
Approximate Distance Oracles Subject to Multiple Vertex Failures ∗

Ran Duan† Yong Gu‡ Hanlin Ren§

Abstract
Given an undirected graph G = (V,E) of n vertices and m
edges with weights in [1,W], we construct vertex sensitive
distance oracles (VSDO), which are data structures that
preprocess the graph, and answer the following kind of
queries: Given a source vertex u, a target vertex v, and
a batch of d failed vertices D, output (an approximation of)
the distance between u and v in G −D (that is, the graph
G with vertices in D removed). An oracle has stretch α if it

always holds that δG−D(u, v) ≤ δ̃(u, v,D) ≤ α · δG−D(u, v),
where δG−D(u, v) is the actual distance between u and v in

G−D, and δ̃(u, v,D) is the distance reported by the oracle.
In this paper we construct efficient VSDOs for any

number d of failures. For any constant c ≥ 1, we propose
two oracles:

• The first oracle has size n2+1/c(logn/ε)O(d) · logW ,
answers a query in poly(logn, dc, log logW, ε−1) time,
and has stretch 1 + ε, for any constant ε > 0.

• The second oracle has size n2+1/cpoly(log(nW), d),
answers a query in poly(logn, dc, log logW) time, and
has stretch poly(logn, d).

Both of these oracles can be preprocessed in time poly-

nomial in their space complexity. These results are the

first approximate distance oracles of poly-logarithmic query

time for any constant number of vertex failures in gen-

eral undirected graphs. Previously there are (1 + ε)-

approximate d-edge sensitive distance oracles [Chechik et

al. 2017] answering distance queries when d edges fail,

which have size O(n2(logn/ε)d · d logW) and query time

poly(logn, d, log logW).

1 Introduction

Real-life networks are prone to failures. Usually, there
can be several failed nodes or links, but the graph
topology will not deviate too much from the underlying
failure-free graph. A typical problem is to find the
shortest path between two nodes in a network that
avoids a specific set of failed nodes or links. This
motivates the d-failure model, in which we should
preprocess a graph, such that upon a small number (d)
of failures, we can “recover” from these failures quickly.

∗This work has been supported in part by the Zhongguancun

Haihua Institute for Frontier Information Technology.
†Institute for Interdisciplinary Information Sciences, Tsinghua

University.
‡Institute for Interdisciplinary Information Sciences, Tsinghua

University.
§Institute for Interdisciplinary Information Sciences, Tsinghua

University.

In their pioneering work, Demetrescu and Thorup
[27] designed a data structure that can maintain all-
pairs shortest paths under one edge failure. In other
words, for each triple (u, v, f) where u, v are vertices
and f is a failed edge, the data structure can output
the length of the shortest path from u to v that does
not go through f , in O(log n) query time. A subsequent
work [28] extends the structure to also handle one
vertex failure, and improves the query time to O(1).
The one-failure case is studied extensively in literature
[23, 7, 8, 33, 64, 36, 5, 9, 37, 19, 52].

People also tried to find structures handling mul-
tiple failures. For undirected graphs, we can answer
connectivity queries under d edge failures1 [51, 31, 32]
and d vertex failures [31, 32] in poly(d, log n) time.
Chechik et al. [21] designed a data structure that main-
tainsO(d)-approximate shortest paths under d edge fail-
ures in an undirected graph, and Bilò et al. [10] im-
proved the approximation ratio to 2d + 1. For any
ε > 0, Chechik et al. [20] designed a data struc-
ture that (1 + ε)-approximates shortest paths under
d edge failures in an undirected graph, with space
complexity O(n2(log n/ε)d · d logW) and query time
poly(log n, d, log logW), where W is the ratio of the
largest edge weight to the smallest edge weight. More
related work can be found in Section 1.1.

However, despite much effort, it was not known if
one can maintain (approximate) shortest paths under
multiple vertex failures. This problem was addressed as
an open problem in [5, 21, 20], and also in Chechik’s
PhD thesis [18].

In this paper we build efficient data structures that
answer approximate distance queries under multiple
vertex failures for general undirected graphs, answering
the above question in the affirmative. A vertex-sensitive
distance oracle (VSDO) for a weighted undirected graph
G = (V,E) is a data structure that given a set of failed
vertices D ⊆ V and u, v ∈ V \D, outputs (an estimate
of) the length of the shortest path from u to v that
avoids all vertices in D. We assume a known upper
bound d on the number of failures, i.e. for any query

1We can also use dynamic connectivity structures with poly-

logarithmic worst case update time [41, 35, 63] to handle d edge
failures.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(u, v,D), we always have |D| ≤ d. We will be concerned
with the following parameters of a VSDO:

• Space complexity, i.e. the amount of space that the
data structure occupies.

• Query time, i.e. the time needed to answer one
query (u, v,D).

• Approximation ratio, a.k.a. stretch: A VSDO has
stretch α if it always holds that δG−D(u, v) ≤
δ̃(u, v,D) ≤ α ·δG−D(u, v), where δG−D(u, v) is the
actual distance between u and v in G − D (i.e. G
with D disabled), and δ̃(u, v,D) is the output of
the VSDO.

We will not be particularly interested in the prepro-
cessing time of VSDOs; nevertheless, all VSDOs in this
paper can be preprocessed in time polynomial in their
space complexity.

In this paper, n andm denote the number of vertices
and edges respectively. Let W be the ratio of the largest
edge weight to the smallest edge weight. W.l.o.g. we can
assume that edge weights are real numbers in [1,W].

1.1 More Related Work.
Sensitivity oracles. For the case of two vertex

failures, Duan and Pettie [30] showed that exact dis-
tances in a directed weighted graph can be queried in
O(log n) time, with an oracle of size O(n2 log3 n), and
Choudhary [22] designed an oracle ofO(n) size that han-
dles single source reachability queries in directed graphs
in O(1) time.

The general problem of d failures has also received
attention on planar graphs: Borradaile et al. [15] con-
structed a data structure that maintains connectivity
under d vertex failures, and Charalampopoulos et al.
[16] designed a data structure that answers exact dis-
tance queries under d vertex failures.

In a recent breakthrough, van den Brand and
Saranurak [62] gave an oracle that handles an arbitrary
number d of edge failures in directed graphs. Their
oracle can answer reachability queries in O(dω) time,
and exact distance queries in n2−Ω(1) time (for small
integer weights), where ω < 2.3728639 is the matrix-
multiplication exponent [24, 57, 65, 44].

We summarize the sensitivity connectivity/distance
oracles in the full version (Table 2 of Appendix C) of
this paper.

Fault-tolerant structures. A related concept is
fault-tolerant (FT) spanners: a subgraph G′ of G is
a d-FT spanner if, after removing any d vertices, the
remaining parts of G′ is a spanner of the remaining
parts of G. It might be a priori surprising that sparse
FT spanners exist, but Chechik et al. [17] gave the first

construction of d-FT (2k− 1)-spanners with O(d2kd+1 ·
n1+1/k log1−1/k n) edges. Subsequent papers [29, 12, 14]
improved the number of edges to O(n1+1/kd1−1/k),
which is optimal assuming the girth conjecture of Erdős
[34].

Besides FT spanners, there are many other kinds of
fault-tolerant structures, e.g. [11, 45, 48, 49, 10, 13, 47,
50]. We refer the reader to the excellent survey of [46].

Dynamic shortest path. There are dynamic all-
pairs shortest path structures handling vertex updates.
Thorup [59] gave a fully dynamic all-pairs shortest
paths structure with worst-case update time Õ(n2.75),
and Abraham et al. [1] gave a randomized worst-case
update time bound Õ(n2+2/3). Recently, Brand and
Nanongkai [61] gave a (1+ε)-approximate algorithm for
maintaining APSP under edge insertions and deletions
with worst-case update time Õ(n1.863/ε2) for directed
graphs. Using it we can construct a Õ(dε−2n1.863) query
time oracle for vertex failures in undirected graphs by
a simple reduction. Other fully or partial dynamic
shortest path structures include [2, 6, 26, 40, 38, 39,
43, 55, 54, 58, 56].

1.2 Our results. We provide the first constructions
of approximate VSDOs for general undirected graphs
with poly-logarithmic query time. Our main results are
as follows:2

Theorem 1.1. For any constants c ≥ 1 and ε > 0, we
can construct VSDOs for undirected graphs with:

(a) space complexity n2+1/c logW ·(ε−1 log n)O(d), query
time Õ(d2c+6ε−1 log logW) and stretch 1 + ε;

(b) space complexity Õ(n2+1/cd3 log(nW)), query time
Õ(d2c+9 log log(nW)) and stretch O(dc+2 log6 n).

Each oracle can be preprocessed in time polynomial in
their space complexity.3 Our constructions also allow
an actual approximate shortest path to be retrieved in
an additional time of O(`), where ` is the number of
edges in the reported path.

Using existing structures, we need either nΩ(d) space
or Ω(n) query time.4 Thus our results are the first of
its kind.

2Õ hides poly(logn) factors.
3See the full version (Table 3 of Appendix C) for precise time

bounds.
4We can use the d-fault tolerant spanner [17, 29, 12, 14] with

the brute-force query algorithm, build nd−2 two-failure distance

oracles [30], use the dynamic shortest path algorithms [61], or use

the oracle [62] which also works for directed graphs. But none of
these solutions provide both no(d) space and o(n) query time.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

1.3 A brief overview. In this section, we briefly
introduce the ideas needed to construct the desired
VSDOs.

The edge-sensitive distance oracle of [20].
Our first VSDO depends on [20] which handles d edge
failures. Therefore we briefly describe their oracle first.
It may be helpful to think of their query algorithm as a
recursive one.

Given u, v ∈ V and a set D of d edge failures, let
Pans be the shortest u-v path in G − D, which we are
searching for. The oracle first partitions the shortest
path P from u to v in G (which may go through failures)
into Õ(ε−1 logW) short segments. Consider a segment
X that contains some failed edges. If Pans does not
go through X, then we can “preprocess” the graph
G − X and search for Pans in G − X. Otherwise, if
Pans goes through some vertex x ∈ X, then we can pick
an arbitrary vertex w ∈ X such that there are no failed
edges between x and w, and pretend that Pans passes
through w. That is, we recursively find the shortest
paths in G − D from u to w and from w to v and
concatenate them. It is easy to see that this brings
an additive error of at most 2|X| to our solution, where
|X| is the length of X.

Thus, we want to find a small set of intermediate
vertices, which we denote as H, with the following
property: For every vertex x and failure f , if x has
distance at most |X| to f , then there is some w ∈ H
such that x also has distance at most |X| to w in G−D.
As it turns out that the query time is polynomial in |H|,
the size of H should be small.

There is a natural choice of H: we simply let it
be the set of vertices incident to some failed edges. It is
easy to see that |H| ≤ 2d, thus the query algorithm runs
in time polynomial of d. The above property is also true:
given any vertex x and a nearby failure f , we can walk
along the path from x to f until we meet a failed edge,
then the vertex w we stop at is both in H and close to
x. We can control the total additive error (i.e. the sum
of 2|X|’s over the “recursion”) to be at most ε·|Pans|, by
partitioning each path into sufficiently short segments.

Note that, for the sake of intuition, we have omitted
some important details, such as how to “preprocess”
G − X (by a decision tree structure) and how to
implement the query algorithm (non-recursively).

The “high-degree” obstacle. The obvious diffi-
culty of handling vertex failures is the presence of failed
vertices with very high degrees. If every failed vertex
has degree ≤ ∆, we can simply simulate an edge-failure
distance oracle [21, 20] and delete at most d · ∆ edges
from it. Equivalently, we can define the set of inter-
mediate vertices H as those active vertices adjacent to
some failure, then |H| ≤ d · ∆ and we run the above

query algorithm. However the techniques of [21, 20] do
not seem to work for high-degree vertex failures. For
example, techniques in [21] only guarantee a stretch of
≥ ∆, and techniques in [20] require poly(∆) query time,
therefore both are unsatisfactory when ∆ = Ω(n).

By the construction of (2k − 1)-stretch spanners
with O(n1+1/k) edges [4], we can construct a (2 log n−
1)-stretch spanner with O(n) edges. We note that the
query algorithm works even if every failed vertex has a
small degree in the spanner (rather than in the whole
graph): We can define H to be the set of vertices
adjacent to some failed vertex in the spanner. If Pans

goes through some vertex x that has distance |X| to
a failed vertex f , the distance between x and f in
the spanner is O(|X| log n), and there must be some
w ∈ H that has distance O(|X| log n) to x in G−D. By
partitioning the paths into shorter segments, we can still
control the additive error, i.e. the sum of O(|X| log n)
over the “recursion”, to be less than ε · |Pans|.

