires at least a (1/2 + 1/nω(1))-

inapproximability bound.

The 1/2 + 1/
√
n Razborov-Smolensky barrier. Indeed, proving a

non-trivial (1/2+n−ω(1))-inapproximability result is even open for

AC0[⊕] circuits (AC0
circuits extended with parity gates). Using the

renowned polynomial approximation method, [36, 41, 42] showed

that the majority function cannot be (1/2 + n1/2−ε )-approximated

by AC0[⊕]. However, it is even open that whether ENP can be (1/2+
1/
√
n)-approximated by (logn)-degree F2-polynomials. Improving

the (1/2+ 1/
√
n)-bound (and constructing the corresponding PRGs)

is recognized as a significant open question in circuit complexity [16,

21, 43, 44].

1.2 Our Results
In this paper, we significantly improve the circuit-analysis-algorithms-

to-average-case-lower-bounds connection in [17]. We first define

the circuit-analysis task of our interest.

• CAPP4 for C circuits with inverse-circuit-size error:
Given a C circuit C of size S on n input bits, estimate

Pr

x ∈{0,1}n
[C(x) = 1]

within an additive error 1/S .

For simplicity, throughout this paper, we will just refer to the

above problem as CAPP. We remark that under the widely believed

assumption PromiseBPP = PromiseP, this problem has a poly(S)
time algorithm even for C = P/poly. In the following, we show that

construction [15] is proposed recently, which still needs to be tested. But we can say

that if there is a natural proof barrier for ACC0
, then this lower bound has surpassed it.

(We also remark that there is a recent proposal on getting ACC0
circuit lower bounds

via torus polynomials [14].)

3
The Gap-UNSAT problem asks one to distinguish between an unsatisfiable formula

and a formula accepting a random input with probability > 1/2.
4
The acronym CAPP denotes the Circuit Acceptance Probability Problem.

indeed a non-trivial improvement on the brute-force 2
n · poly(S)-

time algorithm already implies strong average-case lower bounds

for C .

From Non-trivial CAPP Algorithms to Strong Average-Case Circuit
Lower Bounds.

Theorem 1.1. Let C be a typical circuit class5 such that C circuits
of size S can be implemented by (general) circuits of depth O(log S).
The following hold.

(NP Average-Case Lower Bound) Suppose there is a constant ε > 0

such that the CAPP problem of AND4 ◦ C circuits of size 2εn

can be solved in 2
n−εn time. Then for every constant k ≥ 1,

NP cannot be (1/2 + n−k )-approximated by C circuits of nk

size.
(NQP Average-Case Lower Bound) Suppose there is a constant ε > 0

such that the CAPP problem of AND4 ◦ C circuits of size 2n
ε

can be solved in 2
n−nε time. Then for every constant k ≥ 1,

NQP cannot be (1/2 + 2− log
k n )-approximated by C circuits

of 2log
k n size.

(NEXP Average-Case Lower Bound) Suppose the CAPP problem of
AND4 ◦ C circuits of size poly(n) can be solved in 2

n/nω(1)

time. Then NE cannot be (1/2 + 1/poly(n))-approximated by
C circuits of poly(n) size.

By the standard Discriminator Lemma [27], we immediately

obtain worst-case lower bounds forMAJ ◦ C circuits as well.

Corollary 1.2. Under the algorithmic assumptions of Theorem 1.1,
we obtain worst-case lower bounds for MAJ ◦ C circuits in the corre-
sponding cases: (1) NP not in nk -size MAJ ◦ C for all k ; (2) NQP not
in 2

log
k n -sizeMAJ ◦C for all k ; (3) NE not in poly(n)-sizeMAJ ◦C .

Remark 1.3. We remark that the conclusions of Theorem 1.1 still

hold if the corresponding CAPP algorithms are non-deterministic.
That is, on any computational branch, it either outputs a correct

estimation
6
or rejects, and it does not reject all branches.

Remark 1.4. Theorem 1.1 assumes C is a sub-class of NC1
(e.g.,

THR ◦ THR, TC0
, or ACC0

). On the other hand, if C is stronger

than NC1
(e.g., NC2

, P/poly), [17, Theorem 1.3] already showed

that
7
even CAPP with constant error suffices to prove the stated

average-case lower bounds in Theorem 1.1. Although we still left

open the possible case that C is uncomparable toNC1
, our theorem

together with [17] cover nearly all interesting circuit classes.

Comparison with [17]. Our Theorem 1.1 improves on the cor-

responding connection in [17] in two ways: (1) we get a much

better inapproximability bound, which is crucial for our construc-

tion of nondeterministic PRGs; (2) we only need CAPP algorithms

for AND4 ◦ C , while [17] requires algorithms for AC0 ◦ C . On the

other hand, our requirement on the CAPP algorithms is stronger

(additive error 1/S) than that of [17] (constant additive error).

