
Constructing a Distance Sensitivity Oracle in
O(n2.5794M) Time
Yong Gu #

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Hanlin Ren #Ñ

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Abstract
We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n

vertices and edge weights in {1, 2, . . . , M}, we want to build a data structure such that given any
source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it
outputs the length of the shortest path from u to v not going through f . Our main result is a DSO
with preprocessing time O(n2.5794M) and constant query time. Previously, the best preprocessing
time of DSOs for directed graphs is O(n2.7233M), and even in the easier case of undirected graphs,
the best preprocessing time is O(n2.6865M) [Ren, ESA 2020]. One drawback of our DSOs, though,
is that it only supports distance queries but not path queries.

Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial
matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo xr. The algorithm
is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some
of its intermediate steps with faster rectangular matrix multiplication algorithms.

We also show how to compute unique shortest paths in a directed graph with edge weights in
{1, 2, . . . , M}, in O(n2.5286M) time. This algorithm is crucial in the preprocessing algorithm of our
DSO. Our solution improves the O(n2.6865M) time bound in [Ren, ESA 2020], and matches the
current best time bound for computing all-pairs shortest paths.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Design and analysis of algorithms

Keywords and phrases graph theory, shortest paths, distance sensitivity oracles

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.76

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2102.08569

Acknowledgements We would like to thank Ran Duan and Tianyi Zhang for helpful discussions
during the initial stage of this research. We are grateful to anonymous reviewers for helpful comments.
We would also like to thank an anonymous reviewer for suggesting the title of Section 5, and another
anonymous reviewer for pointing out a subtle issue regarding the invertibility of polynomial matrices
(and fixing the issue).

1 Introduction

In this paper, we consider the problem of constructing a distance sensitivity oracle (DSO).
A DSO is a data structure that preprocesses a directed graph G = (V, E) with n vertices
and m edges, and supports queries of the following form: Given a source vertex u, a target
vertex v, and a failure f (which can be either a vertex or an edge), output the length of the
shortest path from u to v that does not go through f .

One motivation for constructing DSOs is the fact that real-life networks often suffer from
failures. Consider a communication network among n servers. When a server u wants to send
a message to another server v, the most efficient way would be to send the message along the

EA
T

C
S

© Yong Gu and Hanlin Ren;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 76; pp. 76:1–76:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guyong12@mails.tsinghua.edu.cn
mailto:rhl16@mails.tsinghua.edu.cn
https://hanlin-ren.github.io
https://orcid.org/0000-0002-7632-7574
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://arxiv.org/abs/2102.08569
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Constructing a DSO in O(n2.5794M) Time

shortest path from u to v. However, if a failure happens in a server or a link between two
servers, we would need to recompute the shortest path with the failure taken into account. It
may be too slow to compute the shortest path from scratch each time a failure happens. A
better solution is to construct a DSO for the communication network, and invoke the query
algorithm of the DSO whenever a failure happens.

1.1 Related Work

The problem of constructing DSOs has received a lot of attention in the literature. A naïve
solution is to precompute the answers for every possible query (u, v, f), but it requires
Ω(n2m) space to store this DSO. Demetrescu et al. [11] constructed a DSO with O(n2 log n)
space that answers a query in constant time. However, the preprocessing time of the DSO
in [11] is O(mn2 + n3 log n), which is inefficient for large networks. Subsequently, Bernstein
and Karger improved the preprocessing time to Õ(n2√

m) [5], and finally Õ(mn) [6].1 The
preprocessing time Õ(mn) matches the current best time bound for the easier problem of
computing all-pairs shortest paths (APSP), and it is conjectured that APSP requires mn1−o(1)

time [20]. In this sense, the Õ(mn) time bound of [6] is optimal. Duan and Zhang [14]
improved the space complexity of the DSO to O(n2), eliminating the last log n factor, while
preserving constant query time and Õ(mn) preprocessing time.

However, for dense graphs (i.e. m = Θ(n2)) with edge weights in [−M, M], it is possible
to compute APSP in time faster than Õ(mn) = Õ(n3). The best APSP algorithm for
undirected graphs runs in Õ(nωM) time [27,30], and the best APSP algorithm for directed
graphs runs in O(n2.5286M) time [4, 42]. (Here ω < 2.3728596 is the exponent of matrix
multiplication [2,9,19,32,37].) Therefore, it is natural to ask whether one can beat Õ(n3)
preprocessing time for DSOs in this regime.