High-degree hierarchy: A first attempt.
Given the “high-degree” obstacle, it is natural to see
whether the “high-degree hierarchy” of [31] may help
us. Plugging the spanners5 into the hierarchy of [31],
we obtain a structure as follows. The vertices are par-
titioned into p = O(log n) levels; let Ui be the set of
vertices with level ≥ i. So we have a sequence of ver-
tex sets V = U1 ⊇ U2 ⊇ · · · ⊇ Up ⊇ Up+1 = ∅, and
the i-th level is the set Ui \ Ui+1.6 For every i, let
Gi be the induced subgraph of V \ Ui+1. We do not
have a complete spanner for Gi; we can only afford to
build a “subset-spanner” that preserves the distances in
Gi, among vertices in Ui \ Ui+1 (instead of V \ Ui+1).
The structure guarantees that every failed vertex in the
subset-spanner of any level has low degrees.

It is natural to define H as the set of neighbors of
failures in the subset-spanners, and |H| will be small. If
Pans goes through some vertex x that has distance |X|
to a failed vertex f , and x and f are in the same level,
then we can find an intermediate vertex w ∈ H that has
distance O(|X| log n) to x in G−D, and we are fine. But
what if x and f are in different levels? In this case, the
x-f path may not be preserved by the “subset-spanner”,
thus not captured by H. In [31, Section 4], the
authors used ad hoc structures to preserve connectivity
between different levels; it appears difficult to extend
these structures to also handle ((1 + ε)-approximate)

5The reason that we need to plug in a spanner, rather than

the original graph, is that we can only plug in a sparse graph into

the high-degree hierarchy.
6In the hierarchy structure of Section 2.2, each Ui+1 is not

necessarily a subset of Ui; this issue is not essential, so for

simplicity, in the brief overview we will assume each Ui+1 is indeed
a subset of Ui.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

distances.
Our ideas. It is inconvenient that the spanner

at level i only preserves distances inside Ui \ Ui+1.
Therefore, our first idea is to “extend” the spanners
to also preserve distances at lower levels: the spanner
at level i should preserve distances between any pair of
vertices (x, y), where x ∈ Ui \ Ui+1 and y ∈ V \ Ui+1.
Note that we still only guarantee that every vertex
failure has small degrees in the original spanners; they
may have large degrees in the extended spanners.

We implement the spanners by tree covers, and
there is a natural way to “extend” them. The extended
tree cover consists of a collection of trees whose union
is a spanner that preserves distances between Ui \ Ui+1

and V \ Ui+1. Moreover, each tree is a shortest path
tree rooted in Ui \ Ui+1 (the highest level of Gi). See
Section 2.1 for more details.

Recall that in the query algorithm, we have a non-
failure vertex x that is close to a failure f , and we want
to find an intermediate vertex w ∈ H that is close to x
in G−D. Suppose that x is at a higher level than f . If
we walk from f (at a lower level) to x (at a higher level),
it seems that our first step should go to the parent of f
in some tree. Actually, this intuition can be rigorously
proved! See the proof of Lemma 3.2. Therefore, if H
consists of the neighbors of every failure (in the original
spanners) and the parents of every failure in each tree
(in the extended tree covers), then we can deal with
every (x, f) such that the level of x is at least that of
f . Every failure is only in Õ(1) trees, thus |H| is indeed
small.

We need to adapt the query algorithm to ensure
that f never has a higher level than x. Let P be the
shortest u-v path in the original graph, and we partition
P into short segments. Consider a segment X that
contains failures, and let i be the highest level of any
failure in X. If Pans does not contain any vertex in
X with level at least i, then we can “preprocess” the
graph G−(X∩Ui) and search for Pans in this subgraph.
Otherwise Pans goes through some x ∈ (X ∩ Ui), and
by definition, the level of x cannot be smaller than the
level of any failure in X. Therefore, we can find some
intermediate vertex w ∈ H close to x, “pretend” that
Pans goes through w, and continue.

The above discussion implies a data structure with
space complexity roughly n3. To reduce the space
complexity by a factor of n1−o(1), we prove a structural
theorem (Theorem 4.1) for shortest paths under vertex
failures, which allows us to compress such paths. (The
corresponding theorem [20, Theorem 3.1] does not hold
for vertex failures.) Curiously, the proof of this theorem
also relies on Lemma 3.2.

On oracle (b). Although oracle (b) has a larger
stretch compared to oracle (a), we think it is also of
interest, since it is the first oracle that handles ω(log n)
failures in polynomial space and poly(log n) query time,
within a reasonable stretch.7 Note that setting ε = ω(1)
(e.g. ε = logn) in oracle (a) does not improve its space

complexity to n2 logo(d) n, so oracle (b) is not a direct
corollary of oracle (a).

1.4 Notation. In this paper, log x = log2 x, lnx =
loge x. For a set S and an integer k, |S| is the cardinality
of S, and we denote

(
S
k

)
= {S′ ⊆ S : |S′| = k}, and(

S
≤k
)
,
(
S
≥k
)

are defined analogously. For two sets X and

Y , define their Cartesian product as X × Y = {(x, y) :
x ∈ X, y ∈ Y }. We use ◦ as the concatenation operator
for paths or sequences. For paths P1, P2, if u is the last
vertex in P1 and v is the first vertex in P2, then P1 ◦P2

is well-defined if u = v or (u, v) is an edge in G.
For a graph H and u, v ∈ V (H), wH(u, v) denotes

the length of the edge between u and v (wH(u, v) = +∞
if such an edge does not exist), δH(u, v) denotes the
length of the shortest path inH from u to v and πH(u, v)
denotes the corresponding shortest path. If S ⊆ V (H)
is a subset of vertices, then δH(u, S) = min{δH(u, v) :
v ∈ S}. (δH(u, ∅) = +∞.) We omit the subscript H
if H = G is the input graph. We define H[S] as the
subgraph induced by S, and H − S = H[V (H) \ S].
We use nW as an upper bound of the diameter of
any (connected) subgraph of G. We assume that the
shortest path between every pair of vertices in any
subgraph is unique (see Section 3.4 of [25]).

For a path P and u, v ∈ P , define P [u, v] as
the portion from u to v in P , and sometimes this
notation emphasizes the direction from u to v. Let
(u = x0, x1, . . . , x`−1, x` = v) denote the path P [u, v],
then we define P (u, v] = P [x1, v], P [u, v) = P [u, x`−1]
and P (u, v) = P [x1, x`−1]. Define |P | as the length
of path P . For a tree T rooted at r and a vertex
x ∈ V , define the depth of x, denoted by depT (x), as
the (weighted) distance from x to r in T .

In this paper, D denotes the set of ≤ d failed
vertices. For convenience, we always assume n ≥ 3 and
d ≥ 2.

Note that we also define some more notations at the
end of Section 2.2, which is relevant to the “high-degree
hierarchy”.

2 Source-Restricted Tree Covers in
High-Degree Hierarchy

Our VSDO is based on a variant of the high-degree hier-
archy of [31], which we equip with the source-restricted

7It seems that even O(
√
n) stretch was open before this result.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

tree covers of [60, 53] to approximately preserve dis-
tances.

2.1 Source-restricted tree covers. Let G = (V,E)
be an undirected graph. A tree cover of G is, informally,
a set of trees such that every vertex v ∈ V is in
a small number of trees, and for every two vertices
u, v ∈ V , there is a tree that approximately preserves
their distance δ(u, v). In this paper, we relax the
second condition, requiring it to hold only for every
u ∈ S, v ∈ V , where S is some subset of V . Following
terminologies of [53], we call such tree covers source-
restricted.

Throughout this paper, k = lnn.8 We define
source-restricted tree cover as follows.

Definition 2.1. Given S ⊆ V , an S-restricted tree
cover is a set of rooted trees {T (w) : w ∈ S}, such that
the following hold.

a) For every w ∈ S, there is exactly one tree T (w)
rooted at w, spanning a subset of V (which we denote
as V (T (w))).

b) For every u ∈ S, v ∈ V , there is some w ∈ S such
that u, v ∈ V (T (w)), and the distance between u and
v in T (w) is at most (2k − 1)δ(u, v).

c) Every vertex v ∈ V is in at most kn1/k(lnn + 1) ≤
2e ln2 n trees.

In [60], Thorup and Zwick constructed approximate
distance oracles, and they noticed that their construc-
tions are also good tree covers. A simple modification
of their construction (see [53]) yields source-restricted
tree covers.

Theorem 2.1. Given a graph G = (V,E) and S ⊆ V ,
we can compute in deterministic polynomial time an S-
restricted tree cover T (S) = {T (w) : w ∈ S} such that
for any u ∈ S, v ∈ V , the vertex w in Definition 2.1 b)
can be found in O(k) time.

A proof sketch of Theorem 2.1 can be found in
Appendix B of the full version; we also refer the
interested reader to [60, 53] for details.

For S ⊆ V , we denote T (S) as the S-restricted
tree cover constructed in Theorem 2.1. For S,R ⊆ V ,
we denote TR(S) as the (S \ R)-restricted tree cover
T (S \R) in G−R.

For technical reasons (namely, we want the hierar-
chy structure in Section 2.2 to have a reasonable size),

8Our construction works for any parameter k, but the com-

plexity is proportional to kn1/k, so we minimize it by setting
k = lnn.

r

v

u

w

degree pseudo-degree

r 4 2
u 5 3
v 4 3
w 1 0

Figure 1: A sample tree in T (S). Black vertices are in
S, green vertices are trunk vertices not in S, and bold
edges denote the subtree induced by trunk vertices. We
also include a table of degrees and pseudo-degrees of
some sample vertices.

we need that the number of “high-degree” vertices in
T (S) is only o(|S|/d), where d is the number of fail-
ures. However, here we defined the tree cover T (S) to
span not only S, but maybe some other vertices in V .9

So we can only prove degree bounds of the following
form: the number of vertices with high degree w.r.t. the
“trunk” parts of the tree cover is o(|S|/d). The precise
definitions are as follows.

Definition 2.2. Consider S ⊆ V , T ∈ T (S), v ∈
V (T). We say v is a trunk vertex of T if there are
u,w ∈ S such that v lies on the path from u to w in T .
The subtree (subgraph) of T induced by trunk vertices
of T is denoted as Trunk(T). The pseudo-degree of a
vertex v ∈ V (T), denoted as pdegT (v), is the degree of
v in Trunk(T). If v is not a trunk vertex of T , then
pdegT (v) = 0.

Note that vertices in Trunk(T) are not necessarily
in S. See Fig. 1 as an example.

The following property will be useful in Section 3:
for a vertex v that is not in Trunk(T), its path in T to
any vertex in S must go through its parent. (This is
because the root of T is always in S.)

Let s = 4e · dc+1 ln2 n + 1 be a degree threshold,
where c ≥ 1 is any constant. Define Hi(T (S)) as the
set of vertices in V that has pseudo-degree > s in some
tree in T (S). We prove our desired upper bound on
|Hi(T (S))|.
Lemma 2.1. For any S ⊆ V , |Hi(T (S))| ≤ |S|

2dc+1 .

Proof. For a tree T , let Leaf(T) be the set of leaves of

T . Then there are at most
⌊
|Leaf(T)|−2

s−1

⌋
vertices in T

that has degree > s [31, Lemma 3.1]. For any T ∈ T (S),
Leaf(Trunk(T)) ⊆ S by definition, thus∑
T∈T (S)

|Leaf(Trunk(T))| ≤
∑
v∈S
|{T ∈ T (S) : v ∈ T}| .

9This corresponds to the informal description of “extending”
tree covers in Section 1.3.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Path finding algorithm

1: U1 ← V
2: for i← 1 to h do
3: If Ui is a leaf then set p← i and halt
4: Let W1,W2, . . . ,Wd be the children of Ui and artificially define W0 = ∅, Wd+1 = Wd.
5: Let j ∈ [0, d] be minimal such that D ∩ (Wj+1 \Wj) = ∅
6: If j = 0 then set p← i and halt
7: Otherwise Ui+1 ←Wj

Since every v ∈ S appears in ≤ 2e ln2 n trees in T (S),
we have ∑

T∈T (S)

|Leaf(Trunk(T))| ≤ |S| · 2e ln2 n,

thus

|Hi(T (S))| ≤
∑

T∈T (S)

⌊ |Leaf(Trunk(T))|
s− 1

⌋

≤ |S| · 2e ln2 n

s− 1
=
|S|

2dc+1
.