5
A circuit class C is typical if it is closed under both negation and projection.

6
It is allowed that on different branches it outputs different estimations as long as they

are all within an additive error of 1/S .
7
[17, Theorem 1.3] only states the result with inapproximability 1/2 + n−c

for a

constant c , but it is easy to see that its proof can be generalized to the inapproximability

corresponding to Theorem 1.1.
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More on our definition on CAPP. We remark that our definition

of CAPP is a bit non-standard, comparing to the usual definition

with a constant error. Nonetheless, such a CAPP algorithm is much
weaker than a full-power #SAT algorithm, and (as discussed before)

is widely believed to exist even for P/poly circuits.

Strong Average-Case Lower Bounds for ACC0 ◦ THR. Applying the
non-trivial #SAT algorithms for ACC0 ◦ THR circuits in [48], it

follows that NQP cannot be even weakly approximated by ACC0 ◦

THR circuits, and it is (worst-case) hard for MAJ ◦ ACC0 ◦ THR
circuits.

Theorem 1.5. For every constant k ≥ 1, NQP cannot be (1/2 +
2
− log

k n )-approximated by ACC0 ◦ THR circuits of size 2log
k n . Con-

sequently, NQP cannot be computed by MAJ ◦ ACC0 ◦ THR circuits
of size 2log

k n (in the worst-case), for all k ≥ 1.
The same holds for (N∩coN)QP/1 in place of NQP.

Nondeterministic PRGs for ACC0 with Sub-Polynomial Seed Length.
As an important application of the above strong average-case lower

bound, we also obtain the first PRG with no(1) seed length for ACC0

circuits (previous, this was open even for AC0[⊕] circuits), albeit it

is nondeterministic and infinitely often.

Theorem 1.6. For every constant ε > 0, there is an infinitely
often, (NE∩ coNE)/1-computable PRG fooling polynomial size ACC0

circuits with seed length 2
(logn)ε .8

Remark 1.7. We can indeed optimize the seed length to be the

inverse of any sub-fourth-exponential function. See [18, Section 7.2]

for details.

Previously, the best PRG for ACC0
is from [20], which is (NE ∩

coNE)/1-computable and has seed length n−n1−β for any constant

β > 0. Our construction significantly improves on that.

Lower Bounds and PRGs for Sum ◦ C Circuits. For a circuit class C ,

a Sum ◦C circuit is an R-linear combinationC(x) :=
∑t
i=1 αiCi (x),

such that each αi ∈ R, each Ci is a C circuit on n input bits, and

C(x) ∈ {0, 1} for all x ∈ {0, 1}n . We denote t as the sparsity of

the circuit, and we define the size of C as the total size of all C
sub-circuits Ci ’s.

We first show that if we have the corresponding non-trivial #SAT
algorithms instead of the non-trivial CAPP algorithms, we would

have average-case lower bounds for Sum ◦ C circuits. To avoid

repetition, in the following we only state the version for NQP.

Corollary 1.8. LetC be a typical circuit class such thatC circuits
of size S can be implemented by (general) circuits of depth O(log S).
Suppose there is a constant ε > 0 such that the #SAT problem of
AND4 ◦ C circuits of size 2n

ε
can be solved in 2

n−nε time. Then for
every constant k ≥ 1, NQP cannot be (1/2 + 2− log

k n )-approximated
by Sum ◦ C circuits of 2log

k n size.

This immediately implies a strong average-case lower bound for

Sum ◦ ACC0 ◦ THR.
8
That is, this PRGG is computable by a nondeterministic machine M with one bit of

advice such that for a seed s ∈ {0, 1}2
(logn)ε

,M (s) either outputsG(s) or rejects on
any computational branch, and it outputs G(s) on some computational branches. See

[18, Definition 2.7] for a formal definition.

Corollary 1.9. For every constant k ≥ 1, NQP cannot be (1/2 +
2
− log

k n )-approximated by Sum◦ACC0 ◦THR circuits of size 2log
k n .

Consequently,NQP cannot be computed byMAJ◦Sum◦ACC0◦THR

circuits of size 2log
k n (in the worst-case), for all k ≥ 1.

The same holds for (N∩coN)QP/1 in place of NQP.

Now we discuss some applications of our new techniques to

some sub-classes of TC0
circuits.