The answer turned out to be yes. Weimann and Yuster [36] showed that for any constant
0 < α < 1, there is a DSO with Õ(n1−α+ωM) preprocessing time and Õ(n1+α) query time.
Subsequently, Grandoni and Williams [16] showed that for any constant 0 < α < 1, there
is a DSO with Õ(nω+1/2M + nω+α(4−ω)M) preprocessing time and Õ(n1−α) query time.
Recently, Chechik and Cohen [8] constructed the first DSO that achieves both sub-cubic
(O(n2.873M)) preprocessing time and poly-logarithmic query time simultaneously. For the
case that edge weights are positive, Ren [22] improved the previous results by presenting a
much simpler DSO with Õ(n2.7233M) preprocessing time and constant query time.

Note that most DSOs mentioned above are randomized. Recently, there are also some
efforts on derandomizing these DSOs, see e.g. [3, 23].

1.2 Our Results

Our main result is an improved DSO for directed graphs with integer edge weights in [1, M].
In particular, our DSO has preprocessing time O(n2.5794M) and constant query time.

▶ Theorem 1.1 (Main). Given as input a directed graph G = (V, E) with edge weights in
{1, 2, . . . , M}, we can construct a DSO with O(n2.5794M) preprocessing time and constant
query time. With high probability over the randomized preprocessing algorithm, the DSO
answers every possible query correctly.

1 Õ hides polylog(n) factors.

Y. Gu and H. Ren 76:3

▶ Remark 1.2. Our preprocessing algorithm uses fast rectangular matrix multiplication
algorithms. To express our time bound as a function of ω, we could also simulate rectangular
matrix multiplications by square matrix multiplications, e.g. multiply an n × m matrix and
an m × n matrix by ⌈m/n⌉ square matrix multiplications of dimension n. In this case, the
preprocessing time becomes Õ(n2+1/(4−ω)M) < O(n2.6146M).

▶ Remark 1.3 (Comparison with Prior Works). The biggest advantage of our DSO is, of course,
its fast preprocessing algorithm. In fact, the preprocessing time bound is only an O(n0.051)
factor away from the current best time bound for APSP. Our DSO is also the first one to
break a barrier of Ω̃(n8/3) preprocessing time, while keeping constant query time.2 However,
our DSO has two drawbacks. First, it can only return the length of the shortest path. It
does not suggest an efficient way to produce this path. Second, it does not support negative
edge weights.

We highlight two technical ingredients that are crucial for the preprocessing algorithm of
our DSO.

Inverting a polynomial matrix modulo xr

Let r be an integer parameter, and F be a polynomial matrix of degree d (i.e. each entry of
F is a degree-d polynomial over some formal variable x) that is invertible. We show how to
compute F−1 mod xr in time

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

(That is, we only preserve the monomials in F−1 with degrees at most r − 1.) Here,
MM(n1, n2, n3) is the time complexity of multiplying an n1 × n2 matrix and an n2 × n3
matrix.

It is shown in [40] that we can compute the full F−1 (instead of F−1 mod xr) in Õ(n3d)
time. We examine their algorithm carefully, and adapt it to our case where we only want to
compute F−1 mod xr. We modulo each polynomial in the intermediate steps of the algorithm
by xr, and use fast rectangular matrix multiplication to speed up the algorithm.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

▶ Remark 1.5. The idea of using polynomial matrices to capture distances is a common
technique in graph algorithms. It has found many applications in static algorithms [24],
fault-tolerant algorithms [35], and dynamic algorithms [25,33,34].

2 There are three previous DSOs with both sub-cubic preprocessing time and constant query time: [16], [8],
and [22]. (The query time of the first two DSOs can be brought down to constant using Observation 2.1
of [22]. In the case of [16], this increases the preprocessing time by an additive factor of Õ(n3−α).)
Even when ω = 2, the preprocessing time bounds of these DSOs are Õ(n8/3) (setting α appropriately),
Õ(n14/5), and Õ(n8/3) respectively.