2.2 The high-degree hierarchy. We use a simpli-
fied version of the high-degree hierarchy in [31]. Fix
a parameter c ≥ 1, the hierarchy structure is a set of
O(n1/c) representations of the graph, such that for ev-
ery set of d failures, we can find some representation
in which all failed vertices have low pseudo-degrees in
their relevant tree covers.

Definition 2.3. The hierarchy tree is a rooted tree in
which every node10 corresponds to a subset of V . The
root corresponds to V . Each node U (U ⊆ V) stores
a tree cover T (U), and each edge (U,W), where U is
the parent of W , stores a tree cover TW (U), which is
T (U \W) in G−W . The hierarchy tree is constructed
as follows. Let U be any node. If Hi(T (U)) = ∅, then U
is a leaf; otherwise let W1,W2, . . . ,Wd be its children,
where

W1 = Hi(T (U)),(2.1)

Wi = Wi−1 ∪Hi(TWi−1
(U)). (for 2 ≤ i ≤ d)

Then we recursively deal with all W1,W2, . . . ,Wd.

There are two main differences compared with the
hierarchy structure in [31].

10We use “vertex” for nodes in the input graph, and “node” for
nodes in the hierarchy tree.

• We simplified the definition of W1 as in (2.1). This
change is not essential, but we feel that it could
make the hierarchy tree easier to understand. As
a consequence, a node is not necessarily a subset
of its parent, which is different from [31] (and
Section 1.3).

• More importantly, we store in each node the source-
restricted tree covers introduced in Section 2.1. By
contrast, [31] only concerns about connectivity, so
they used a (somewhat arbitrary) spanning forest
instead.

The following lemmas assert that the hierarchy tree
“is small, shallow and effectively represents the graph”
[31], which are crucial for our data structures.

Lemma 2.2. (Hierarchy Size and Depth)
Consider the hierarchy tree constructed with high-
degree threshold s = 4e · dc+1 ln2 n + 1, then the
following hold.

1. The depth h of the hierarchy tree is at most
b 1
c logd nc,11 assuming the root has depth 0.

2. The number of nodes in the hierarchy tree is at most
O(n1/c).

Proof. Let U be a node in the hierarchy tree,
W1,W2, . . . ,Wd be its children (if exist). By Lemma 2.1,

we have |W1| = |Hi(T (U))| ≤ |U |
2dc+1 and |Hi(TWi

(U))| ≤
|U |

2dc+1 for any 0 < i ≤ d. Since Wi+1 = Wi∪Hi(TWi
(U)),

it follows that |Wi| ≤ i|U |/2dc+1 for each i. Therefore
|Wi| ≤ |U |/2dc for all 0 < i ≤ d. Any node at the k-
th level corresponds to a subset of V with size at most
n/(2dc)k, therefore the depth of the hierarchy tree is at
most h ≤ blog2dc nc ≤ b 1

c logd nc. There are at most∑h
i=0 d

i ≤ 2dh = O(n1/c) nodes in the hierarchy tree.

11In subsequent sections we will write h as a shorthand of
O(logn/ log d) in time/space bounds.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 2.3. For any set D of at most d failures, Algo-
rithm 1 finds in O(hd) time a path U1(= V), U2, . . . , Up
in the hierarchy tree from root to some node Up, such
that for every tree T ∈ ⋃

1≤i≤p TUi+1
(Ui) and every

f ∈ D, f has pseudo-degree ≤ s in T . (Assume
Up+1 = ∅.)

Proof. Algorithm 1 executes at most O(h) iterations
since the hierarchy tree has depth at most h. For
every node U and vertex v ∈ V , we store the first
child Wj of U (or none) that v appears in. It is then
easy to implement each iteration in O(d) time. When
Algorithm 1 halts at Line 3 or 6, either Up is a leaf or
D ∩W1 = ∅, where W1 = Hi(T (Up)) is the first child of
Up. Clearly, in both case we have D ∩Hi(T (Up)) = ∅.

For any 1 ≤ i < p, since Wd+1 = Wd, Line 5
can always find such j. Let Ui+1 = Wj be the j-th
child of Ui. If j = d, then D ∩ (Wj′+1 \Wj′) 6= ∅ for
j′ = 0, . . . , d − 1. Since |D| ≤ d, we have D ⊆ Wd,
thus D ∩ Hi(TWd

(Ui)) = ∅. If 1 ≤ j < d, then we have
D ∩ (Wj+1 \Wj) = ∅. Since Wj+1 = Wj ∪Hi(TWj (Ui))
and Hi(TWj (Ui))∩Wj = ∅, we haveD∩Hi(TWj (Ui)) = ∅.
The lemma follows.

In Section 3, Section 4 and Section 5, we always
deal with a path V = U1, U2, . . . , Up in the hierarchy
tree from the root V to a node Up (not necessarily a
leaf node). Artificially define Up+1 = ∅. In other words:

• We run the preprocessing algorithm for every pos-
sible such paths V = U1, U2, . . . , Up, and we build
a separate data structure for each path. The
space complexity is then multiplied by a factor of
O(n1/c).

• In the query algorithm, given D, we always begin
by identifying a path V = U1, U2, . . . , Up using
Lemma 2.3, then every failed vertex f ∈ D has
pseudo-degree ≤ s in every TUi+1

(Ui) (1 ≤ i ≤ p).
Fix a path V = U1, U2, . . . , Up in the hierarchy tree,

and we assume Up+1 = ∅. The following corollary of
Theorem 2.1 will be important for us.

Corollary 2.1. Let x ∈ U` \ U`+1 and y ∈ V \ U`+1.
There is a tree T ∈ TU`+1

(U`) such that the distance
between x and y in T is at most (2k − 1)δG−U`+1

(x, y).
Moreover, the root of such a tree can be found in O(k)
time.

We will denote this tree T as T`(x, y), and denote
the path from x to y in T as P`(x, y).

The set of trees is denoted as T =
⋃p
i=1 TUi+1

(Ui).
The proof of Lemma 2.2 shows that |Ui| ≤ |Ui−1|/2dc,
therefore |T | ≤ ∑p

i=1 |Ui| = O(n). In a path V =
U1, U2, . . . , Up in the hierarchy tree, since Ui+1 is not

necessarily a subset of Ui, we define the level of a vertex
v as:

Definition 2.4. Fix a path V = U1, U2, . . . , Up in the
hierarchy tree, define the level of v to be the largest
integer l such that v ∈ Ul, denoted as l(v). Define G`
to be the subgraph of G induced by all vertices with level
at most `.

3 An (1 + ε)-Stretch Oracle with n3+1/c+o(1)

Space

In this section we present an oracle with

space complexity n3+1/c · (ε−1 log(nW))O(d),
query complexity poly(log(nW), ε−1, d),

stretch 1 + ε,

for any ε > 0. In this paper (except Section 5 and

Section 4.5) we may assume d = o
(

logn
log logn

)
, W =

poly(n), so we can simplify the notation for space
complexity to n3+1/c+o(1). We will show how to reduce
the space complexity to n2+1/c+o(1) in Section 4.

3.1 Data structure. Let ε1 = ε/(2 + ε), ε2 =
ε1/(2k − 1), so ε1 < 1. (Recall k = lnn.) We first
define a decomposition of a path P into O(log |P |/ε2)
segments. This definition has the same spirit as [20,
Definition 2.1], but it partitions the vertices (excluding
u, v), rather than edges, into segments.

Definition 3.1. ((ε2-)segments) Consider a path
P = (u = v0, v1, v2, . . . , v` = v). For every 1 ≤ i, j < `,
we say vi and vj are in the same segment if one of the
two conditions hold:

• |P [u, vi]|, |P [u, vj]| ≤ |P |/2 and
blog1+ε2 |P [u, vi]|c = blog1+ε2 |P [u, vj]|c.

• |P [vi, v]|, |P [vj , v]| < |P |/2 and
blog1+ε2 |P [vi, v]|c = blog1+ε2 |P [vj , v]|c.

It is easy to verify that being in the same segment
is indeed an equivalence relation, and each equivalence
class is indeed a contiguous segment of the path. (See
Fig. 2.) There are O(log |P |/ε2) different segments. For
a vertex vi on P , define seg(vi, P) as the segment it
belongs to. More precisely, seg(vi, P) = P [vl, vr] where
vl is the leftmost (closest-to-u) vertex in the segment,
and vr is the rightmost (closest-to-v) vertex in the
segment. Define seg(P) as the set of segments on P .
Note that u and v do not belong to any segment.

Lemma 3.1. Let P be a path from u to v, x ∈ P \{u, v},
then |seg(x, P)| ≤ ε2 ·min{|P [u, x]|, |P [x, v]|}.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(1+ǫ2)0 (1+ǫ2)2 (1+ǫ2)4 ...

u v

(1+ǫ2)1 (1+ǫ2)3

(1+ǫ2)0(1+ǫ2)2(1+ǫ2)4...

(1+ǫ2)1(1+ǫ2)3
|P |/2

Figure 2: An illustration of path decomposition, where each rounded rectangle denotes a segment.

Proof. If |P [u, x]| ≤ |P |/2, |P [u, x]| ≤ |P [x, v]| and
seg(x, P) is defined in the first way. Let i =
blog1+ε2 |P [u, x]|c. For any y ∈ seg(x, P), (1 + ε2)i ≤
|P [u, y]| < (1 + ε2)i+1. Thus |seg(x, P)| ≤ (1 + ε2)i+1 −
(1 + ε2)i = ε2(1 + ε2)i ≤ ε2|P [u, x]|. The case that
|P [x, v]| < |P |/2 is symmetric.

Recall that we build a data structure for every node
Up in the hierarchy tree. Let the path from the root V
to Up be U1(= V), U2 . . . , Up and Up+1 = ∅. The data
structure for Up consists of decision trees FT (u, v) for
all pairs of vertices u, v ∈ V , which are constructed as
follows:

• Each node12 α ∈ FT (u, v) is associated with a set
avoid(α) ⊆ V of vertices that we avoid.

• Denote the root of FT (u, v) as root(u, v), and let
avoid(root(u, v)) = ∅.

• For each node α ∈ FT (u, v), we store the path
Pα = πG−avoid(α)(u, v), i.e. the shortest u-v path
in G not passing through avoid(α). If u, v are not
connected in G− avoid(α), we assume that Pα is a
path with length +∞.

• For each node α of depth < d (the root has depth
0), each segment X ∈ seg(Pα), and each 1 ≤ i ≤ p,
we create a child ch(α,X, i) of α, in which

avoid(ch(α,X, i)) = avoid(α) ∪ (X ∩ Ui).
That is, the path stored in a child of α needs to
avoid avoid(α) and the vertices of Ui in a segment
X ∈ seg(Pα).

The decision tree has depth d, and each non-leaf
node has O(p · log |P |/ε2) = O(hε−1 log n log(nW))
children. (Recall h = O(log n/ log d) and ε2 = ε/((2 +
ε)(2k − 1)) = ε/Θ(log n).) We store in each node
α the path Pα as well as a table of seg(v, Pα) for
each v ∈ Pα, so that we can quickly locate any
vertex in Pα. Therefore one decision tree occupies
n ·O(hε−1 log n log(nW))d space. As there are O(n1/c)
nodes in the hierarchy tree, and for each node we need
to store O(n2) decision trees, the total space complexity
is n3+1/c ·O(hε−1 log n log(nW))d.

12Recall that we use “vertex” for nodes in the input graph, and

“node” for nodes in the decision trees and the hierarchy tree.

3.2 Query algorithm. Given u, v and a set of failed
vertices D, by Lemma 2.3 we first find a path U1(=
V), U2 . . . , Up in the hierarchy tree, and set Up+1 = ∅.
Let T =

⋃p
i=1 TUi+1

(Ui), then by Lemma 2.3, the
pseudo-degrees of all f ∈ D in every tree in T is at
most s.

As in [20], the query algorithm builds an aux-
iliary graph H, but the definition of H is different
from [20]. The query algorithm builds H as Def-
inition 3.2, and outputs |πH(u, v)| as an (1 + ε)-
approximation of |πG−D(u, v)|.13

Definition 3.2. (Graph H)

• For a failure f ∈ D and a tree T ∈ T , if f ∈ V (T),
then we define the neighbors of f in T as

NT (f) = {parentT (f)}∪(childrenT (f)∩Trunk(T)).

