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Abstract6

Meta-complexity studies the complexity of computational problems about complexity theory, such as7

the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier8

applies to many important open questions in meta-complexity. We give relativized worlds where:9

1. MCSP can be solved in deterministic polynomial time, but the search version of MCSP cannot be10

solved in deterministic polynomial time, even approximately. In contrast, Carmosino, Impagliazzo,11

Kabanets, Kolokolova [CCC’16] gave a randomized approximate search-to-decision reduction for12

MCSP with a relativizing proof.13

2. The complexities of MCSP[2n/2] and MCSP[2n/4] are different, in both worst-case and average-14

case settings. Thus the complexity of MCSP is not “robust” to the choice of the size function.15

3. Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor (2 + ϵ) in16

polynomial time, for any ϵ > 0.17

4. Natural proofs do not exist, and neither do auxiliary-input one-way functions. In contrast,18

Santhanam [ITCS’20] gave a relativizing proof that the non-existence of natural proofs implies19

the existence of one-way functions under a conjecture about optimal hitting sets.20

5. DistNP does not reduce to GapMINKT by a family of “robust” reductions. This presents a21

technical barrier for solving a question of Hirahara [FOCS’20].22
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1 Introduction28

Meta-complexity refers to the complexity of computing complexity. A prominent example29

of a meta-complexity problem is the Minimum Circuit Size Problem (MCSP): Given as30

input the (length-2n) truth table of a function f : {0, 1}n → {0, 1}, output the size of the31

smallest circuit that computes f . MCSP was recognized as a fundamental problem in the32

Soviet Union since 1950s [43], and has received a lot of attention in the last two decades33

since the seminal work of Kabanets and Cai [28]. Other examples include computing variants34

of Kolmogorov complexity such as polynomial-time bounded Kolmogorov complexity and35

Levin’s time-bounded Kolmogorov complexity Kt [2, 29]. Questions about the circuit size36

of Boolean functions are closely related to Kolmogorov complexity and incompressibility,37

because a circuit is essentially a compressed representation of the truth table of the function38

it computes.39

There has been plenty of interplay between meta-complexity and other areas of complexity40

theory such as average-case complexity [15,16,18,19], cryptography [32,38,39,42], learning41

theory [10,36] and pseudorandomness [2, 17,28,36].42
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6:2 A Relativization Perspective on Meta-Complexity

We highlight a couple of recent breakthrough results. The first gives a non-black-box worst-43

case to average-case reduction for a problem about Kolmogorov complexity (“GapMINKT”)44

that many believe to be NP-hard.45

▶ Theorem 1 ([15], building on [10]). There is a randomized polynomial-time worst-case to46

average-case reduction for GapMINKT.47

The second gives an equivalence between the existence of one-way functions and the48

bounded-error average-case hardness over the uniform distribution of the functional version49

of MINKT. This result characterizes the most fundamental primitive in cryptography by a50

notion in meta-complexity.51

▶ Theorem 2 ([32]). One-way functions exist if and only if there is a polynomial p such that52

the p(n)-time bounded Kolmogorov complexity of a string x of length n cannot be computed53

in polynomial time on average, when x is chosen uniformly at random from n-bit strings.54

Results such as these give hope for a rich theory connecting complexity lower bounds,55

meta-complexity, average-case complexity, learning theory and cryptography, among other56

fields. However, despite much effort, many basic questions about meta-complexity remain57

elusive. In addition, the recent advances on meta-complexity also propose new questions,58

some of which are seemingly beyond our reach. (See Section 1.1 for a sample of these59

questions.)60

In this work, we seek a more fine-grained understanding of the current landscape of61

meta-complexity by using the classical perspective of relativization [9]. It is noteworthy62

that Theorem 1 and Theorem 2 relativize. Of course, we need to be careful here to define63

what relativization means, as the notion typically applies to complexity classes and not to64

computational problems. However, meta-computational problems do indeed have natural65

notions of relativizations, where the algorithms solving the problem as well as the algorithms66

defining the problem get access to the same oracle A. Results such as Theorem 1 and67