We begin with some notation. Recall that a degree-d PTF gate is

a function defined by sign(p(x)), where p is a degree-d polynomial

on x over R, and sign(z) outputs 1 if z ≥ 0 and 0 otherwise. Clearly,

a THR gate is simply a degree-1 PTF gate.

[51] proved that NP cannot be computed by nk -size Sum ◦ THR
circuits for all k > 0. With our improved connection, we apply

the #SAT algorithm for AND4 ◦ THR of [51] to improve it to a

corresponding average-case lower bound.

Theorem 1.10. For all constants k , NP cannot be (1/2 + 1/nk )-
approximated by nk -size Sum ◦ THR circuits. Consequently, NP can-
not be computed by nk -sizeMAJ◦Sum◦THR circuits for all constants
k .9

We remark thatMAJ ◦ Sum ◦ THR is a sub-class of THR ◦ THR
with no previous known lower bounds. So Theorem 1.10 can be

viewed as progress toward resolving the notorious open question

of proving super-polynomial THR ◦ THR lower bounds.

Applying the non-trivial zero-error #SAT algorithm forPTF in [10],
we also obtainNQP (NE) average-case lower bounds for Sum◦PTFd
circuits.

Theorem 1.11. The following hold.

• For every constants d,k ≥ 1, NQP cannot be (1/2 + 2− log
k n )-

approximated by Sum ◦ PTFd circuits of sparsity 2log
k n . Con-

sequently, NQP does not have 2log
k n -sizeMAJ ◦ Sum ◦ PTFd

circuits.
• Let d(n) = 0.49

logn
log logn , then NE cannot be (1/2+ 1/poly(n))-

approximated by Sum ◦ PTFd (n) circuits of sparsity poly(n).
Consequently, NE 1 MAJ ◦ Sum ◦ PTFd (n).

From the above theorem, we can also obtain non-trivial nonde-

terministic PRGs for Sum ◦ PTF circuits.

Theorem 1.12. For every constants d,k ≥ 1 and ε > 0, there is an
(NE ∩ coNE)/1-computable i.o. PRG with seed length O(2log

ε n ) that
(1/nk )-fools Sum ◦ PTFd circuits of sparsity nk .10

Previously, the best (constant-error) PRG for degree-d PTF has
seed length O(logn · 2O (d )) [33]. Our construction has a worse

seed-length, is nondeterministic and infinitely often, but works for

the larger class Sum ◦ PTF.

Towards TC0

3
Lower Bounds. In [19], it is shown that non-trivial

CAPP algorithms for MAJ ◦MAJ circuits with inverse-polynomial

additive error would already imply THR◦THR circuit lower bounds.

We significantly improve that connection by showing it would

indeed imply TC0

3
lower bounds!

9
This average-case lower bound can also be extended to against Sum ◦ ReLU circuits,

similar to the exact Sum ◦ ReLU lower bounds in [51].

10
We did not attempt to optimize this seed length.
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Theorem 1.13. If there is a 2
n/nω(1) time CAPP algorithm for

poly(n)-sizeMAJ ◦MAJ circuits. Then NEXP 1 MAJ ◦MAJ ◦MAJ.

We remark thatMAJ◦MAJ◦MAJ is actually equivalent toMAJ◦
THR◦THR (sinceMAJ◦MAJ = MAJ◦THR [23]). Since exponential-

size (worst-case) lower bounds against MAJ ◦ MAJ are already

known. If only we can “mine” a non-trivial CAPP algorithm (which

is widely believed to exist) forMAJ ◦MAJ circuits from these lower

bounds, we would have worst-case lower bounds against TC0

3
.

Concurrent Works. A concurrent work by Viola [45] proved that

ENP cannot be (1/2+ logO (h) s/n)-approximated by AC0[⊕] circuits

of size s and depth h. This result is incomparable with ours. We

proved that ENP cannot be (1/2+ε)-approximated by ACC0
circuits

of polynomial size for some ε ≪ 1/n, while the inapproximability

result in [45] only achieves ε > 1/n. On the other hand, our paper

does not prove anything about exponential (e.g. 2n
0.01

) sized AC0[⊕]

circuits, while the results in [45] bypass the (1/2 + 1/
√
n) barrier.

1.3 Intuition
In the following, we sketch the intuitions for our new average-case

lower bounds.

In this section, we will aim for a simpler version thatNQP cannot

be (1/2 + n−k )-approximated by ACC0
for a large constant k (say,

k = 10
3
) for simplicity. We believe this version already captures

all important technical ideas of our new average-case circuit lower

bounds.

1.3.1 Review of [17] and the Bottleneck. First, since our work cru-

cially builds on [17] (which provedNQP cannot be (1/2+1/polylog(n))-
approximated by ACC0

), it would be very instructive to review the

proof structure of [17], and understand what is the bottleneck of

extending [17] to prove a (1/2 + n−k )-inapproximability bound.