In other words, NT (f) consists of the parent of f
in T , and the set of children of f in T which are
trunk vertices. (Note that if f ∈ V (T) \ Trunk(T),
then it is possible that parentT (f) 6∈ Trunk(T).)

• Define

N(f) =
⋃

f∈T∈T
NT (f).

That is, N(f) is the union of NT (f)’s over all trees
T ∈ T such that f ∈ T .

• The vertex set of the auxiliary graph H is

V (H) =

{u, v} ∪ ⋃
f∈D

N(f)

 \D.
For each x, y ∈ V (H), the weight of the edge (x, y)
in H is equal to DecTree(x, y,D), as defined in
Algorithm 2.

Note that in V (H), vertices except u and v are
defined independently from u and v. By Lemma 2.3,
for every f ∈ D and T ∈ T containing f , we have
|NT (f)| ≤ s+ 1. Therefore |V (H)| ≤ dp · 2e ln2 n · (s+
1) + 2 = O(dc+2h log4 n).

13The vertex set of H corresponds to the set of “intermediate
vertices” (also called H) in Section 1.3.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 Algorithm DecTree

1: function DecTree(u, v,D)
2: α← root(u, v)
3: while D ∩ Pα 6= ∅ do
4: f ← the vertex in D ∩ Pα with the highest

level, breaking ties arbitrarily
5: α← ch(α, seg(f, Pα), l(f)) . Recall l(f) is

the level of f , i.e. the largest l s.t. f ∈ Ul.
6: return |Pα|

Consider Algorithm 2. After each iteration, the
set D ∩ avoid(α) will contain at least one new vertex
(namely f). When |D ∩ avoid(α)| = d, we will have
that D ∩ Pα = ∅, and the algorithm terminates. Thus
the algorithm executes at most d iterations. It is easy
to see that each iteration only requires O(d) time, thus
the time complexity of Algorithm 2 is O(d2).

It takes O(|V (H)|2d2) time to build the graph H,
and O(|V (H)2|) time to compute |πH(u, v)|. There-
fore, the query algorithm runs in O(|V (H)|2d2) =
O(d2c+6h2 log8 n) time.

Since finally D ∩ Pα = ∅, we have the following
observation:

Observation 3.1. For all u, v ∈ V (H),
DecTree(u, v,D) ≥ |πG−D(u, v)|.

For every α and f considered in Algorithm 2, let
αnext = ch(α, seg(f, Pα), l(f)) be the next decision
tree node the algorithm considers. If the optimal
path πG−D(u, v) never intersects the set avoid(αnext) \
avoid(α) in any iteration, then DecTree(u, v,D) would
indeed return the optimal path πG−D(u, v). However,
if πG−D(u, v) goes through some non-failure vertex
x ∈ avoid(αnext) \ avoid(α), then x is close to f ,
and we will show that there is some w ∈ V (H) close
to x, so the optimal path can be approximated by
πG−D(u,w) ◦ πG−D(w, v). This is illustrated in the
following important lemma. Notice that avoid(αnext) \
avoid(α) = seg(f, Pα) ∩ Ul(f), so in this case, the level
of x is no less than the level of f , i.e. l(x) ≥ l(f).

Lemma 3.2. Given a failed vertex f and a non-failure
vertex x such that l(x) ≥ l(f), if there is a path P
in G between x and f which contains no other failed
vertices, then there is a vertex w ∈ V (H) such that
|πG−D(x,w)| ≤ (2k − 1)|P |.

x y

f ′

f

P ′
w

P

Proof. Let y be the vertex with the highest level on
P [x, f), and suppose j = l(y). Then l(y) = j ≥ l(x) ≥
l(f). Since there are no vertices on P with level > j,
P is in G − Uj+1. Let Tj(y, f) be the tree in the tree
cover TUj+1(Uj), such that the distance between y and
f in Tj(y, f) is at most (2k − 1)|πG−Uj+1(y, f)|. Let
P ′ = Pj(y, f) be the path between y and f in Tj(y, f).
Let f ′ be the first failed vertex on P ′[y, f], and consider
the predecessor w of f ′ on the path P ′[y, f]. (That is,
P ′[y, w] is intact from failures.) Since P ′ is a path on
the tree Tj(y, f), w is either the parent of f ′ or a child
of f ′ in this tree.

• If w is the parent of f ′, then w ∈ V (H) by the
definition of V (H).

• If w is a child of f ′, then y is a descendant of w and
f ′. Since l(y) = j, y is a trunk vertex in Tj(y, f). It
follows that w, as an ancestor of y, is also a trunk
vertex in Tj(y, f), therefore w ∈ V (H).

Therefore, in either case, we have w ∈ V (H). Since

|πG−D(x,w)| ≤ |P [x, y]|+ |P ′[y, w]|
≤ |P [x, y]|+ |P ′|
≤ |P [x, y]|+ (2k − 1)|πG−Uj+1

(y, f)|
≤ |P [x, y]|+ (2k − 1)|P [y, f]|
≤ (2k − 1)|P |,

the lemma is true.

3.3 Proof of correctness. In this section, we show
that |πH(u, v)| ≤ (1 + ε)|πG−D(u, v)|, proving the
correctness of the query algorithm.

From the algorithm DecTree(u, v,D), the path we
get is the shortest path between u and v in the graph
G− avoid(αlast), where αlast is the last visited decision
tree node of the algorithm. As we discussed before, if the
real shortest path πG−D(u, v) does not go through any
vertex in avoid(αlast), then DecTree(u, v,D) will return
the correct answer. Otherwise, as avoid(αlast) is the
union of ≤ d sets of the form seg(f, Pα)∩Ui, πG−D(u, v)
must go through some vertex x in a set seg(f, Pα)∩Ui.
We can show that such x will be “close” to a vertex w
in V (H) (by Lemma 3.2), so we can use the vertices in
V (H) as intermediate vertices to obtain an approximate
shortest path.

Lemma 3.3. In the query algorithm DecTree(u, v,D),
let α be a decision tree node it encounters, f ∈ D be the
failed vertex which is selected in Line 4 of Algorithm 2
and i = l(f). (That is, f is the vertex in D ∩ Pα
with the highest level.) For any non-failure vertex x
in seg(f, Pα)∩Ui, there is a vertex w ∈ V (H) such that
|πG−D(x,w)| ≤ ε1 min{|Pα[u, x]|, |Pα[x, v]|}.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

x f ′ f

seg(f, Pα)

Pα

w

u v

Proof. Let f ′ ∈ D be the failed vertex closest to x on
the segment seg(f, Pα), then there are no failed vertices
in Pα[x, f ′) or Pα(f ′, x]. (W.l.o.g. we assume it is
Pα[x, f ′).) We have l(f) ≥ l(f ′) by Algorithm 2. As
x ∈ Ui = Ul(f), we have l(x) ≥ l(f), hence l(x) ≥ l(f ′).
By Lemma 3.2, there is a vertex w ∈ V (H) such that
|πG−D(x,w)| ≤ (2k − 1)|Pα[x, f ′]|. Since |Pα[x, f ′]| ≤
ε2 min{|Pα[u, x]|, |Pα[x, v]|} and ε2 = ε1/(2k − 1), the
lemma holds.

We show that for u, v ∈ V (H), if the optimal path
πG−D(u, v) is not found by DecTree(u, v,D), then we
can indeed find some w ∈ V (H) such that πG−D(u,w)◦
πG−D(w, v) is a good approximation of πG−D(u, v).
Moreover, one of πG−D(u,w) or πG−D(w, v) can be
dealt with by Algorithm 2, therefore we only need to
“recurse” on the other one.

Lemma 3.4. Let u, v ∈ V (H) and P = πG−D(u, v). If
DecTree(u, v,D) > |P |, there exist x ∈ P \ {u, v}, y ∈
{u, v}, w ∈ V (H) such that

(a) |πG−D(x, y)| ≤ 1
2 |πG−D(u, v)|,

(b) |πG−D(x,w)| ≤ ε1|πG−D(x, y)|, and

(c) DecTree(y, w,D) ≤ |πG−D(y, x)| + |πG−D(x,w)|,
which is smaller than |πG−D(u, v)|.

u v
x(= y)

w

P

Proof. First we prove that there exists a triple (x, y, w)
that satisfies (a) and (b).

Let α be the last decision tree node visited by
DecTree(u, v,D) such that avoid(α) ∩ P = ∅. Since
DecTree(u, v,D) > |P |, the procedure DecTree(u, v,D)
did not terminate at α, i.e. it visited a child αnext

of α such that P ∩ avoid(αnext) 6= ∅. Recall that
avoid(αnext) \ avoid(α) = seg(f, Pα) ∩ Ul(f) where f is
the failure selected by Line 4 of Algorithm 2. Therefore
P reaches some vertex x ∈ seg(f, Pα)∩Ul(f). Since Pα is
the shortest u-v path in G−avoid(α) and P is some u-v
path in G−avoid(α), we know that |Pα[u, x]| ≤ |P [u, x]|
and |Pα[x, v]| ≤ |P [x, v]|.

By Lemma 3.3, there is a vertex w ∈ V (H) such
that

|πG−D(x,w)| ≤ ε1 min{|Pα[u, x]|, |Pα[x, v]|}
≤ ε1 min{|P [u, x]|, |P [x, v]|}.

Let y be the endpoint in {u, v} that is closer to x, then
(x, y, w) satisfies (a) and (b).

Among all triples x ∈ P \ {u, v}, y ∈ {u, v}, w ∈
V (H) satisfying (b), we pick a triple minimizing
|πG−D(x, y)|, and in case of a tie choose a triple min-
imizing |πG−D(x,w)|. It is easy to see that (a) is also
satisfied. In the following we prove that (c) is satisfied.

We compare the path P ′ = πG−D(y, x)◦πG−D(x,w)
between y and w, with the path returned by
DecTree(y, w,D). For the sake of contradiction, sup-
pose |P ′| < DecTree(y, w,D). Let α′ be the last de-
cision tree node visited in DecTree(y, w,D) such that
avoid(α′)∩P ′ = ∅. We can also see that P ′ reaches some
vertex x′ ∈ seg(f ′, Pα′) ∩ Ul(f ′), where f ′ is the failure
selected by Line 4 of Algorithm 2. We use Lemma 3.3
again and conclude that there is a vertex w′ ∈ V (H)
such that

|πG−D(x′, w′)| ≤ ε1 min{|Pα′ [y, x′]|, |Pα′ [x′, w]|}
≤ ε1 min{|P ′[y, x′]|, |P ′[x′, w]|}.

Since x′ ∈ P ′ = P ′[y, x] ◦ P ′[x,w], there are two
cases. (See Fig. 3.)

• If x′ ∈ P ′[y, x), then |πG−D(x′, w′)| ≤
ε1|πG−D(x′, y)|, i.e. the triple (x′, y, w′) also sat-
isfies (b). Since |πG−D(x′, y)| < |πG−D(x, y)|, this
contradicts our choice of (x, y, w).

• If x′ ∈ P ′[x,w], then |πG−D(x,w′)| ≤ |P ′[x, x′]| +
|πG−D(x′, w′)| ≤ |P ′[x, x′]| + ε1|P ′[x′, w]|. As
ε1 < 1, we have |πG−D(x,w′)| < |πG−D(x,w)|, and
(x, y, w′) also satisfies (b), contradicting our choice
of (x, y, w).

Hence it must be true that |P ′| ≥ DecTree(y, w,D).

By these lemmas, we can now prove our desired
approximation ratio.

Theorem 3.1. For every pair u, v ∈ V (H), the
query algorithm in Section 3.2 returns an (1 + ε)-
approximation of |πG−D(u, v)|.

Proof. It is easy to see that |πH(u, v)| ≥ |πG−D(u, v)|
for every u, v ∈ V (H). We prove |πH(u, v)| ≤ (1 +
ε)|πG−D(u, v)| below.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

u
(= y)

x

w

v u
(= y)

x

w

v

w′

x′

x′w′

P P

Figure 3: Two cases in the proof of Lemma 3.4.

We sort all pairs of vertices u, v ∈ V (H) (u 6= v)
by increasing order of |πG−D(u, v)|, and prove by in-
duction that |πH(u, v)| ≤ (1 + ε)|πG−D(u, v)| on this
order. For the u, v having the smallest |πG−D(u, v)|,
if DecTree(u, v,D) > |πG−D(u, v)|, from Lemma 3.4,
there exist y, w ∈ V (H) so that |πG−D(y, w)| <
|πG−D(u, v)|, which is a contradiction. Therefore
|πH(u, v)| = DecTree(u, v,D) = |πG−D(u, v)|.