Theorem 2 use techniques from the theory of pseudorandomness [27,34,44], which typically68

relativize, and it is worth asking how much these techniques can achieve. Can they be used69

to solve the major open problems in the area?70

We give a largely negative answer to this question, by giving oracles relative to which71

many of the questions in the area have answers opposite to what we expect. However, we do72

not necessarily infer that there are fundamental barriers to solving the major open questions;73

we can only say that new techniques will be required in many cases. Our perspective also74

contributes to formulating new notions and questions which might still be approachable using75

current techniques. We also note that there are some exciting recent works in meta-complexity76

by Ilango and others (e.g. [22–25]) using gate elimination and related ideas. It is not clear77

yet whether relativization is a barrier to these techniques.78

1.1 Our Questions79

We first introduce the questions with which we are concerned.80

1.1.1 Easiness or Hardness of Meta-Complexity Problems81

Arguably, the most important and fundamental problem about MCSP is whether MCSP is82

easy or hard. Is MCSP in polynomial time, or if not, is MCSP NP-complete? It is reported83

in [5, 30] that Levin delayed the publication of his NP-completeness results [31] because he84

wanted to show NP-hardness for MCSP. A long line of research [3, 4, 12, 20, 21, 28, 33, 41]85
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showed that the NP-completeness of MCSP implies breakthrough results in complexity86

theory. For instance, if MCSP is NP-complete under polynomial-time Karp reductions,87

then EXP ̸= ZPP [33]. However, these results do not indicate whether MCSP is or is not88

NP-complete; they merely suggest that this problem will be hard to solve.89

▶ Question 3. Is MCSP NP-complete under polynomial-time Karp reductions?90

Just as with MCSP, it is open to show the NP-hardness of MINKT. A further motivation91

for this problem is the recent “non-black-box” worst-case to average-case reduction for92

MINKT [15]. As a consequence, if GapMINKT is NP-hard, then the worst-case and average-93

case complexities of NP are equivalent. As there are serious obstacles to showing the NP-94

completeness of MINKT by “weak” reductions, [15] proposed, as a weakening of Question 3,95

that MINKT could be NP-hard via very powerful reductions:96

▶ Question 4. Is GapMINKT NP-hard under coNP/poly-Turing reductions?97

In terms of unconditional lower bounds, there is an intriguing question about the meta-98

complexity of Levin’s Kt complexity, raised in [2]. It is known that MKtP is EXP-complete,99

but only under rather powerful reductions such as P/poly-truth-table reductions or NP-Turing100

reductions. Therefore, it is reasonable to conjecture that MKtP is not in P. However, the101

aforementioned reducibilities are too strong, so we cannot apply the time hierarchy theorem102

directly to prove that MKtP ̸∈ P. Still, it may be surprising that this problem has been open103

for almost 20 years:1104

▶ Question 5. Is MKtP computable (or at least approximable) in polynomial-time?105

(We note that a randomized version of MKtP, called MrKtP, is known to be not in BPP106

unconditionally [35].)107

1.1.2 Structural Properties of Meta-Complexity Problems108

Every NP-complete problem admits a search-to-decision reduction. For instance, given109

an oracle that decides SAT, for every input formula φ that is satisfiable, we can find a110

satisfying assignment of φ in polynomial time. However, it is unknown whether MCSP has111

this property.112

▶ Question 6. Does MCSP admit a search-to-decision reduction?113

We remark that there has been some progress on Question 6: [10] showed that if MCSP114

is in BPP, then a certain “weak” version of search-MCSP can be solved in probabilistic115

polynomial time; [23] presented a “non-trivial” search-to-decision reduction for the problem116

of minimizing formulas.117

Another mystery about MCSP is whether its various parameterized versions are equivalent.118

Specifically, let MCSP[s(n)] denote the problem that given a truth table of a function119

f : {0, 1}n → {0, 1}, determine whether f can be computed by a circuit of size s(n). It is120

easy to see that MCSP[2n/2] reduces to MCSP[2n/4],2 but the converse direction is unknown:121