A high-level overview of [17]: three steps. Suppose we are proving
NQP cannot be (1 − δ )-approximated by ACC0

for now, where δ is

a small constant. On a very high level, the proof of [17] involves

the following three steps.
11

Step I (Conditional collapse from NC1
to ACC0

.)

Assuming NQP can be (1 − δ )-approximated by ACC0
, [17]

shows that NC1
collapses to ACC0

, using the existence of

self-reducible NC1
-complete languages [9, 12, 31].

Step II (An NE algorithm certifying low depth hardness.)

Next, making use of the non-trivial SAT algorithm for ACC0

circuits [49], [17] shows that there is an NE algorithmV (·, ·)

certifying nε -depth hardness. Formally, V (x ,y) takes inputs

such that |y | = 2
|x |

; for infinitely many n’s, V (1n , ·) is satis-

fiable, and V (1n ,y) = 1 implies y, interpreted as a function

fy : {0, 1}n → {0, 1}, does not have nε -depth circuits.

Step III (Certifying low depth hardness implies average-case lower

bounds for low depth circuits.)

11
Actually, in [17], Step III is much more complicated than the previous two steps,

and Step II just follows from [50]. In the presentation of [17], Step III is decomposed

into several sub-steps [17, Section 6.2, 7-9]. We choose to give the overview in this

way because we essentially make use of Step III as a black box, and our improvement

is mostly focusing on the first two steps. In particular, our improved Step II is much

more involved than that of [17], and crucially builds on [19].

Finally, [17] shows that the above algorithm V would be

sufficient to imply that NQP cannot be (1−δ )-approximated

by NC1
(and also ACC0

).

The bottleneck of the argument: Step I.. Suppose we are going to

prove NQP cannot be (1/2 + n−k )-approximated by ACC0
, let us

examine which one of the above three steps would break.

Clearly, Step II is unaffected (assuming Step I works). Another

observation is that since NC1
can compute majority

12
, we can use

the XOR Lemma [24, 29, 52] to show thatNQP cannot be (1/2+n−k )-
approximated by NC1

circuits.
13

Therefore, Step III still works if

we want to prove the stronger (1/2+n−k )-inapproximability result.

However, Step I completely breaks. AssumingNQP can be (1/2+

n−k )-approximated byACC0
circuits, it seems hopeless to show that

NC1
collapse to ACC0

using some random self-reducible languages.

This is because the given circuit only (1/2 + n−k )-approximates

the given random self-reducible language, and to the best of our

knowledge, all known corrector for such languages in this error

regime requires computing at least some variants of the majority

function, while ACC0
is conjectured not to be able to compute

majority [41]!

1.3.2 A Detour: Chen and Williams [19] and S̃umδ ◦ ACC0 Circuit
Lower Bounds. So it seems unlikely that we can show a collapse

theorem from NC1
to ACC0

under the assumption that NQP can

be (1/2 + n−k )-approximated by ACC0
. A natural idea to avoid

this obstacle is to show NC1
collapses to some other larger classes

under the same assumption. Examining the proof idea of [17], it

seems at least we can show NC1
collapses to MAJ ◦ ACC0

under

the assumption. However, the issue is that then we don’t know how

to implement Step II, as we don’t have a non-trivial SAT (or even

Gap-UNSAT) algorithm forMAJ ◦ ACC0
circuits.

So we indeed want a collapse theorem which would collapse NC1

to a circuit class C for which we at least know some non-trivial
algorithms for, and of course C also has to contain ACC0

. Perhaps

the best choice for us is the S̃umδ ◦ACC
0
circuits which has recently

been studied by [19]. So let us take a detour into this circuit class

and the corresponding lower bounds in [19].

S̃umδ ◦ C Circuits. Let C be a class of functions from {0, 1}n →

{0, 1} and δ ∈ [0, 0.5). We say f : {0, 1}n → {0, 1} admits a

S̃umδ ◦C circuit of sparsity S , if there are S functionsC1,C2, . . . ,CS
from C , together with S coefficients α1,α2, . . . ,αS in R, such that

for all x ∈ {0, 1}n , ����� S∑
i=1

αi ·Ci (x) − f (x)

����� ≤ δ .

Given a valid S̃umδ ◦ ACC0
circuit C , we say C(x) = 1 if the

corresponding output value |
∑
i αiCi (x) − 1| ≤ δ , and C(x) = 0

otherwise. [19] gives a 2
n−nε

-time Gap-UNSAT (in fact, constant-

errorCAPP) algorithm for S̃umδ ◦ACC
0
of 2

nε
-size when δ is small

(the algorithm is indeed already implicit in [51]). Building on this

algorithm (and more importantly, PCP of proximity), [19] proves

that NQP 1 S̃umδ ◦ ACC0
for any constant δ ∈ [0, 1/2).