Fix some u, v ∈ V (H), assume that for all
pairs u′, v′ ∈ V (H) such that |πG−D(u′, v′)| <
|πG−D(u, v)|, it is true that |πH(u′, v′)| ≤ (1 +
ε)|πG−D(u′, v′)|. If DecTree(u, v,D) = |πG−D(u, v)|
then |πH(u, v)| ≤ (1 + ε)|πG−D(u, v)| follows triv-
ially. Otherwise we use Lemma 3.4 to obtain a
triple (x, y, w), where x ∈ πG−D(u, v) \ {u, v}, y ∈
{u, v}, and w ∈ V (H). We assume w.l.o.g. y =
u, then |πG−D(w, x)| ≤ ε1|πG−D(u, x)|. Since ε1 <
1, |πG−D(w, v)| ≤ |πG−D(w, x)| + |πG−D(x, v)| ≤
ε1|πG−D(u, x)| + |πG−D(x, v)| < |πG−D(u, v)|, thus
|πH(w, v)| ≤ (1 + ε)|πG−D(w, v)| by induction hypothe-
sis. We have:

|πH(u, v)|
≤DecTree(u,w,D) + |πH(w, v)|
≤ |πG−D(u, x)|+ |πG−D(x,w)|+ (1 + ε)|πG−D(w, v)|
≤ |πG−D(u, x)|+ ε1|πG−D(u, x)|

+ (1 + ε)(ε1|πG−D(u, x)|+ |πG−D(x, v)|)
≤ (1 + ε1 + (1 + ε)ε1)|πG−D(u, x)|+ (1 + ε)|πG−D(x, v)|
≤ (1 + ε)|πG−D(u, v)|.

We conclude that there is a VSDO with

space complexity n3+1/c ·O
(
ε−1 log2 n log(nW)

log d

)d
,

query complexity O
(
d2c+6 log10 n

log2 d

)
,

stretch 1 + ε.

In Section 4, we will improve the space complexity

to n2+1/c+o(1) when d = o
(

logn
log logn

)
and W = poly(n),

while increasing the query time slightly.

4 An n2+1/c+o(1)-Space (1 + ε)-Stretch oracle

In this section, we discuss the modifications needed to
reduce the space complexity to n2+1/c+o(1). Here we
set ε3 = ε

2|V (H)| , and ε4 = ε3/(4k − 2), where V (H) is

the same as in Section 3 (and Lemma 3.2 still holds),
while E(H) are recomputed in this section. We assume
that ε is small enough, in particular that ε < 1 and
ε4 <

√
2− 1.

4.1 A structural theorem. Similar to [20], the
main idea is, instead of storing the paths Pα as-is
in every node α of FT (u, v), we store an implicit
representation of these paths. If the representation has
size poly(log(nW), ε−1) instead of Ω(n), then our data
structure has space complexity n2+1/c+o(1).

In [20], the authors defined k-decomposable paths,
which are paths that can be represented as the concate-
nation of at most k+ 1 shortest paths in G, interleaved
with at most k edges. They relied on the fact (Theo-
rem 2 of [3]) that any k-edge-failure shortest path is a
k-decomposable path in G, therefore has a succinct rep-
resentation. Unfortunately, the analogue of this state-
ment in [20] in case of vertex failures does not hold.
Even if we only remove one vertex (i.e. |D| = 1), a
shortest path in G−D might not be a k-decomposable
path for k = o(n).14

In this section, we prove a structural theorem
similar to the above fact used in [20]. Before we proceed,
we need some definitions.

From Lemma 3.4 we can see that for any u, v ∈
V (H), if the path πG−D(u, v) is ε1-far away from V (H)
in the following sense, then DecTree(u, v,D) indeed
finds the distance between u and v in G−D:

Definition 4.1. We say that a path P from u to
v is ε-far away from V (H) if there are no vertices
x ∈ P \ {u, v}, w ∈ V (H) such that |πG−D(x,w)| ≤
ε ·min{|P [u, x]|, |P [x, v]|}. (See Fig. 4.)

Instead of considering all d-failure shortest paths,
we only study the ones which are ε3-far away from
V (H). We will use the concept of k-expath as in [20]
and re-define it as ε4-segment expath. Also, instead of
considering the concatenation of at most k+ 1 shortest
paths in the original graph G, every segment here is a

14Consider an unweighted graph G = (V,E1 ∪ E2) where
V = {vi : 0 ≤ i ≤ n}, E1 = {(v0, vi) : 1 ≤ i ≤ n} and

E2 = {(vi, vi+1) : 1 ≤ i < n}. Then πG−{v0}(v1, vn) is not a
0.1n-decomposable path.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

u v

w

x P

Figure 4: If P is far away from V (H), it means
that a certain “diamond”-shaped area does not contain
vertices w ∈ V (H).

shortest path in some Gi. (Recall that Gi is the induced
subgraph of G on all vertices of level ≤ i.)

Definition 4.2. A path P in G is an ε-segment expath
if the following holds. If we partition P into ε-segments
as in Definition 3.1, then for every segment P [x, y],
there is some 1 ≤ i ≤ p such that P [x, y] is a shortest
path in Gi.

The following structural theorem for shortest paths
ε-far away from V (H) will be crucial to us. Interestingly,
it is a consequence of Lemma 3.2.

Theorem 4.1. For u, v ∈ V (H), if πG−D(u, v) is ε3-
far away from V (H), then it is an ε4-segment expath.

x y
P

P ′

wz

P ′′ f

Proof. Let P = πG−D(u, v) and P [x, y] be an ε4-
segment of P . W.l.o.g. assume that x and y are in
the first half of P , and x is closer to u than y. By
Lemma 3.1, |P [x, y]| ≤ ε4|P [u, x]|. (Recall that P [x, y]
is an ε4-segment.) Consider the vertex z with the
highest level on P [x, y], and let its level be i = l(z).
Then P [x, y] is a path in Gi. If it is not the shortest
path πGi(x, y), then πGi(x, y) must go through some
failed vertex in D. (Since otherwise we can find a path
in G−D shorter than πG−D(u, v).) Let P ′ = πGi(x, y)
and f be the failed vertex on P ′ closest to x.

Since f is in the graph Gi, we have l(f) ≤ i = l(z).
There is a path P ′′ = P [z, x] ◦ P ′[x, f] connecting z
and f that does not go through other failed vertices.
By Lemma 3.2, there is a vertex w ∈ V (H) such that
|πG−D(z, w)| ≤ (2k − 1)|P ′′|. We have

|πG−D(z, w)| ≤ (2k − 1)(|P [z, x]|+ |P ′[x, f]|)
≤ 2(2k − 1)|P [x, y]|
≤ 2(2k − 1)ε4|P [u, x]|
≤ ε3|P [u, z]|,

which contradicts that πG−D(u, v) is ε3-far away from
V (H). Therefore, P [x, y] is a shortest path in Gi.

4.2 New data structure. We generalize the concept
of ε4-segment expath to ε4-expath by adding more
flexibility.

Definition 4.3. Let B = dlog1+ε4(nW)e. An ε4-
expath P from u to v in G is a path which is a con-
catenation of subpaths P0, . . . , P2B+1 interleaved with at
most 2B + 3 edges15, such that the following hold.

• For every Pk = P [uk, vk] (0 ≤ k ≤ 2B + 1), Pk
is either empty, or a shortest path in Gi for some
level 1 ≤ i ≤ p.

• If k < B+1, then |P [u, vk]| ≤ (1+ε4)k; if k ≥ B+1,
then |P [uk, v]| ≤ (1 + ε4)2B+1−k.

Lemma 4.1. An ε4-segment expath P from u to v is an
ε4-expath.

Proof. Let j = blog1+ε4(|P |/2)c + 1, since 1 + ε4 < 2,
we have j < B + 1. Let P1, . . . , Pj be the ε4-segments
(possibly empty) in the first half of P such that for every
1 ≤ k ≤ j and x ∈ Pk = P [uk, vk], blog1+ε4 |P [u, x]|c =
k − 1. Then |P [u, vk]| ≤ (1 + ε4)k, which satisfies
the definition of ε4-expath. The second half of P is
symmetric.

Recall that our data structure in Section 3 consists
of O(n2) decision trees, one for each pair u, v ∈ V .
Each decision tree node α stores a path Pα, a subset
avoid(α) of V , and the links to its children. The query
algorithm builds an auxiliary graph H on the vertex set
V (H) defined in Definition 3.2, and uses Algorithm 2
to determine the edge weights in H. At last we output
|πH(u, v)| as the approximation of |πG−D(u, v)|. Our
improved data structure also fits into this high-level
description, but there are some small changes:

• For every 1 ≤ i ≤ p, we also store the shortest path
distance matrix of Gi.

• We use ε4 in the definition of segments.

• In every node α ∈ FT (u, v), we store the shortest
ε4-expath (instead of the general shortest path)
from u to v in G−avoid(α), still denoted as Pα. To
save space, for every subpath Pk = [uk, vk] which is
a shortest path in some Gi, we only need to store
a triple (uk, vk, i).

• To check whether f is in a path Pα, for every sub-
path Pk = [uk, vk] which is a shortest path in some
Gi, we check whether |πGi(uk, f)| + |πGi(f, vk)| =
|πGi(uk, vk)|. By the uniqueness assumption of

15That is, the concatenation of e0, P0, e1, P1, . . . , P2B+1, e2B+2

where each ei is either empty or an edge.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

shortest paths (see [28]), this method can locate
a vertex in Pα.

We now prove the correctness of this data structure,
i.e. |πH(u, v)| is always an (1 + ε)-approximation of
|πG−D(u, v)|.

First, it is easy to check that Lemma 3.3 holds for
parameter (2k − 1)ε4 = ε3/2, as follows.

Reminder of Lemma 3.3. In the query algorithm
DecTree(u, v,D), let α be a decision tree node it en-
counters, f ∈ D be the failed vertex which is se-
lected in Line 4 of Algorithm 2 and i = l(f). (That
is, f is the vertex in D ∩ Pα with the highest level.)
For any non-failure vertex x in seg(f, Pα) ∩ Ui, there
is a vertex w ∈ V (H) such that |πG−D(x,w)| ≤
(ε3/2) min{|Pα[u, x]|, |Pα[x, v]|}.

Recall that Lemma 3.4 shows that, in the data
structure in Section 3, any shortest path ε1-far away
from V (H) can be found by DecTree. We show that
this is also true in the new data structure, where “ε1-far
away” is changed to “ε3-far away”.

Lemma 4.2. Let u, v ∈ V (H), and P = πG−D(u, v). If
DecTree(u, v,D) > |P |, then P is not ε3-far away from
V (H).

u
vx

w

f Pα

P

Proof. For the sake of contradiction, assume P is ε3-far
away from V (H). By Theorem 4.1, P is an ε4-segment
expath.

Let α be the last decision tree node visited by
DecTree(u, v,D) such that avoid(α) ∩ P = ∅. Since
DecTree(u, v,D) > |P |, P reaches some vertex x ∈
avoid(αnext)\avoid(α), where αnext is the next decision
tree node visited by DecTree(u, v,D) after α. Recall
that avoid(αnext) \ avoid(α) = seg(f, Pα) ∩ Ul(f), where
f is the failed vertex chosen in Line 4 of Algorithm 2.
By Lemma 3.3, there is a vertex w ∈ V (H) such that
|πG−D(x,w)| ≤ (ε3/2) min{|Pα[u, x]|, |Pα[x, v]|}.

As Pα is the shortest ε4-expath from u to v in
G − avoid(α), and P is some such path, we have
|P | ≥ |Pα|. We will prove |Pα[u, x]| ≤ 2|P [u, x]|
and |Pα[x, v]| ≤ 2|P [x, v]|, then it will follow that
|πG−D(x,w)| ≤ ε3 min{|P [u, x]|, |P [x, v]}, contradicting
that P is ε3-far away from V (H). We only prove
|Pα[u, x]| ≤ 2|P [u, x]|, and the case that |Pα[x, v]| ≤
2|P [x, v]| is symmetric.

Suppose |P [u, x]| < |Pα[u, x]|/2, we claim that
the path P [u, x] ◦ Pα[x, v] is a valid ε4-expath. Since

|P [u, x]| < |Pα|/2 ≤ |P |/2, x is closer to u than to v in
P . Suppose Pα is composed of subpaths Pα0 , . . . , P

α
2B+1

interleaved with ≤ 2B + 3 edges, and P is composed
of segments P1, . . . , P`. (Every Pαj and Pj is a shortest
path in some Gi.) Recall from the proof of Lemma 4.1
that, if x is in the first half of P , and x ∈ Pk, then
blog1+ε4 |P [u, x]|c = k − 1.