1 The conference version of [2] was published in 2002.
2 Given an input truth table f of length 2n, let f ′ be the concatenation of 2n copies of f , then

f ′ : {0, 1}2n → {0, 1} is a function that only depends on half of its input bits, and the circuit complexities
of f and f ′ are exactly the same. Therefore f ∈ MCSP[2n/2] if and only if f ′ ∈ MCSP[2n/4].
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6:4 A Relativization Perspective on Meta-Complexity

▶ Question 7. Is MCSP[2n/4] reducible to MCSP[2n/2] under polynomial-time Karp reduc-122

tions?123

The average-case version of Question 7 is also open. It is observed in [19] that any errorless124

heuristic for MCSP[2n/2] can be transformed into an errorless heuristic for MCSP[2n/4], but125

the converse is unknown.126

▶ Question 8. If MCSP[2n/4] is easy on average, does this imply that MCSP[2n/2] is also127

easy on average?128

One drawback of the worst-case to average-case reduction of [15] is that it only works129

for zero-error average-case complexity. Ideally, we would like to establish a worst-case to130

two-sided-error average-case reduction for MINKT. Can we extend the results in [15] to the131

two-sided-error setting?132

▶ Question 9. Is there a natural distribution such that, if MINKT is easy on this distribution133

with two-sided error, then GapMINKT is solvable in the worst case? In particular, does the134

uniform distribution satisfy the above condition?135

1.1.3 Meta-Complexity, Average-Case Complexity and Cryptography136

Some of the most compelling questions around meta-complexity relate to connections with137

average-case complexity and cryptography. A partial converse of [15] was established in138

[16, 17], where it was shown that if GapMINKTSAT ∈ P, then DistNP ⊆ AvgP, i.e. NP is139

easy on average. Here GapMINKTSAT is the problem of determining the (time-bounded)140

Kolmogorov complexity of a string with a SAT oracle. Based on this result, [16] characterized141

the average-case complexity of the polynomial hierarchy by the worst-case complexity of142

meta-complexity. An important open question, a positive answer to which would imply a143

characterization of the average-case complexity for NP, is whether the SAT oracle can be144

removed, that is:145

▶ Question 10. Does GapMINKT ∈ P imply DistNP ⊆ AvgP?146

There seems to be strong correspondences between the hardness of MCSP and problems147

in cryptography. For example, if MCSP is easy, then one-way functions (OWFs) do not exist148

[28, 38]. Under the unproven Universality Conjecture, [42] established the converse direction,149

i.e. if MCSP is zero-error average-case hard, then OWFs exist. Of course, an unconditional150

answer would be much more interesting:151

▶ Question 11. Can we base the existence of OWF from the nonexistence of natural proofs?152

A recent exciting work [32] established the equivalence between the two-sided error153

average-case hardness of MINKT and the existence of one-way functions. Given the result154

in [32], it is perhaps natural to conjecture that GapMINKT ∈ CZK unconditionally, where155

CZK is the set of languages with a computational zero-knowledge proof system [14]. One156

could imagine a win-win argument as follows: If MINKT is easy, then of course it is in CZK;157

on the other hand, if MINKT is hard, then one-way functions exist, and by the result of158

[14], every language in NP is in CZK. However, there are some gaps between the “easy” and159

“hard” in the above argument, as we do not know what happens if MINKT is only worst-case160

hard and one-way functions do not exist.161

▶ Question 12. Does (some gap version of) MCSP or MINKT admit a computational zero162

knowledge proof system?163
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2 Our Results164

In this work, we investigate the above questions in the perspective of relativization. Due165

to page limits, we only describe our results in this section and provide a proof overview in166

Section 3. The detailed proofs can be found in the full version of this paper [40].167

2.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds168

In our first set of results, we present evidence for the following hypothesis: A slight change in169

the definition of a meta-complexity problem could result in a completely different problem. For170

example, we show that there are relativized worlds where MCSP is significantly easier than171

search-MCSP, and relativized worlds where MCSP[2n/2] and MCSP[2n/4] have dramatically172

different complexities.173

▶ Theorem 13 (Informal version). For each of the following items, there is a relativized world174

where it becomes true.175

MCSP ∈ P, but search-MCSP is very hard.176

MCSP[2n/2] ∈ P, but MCSP[2n/4] is very hard.177

MCSP[2n/4] admits a polynomial-time errorless heuristic, but MCSP[2n/2] does not.178