12
It is proved that black-box hardness amplification requires majority [26, 39].

13
Precisely speaking, we have to start with our (N∩coN)QP/1 lower bounds for that

purpose.
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1.3.3 Key Technical Ingredient: A ⊕L-complete Language CMD with
a S̃umδ Error Corrector. So given the result of [19], the question

becomes:

ANewCollapse Theorem?: Canwe show a collapse from

NC1
to S̃umδ ◦ ACC0

circuits, assuming NQP can be (1/2 +

n−k )-approximated by ACC0
circuits?

Our improvement of Step I answers the question affirmatively,

by making use of a ⊕L-complete
14

language CMD [5, 25, 30] with

very nice reducibility properties. We remark that the underlying

techniques play a crucial part in the famous construction of NC0
-

computable one-way functions (and low-stretch PRGs) [5] (see also

the book [4]).

(1) (⊕L-completeness under projections.) That is, for every lan-

guage L ∈ ⊕L, there is a polynomial-time computable pro-

jection P such that L(x) = CMD(P(x)).
(2) (Single-query error correctability with a randomized image

DCMD.) For technical reasons, we also have to introduce

another ⊕L-complete language DCMD, which is a “random-

ized image” of CMD under projections (when randomness

is fixed) [25, Claim 2.19].

That is, given n ∈ N, there ism = poly(n) and a randomized

reduction P(x , r ) (r is the random bits) from CMD on input

length n to DCMD on input lengthm, such that:

(a) For all x ∈ {0, 1}n , P(x ,Uℓ) distributes uniformly on

{0, 1}m , where ℓ is the number of random bits involved,

andUℓ is the uniform distribution over {0, 1}ℓ .

(b) For all fixed random bits r , P(x , r ) is a projection of x .
(c) For all x ∈ {0, 1}n , CMDn (x) = DCMDm (P(x , r )) ⊕ r0 for

all r , where r0 is the first bit of r .

An error corrector in S̃umδ ◦ f . The second property of CMD
stated above is amazing. It enables us to do the desired error correc-
tion with S̃umδ ◦ f circuits (a linear sum of f functions composed

with projections). See [18, Section 3] for the details. It then follows

that if NQP can be (1/2+n−k )-approximated by ACC0
circuits, we

would have the desired collapse from NC1
to S̃umδ ◦ ACC0

.

1.3.4 A Simpler Proof for a Worst-Case Lower Bound AgainstMAJ◦
ACC0. With the improved collapse result, we can already prove

worst-case lower bounds against MAJ ◦ ACC0
. For simplicity, here

we only show the following weaker version.

Theorem 1.14 (Toy Example). NQP 1 MAJ ◦ ACC0.

Proof Sketch. There are two cases.

• First, we assume DCMD (which is in NQP) cannot be (1/2+
1/poly(n))-approximated by ACC0

. This implies thatNQP 1
MAJ ◦ ACC0

, via the standard Discriminator Lemma [27].

• Second, suppose DCMD can be (1/2 + 1/nk )-approximated

by nk -size ACC0
circuits for a constant k . This implies that

NC1
collapses to S̃umδ ◦ ACC0

.

By [19], NQP 1 S̃umδ ◦ ACC0
. This in turn implies that

NQP 1 NC1
, and clearly also NQP 1 MAJ ◦ ACC0

. □

14
Roughly speaking, ⊕L consists of languages L such that there is anO (logn) space

nondeterministic Turing machine M , such that on every input x , x ∈ L if and only if

there is an odd number of computational paths making M accept on input x .

1.3.5 Toward Average-Case Hardness: The Updated Three Steps Plan.
Now we switch to the new average-case circuit lower bounds. With

the new conditional collapse theorem, the following are our updated

three steps plan for the new average-case lower bounds.

Step I’ (Conditional collapse from NC1
to S̃umδ ◦ ACC0

.)

Assuming NQP can be (1/2 + n−k )-approximated by ACC0
,

we show that NC1
collapses to S̃umδ ◦ ACC0

, utilizing the

nice properties of the problems CMD and DCMD.
Step II’ (An NE algorithm certifying low depth hardness.)

Next, making use of the non-trivial constant error CAPP
algorithm for S̃umδ ◦ ACC0

circuits [19, 51], we show that

there is an NE algorithmV (·, ·) certifying nε -depth hardness.