ICALP 2021

76:4 Constructing a DSO in O(n2.5794M) Time

Computing consistent shortest path trees

Our DSO needs to invoke [22, Observation 2.1] (see also [6]), which needs a consistent set of
(incoming and outgoing) shortest path trees rooted at each vertex. Here, by consistent, we
mean that for every pair of vertices u, v and any two shortest path trees T1 and T2 (from the
2n trees; recall they are directed rooted trees), if u can reach v in both T1 and T2, then the
u⇝ v paths in T1 and T2 are the same path. In other words, we want to specify a unique
shortest path between each pair of vertices, such that for every vertex v, the shortest paths
starting from v (or ending at v, respectively) form a tree.

Note that this problem is quite nontrivial in small-weighted graphs. There may be many
shortest paths between two vertices, and it is not obvious how to pick one shortest path
for each vertex pair, while guaranteeing consistency. Also, we cannot randomly perturb
the edge weights by small values, as that would break the property that edge weights are
small integers. It is also unclear how to construct such a set of shortest path trees from the
APSP algorithm in [42]. Previously, combining ideas in [10, Section 3.4] and an algorithm
in [13], [22] showed how to compute such shortest path trees in Õ(n(3+ω)/2M) ≤ O(n2.6865M)
time; unfortunately, this time bound is worse than our claimed time bound O(n2.5794M) in
Theorem 1.1.

In this paper, we show how to construct consistent shortest paths trees in O(n2.5286M)
time, matching the currently best time bound for APSP [42]. Below is an informal statement,
see Theorem 5.1 for the precise version.

▶ Theorem 1.6 (Informal Version). Given a directed graph G = (V, E) with edge weights in
{1, 2, . . . , M}, we can compute a set of incoming and outgoing shortest path trees rooted at
each vertex that are consistent, in O(n2.5286M) time.

1.3 Warm-Up: DSO in Õ(n(3+ω)/2M) Preprocessing Time
Actually, the ideas in [35] of maintaining the adjoint of the symbolic adjacency matrix
(see Section 3), together with ideas in [22], already give us a DSO with Õ(n(3+ω)/2M)
preprocessing time and constant query time. As a warm-up, we briefly describe this DSO
before we proceed into the details of Theorem 1.1.

An r-truncated DSO [22] is a DSO that only needs to be correct for the queries (u, v, f)
whose answer (i.e. length of the corresponding shortest path) is at most r. If the answer is
greater than r, it should return r instead. In what follows, we will describe how to construct
an r-truncated DSO in Õ(rnω) preprocessing time and Õ(r) query time. Using techniques
in [22] (see also Section 3.3), this implies a DSO with Õ(n(3+ω)/2M) preprocessing time and
constant query time.

Let F be a sufficiently large finite field, and A be the following matrix. For every vertices
u, v, if there is an edge from u to v with weight l, then let Au,v = au,vxl, where au,v is
a random element in F, and x is an indeterminate. Furthermore, for every vertex v, let
Av,v = 1. It is well-known [24] that with high probability over the choices of au,v, the adjoint
matrix of A encodes the shortest path information of the input graph, as follows. Let adj(A)
be the adjoint matrix of A, and u, v be two vertices, then the lowest degree of adj(A)u,v is
exactly the distance from u to v. For example, if adj(A)u,v = 7x8 + 6x5 − 9x4, then the
distance from u to v is 4.

A big advantage of the adjoint matrix, exploited in [35] and also this work, is that it
is easy to perform low-rank updates, by the Sherman-Morrison-Woodbury formula (see
Theorem 3.2). Given a matrix A, its adjoint adj(A), and a low-rank matrix B, we can
compute a specific element of adj(A + B)u,v, in time much faster than brute force. Therefore,

Y. Gu and H. Ren 76:5

we answer a query (u, v, f) as follows: We first express the failure as a rank-one matrix F,
such that A + F is the matrix corresponding to the graph with f removed. Then we can
compute adj(A + F)u,v quickly. Given this element (a polynomial over F), we can easily
compute the answer to the query.

What is the time complexity of this DSO? Recall that we only want to construct an
r-truncated DSO, so we can modulo every entry in the process of computing adj(A) by the
polynomial xr. Every arithmetic operation in the commutative ring F[x]/xr only takes Õ(r)
time. Computing the adjoint of a matrix reduces to inverting that matrix, which takes Õ(nω)
arithmetic operations [7]. Therefore it takes Õ(rnω) time to compute adj(A) mod xr. A
close inspection of the Sherman-Morrison-Woodbury formula shows that each query can be
completed in O(1) arithmetic operations, i.e. Õ(r) time.