• Let x ∈ Pαj , then j ≥ blog1+ε4 |Pα[u, x]|c. This is
because if j < B+1 (recall thatB = dlog1+ε4(nW)e
as in Definition 4.3), then |Pα[u, x]| ≤ (1 + ε4)j .

• Let x ∈ Pj′ , then j′ = blog1+ε4 |P [u, x]|c + 1.
Since (1 + ε4)2 < 2 ≤ |Pα[u, x]|/|P [u, x]|, we have
j′ ≤ blog1+ε4 |Pα[u, x]|c − 1 ≤ j − 1.

u
v

x

Pα
0 Pα

1
. . . Pα

j

P1

P2
. . .

Pj′
P

Pα

Let P ′ = P [u, x] ◦ Pα[x, v], Consider the following
representation of P ′ as P ′0, P

′
1, . . . , P

′
2B+1:

(i) For 0 ≤ i < j′, P ′i = Pi.

(ii) For i = j′, P ′j′ = Pj′ [uj′ , x), where uj′ is the
endpoint of Pj′ that lies on P [u, x].

(iii) For j′ < i < j, P ′i = ∅.
(iv) For i = j, P ′j = Pαj [x, vαj], where vαj is the endpoint

of Pαj that lies on Pα[x, v].

(v) For j < i ≤ 2B + 1, P ′i = Pαi .

u
v

xP

Pα

. . .

. . .

P ′
1

P ′
2

P ′
j′

P ′
j

We need to verify that the representation
P ′0, P

′
1, . . . , P

′
2B+1 satisfies the definition of ε4-expath.

Let u′i, v
′
i be the endpoints of P ′i , i.e. P ′i = P ′[u′i, v

′
i],

then:

• Case I: i ≤ j′ (i.e. Items i and ii). In this case,
i < B + 1, as P ′i lies in the first half of P . Since
|P ′[u, v′i]| = |P [u, v′i]| ≤ (1 + ε4)i, Definition 4.3 is
satisfied.

• Case II: j ≤ i < B + 1. In this case, |P ′[u, v′i]| =
|P [u, x]| + |Pα[x, v′i]| < |Pα[u, v′i]| ≤ (1 + ε4)i, thus
Definition 4.3 is satisfied.

• Case III: j ≥ B + 1. In this case, |P ′[u′i, v]| =
|Pα[u′i, v]| ≤ (1 + ε4)2B+1−i, thus Definition 4.3 is
satisfied.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

We conclude that P ′ is a valid ε4-expath. Since
|P ′| < |Pα|, this contradicts the choice of Pα.

Therefore |Pα[u, x]| ≤ 2|P [u, x]|, and by symmetry,
|Pα[x, v]| ≤ 2|P [x, v]|. It follows that P is not ε3-far
away from V (H).

We prove the following theorem that immediately
implies the approximation ratio of the algorithm.

Theorem 4.2. For every pair u, v ∈ V (H),
|πH(u, v)| ≤ (1 + ε)|πG−D(u, v)|.

Proof. For the purpose of the proof, we construct a
subgraph H ′ of H on the same set of vertices (i.e.
V (H)), but only keep the edges (u, v) where πG−D(u, v)
is ε3-far away from V (H). By Lemma 4.2, the weight
of every single edge (u, v) in H ′ is exactly |πG−D(u, v)|.

We sort all pairs of vertices u, v ∈ V (H) by
nondecreasing order of |πG−D(u, v)|. For every u, v ∈
V (H), we define a u-v path in H ′ inductively in this
order, and denote it as p(u, v). The path p(u, v) is
defined as follows.

• If πG−D(u, v) is ε3-far away from V (H), p(u, v)
consists of a single edge (u, v).

• If πG−D(u, v) is not ε3-far away from
V (H), there exist x ∈ πG−D(u, v) \ {u, v},
w ∈ V (H) such that |πG−D(x,w)| ≤
ε3 min{|πG−D(u, x)|, |πG−D(x, v)|}. Since ε3 < 1,
|πG−D(u,w)| and |πG−D(w, v)| are both smaller
than |πG−D(u, v)|, so p(u,w) and p(w, v) are both
well-defined. We concatenate these paths to form
p(u, v), i.e. we define p(u, v) = p(u,w) ◦ p(w, v).

Let k(u, v) be the number of edges in p(u, v). We
prove that for every u, v ∈ V (H),

|πH′(u, v)| ≤ (1 + ε3)k(u,v)|πG−D(u, v)|.

We proceed by induction on k(u, v). When
k(u, v) = 1, |πH′(u, v)| = |πG−D(u, v)|. Assume this
is true for all pairs (u, v) such that k(u, v) < j, con-
sider some (u, v) such that k(u, v) = j. Let x,w
be the vertices selected in the construction of p(u, v),
then both k(u,w) and k(w, v) are less than j. As
|πG−D(x,w)| ≤ (ε3/2)|πG−D(u, v)|, we have

|πH′(u, v)|
≤ |πH′(u,w)|+ |πH′(w, v)|
≤ (1 + ε3)j−1(|πG−D(u,w)|+ |πG−D(w, v)|)
≤ (1 + ε3)j−1(|πG−D(u, v)|+ 2|πG−D(x,w)|)
≤ (1 + ε3)j−1(|πG−D(u, v)|+ 2

ε3
2
|πG−D(u, v)|)

≤ (1 + ε3)j |πG−D(u, v)|.

Thus, for every u, v ∈ V (H),

|πH(u, v)| ≤ |πH′(u, v)|

≤
(

1 +
ε

2|V (H)|

)|V (H)|
|πG−D(u, v)|

≤ e
ε
2 |πG−D(u, v)|

< (1 + ε)|πG−D(u, v)|. (since ε < 1)

Each ε4-expath can be stored in O(ε−1
4 log(nW))

space. Each non-leaf node in the decision tree has
O(hε−1

4 log(nW)) children. Thus we have a VSDO of

space complexity n2+1/cε−1
4 log(nW) ·O(hε−1

4 log(nW))d,
query complexity O(d2|V (H)|2 · ε−1

4 log(nW)),
stretch 1 + ε.

As ε−1
4 = O(|V (H)| · ε−1 log n) = O(dc+2ε−1h log5 n),

the VSDO is of

space complexity n2+1/c · (ε−1dc log(nW))O(d),

query complexity Õ(ε−1d3c+8 logW),
stretch 1 + ε.

We improve both the space complexity and query time
in the next subsection.

4.3 An improvement. In Section 4.2, we use ε4-
segments in the decision tree. Therefore, each decision
tree node that is not a leaf has O(ε−1

4 · h log(nW))
children, and each decision tree node occupies O(ε−1

4 ·
log(nW)) space. As ε−1

4 = Θ(|V (H)| · ε−1 log n), this
ε−1
4 factor may seem too large. In this section, we show

that the |V (H)| factor in ε−1
4 can be shaved.

Let ε1 = ε/(2 + ε) as in Section 3 and ε5 =
ε1/(4k − 2). We will use O(ε−1

5 log(nW)) space to
represent a node in the decision tree FT (u, v). A first
attempt would be to store the shortest ε5-expath in
each node α, but we face a technical problem as follows.
Suppose DecTree(u, v,D) does not capture the shortest
path P = πG−D(u, v), then by Lemma 3.4, P is not far
from V (H). In other words, there are vertices x ∈ P and
w ∈ V (H) such that πG−D(x,w) ≤ ε1|P [u, x]|. (Here
we assume w.l.o.g. that x is closer to u.) Let P1 =
πG−D(u, x) ◦ πG−D(x,w), and P2 = πG−D(w, v), we
“recursively” find P1 and P2 and concatenate them as
an approximation of P . The proof of Lemma 3.4 shows
that P1 is far away from V (H), so we may attempt to
use Lemma 4.2 to conclude that |DecTree(u,w,D)| ≤
|P1|, and we only need to “recurse” on P2. However,
Lemma 4.2 relies on Theorem 4.1, which requires P1 to
be a shortest path in G −D, while P1 = πG−D(u, x) ◦
πG−D(x,w) is not necessarily the shortest u-w path.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

The solution is simple. If P1 is ε1-far from V (H), we
can use the same proof method of Theorem 4.1, to prove
that each segment of P1 = πG−D(u, x) ◦ πG−D(x,w)
is the concatenation of at most two shortest paths in
some Gi and Gj . (The original Theorem 4.1 proved that
each segment of πG−D(u, v) is a shortest path in some
Gi.) Therefore, we define segment bipaths, in which each
segment is the concatenation of two shortest paths in
Gi and Gj , rather than one shortest path in Gi as in
segment expaths.

Definition 4.4. A path P in G is an ε5-segment
bipath if the following holds. If we partition P into
ε5-segments as in Definition 3.1, for every segment
P [uk, vk], there exist two levels i, j and a vertex z ∈
P [uk, vk] such that P [uk, vk] = πGi(uk, z) ◦ πGj (z, vk).

The following theorem can be proved by similar
arguments as Theorem 4.1.

Theorem 4.3. For u, v, w ∈ V , let P = πG−D(u, v) ◦
πG−D(v, w). If P is ε1-far away from V (H), then it is
an ε5-segment bipath.

u

x

v

y

w

z1 z2

Proof. (Sketch.) Let P [x, y] be a segment of P . If
v 6∈ P [x, y] then the argument of Theorem 4.1 applies
to P [x, y], and there is some 1 ≤ i ≤ p such that
P [x, y] = πGi(x, y). If v ∈ P [x, y], then P [x, v] and
P [v, y] are shortest paths in G−D respectively. Let z1

be the vertex with the highest level in P [x, v], and z2 be
the vertex with the highest level in P [v, y]. We proceed
with the same argument as in Theorem 4.1, and we can
see that P [x, v] is the shortest x-v path in Gl(z1), and
P [v, y] is the shortest v-y path in Gl(z2).

Similarly we can define ε5-bipaths:

Definition 4.5. Let B = dlog1+ε5(nW)e. An ε5-
bipath P from u to v in G is a path which is a con-
catenation of subpaths P0, . . . , P2B+1 interleaved with at
most 2B + 3 edges, such that the following hold.

• For every Pk = P [uk, vk] (0 ≤ k ≤ 2B + 1), either
Pk is empty, or there exists a vertex z ∈ P [uk, vk]
and two levels 1 ≤ i, j ≤ p, such that P [uk, vk] =
πGi(uk, z) ◦ πGj (z, vk).

• If k < B+1, then |P [u, vk]| ≤ (1+ε5)k; if k ≥ B+1,
then |P [uk, v]| ≤ (1 + ε5)2B+1−k.

We also use ε5 in the definition of segments when
constructing decision trees FT (u, v). In each node
α ∈ FT (u, v), we store the shortest ε5-bipath from u to
v as the path Pα. Lemma 3.3 still holds (for parameter
(2k − 1)ε5 = ε1/2).

Reminder of Lemma 3.3. In the query algorithm
DecTree(u, v,D), let α be a decision tree node it en-
counters, f ∈ D be the failed vertex which is se-
lected in Line 4 of Algorithm 2 and i = l(f). (That
is, f is the vertex in D ∩ Pα with the highest level.)
For any non-failure vertex x in seg(f, Pα) ∩ Ui, there
is a vertex w ∈ V (H) such that |πG−D(x,w)| ≤
(ε1/2) min{|Pα[u, x]|, |Pα[x, v]|}.

It is easy to verify that the counterparts of
Lemma 4.1 and Lemma 4.2 also hold for (segment) bi-
paths.

Lemma 4.3. An ε5-segment bipath P from u to v is an
ε5-bipath.

Lemma 4.4. (Assume 1 + ε5 <
√

2.) Let y, w ∈
V (H), x ∈ V , and P = πG−D(y, x) ◦ πG−D(x,w). If
DecTree(y, w,D) > |P |, then P is not ε1-far away from
V (H).

Proof. (Sketches of Lemma 4.3 and Lemma 4.4.) The
arguments are essentially the same as Lemmas 4.1
and 4.2, except that each subpath in P and Pα is
now a concatenation of two shortest paths in Gi and
Gi′ . This does not affect the calculation of lengths of
paths in the proofs. In particular, in Lemma 4.2, the
representation of P [u, x] ◦ Pα[x, v] as ε5-bipath remains
exactly the same, and it is easy to verify the validity of
P [u, x] ◦ Pα[x, v] as an ε5-bipath.