As direct consequences of Theorem 13, we have the following nonreducibility results:179

For example, unless nonrelativizing techniques are used, MCSP does not admit a search-to-180

decision reduction, and MCSP[2n/4] does not reduce to MCSP[2n/2].181

2.2 Barriers for Proving Hardness of Kt Complexity182

Our second result concerns Question 5.183

▶ Theorem 14 (Informal version). There is a relativized world where Levin’s Kt complexity184

can be (2 + ϵ)-approximated in polynomial time.185

We note that Question 5 also appeared in a stronger form in literature. In particular,186

let RKt be the set of strings x such that Kt(x) ≥ |x|/3, it is conjectured that any “dense187

enough” subset of RKt is not in polynomial time. Our result shows that this conjecture needs188

nonrelativizing techniques to prove.189

Actually, our message is even stronger than the above statement of Theorem 14. We190

define a nonstandard variant of Levin’s Kt complexity, and denote it as K̃t, such that K̃t191

approximates Kt, i.e. for every string x, K̃t(x) ≤ Kt(x) ≤ (2+o(1))K̃t(x). Then we construct192

a relativized world where K̃t is computable in polynomial time exactly, and Theorem 14193

follows directly.194

However, non-relativizing techniques already play an important role in characterizing195

the complexity of RKt. It was shown that any dense subset of RKt is EXP-complete under196

P/poly-truth-table reductions and NP-Turing reductions [2], and these results use the non-197

relativizing “instance checkers” for EXP-complete problems [7,8]. An algebrization barrier198

would be more satisfying for showing limitations of such techniques. However, we could not199

extend our oracle world to an algebrizing one in the sense of either [1], [26], or [6].200

Nevertheless, we managed to construct an oracle world where K̃t is computable in201

polynomial time, and EXP = ZPP holds simultaneously.202

▶ Theorem 15. There is a relativized world where K̃t complexity is computable in determin-203

istic polynomial time, and EXP = ZPP.204
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6:6 A Relativization Perspective on Meta-Complexity

In this world, EXP-complete problems have trivial instance checkers, since they are in205

ZPP. We also get some other non-relativizing theorems such as IP = PSPACE for free, since206

PSPACE ⊆ EXP = ZPP ⊆ IP. As a result, we cannot prove that K̃t is not in polynomial time,207

even if we combine IP = PSPACE or the instance checkers for EXP-complete problems with208

relativizing techniques. We believe that this oracle world serves as a “fundamental obstacle”209

([2]) to proving MKtP ̸∈ P.210

We think our new complexity measure K̃t is of independent interest. Understanding K̃t211

using nonrelativizing techniques may serve as the first step towards solving Question 5.212

2.3 Natural Proofs Versus Cryptography213

Our third set of results is motivated by Question 11. Under the so-called “Universality214

Conjecture”, [42] answered Question 11 affirmatively, i.e. the non-existence of natural proofs215

is equivalent to the existence of one-way functions. In contrast, we show that the answer of216

Question 11 is false in some relativized world, establishing a barrier for constructing one-way217

functions from nonexistence of natural proofs. We can even rule out auxiliary-input one-way218

functions (a primitive weaker than one-way functions) in our world.219

Consequently, the Universality Conjecture fails in this world. As we will discuss in220

Section 3.3, in this world, the Universality Conjecture actually fails in a very intuitive way.221

▶ Theorem 16 (informal version). There is a relativized world where P/poly-natural properties222

useful against SIZE[2δn] do not exist, and auxiliary-input one-way functions do not exist223

either.224

The non-existence of natural proofs corresponds to the zero-error average-case hardness225

of MCSP [19]. We also extend our results by showing a relativized world where MCSP or226