The Õ(rnω)-time algorithm for inverting a polynomial matrix modulo xr is not optimal;
the time bound in Theorem 1.4 is better. In Section 4, we use fast rectangular matrix
multiplication algorithms to speed up the algorithm in [40], obtaining a faster algorithm for
inverting polynomial matrices modulo xr.

2 Preliminaries

In this paper, we say an event happens with high probability (w.h.p.) if it happens with
probability at least 1 − 1/nc, for a constant c that can be made arbitrarily large. Our DSOs
(or r-truncated DSOs) will have a randomized preprocessing algorithm and a deterministic
query algorithm. We say a DSO is correct with high probability if w.h.p. over its (randomized)
preprocessing algorithm, it answers every possible query (u, v, f) correctly.

Notation

We use the following notation in [12,22].
Let p be a path, we use |p| to denote the number of edges in p, and use ∥p∥ to denote the
length of p (i.e. total weight of edges in p).
Let u, v be two vertices, we define ∥uv∥ as the length of the shortest path from u to v.
Furthermore, let f be a failure (which is either an edge or a vertex), we define ∥uv ⋄ f∥
as the length of the shortest path from u to v that does not go through f .
Let u, v be two vertices, we define |uv| as the number of edges in the shortest path from
u to v. In the case that there are many shortest paths from u to v, it turns out that the
following definition will be convenient in Section 5: We define |uv| as the largest number
of edges in any shortest path from u to v.

Fast matrix multiplication

Let ω be the exponent of matrix multiplication; the current best upper bound is ω ≤ 2.3728596
[2]. For positive integers n1, n2, n3, let MM(n1, n2, n3) denote the minimum number of
arithmetic operations needed to multiply an n1 ×n2 matrix and an n2 ×n3 matrix. We define
ω(a, b, c) to be the exponent of multiplying an na × nb matrix and an nb × nc matrix, i.e.

ω(a, b, c) = inf{w : MM(na, nb, nc) = O(nw)}.

It is a classical result that ω(1, 1, λ) = ω(1, λ, 1) = ω(λ, 1, 1) for any real number λ > 0 [21];
we denote ω(λ) = ω(1, 1, λ).

We will need the following lemmas about the exponent of rectangular matrix multiplication.
We refer the reader to the full version of this paper for their proofs.

ICALP 2021

76:6 Constructing a DSO in O(n2.5794M) Time

▶ Lemma 2.1. Let a, b, c, r be positive real numbers, then r + ω(a, b, c) ≤ ω(a, b + r, c + r).

▶ Lemma 2.2. Consider the function f(τ) = ω(1, 1 − τ, 1 − τ), where τ ∈ [0, 1]. Then
τ + f(τ) is monotonically non-increasing in τ , and 2τ + f(τ) is monotonically non-decreasing
in τ .

Polynomial operations

Let p, q ∈ F[x] be two polynomials of degree d. It is easy to compute p + q or p − q in
O(d) field operations. We can also compute p · q in Õ(d) field operations using fast Fourier
transform. (Here, Õ hides polylog(d) factors.) When p is invertible, it is also possible to
compute p−1 mod xd in Õ(d) field operations [1, Section 8.3].

3 Constructing a DSO in O(n2.5794M) Time

In this section, we show how to preprocess a distance sensitivity oracle in O(n2.5794M) time,
such that every query can be answered in constant time. Our preprocessing algorithm is
randomized; with high probability over the preprocessing algorithm, the query algorithm
always returns the correct answer.

3.1 Preliminaries
First, our preprocessing algorithm will use the following algorithm for inverting a polynomial
matrix. A sketch of this algorithm will be given in Section 4.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

Let G be a directed graph whose edge weights are integers in [1, M]. We define its
symbolic adjacency matrix SA(G) as (see [24])