Recall that the query algorithm builds the graph
H on vertex set V (H), adds an edge of weight
DecTree(x, y,D) for each x, y ∈ V (H), and outputs the
value |πH(u, v)|. We now prove that the query algo-
rithm has stretch 1 + ε.

Theorem 4.4. For every u, v ∈ V (H), |πH(u, v)| ≤
(1 + ε)|πG−D(u, v)|.

Proof. For all pairs u, v ∈ V (H), we sort the lengths
|πG−D(u, v)| in nondecreasing order, and use induction
on this order. For each u, v ∈ V (H), if πG−D(u, v) is ε1-
far away from V (H), by Lemma 4.4, DecTree(u, v,D) =
|πG−D(u, v)| and we are done. Otherwise let P =
πG−D(u, v), then there are vertices x ∈ P \ {u, v},
y ∈ {u, v} and w ∈ V (H) such that |P [x, y]| ≤ 1

2 |P |
and |πG−D(x,w)| ≤ ε1|P [x, y]|.

Among all such triples (x, y, w), we choose the triple
that minimizes |P [x, y]|, and in case of ties choose the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

triple that minimizes |πG−D(x,w)|. W.l.o.g. assume
y = u. Let P ′ = πG−D(u, x) ◦ πG−D(x,w), if P ′

is not ε1-far away from V (H), then there are vertices
x′ ∈ P ′ \ {u,w}, y′ ∈ {u,w} and w′ ∈ V (H) such that
|πG−D(x′, w′)| ≤ ε1|P ′[x′, y′]|. The same argument as
Lemma 3.4 shows that this is a contradiction to the
choice of (x, y, w) (see Fig. 3):

• If x′ ∈ P ′[u, x), then the triple (x′, y, w′) also
satisfies that |πG−D(x′, w′)| ≤ ε1|P [x′, y]|, and
|P [x′, y]| < |P [x, y]|. So we should have chosen the
triple (x′, y, w′) instead of (x, y, w).

• If x′ ∈ P ′[x,w], then |πG−D(x,w′)| ≤ |P ′[x, x′]| +
|πG−D(x′, w′)| ≤ |P ′[x, x′]| + ε1|P ′[x′, w]| <
|πG−D(x,w)| as ε1 < 1. So we should have cho-
sen the triple (x, y, w′) instead of (x, y, w).

It follows that P ′ is ε1-far away from V (H). By
Lemma 4.4, we have DecTree(u,w,D) ≤ |P ′| =
|πG−D(u, x)| + |πG−D(x,w)|. It is easy to see that
|πG−D(w, v)| < |πG−D(u, v)|, thus by induction hypoth-
esis |πH(w, v)| ≤ (1 + ε)|πG−D(w, v)|. We have

|πH(u, v)|
≤ |πH(u,w)|+ |πH(w, v)|
≤ |πG−D(u, x)|+ |πG−D(x,w)|

+ (1 + ε)(|πG−D(w, x)|+ |πG−D(x, v)|)
≤ |πG−D(u, x)|(1 + ε1 + (1 + ε)ε1) + (1 + ε)|πG−D(x, v)|
= (1 + ε)|πG−D(u, v)|.

Since an ε5-bipath occupies O(ε−1
5 log(nW)) space,

and each non-leaf node has O(hε−1
5 log(nW)) children,

we have a VSDO of

space complexity n2+1/cε−1
5 log(nW) ·O(hε−1

5 log(nW))d,
query complexity O(d2|V (H)|2 · ε−1

5 log(nW)),
stretch 1 + ε.

As ε−1
5 = O(ε−1 log n), the VSDO is of

space complexity n2+1/c · log d
logn

·O
(
ε−1 log2 n log(nW)

log d

)d+1

,

query complexity O
(
ε−1d2c+6 log11 n log(nW)

log2 d

)
,

stretch 1 + ε.

4.4 Implementation details.
Preprocessing. Given a subgraph G′ of G, ver-

tices s, t ∈ V and ε′ > 0, we show that the shortest
ε′-expath from s to t in G′ can be computed in polyno-
mial time.

Let π′G′(s, t) be the shortest path of the form
min{πGi(s, t)|1 ≤ i ≤ p, πGi(s, t) ⊆ G′} (which may be
+∞). First we compute π′G′(s, t) for all pairs of s, t ∈ V .
Then let π(s, t, j) be the shortest s-t path P in G′ such
that the following hold.

• P is the concatenation of subpaths P0, . . . , Pj in-
terleaved with ≤ j + 1 edges. Moreover, denote
Pk = P [uk, vk], where uk, vk are endpoints of Pk
and uk is the closer-to-u one, then vj = t, but there
might be an edge between s and u0. (That is, P is
the concatenation of e0, P0, e1, P1, . . . , ej , Pj where
each ei is an edge and each Pi is a subpath.)

• For every 0 ≤ k ≤ j, Pk is either empty or a
shortest path in Gi for some level 1 ≤ i ≤ p.

• For every 0 ≤ k ≤ j, |P [s, vk]| ≤ (1 + ε′)k.

We use a dynamic programming algorithm to com-
pute |π(s, t, k)| for all k ≤ B. To start with, we artifi-
cially define |π(s, t,−1)| as:

|π(s, t,−1)| =
{

0 if s = t

+∞ if s 6= t
.

Given {|π(s, t, j − 1)|} for all s, t ∈ V , we compute
|π(s, t, j)| as follows:

|π(s, t, j)| =
{
|π̃(s, t, j)| if |π̃(s, t, j)| ≤ (1 + ε′)j

+∞ otherwise
,

where

(4.2) |π̃(s, t, j)| = min
(u,v)
{|π(s, u, j−1)|+w(u, v)+|π′G′(v, t)|}.

Then the length of shortest ε′-expath is

min
(u,v)
{|π(s, u,B)|+ w(u, v) + |π(v, t, B)|}.

Here w(u, v) is the weight of the edge between u and v.
If u = v then we assume w(u, v) = 0.

We can easily adapt the algorithm to obtain the
actual shortest ε′-expath.

If we replace the term π′G′(s, t) in (4.2) by π′′G′(s, t),
which is defined as the shortest concatenated path of
the form π′G′(s, u) ◦π′G′(u, t), then we can also compute
shortest ε′-bipaths in polynomial time. Once we have a
polynomial-time algorithm for computing the shortest
ε′-expath or ε′-bipath in a subgraph G′, it is easy to see
that the whole preprocessing time is polynomial in the
space complexity.

Query. An ε′-expath from u to v is stored as
O(ε′−1 log(nW)) triples (x, y, l), where each triple de-
notes a subpath πGl(x, y). To check whether a failed
vertex f is in an ε′-expath Pα, we check every subpath
πGl(x, y) whether it contains f by checking whether
πGl(x, f)+πGl(f, y) = πGl(x, y). The correctness of this
method relies on the uniqueness assumption of shortest
paths. If f is in Pα, we can also find the segment it is in,
by computing blog1+ε′ |Pα[u, f]|c or blog1+ε′ |Pα[f, v]|c.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

If we store the distance matrices of each Gi dur-
ing preprocessing, then every operation (i.e. checking
if f ∈ Pα and locating seg(f, Pα)) can be done in
O(ε′−1 log(nW)) time. Therefore the time complexity
of Algorithm 2 becomes O(ε′−1 log(nW) · d2). Similar
arguments also apply to ε′-bipaths.

Retrieving the actual path. The actual (1 + ε)-
approximate shortest path can be efficiently retrieved
as follows. (By retrieving a path efficiently, we mean
finding it in O(`) additional time, where ` is the number
of vertices in the path.)

• For every 1 ≤ i ≤ p, we also preprocess the shortest
paths of Gi. That is, for every v ∈ V (Gi), we
precompute the incoming shortest path tree rooted
at v. Consequently, given any 1 ≤ i ≤ p and
u, v ∈ V (Gi), we can retrieve the path πGi(u, v)
efficiently.

• Let α ∈ FT (u, v) be a decision tree node. Re-
call that Pα is an ε4-expath or an ε5-bipath,
therefore a concatenation of O(ε−1

4 log(nW)) or
O(ε−1

5 log(nW)) paths of the form πGi(x, y).
Hence, Pα can be retrieved efficiently.

• Let u, v ∈ V and D be a set of failed vertices.
We build the graph H according to Definition 3.2,
and find the shortest u-v path in H. Each edge
(x, y) in this path corresponds to a path returned
by DecTree(x, y,D), which by Algorithm 2 is Pα
for some decision tree node α. The concatenation
of these paths Pα for each edge on πH(u, v) forms
an (1 + ε)-approximate shortest u-v path in G−D.
As each Pα can be retrieved efficiently, this path
can also be retrieved efficiently.

4.5 A reduction from arbitrary weights to
bounded weights. If W = nω(1), then we may be un-
satisfied with the logd(nW) factor in the space complex-
ity of our oracle. We can replace the logd(nW) factor by
logW logd−1 n in the space complexity of our data struc-
ture, via a reduction from arbitrary weights to bounded
weights. This reduction appears in [20, Lemma 4.1] and
we notice that it also holds for vertex failures.

Lemma 4.5. (Lemma 4.1 of [20], rephrased)
Suppose we have a VSDO for undirected graphs with
edge weights in [1, n3], which occupies S space, needs
Q query time and has stretch A. Then we can build
a VSDO for undirected graphs with edge weights in
[1,W], which occupies O(S logW/ log n) space, needs
O(Q log logW) query time and has stretch (1 + 1/n)A.

Proof. For every 0 ≤ i ≤ logW
logn , we build a VSDO Oi on

the graph G̃i, which is defined as follows: V (G̃i) = V (G)

and for each edge (u, v) of weight w in G, if w ≤ ni+1,
then we have an edge (u, v) of weight dw ·n−(i−2)e in G̃i.
Note that the graphs G̃i are monotone in the sense that,
if an edge appears in G̃i, then it also appears (albeit
with a different weight) in G̃i+1. Also note that the
edge weights in every G̃i+1 is at most n3.

Given a query (u, v,D), we can use binary search
to find the smallest integer i such that s and t are
connected in G̃i − D. Then we use the oracle Oi and
Oi+1 to compute an A-approximation of the value

ans = min
{
δG̃i−D(u, v) · ni−2, δG̃i+1−D(u, v) · ni−1

}
.

It remains to prove that δG−D(u, v) ≤ ans ≤
(1 + 1/n)δG−D(u, v). That δG−D(u, v) ≤ ans is trivial.
Let W̃ be the largest edge weight in πG−D(u, v), and
i? = blogn W̃ c. Since W̃ ≤ ni?+1, u, v are connected in
G̃i? . On the other hand, every edge in G that appears
in G̃i?−2 has weight at most ni?−1, thus if u, v are
connected in G̃i?−2, then δG−D(u, v) ≤ (n − 1)ni?−1 <
ni? , contradicting the definition of i?. Therefore i?−1 ≤
i ≤ i? and i? ∈ {i, i+ 1}.

We have ans ≤ δG̃i?−D(u, v) ·ni?−2. For every edge

e ∈ E(G) with weight w, if e appears in the graph G̃i? ,
then (dw · n−(i?−2)e · ni?−2) ≤ w + ni?−2, i.e. every
such edge is “overestimated” by an additive error of
at most ni?−2. It follows that ans ≤ δG−D(u, v) +
(n − 1)ni?−2. Since δG−D(u, v) ≥ ni? , we have ans ≤
(1 + 1/n)δG−D(u, v).

As our new oracle computes an A-approximation of
ans, its stretch is (1 + 1/n)A.

Assuming ε > 2/n, Lemma 4.5 transforms the
VSDO in Section 3 into a VSDO of

space complexity n3+1/c · logW
logn

·O
(
ε−1 log3 n

log d

)d
,

query complexity O
(
d2c+6 log10 n log logW

log2 d

)
,

stretch 1 + ε,

and the VSDO in Section 4 into a VSDO of

space complexity n2+1/c · logW log d
log2 n

·O
(
ε−1 log3 n

log d

)d+1

,

query complexity O
(
ε−1d2c+6 log12 n log logW

log2 d

)
,

stretch 1 + ε.

5 A poly(log n, d)-Stretch Oracle

In the full version of this paper, we will also present a
VSDO of

space complexity n2+1/cpoly(log(nW), d),
query complexity poly(log(nW), d),

stretch poly(logn, d).