MINKT is hard even for two-sided error heuristics.227

▶ Theorem 17 (informal version). There is a relativized world where GapMCSP is hard on228

average under some samplable distribution, and auxiliary-input one-way functions do not229

exist.230

▶ Theorem 18 (informal version). There is a relativized world where GapMINKT is hard on231

average under some samplable distribution, and auxiliary-input one-way functions do not232

exist.233

Besides Question 11, we also show the following consequences based on our relativized234

worlds:235

(Question 9) Extending the results in [15] to the bounded-error case requires nonrelativiz-236

ing techniques, if the underlying distribution for MINKT is still the uniform distribution.237

(This is because [32] showed the equivalence between the existence of one-way functions238

and the bounded-error average-case hardness of MINKT under the uniform distribution.)239

(Question 12) It requires nonrelativizing techniques to show that GapMINKT ∈ CZK, or240

even that GapMINKT can be solved on average by a CZK protocol, on infinitely many241

input lengths. This is because [37] showed that if auxiliary-input one-way functions do242

not exist, then CZK = BPP.243

Note that the proof that if one-way functions exist then NP ⊆ CZK [14] is already244

nonrelativizing. On the other hand, we show that basing GapMINKT ∈ CZK on the245

nonexistence of one-way functions also requires a nonrelativizing proof.246
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2.4 Limits of GapMINKT as an Oracle247

We also present technical barriers for showing stronger reductions to the GapMINKT oracle,248

such as coNP-Turing reductions or P/poly-Turing reductions.249

We view (Turing) reductions to a promise problem L = (L.Yes, L.No) as machines that250

interact with an (adversarial) oracle, and tries to solve a problem L′. We say a reduction is251

robust, if it works even if the adversary is inconsistent on queries not in the promise. That is,252

on queries outside (L.Yes ∪ L.No), the adversary can sometimes return 0 and sometimes253

return 1. Furthermore, the adversary is allowed to see the input of L′ or the nondeterministic254

branch the reduction is running on, and decide whether to return 0 or 1 accordingly.255

We show that a reduction that is both robust and relativizing cannot solve Question 10 or256

(a harder version of) Question 4. However, as the requirement of robust reductions seem very257

strong, we mainly treat these results as technical barriers rather than conceptual barriers. It258

is also worth mentioning that we use the “Gap” in GapMINKT in a very crucial way.259

▶ Theorem 19 (informal version). Each of the following items cannot be proved by a reduction260

that is both robust and relativizing.261

Either GapMINKT ∈ coNP, or GapMINKT is NP-complete under coNP-Turing reduc-262

tions.263

Every problem in DistNP has a polynomial-size two-sided error heuristic with GapMINKT264

oracles.265

We did not manage to prove non-hardness results under coNP/poly-Turing reductions, as266

mentioned in Question 4. We leave it as an open problem.267

▶ Open Problem 20. Is there a relativized world where GapMINKT ̸∈ coNP/poly, and268

GapMINKT is not NP-complete under robust coNP/poly-Turing reductions?269

3 Technical Overview270

3.1 Meta-Complexity Problems Are Not Robust in Relativized Worlds271

We briefly discuss the proof techniques of the first bullet of Theorem 13 here, i.e. there is272

an oracle world such that MCSP is easy but search-MCSP is hard. The framework for the273

other two bullets will be similar.274

Making MCSP easy. We can add an MCSP oracle in our oracle world, but the circuit275

minimization problem in our world becomes MCSPMCSP. Then we also need to add an276

MCSPMCSP oracle, but again, the circuit minimization problem becomes MCSPMCSPMCSP
277

now. Therefore, a natural approach is to add the “limit” of278

MCSPMCSPMCSP...