SA(G)i,j =

1 if i = j,

zi,jxl if there is an edge from i to j with weight l in G,

0 otherwise,

where zi,j are unique variables corresponding to edges of G.
It will be inefficient to deal with these variables zi,j , therefore we will pick a suitably

large field F, and substitute each variable zi,j by a random element in F. However, we still
keep the indeterminate x. Now, let Z be a matrix where each Zi,j ∈ F, we will use SAZ(G)
to denote the matrix SA(G) with each formal variable zi,j substituted by the field element
Zi,j . Note that SAZ(G) is a polynomial matrix where every entry is a polynomial over x

with degree at most M .
We recall the definition of adjoint matrix that will be crucial to our algorithm. Let A

be an n × n matrix, i, j ∈ [n]. We denote by Ai,j the matrix A with every element in the
i-th row and the j-th column set to zero, except that (Ai,j)i,j = 1. The adjoint matrix of A,
denoted as adj(A), is an n × n matrix such that adj(A)i,j = det(Aj,i) for every i, j ∈ [n]. A
basic fact about adj(A) is that if det(A) ̸= 0, then adj(A) = det(A) · A−1.

Y. Gu and H. Ren 76:7

There is a close relationship between the distances in the graph G, and the entries in the
adjoint of SA(G). Let p be a multivariate polynomial, we define deg∗

x(p) as the lowest degree
of the variable x in any monomial of p. If p = 0, then we define deg∗

x(p) := +∞. We have:

▶ Theorem 3.1 ([24, Lemma 4]). Let G be a directed graph with positive integer weights, i, j

be two vertices. Then the distance from i to j in G is deg∗
x(adj(SA(G))i,j).

We need the following theorem that allows us to maintain the adjoint of a matrix under
rank-1 queries. (This theorem is a special case of [35, Lemma 1.6].)

▶ Theorem 3.2. Let R be an arbitrary commutative ring, A ∈ Rn×n be an invertible matrix,
u, v ∈ Rn be column vectors, and γ = 1 + vTA−1u. Suppose γ is invertible, then A + uvT

is also invertible, and

adj(A + uvT) = det(A)(γA−1 − (A−1uvTA−1)).

Proof Sketch. By the matrix determinant lemma, we have

det(A + uvT) = γ · det(A).

Since γ is invertible, we can use the Sherman-Morrison-Woodbury formula [29,38]:

(A + uvT)−1 = A−1 − γ−1(A−1uvTA−1).

The theorem is proved by multiplying the above two formulas together. ◀

We need the Schwartz-Zippel lemma that guarantees the correctness of our randomized
algorithm.

▶ Theorem 3.3 (Schwartz-Zippel Lemma, [26, 41]). Let p(x1, x2, . . . , xm) be a non-zero
polynomial of (total) degree d over a field F. Let S be a finite subset of F, and r1, r2, . . . , rm

be independently and uniformly sampled from S. Then

Pr[p(r1, r2, . . . , rm) = 0] ≤ d

|S|
.

We also need the following algorithm that computes the determinant of a polynomial
matrix.

▶ Theorem 3.4 ([18, 31]). Let B ∈ F[x]n×n be a matrix of degree at most d, then we can
compute det(B) in Õ(dnω) field operations.

3.2 Constructing an r-Truncated DSO

Recall that for a failure f (which is either a vertex or an edge), ∥uv ⋄ f∥ denotes the length
of the shortest path from u to v that avoids f . An r-truncated DSO, as defined in [22], is a
DSO that given a query (u, v, f), outputs the value min{∥uv ⋄ f∥, r}. The main result of
this subsection is that given an integer r and an input graph G, an r-truncated DSO can be
constructed in time

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1).

ICALP 2021

76:8 Constructing a DSO in O(n2.5794M) Time

Preprocessing algorithm

Let C be a large enough constant. First, we choose a prime p ∈ [nC , 2nC] and let F = Zp.
Then we let Z be an n × n matrix over F, where every Zi,j is sampled independently from
F uniformly at random. We substitute Z into SA(G) to obtain the matrix SAZ(G). Recall
that each element of SAZ(G) is a polynomial over x with coefficients in F, whose degree is at
most M . Then we compute SAZ(G)−1 and det(SAZ(G)) using Theorem 1.4 and Theorem 3.4
respectively.

Since we only want an r-truncated DSO, we only need to compute SAZ(G)−1 modulo xr,
i.e. we only preserve the monomials with degree less than r in every entry of SAZ(G)−1. Note
that SAZ(G) is of the form I+xM for some matrix M ∈ F[x]n×n, therefore its determinant is
of the form 1 + x · p(x) for some polynomial p(x). As the determinant is invertible modulo xr,
SAZ(G) is also invertible modulo xr. By Theorem 1.4, we can compute SAZ(G)−1 mod xr

in time

Õ(nωM) + (r2/M) · MM(n, nM/r, nM/r) · no(1).