Step III’ (Certifying low depth hardness implies average-case lower

bounds for low depth circuits.)

Finally, we show that the above algorithm V would be suffi-

cient to imply thatNQP cannot be (1/2+n−k )-approximated

by NC1
(and also ACC0

).

As previously discussed, Step III’ can be achieved easily by comb-

ing [17] and the XOR Lemma [24, 29, 52]. It remains to implement

Step II’, which is the most technical part of this work.

1.3.6 Review of Step II: Certifying Hardness via PCP and Nondeter-
ministic Time Hierarchy. To implement Step II’, the natural idea is

to directly modify Step II ([17, Section 6.1]), and follow [50]. Now

we briefly review the details of Step II and explain why it seems

hard to adapt it directly.

Setting up the verifierVcert. LetL be a unary language inNTIME[2n ]\
NTIME[2n/n] [54]. Fix an efficient PCP verifier VPCP for L (such

as [13]). That is, for a function ℓ := ℓ(n) = n +O(logn), VPCP(1
n )

takes ℓ random bits as input, runs in poly(n) time, is given access

to an oracle O : {0, 1}ℓ → {0, 1}, and satisfies the following condi-

tions:

(1) (Completeness) if 1
n ∈ L, then there exists an oracle O such

that VPCP(1
n )O always accepts;

(2) (Soundness) if 1
n < L, then for all oracles O , the probability

VPCP(1
n )O accepts is ≤ 1/n.

Now, we define Vcert as follows: Vcert(1
n ,y) treats y as the truth-

table of an oracle Oy : {0, 1}ℓ → {0, 1}, and verifies whether

VPCP(1
n )Oy

always accepts
15
. Clearly, Vcert runs in poly(n + |y |)

time.

Since any depth-d circuit is equivalent to some 2
O (d )

-size S̃umδ ◦

ACC0
circuit (recall that now NC1

collapses to S̃umδ ◦ ACC0
), to

show thatVcert certifies n
ε1
-depth hardness, it suffices to show that

Vcert certifies hardness for 2
nε

-size S̃umδ ◦ACC
0
circuits for ε > ε1.

Let us suppose the opposite that Vcert does not certify hardness

for 2
nε
-size S̃umδ ◦ ACC0

circuits. In particular, this means for all

large enough n, if Vcert(1
n , ·) is satisfiable, then there is a 2

nε
-size

S̃umδ ◦ ACC0
circuit C such that Vcert(1

n , tt(C)) = 1, where tt(C)
is the truth-table ofC . Translating it to the setting of PCP, for large
enough n, the following hold:

(1) (Succinct Completeness) if 1
n ∈ L, then there exists a 2

nε
-

size S̃umδ ◦ ACC0
circuit C : {0, 1}ℓ → {0, 1} such that

VPCP(1
n )C always accepts;

15
Strictly speaking, here |y | = 2

ℓ = 2
n · poly(n) which is slightly larger than 2

n
, but

this slight difference does not really matter in the proof.
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(2) (Soundness) if 1
n < L, then for all oracles O , the probability

VPCP(1
n )O accepts is ≤ 1/n.

The issue with the direct approach. Given the above two condi-

tions, the natural idea for putting L in NTIME[2n/n] to obtain a

contradiction would be to try the following nondeterministic algo-

rithm for L: Given an input 1
n
, we (non-deterministically) guess a

2
nε
-size S̃umδ ◦ ACC0

circuit C16
, and try to estimate

pacc(VPCP(1
n )C ) = Pr

r ∈{0,1}ℓ
[VPCP(1

n )C (r )].

Let DC := VPCP(1
n )C . We would like to accept when pacc(DC ) =

1, and reject when pacc(DC ) < 1/n, so a constant additive error

(say, 1/10) approximation to pacc(DC ) would suffice.

The issue here is that, DC is not a S̃umδ ◦ACC0 circuit anymore.
So we don’t know how to estimate pacc(DC ) using the constant

error CAPP algorithm for S̃umδ ◦ ACC0
in [19, 51].

We remark that by [13], VPCP can indeed be implemented by

a 3-CNF, hence if C is only an ACC0
circuit, VPCP(1

n )C is still

an ACC0
circuit. This is why this argument works in the original

Step II, where we have a collapse from NC1
to ACC0

instead of

S̃umδ ◦ ACC0
.

1.3.7 Getting Around of the Issue with PCP of Proximity. To avoid

the aforementioned issue, we would like to adopt the PCP of Prox-

imity framework introduced in [19], which also plays a crucial part

in the PNP construction of rigid matrices in [3]. For more intuition

on this framework and how it compares to and improves on the

earlier works [47, 49], one is referred to [19, Section 1.6].