279

into our oracle world. Indeed, this is what we do: We add an oracle itrMCSP (which stands280

for “iterated MCSP”) into our world, such that (roughly speaking)281

itrMCSP[k, x, s] = MCSPMCSPMCSP...︸ ︷︷ ︸
iterate k times

[x, s].282

(Recall that MCSPO[x, s] = 1 if and only if in the oracle world with oracle O, the circuit283

complexity of the truth table x is at most s.)284

In our world, MCSP is indeed easy. Actually, let x be a truth table of length 2n, then285

the circuit complexity of x is at most s in our world if and only if itrMCSP[2n, x, s] = 1.286

STACS 2022



6:8 A Relativization Perspective on Meta-Complexity

Making search-MCSP hard. We define an oracle O that diagonalizes against every poly-287

nomial time Turing machine M , and define itrMCSP relative to O. (That is, for example,288

itrMCSP[1, x, s] = MCSPO[x, s] and itrMCSP[2, x, s] = MCSPMCSPO
[x, s].) For every Tur-289

ing machine M , we find a large enough integer N and a hard truth table xhard of length290

poly(N). Then we feed xhard to M . How we answer the O queries of M is not important,291

but each time M makes a query itrMCSP[k, x, s], we pretend x has the lowest possible circuit292

complexity, and answer this query accordingly.293

To be more precise, we fix the oracle O up to input length N − 1 before we simulate M294

on input xhard. This has the effect that for every integer k, truth table x, and parameter295

s ≤ N − 1, we already know whether itrMCSP[k, x, s] = 1 regardless of how we fix the rest296

of O; see Claim 3.3 of the full version. Then upon every query itrMCSP[k, x, s], if s ≤ N − 1297

we already know how to reply to it; otherwise we simply reply 1.298

At last, for every query itrMCSP[k, x, s] where s ≥ N and we returned 1, we need to299

put the truth table x in the length-N slice of O so that its circuit complexity is indeed at300

most N . Since M only runs in polynomial time, and only probes very few positions of O, we301

can indeed put it somewhere in O without letting M notice. We do not need to care about302

the parameter k here, as MCSP[x, N ] = 1 implies itrMCSP[k, x, N ] = 1 for every k.3 To303

diagonalize against M , we also put xhard into the length-N slice of O, but in a place that M304

did not probe at all. In this way, we can guarantee that there is a size-N circuit for xhard,305

but M fails to find it.306

3.2 Barriers for Proving Hardness of Kt Complexity307

We first define the complexity K̃t. For a string x, let K̃t(x) denote the minimum possible308

value of |M | + ⌊log t⌋, where after we run the machine M on the empty input for t steps, the309

content of some tape of M is exactly x. The difference between Kt and K̃t is that in the310

definition of Kt, we require M to halt after outputting x; while in the definition of K̃t, x can311

be an intermediate step of the computation.312

A fixed-point oracle. Our approach will be to find a “fixed-point” of K̃t: an oracle O such313

that O[x] = K̃t
O

(x) for every string x. Then, in the world with oracle O, we can compute314

K̃t(x) by simply calling O[x].315

We proceed in stages, and in stage n, we fix the strings that have K̃t complexity exactly316

n. We enumerate every (M, t) such that |M | + ⌊log t⌋ = n, and run M for t steps. For every317

intermediate tape content x, if O[x] is not fixed yet, then we fix O[x] = n. A natural problem318

is: how to respond to the O queries made by M? The answer is surprisingly simple: for319

every query O[y] that M makes, we already have K̃t(y) ≤ n by definition, so if O[y] is not320

fixed to a value smaller than n yet, then we can return O[y] = n confidently! It is not hard321

to show that the oracle O is indeed a “fixed-point” of K̃t.322

Achieving EXP = ZPP. It is also simple to achieve EXP = ZPP in the above oracle. To323

simulate exponential time, we give the zero-error probabilistic polynomial-time machine a324

“cheat” oracle Cheat that embeds the truth tables of a certain EXP-complete problem. It is325

natural to choose the EXP-complete problem as326

L = {(M, t) : M on empty input outputs 1 in time t},327

3 It is possible to define itrMCSP such that this is satisfied.
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since we can construct O and obtain the truth tables of L at the same time. We can reply328

arbitrarily when M queries the Cheat oracle.329

Now we have a “fixed-point” oracle O such that O[x] = K̃t
O,Cheat

(x) for every x. We330

also have a length-2n truth table (of L), which we want to “embed” into Cheat. We can331

simply embed it into the length-3n (say) slice of Cheat, as there are still many empty slots332

not asked in the construction of O. Actually, the number of empty slots is so large (around333