By Theorem 3.4, we can compute det(SAZ(G)) in Õ(nωM) time. Again, we only need to
store the polynomial det(SAZ(G)) mod xr. This concludes the preprocessing algorithm.

For the following query algorithms, we use ei to denote the i-th standard unit vector,
i.e. (ei)i = 1, and (ei)j = 0 for every index j ̸= i.

Query algorithm for an edge failure

A query consists of vertices u, v ∈ V and a failed edge e. We assume that e goes from vertex
a to vertex b, and has weight l. Let G′ be the graph obtained by removing e from G, then
we have SA(G′) = SA(G) + uvT, where u = ea and v = −za,bxleb. Let

γ = 1 + vTSA(G)−1u = 1 − za,bxlSA(G)−1
b,a,

β = (SA(G)−1uvTSA(G)−1)u,v = −SA(G)−1
u,aza,bSA(G)−1

b,vxl, and
α = det(SA(G))(γ · SA(G)−1

u,v − β),
then by Theorem 3.2, we have α = adj(SA(G′))u,v. (Note that since l ≥ 1, γ is always
invertible.)

Query algorithm for a vertex failure

A query consists of vertices u, v ∈ V and a failed vertex f ∈ V . It suffices to remove every
outgoing edge from f (and we do not need to also remove incoming edges to f), as f already
cannot appear as an intermediate vertex in every path from u to v. Therefore, we need to
compute adj(SA(G′))u,v, where G′ is obtained by removing all outgoing edges from f in G.
Let u = ef , and v be the negation of the transpose of the f -th row of SA(G), except that
vf = 0, i.e.,

vj =
{

−zf,jxl if there is an edge from f to j with weight l in G,

0 otherwise,

It is easy to see SA(G′) = SA(G) + uvT. To compute adj(SA(G′))u,v using Theorem 3.2,
we let

γ = 1 + vTSA(G)−1u. Note that (ef − v)T is exactly the f -th row of SA(G), so (ef −
v)TSA(G)−1 = eT

f , and vTSA(G)−1 = eT
f SA(G)−1 − eT

f . We have γ = 1 + eT
f SA(G)−1u −

eT
f u = SA(G)−1

f,f ;

Y. Gu and H. Ren 76:9

β = (SA(G)−1uvTSA(G)−1)u,v = (eT
uSA(G)−1u)(vTSA(G)−1ev)

= SA(G)−1
u,f (eT

f SA(G)−1ev) = SA(G)−1
u,f SA(G)−1

f,v;
and α = det(SA(G))(γ · SA(G)−1

u,v − β),
then we have α = adj(SA(G′))u,v. (Note that γ is always invertible since the constant term
of SA(G)−1

f,f must be 1.)
In the actual query algorithm, we will substitute each formal variable zi,j by Zi,j . Let γZ

denote the resulting polynomial after this substitution. Note that γZ is a polynomial in F[x].
Similarly we can define βZ and αZ. If αZ ̸≡ 0 (mod xr), then our query algorithm outputs
deg∗

x(αZ); otherwise it outputs r.
From the above formulas, we can compute γZ, βZ, and αZ in O(1) arithmetic operations

over polynomials. Note that we only need to compute these polynomials modulo xr, so each
such arithmetic operation takes Õ(r) time. The total query time is thus Õ(r).

▶ Remark 3.5 (Query Algorithm for Undirected Graphs). Our r-truncated DSO can also deal
with undirected graphs, but the details are a bit different from the case of directed graphs.
To remove an undirected edge, we need to update two entries in SA(G), which corresponds to
a rank-2 update to SA(G). To remove a vertex, we need to update one row and one column
in SA(G), which is also a rank-2 update to SA(G). Therefore, we need to use the rank-2
version of Theorem 3.2 (see [35, Lemma 1.6]). Actually, our r-truncated DSOs also support
deleting f failures, and the query time is Õ(fωr). We omit the details here and refer the
interested readers to [35].

▶ Theorem 3.6. For every integer r, we can construct an r-truncated DSO with preprocessing
time

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1),

and query time Õ(r). Our r-truncated DSO is correct w.h.p.