We omit this result here due to space constraints.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Acknowledgments

We are grateful to anonymous reviewers for helpful com-
ments, bringing [53] to our attention, and pointing out
the recent work [42] that allows us to derandomize the
oracle in Section 5. We would like to thank Thatchaphol
Saranurak for providing an early manuscript of [62], and
Zhijun Zhang for helpful comments on a draft version
of this paper.

References

[1] Ittai Abraham, Shiri Chechik, and Sebastian Krin-
ninger. Fully dynamic all-pairs shortest paths with
worst-case update-time revisited. In Proc. 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 440–452, 2017.

[2] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully
dynamic all-pairs shortest paths: Breaking the O(n)
barrier. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2014, volume 28 of LIPIcs, pages
1–16, 2014.

[3] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith
Cohen, and Michael Merritt. Restoration by path con-
catenation: fast recovery of MPLS paths. Distributed
Computing, 15(4):273–283, 2002.

[4] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs. Dis-
crete and Computational Geometry, 9:81–100, 1993.

[5] Surender Baswana and Neelesh Khanna. Approximate
shortest paths avoiding a failed vertex: Near optimal
data structures for undirected unweighted graphs. Al-
gorithmica, 66(1):18–50, 2013.

[6] Aaron Bernstein. Fully dynamic (2 + ε) approximate
all-pairs shortest paths with fast query and close to
linear update time. In Proc. 50th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 693–702, 2009.

[7] Aaron Bernstein and David Karger. Improved dis-
tance sensitivity oracles via random sampling. In Proc.
19th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 34–43, 2008.

[8] Aaron Bernstein and David Karger. A nearly optimal
oracle for avoiding failed vertices and edges. In Proc.
41st Annual ACM Symposium on Theory of Computing
(STOC), pages 101–110, 2009.

[9] Davide Bilò, Keerti Choudhary, Luciano Gualà, Ste-
fano Leucci, Merav Parter, and Guido Proietti. Ef-
ficient oracles and routing schemes for replacement
paths. In Proc. 35th Symposium on Theoretical Aspects
of Computer Science (STACS), volume 96 of LIPIcs,
pages 13:1–13:15, 2018.

[10] Davide Bilò, Luciano Gualà, Stefano Leucci, and
Guido Proietti. Multiple-edge-fault-tolerant approxi-
mate shortest-path trees. In Proc. 33rd Symposium
on Theoretical Aspects of Computer Science (STACS),
volume 47 of LIPIcs, pages 18:1–18:14, 2016.

[11] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido
Proietti. Fault-tolerant approximate shortest-path
trees. Algorithmica, 80(12):3437–3460, 2018.

[12] Greg Bodwin, Michael Dinitz, Merav Parter, and Vir-
ginia Vassilevska Williams. Optimal vertex fault tol-
erant spanners (for fixed stretch). In Proc. 29th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1884–1900, 2018.

[13] Greg Bodwin, Fabrizio Grandoni, Merav Parter, and
Virginia Vassilevska Williams. Preserving distances in
very faulty graphs. In Proc. 44th International Col-
loquium on Automata, Languages and Programming
(ICALP), volume 80 of LIPIcs, pages 73:1–73:14, 2017.

[14] Greg Bodwin and Shyamal Patel. A trivial yet optimal
solution to vertex fault tolerant spanners. In Proc.
38th ACM Symposium on Principles of Distributed
Computing (PODC), pages 541–543, 2019.

[15] Glencora Borradaile, Seth Pettie, and Christian Wulff-
Nilsen. Connectivity oracles for planar graphs. In
Proc. 13th Scandinavian Symposium and Workshop on
Algorithm Theory (SWAT), volume 7357 of LNCS,
pages 316–327, 2012.

[16] Panagiotis Charalampopoulos, Shay Mozes, and Ben-
jamin Tebeka. Exact distance oracles for planar graphs
with failing vertices. In Proc. 30th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 2110–2123, 2019.

[17] S. Chechik, M. Langberg, David Peleg, and L. Roditty.
Fault-tolerant spanners for general graphs. In Proc.
41st Annual ACM Symposium on Theory of Computing
(STOC), pages 435–444, 2009.

[18] Shiri Chechik. Fault-tolerant structures in graphs. PhD
thesis, Weizmann Institute of Science, June 2012.

[19] Shiri Chechik and Sarel Cohen. Distance sensitivity
oracles with subcubic preprocessing time and fast
query time. In Proc. 52nd Annual ACM Symposium
on Theory of Computing (STOC), pages 1375–1388,
2020.

[20] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Ka-
plan. (1 + ε)-approximate f -sensitive distance oracles.
In Proc. 28th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1479–1496, 2017.

[21] Shiri Chechik, Michael Langberg, David Peleg, and
Liam Roditty. f -sensitivity distance oracles and rout-
ing schemes. Algorithmica, 63(4):861–882, 2012.

[22] Keerti Choudhary. An optimal dual fault tolerant
reachability oracle. In Proc. 43rd International Col-
loquium on Automata, Languages and Programming
(ICALP), volume 55 of LIPIcs, pages 130:1–130:13,
2016.

[23] Rezaul Alam Chowdhury and Vijaya Ramachandran.
Improved distance oracles for avoiding link-failure. In
Proc. 13th International Symposium on Algorithms and
Computation (ISAAC), volume 2518 of LNCS, pages
523–534, 2002.

[24] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9(3):251–280, 1990.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

[25] Camil Demetrescu and Giuseppe F. Italiano. A new
approach to dynamic all pairs shortest paths. Journal
of the ACM, 51(6):968–992, 2004.

[26] Camil Demetrescu and Giuseppe F. Italiano. Fully
dynamic all pairs shortest paths with real edge weights.
Journal of Computer and System Sciences, 72(5):813–
837, 2006.

[27] Camil Demetrescu and Mikkel Thorup. Oracles for
distances avoiding a link-failure. In Proc. 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 838–843, 2002.

[28] Camil Demetrescu, Mikkel Thorup, Rezaul Alam
Chowdhury, and Vijaya Ramachandran. Oracles for
distances avoiding a failed node or link. SIAM Journal
of Computing, 37(5):1299–1318, 2008.

[29] Michael Dinitz and Robert Krauthgamer. Fault-
tolerant spanners: Better and simpler. In Proc. 30th
ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 169–178, 2011.

[30] Ran Duan and Seth Pettie. Dual-failure distance and
connectivity oracles. In Proc. 20th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 506–515, 2009.

[31] Ran Duan and Seth Pettie. Connectivity oracles for
failure prone graphs. In Proc. 42nd Annual ACM
Symposium on Theory of Computing (STOC), pages
465–474, 2010.

[32] Ran Duan and Seth Pettie. Connectivity oracles for
graphs subject to vertex failures. In Proc. 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 490–509, 2017.

[33] Ran Duan and Tianyi Zhang. Improved distance
sensitivity oracles via tree partitioning. In Proc.
15th International Symposium on Algorithms and Data
Structures (WADS), volume 10389 of LNCS, pages
349–360, 2017.

[34] P. Erdős. Extremal problems in graph theory. In
Proceedings of the Symposium on Theory of Graphs and
its Applications, pages 29–36, 1964.

[35] David Gibb, Bruce M. Kapron, Valerie King, and
Nolan Thorn. Dynamic graph connectivity with im-
proved worst case update time and sublinear space.
CoRR, abs/1509.06464, 2015.

[36] Fabrizio Grandoni and Virginia Vassilevska Williams.
Improved distance sensitivity oracles via fast single-
source replacement paths. In Proc. 53rd Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 748–757, 2012.

[37] Manoj Gupta and Aditi Singh. Generic single edge
fault tolerant exact distance oracle. In Proc. 45th
International Colloquium on Automata, Languages and
Programming (ICALP), volume 107 of LIPIcs, pages
72:1–72:15, 2018.

[38] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Sublinear-time decremental
algorithms for single-source reachability and shortest
paths on directed graphs. In Proc. 46th Annual ACM
Symposium on Theory of Computing (STOC), pages

674–683, 2014.
[39] Monika Henzinger, Sebastian Krinninger, and

Danupon Nanongkai. A subquadratic-time algorithm
for decremental single-source shortest paths. In Proc.
25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1053–1072, 2014.

[40] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Dynamic approximate all-pairs
shortest paths: Breaking the O(mn) barrier and
derandomization. SIAM Journal of Computing,
45(3):947–1006, 2016.

[41] Bruce M. Kapron, Valerie King, and Ben Mountjoy.
Dynamic graph connectivity in polylogarithmic worst
case time. In Proc. 24th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1131–
1142, 2013.

[42] Karthik C. S. and Merav Parter. Deterministic replace-
ment path covering. CoRR, abs/2008.05421, 2020.

[43] Valerie King. Fully dynamic algorithms for maintain-
ing all-pairs shortest paths and transitive closure in
digraphs. In Proc. 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 81–
91, 1999.

[44] François Le Gall. Powers of tensors and fast ma-
trix multiplication. In Proc. 39th International Sym-
posium on Symbolic and Algebraic Computation (IS-
SAC), pages 296–303, 2014.

[45] Merav Parter. Dual failure resilient BFS structure.
In Proc. 2015 ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 481–490, 2015.

[46] Merav Parter. Fault-tolerant logical network struc-
tures. Bulletin of the EATCS, 118, 2016.

[47] Merav Parter. Vertex fault tolerant additive spanners.
Distributed Computing, 30(5):357–372, 2017.

[48] Merav Parter and David Peleg. Fault tolerant BFS
structures: A reinforcement-backup tradeoff. In Proc.
27th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 264–273, 2015.

[49] Merav Parter and David Peleg. Sparse fault-tolerant
BFS structures. ACM Transactions on Algorithms,
13(1):11:1–11:24, October 2016.

[50] Merav Parter and David Peleg. Fault-tolerant approx-
imate BFS structures. ACM Transactions on Algo-
rithms, 14(1):10:1–10:15, January 2018.

[51] Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast
connectivity updates. In Proc. 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 263–271, 2007.

[52] Hanlin Ren. Improved distance sensitivity oracles with
subcubic preprocessing time. In Proc. 28th European
Symposium on Algorithms (ESA) , volume 173 of
LIPIcs, pages 79:1–79:13, 2020.

[53] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deter-
ministic constructions of approximate distance oracles
and spanners. In Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP),
ICALP’05, pages 261–272, 2005.

[54] Liam Roditty and Uri Zwick. Dynamic approxi-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

mate all-pairs shortest paths in undirected graphs. In
Proc. 45th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 499–508, 2004.

[55] Liam Roditty and Uri Zwick. On dynamic shortest
paths problems. Algorithmica, 61(2):389–401, October
2011.

[56] Piotr Sankowski. Subquadratic algorithm for dynamic
shortest distances. In Proc. 11th International Com-
puting and Combinatorics Conference (COCOON) ,
volume 3595 of LNCS, pages 461–470, 2005.

[57] Andrew James Stothers. On the complexity of matrix
multiplication. PhD thesis, The University of Edin-
burgh, 2010.

[58] Mikkel Thorup. Fully-dynamic all-pairs shortest paths:
Faster and allowing negative cycles. In Proc. 9th
Scandinavian Symposium and Workshop on Algorithm
Theory (SWAT), volume 3111 of LNCS, pages 384–396,
2004.

[59] Mikkel Thorup. Worst-case update times for fully-
dynamic all-pairs shortest paths. In Proc. 37th Annual
ACM Symposium on Theory of Computing (STOC),
pages 112–119, 2005.

[60] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005.

[61] Jan van den Brand and Danupon Nanongkai. Dynamic
approximate shortest paths and beyond: Subquadratic
and worst-case update time. In 2019 IEEE 60th An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 436–455. IEEE, 2019.

[62] Jan van den Brand and Thatchaphol Saranurak. Sen-
sitive distance and reachability oracles for large batch
updates. In Proc. 60th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 424–
435, 2019.

[63] Zhengyu Wang. An improved randomized data
structure for dynamic graph connectivity. CoRR,
abs/1510.04590, 2015.

[64] Oren Weimann and Raphael Yuster. Replacement
paths and distance sensitivity oracles via fast matrix
multiplication. ACM Transactions on Algorithms,
9(2):14:1–14:13, March 2013.

[65] Virginia Vassilevska Williams. Multiplying matrices
faster than Coppersmith-Winograd. In Howard J.
Karloff and Toniann Pitassi, editors, Proc. 44th Annual
ACM Symposium on Theory of Computing (STOC),
pages 887–898, 2012.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