23n − 2npoly(n)) that we can embed it “everywhere we can”. A ZPP algorithm can simply334

guess a pointer in the length-3n slice of Cheat, and it will likely point to the truth table of L.335

3.3 Natural Proofs Versus Cryptography336

We only discuss how we prove Theorem 16. Our starting point is an oracle world in [45, Section337

5], in which there is a hard-on-average problem but no auxiliary-input one-way functions.338

Given a function f : {0, 1}n → {0, 1}n (think of f as a uniformly random function), the339

world consists of two oracles: A PSPACE-complete oracle, and a “verification” oracle for f :340

Vf [x, y] =
{

1 if f(x) = y,

0 otherwise.
341

Inverting auxiliary-input one-way functions. We use essentially the same argument as in342

[45]. Roughly speaking, given any circuit C of size s, it is possible to “eliminate” every Vf343

gate in C, and obtain a circuit C ′ of size poly(s), such that C and C ′ agree on a 1 − 1/s344

fraction of inputs, but C ′ does not use Vf at all. This is because Vf behaves like an oracle345

that is both random and sparse. Therefore, for each Vf gate, we only need to store its346

answers to the inputs that appear frequently, and Vf is likely zero on other inputs.347

Now, given any circuit C, we want to “invert” C, i.e. given C(z) for a uniformly random348

input z, output any string in C−1(C(z)). We simply find a circuit C ′ that is close to C, uses349

no Vf gates, and is only polynomially larger than C. Then we use the PSPACE-complete350

oracle to invert C ′.351

Ruling out natural proofs. It suffices to show there is a succinct pseudorandom distribution,352

i.e. a distribution D over truth tables with small circuits, such that D is indistinguishable353

from the uniform distribution by small circuits. (Actually, this approach is inspired by recent354

circuit lower bounds [11,19] for MCSP.)355

Let D be any distribution over poly(s) strings, that fools PSPACE-oracle circuits of size356

s. The existence of D can be proven by the probabilistic method. For each x ∈ {0, 1}O(log s),357

let Dx be the x-th truth table in D. We “embed” Dx into the oracle Vf [x, f(x)], as follows:358

Vf [x, y, β] =
{

Dx[β] if f(x) = y,

⊥ otherwise.
359

Here, Dx[β] is the β-th bit of Dx. Now we have artificially made D a succinct distribution:360

the circuit complexity of every string in D is small. We also need to prove D is pseudorandom,361

i.e. it fools every size so(1) circuit. For every circuit C with Vf gates and PSPACE gates, we362

use the same method as above to eliminate every Vf gate in C, to obtain a circuit C ′ that is363

close to C. Note that the distribution under which we measure the closeness of C and C ′ is364

a hybrid of D and the uniform distribution. After that, we can use the fact that D fools C ′
365

to also show that D fools C, therefore C cannot be a natural proof.366
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How did the Universality Conjecture fail? The Universality Conjecture of [42] roughly says367

that if there are succinct pseudorandom distributions, then there are efficiently samplable368

succinct pseudorandom distributions. However, in our oracle world, the succinct pseudoran-369

dom distribution D does not appear to be efficiently samplable: to sample from D, it seems370

that we need be able to compute f , which is hard when f is a random function.371

3.4 Limits of GapMINKT as an Oracle372

At the core of our proofs is the following weakness of GapMINKT: It may hide a small373

change of the oracle. In particular, suppose we have two oracles O and O′, such that they374

only differ at one input, then the “Gap” in GapMINKT allows us to choose an instantiation375

of GapMINKT that is both consistent with GapMINKTO and GapMINKTO′
. (See Lemma376