For a SAT instance F ,Y a subset of its variables, andy ∈ {0, 1} |Y |
,

we use FY=y to denote the resulting instance obtained by assigning

the Y variables in F to y.17 We also use OPT(F ) to denote the maxi-

mum fraction of clauses that can be satisfied by any assignment.

The following transformation is the key technical part of [19].
18

Theorem 1.15 (Implicit in [19]). Let Enc be the encoder of some
constant-rate error correcting code. There is a polynomial-time trans-
formation that, given a circuit D on n inputs of size m ≥ n, out-
puts a 2-SAT instance F on variable set Y ∪ Z , where |Y | = O(n),
|Z | ≤ poly(m) and F has poly(m) clauses, such that for two constants
cPCPP > sPCPP, the following hold for all x ∈ {0, 1}n .

• If D(x) = 1, then OPT(FY=Enc(x )) ≥ cPCPP. Furthermore,
there is a poly(m)-time algorithm computing a correspond-
ing zD (x) given x which satisfies at least a cPCPP fraction of
clauses.

• If D(x) = 0, then OPT(FY=Enc(x )) ≤ sPCPP.

The key idea of [19] is to apply the above transformation on

the obtained circuit DC , and guess the corresponding C circuits

for each output bit of the function zDC (x). In [19], the focus is

to prove worst-case lower bounds like NQP 1 C for a circuit

class C . Therefore, we can safely assume P ⊆ C and there exist

corresponding C circuits for each output bit of zDC (x).

16
Note that here we are waiving the very important issue of how to test whether the

guessed S̃umδ ◦ ACC0 is valid. We will discuss this issue at the end of the section.

17
Here we don’t remove the already satisfied clauses or the clauses which cannot be

satisfied after the partial assignment.

18
This formulation is due to [46].

However, in our case, we only have the collapse from NC1
to

S̃umδ ◦ ACC0
. So we need the following adaption with the proof

computable by a formula.

Theorem 1.16. Let Enc be the encoder of some constant-rate error
correcting code. There is a polynomial-time transformation that, given
a formula D on n inputs of sizem ≥ n, outputs a 2-SAT instance F
on variable set Y ∪ Z , where |Y | = O(n), |Z | ≤ poly(m) and F has
poly(m) clauses, such that for two constants cPCPP > sPCPP, the
following hold for all x ∈ {0, 1}n .

• If D(x) = 1, then OPT(FY=Enc(x )) ≥ cPCPP. Furthermore,
there is a poly(m)-size formula computing a corresponding
zD (x) given x which satisfies at least a cPCPP fraction of
clauses.

• If D(x) = 0, then OPT(FY=Enc(x )) ≤ sPCPP.

The algorithm. Again, suppose for the sake of contradiction that

Vcert does not certify n
ε
-depth hardness. In particular, this means

for all large enough n, it follows that if Vcert(1
n , ·) is satisfiable,

then there is an nε -depth circuit C such that Vcert(1
n , tt(C)) = 1.

Translating it to the setting of PCP, the following hold for large

enough n:

(1) (Low Depth Completeness) if 1
n ∈ L, then there exists an

nε -depth circuit C : {0, 1}ℓ → {0, 1} such that VPCP(1
n )C

always accepts;

(2) (Soundness) if 1
n < L, then for all oracles O , the probability

that VPCP(1
n )O accepts is ≤ 1/n.

Recall that we set DC := VPCP(1
n )C . Our goal now is still to

accept when pacc(DC ) = 1, and reject when pacc(DC ) ≤ 1/n.
By previous discussions, VPCP can be taken as a 3-CNF, so DC

is indeed a circuit of depth nε + O(logn) = O(nε ), and therefore

it is also a formula of size 2
O (nε )

. Now we apply Theorem 1.16 to

the formula DC to obtain a 2-SAT instance F with nclause = 2
O (nε )

clauses on variable set Y ∪ Z .
Now we guess |Z | Sumδ ◦ACC

0
circuitsT1,T2, . . . ,T |Z | and use

π̃ (x) to denote the concatenation of T1(x),T2(x), . . . ,T |Z |(x). Then
we estimate the following quantity

pkey := E
x ∈{0,1}ℓ

E
i ∈[nclause]

Fi (Enc(x), π̃ (x))

= E
i ∈[nclause]

E
x ∈{0,1}ℓ

Fi (Enc(x), π̃ (x)), (1)

where Fi is the i-th clause in the 2-SAT instance F , so it only depends
on two bits in Enc(x)◦π̃ (x). By a simple manipulation, one can show

that Fi (Enc(x), π̃ (x)) also has a SumO (δ ) ◦ ACC
0
circuit. Therefore,

setting δ to be a small enough constant, we can apply the constant

error CAPP algorithm from [19, 51] to estimate pkey in 2
n−nε

time.