6.2 in the full version.) This instantiation of GapMINKT would not help the reduction377

distinguish between O and O′ at all; however, an NP problem on O and O′ may have very378

different answers.379

NP-intermediateness under coNP-Turing reductions. It is not hard to construct a re-380

lativized world where GapMINKT ̸∈ coNP (see, e.g. [29, Theorem 4.1]). For the “non-381

completeness” part, we construct a diagonalizing oracle O such that there is no robust382

reduction from the NP problem383

L = {0n : O ∩ {0, 1}n ̸= ∅}384

to GapMINKT. On input length N , we construct a GapMINKT oracle that is both consistent385

with “O ∩ {0, 1}N = ∅” and “|O ∩ {0, 1}N | = 1”. This oracle does not reveal whether 0N ∈ L,386

and we can still use the standard method to diagonalize against every co-nondeterministic387

Turing machine. In particular, we run this machine and reply 0 to all its queries to O. If it388

rejects some branch, we put a string of length N that is not probed in this branch into O;389

otherwise we do nothing.390

Non-DistNP-hardness under P/poly-Turing reductions. [13] showed that a random per-391

mutation π : {0, 1}n → {0, 1}n cannot be computed on average by circuits of size 2o(n), even392

with a verification oracle393

Π[α, β] =
{

1 if π(α) = β,

0 otherwise.
394

We show the same thing for (robust) circuits with Π and GapMINKT oracle gates. To395

oversimplify, the argument boils down to the following task: Given an input α, a circuit396

C that computes π correctly on α, and every value {π(β)}β ̸=α, recover π(α). Without397

GapMINKT gates, it suffices to use log |C| bits to store a number k, such that on input α,398

the k-th Π gate of C contains the correct answer π(α). (For comparison, the trivial solution399

needs to record n ≫ log |C| bits.)400

Now, the circuit C has GapMINKT gates, and it is robust in the sense that CΠ,B(α) =401

π(α) for every oracle B consistent with GapMINKT. Now we let B′ be the MINKT oracle402

in the world where Π[α, π(α)] = 0, and other entries of Π are not changed. As the new403

oracle Π does not depend on π(α) at all, we can simulate CΠ,B′(α) without knowing π(α).404

On the other hand, we only modified one entry in Π, therefore B′ is still consistent with405

GapMINKT. We still record the number k defined above for the simulation CΠ,B′(α), which406

suffices to recover π(α).407
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4 Related Works408

In the paper that defined MINKT, Ko [29] studied the properties of MINKT in relativized409

worlds. Among other results, [29] showed that there is a relativized world where MINKT410

is neither in coNP, nor NP-complete under polynomial-time Turing reductions. This result411

indicates that the MINKT counterpart of Question 3 cannot be shown affirmatively using412

relativizing techniques. Also, [29] constructed a relativized world where NP ̸= coNP, but413

MINKT is NP-complete under coNP-Turing reductions (“≤SNP
T -reductions”). This leads to414

the conjecture [15, 29] that MINKT might be NP-complete under coNP-Turing reductions in415

the unrelativized world (Question 4).416

Our third set of results build upon the results of Wee [45]. The motivation of [45] was to417

show that a certain cryptographic object (succinct noninteractive argument, SNARG) does418

not imply one-way functions in a relativizing way. The framework of [45] was very helpful419

for us, as we also need to rule out (auxiliary-input) one-way functions.420

Xiao [46] presented a relativized world where learning is hard against circuits and auxiliary-421

input one-way functions do not exist either. It may seem that our results are direct corollaries422

of this result, since [10] proved that natural proofs imply learning algorithms. However, [46]423

only ruled out learning algorithms that use uniform samples, while the learning algorithms in424

[10] need membership queries. It seems that our results and [46] are incomparable. However,425

we remark that the techniques underlying [45,46] and our results are quite similar.426

We also mention the negative results of Hirahara and Watanabe [20] that has a different427

but similar setting compared to ours. In particular, they consider reductions to MCSP (in428

the unrelativized world) that are oracle-independent, i.e. work for MCSPA for every oracle429

A. Two particular results in [20] are that deterministic oracle-independent reductions cannot430

reduce problems outside P to MCSP, and that randomized oracle-independent reductions431

that only make one query cannot reduce problems outside AM∩coAM to MCSP. As discussed432

in [20], the difference between relativization and their model is that in the relativized world433

with A oracle, a Turing reduction has access to not only MCSPA but also A itself; however434

in their model, the reduction does not have access to A.435
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