Now we verify the correctness of the algorithm.

(1) Whenpacc(DC ) = 1, on the correct guess that π̃ (x) = zDC (x)
for all x , by Item (1) of Theorem 1.16, it follows pkey ≥ cPCPP.

(2) When pacc(DC ) ≤ 1/n, on all possible guesses, by Item (2)

of Theorem 1.16, we have pkey ≤ sPCPP + 1/n.

Therefore, to distinguish the above two cases, it suffices to esti-

mate pkey within an additive error of
cPCPP−sPCPP

10
, and accept if our

estimation is ≥
cPCPP+sPCPP

2
. Putting everything together, this puts

L ∈ NTIME[2n/n], contradiction.
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Checking the guessed S̃umδ ◦ ACC0 circuits. Finally, as we have
remarked briefly before, we waived an important issue on checking

whether the guessed S̃umδ ◦ACC
0
circuits are valid (that is, whether

the linear sum is close to either 0 or 1 on all inputs x ). This is because
in the algorithm described above, when x < L, it is still possible

that we guess some invalid S̃umδ ◦ ACC0
circuits T1,T2, . . . ,T |Z |

and conclude that pkey >
cPCPP+sPCPP

2
, as the constant error CAPP

algorithm for S̃umδ ◦ ACC0
may behave arbitrarily on invalid

S̃umδ ◦ ACC0
circuits.

More formally, given a presumed S̃umδ ◦ ACC0
circuit C , let

f (x) be the corresponding
∑
i αiCi (x), and

binf (x) :=

{
1 f (x) > 1/2,

0 otherwise.

To test whether C is valid, we want to check whether ∥binf −

f ∥∞ ≤ δ . Ideally, wewant a test which accepts when ∥binf − f ∥∞ ≤

δ and reject when (say) ∥binf − f ∥∞ ≥ 3δ . But this turns out to be

too hard.

Luckily, a careful examination shows that we only have to re-

ject when ∥binf − f ∥2 ≥ 3δ , and this can be solved by a careful

polynomial manipulation as in [19]. See [18, Section 5] for the

details.

2 OPEN PROBLEMS
We conclude with several interesting open problems stemming

from our work.

(1) The most exciting open question would be to apply Theo-

rem 1.13 to prove super-polynomial lower bounds for TC0

3
.

(2) Are there P-complete problemswith similar random-reducibility

properties ofCMD andDCMD? Besides being an interesting
problem in its own right, the existence of such a problem

would greatly simplify our framework for strong average-

case lower bounds. In particular, we will no longer need hard

MA problems with low depth predicates, and PCPP with low
depth computable proofs.

(3) The seed length of our i.o. NPRG fooling ACC0
circuits is

only inverse sub-half-exponential. Canwe obtain an i.o. NPRG

with polylog(n) seed length? As a related question, can we

show that there is a constant ε > 0 such that ENP can-

not be (1/2 + 1/2n
ε
)-approximated by ACC0

circuits of 2
nε

size? (This paper only implicitly proves that ENP cannot be

(1/2 + 1/f (n))-approximated by ACC0
circuits of f (n) size

for sub-half-exponential f (n).)
(4) Since we have proved lower bounds for MAJ ◦ ACC0

, the

natural next step would be to prove lower bounds for THR ◦

ACC0
. Can we formulate any algorithmic approach to prove

such a lower bound? That is, are there certain non-trivial

circuit-analysis algorithms forC whichwould imply THR◦C
lower bounds?

It seems plausible to us that non-trivial #SAT algorithms

would suffice (note that that we already proved non-trivial

#SAT algorithms for C implyMAJ ◦ Sum ◦ C lower bounds,

which is a non-trivial sub-class of THR ◦ C ). Such a connec-

tion would also imply lower bounds for THR ◦ ACC0 ◦ THR,

which is (much) stronger than the already notorious circuit

class THR ◦ THR.
(5) Is THR contained in MAJ ◦ ACC0

? (Or even MAJ ◦ Sum ◦

ACC0
?) We don’t have an inclination on the answer. But if

it is contained inMAJ ◦ ACC0
, it would immediately imply

super-polynomial lower bounds for THR ◦ THR.
(6) Vyas and Williams [46] conjectured that SYM ◦ C lower

bounds should follow from #SAT algorithms for C , where

SYM denotes arbitrary symmetric functions. Can the new

techniques in this paper help to prove this conjecture?
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