(Recall that by saying our r-truncated DSO is correct w.h.p, we mean that w.h.p. over
its randomized preprocessing algorithm, it answers every query correctly.)

Proof of Theorem 3.6. We only need to prove the correctness of our r-truncated DSO.
Consider a query (u, v, f) where f is an edge or a vertex, and let G′ be the graph obtained
by removing f from G. By Theorem 3.2, we have αZ = adj(SAZ(G′))u,v. (Note that the
constant term of γZ is always 1, so γZ is always invertible.)

If ∥uv ⋄ f∥ ≥ r, then by Theorem 3.1, adj(SA(G′))u,v must be a polynomial whose
minimum degree over x is at least r. In this case, we have αZ ≡ 0 (mod xr) for every Z.
Therefore, our algorithm returns r, which is correct.

If ∥uv ⋄ f∥ = k < r, then by Theorem 3.1, adj(SA(G′))u,v must be a polynomial whose
minimum degree is exactly k. In this case, the coefficient of xk in α is a polynomial of zi,j

with (total) degree at most n. (This is because adj(SA(G′))u,v is the determinant of a certain
n × n matrix in which every entry has total degree at most one in the variables zi,j .) If
this polynomial is nonzero at Z, then deg∗

x(αZ) = k and our query algorithm is correct. By
Theorem 3.3, this polynomial is 0 with probability at most 1/nC−1. Therefore, our query
algorithm returns the correct answer k with probability at least 1 − 1/nC−1.

In conclusion, for every fixed query (u, v, f), our query algorithm is correct with probability
1−1/nC−1 over the choice of Z. By a union bound over O(n4) possible queries, the probability
(over our randomized preprocessing algorithm) that every query is answered correctly is at
least 1 − 1/Θ(nC−5), which is a high probability. ◀

ICALP 2021

76:10 Constructing a DSO in O(n2.5794M) Time

3.3 Constructing the Full DSO
Now we have constructed an r-truncated DSO, which we denote by Dstart. In this subsection,
we will extend it to a full DSO using the techniques in [22]. Specifically, we use the following
two algorithms from [22].

The first algorithm transforms an (r-truncated) DSO with a possibly large query time
into an (r-truncated) DSO with query time O(1). More precisely:

▶ Lemma 3.7 ([22, Observation 2.1]). Given an r-truncated DSO D with preprocessing time
P and query time Q, we can build an r-truncated DSO Fast(D) with query time O(1) which
is correct w.h.p. The preprocessing algorithm of Fast(D) is as follows:

It needs the all-pairs distance matrix of the input graph G, as well as the set of consistent
(incoming and outgoing) shortest path trees rooted at each vertex in G. By Theorem 1.6,
these shortest path trees can be computed in O(n2.5286M) time. For details, see Section 5.
It invokes the preprocessing algorithm of D on the input graph G once, and makes Õ(n2)
queries to D. The preprocessing time is P + Õ(n2)Q.

The second algorithm we use is implicit in the argument of [22, Section 2.3]. We formalize
it as the following lemma.

▶ Lemma 3.8. Given an r-truncated DSO D with preprocessing time P and query time
O(1), we can build a (3/2)r-truncated DSO Extend(D) with preprocessing time P + O(n2)
and query time Õ(nM/r). The new DSO is correct w.h.p.

Now, we are ready to explain our algorithm to build a full DSO. Given an r-truncated
DSO Dstart, we first obtain an r-truncated DSO D0 with query time O(1) by applying
Lemma 3.7.

Let i⋆ = ⌊log3/2(nM/r)⌋. For every 0 ≤ i ≤ i⋆, we construct an r(3/2)i+1-truncated DSO
Di+1 by applying Lemma 3.8 and Lemma 3.7 sequentially on Di, i.e. Di+1 = Fast(Extend(Di)).
Let the resulting DSO be Dfinal = Di⋆+1, since r(3/2)i⋆+1 ≥ nM , Dfinal is a full DSO.

We can also summarize our construction algorithm in one formula:

Dfinal = Fast(Extend(Fast(Extend(· · · Fast(Dstart)))))︸ ︷︷ ︸
O(log(nM/r)) times

.

Complexity of our DSO

Let r = Mnα, where α ∈ [0, 1] is a parameter to be determined. By Theorem 3.6, the
preprocessing time of Dstart is

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1) ≤ Õ(nωM) + n2α+ω(1,1−α,1−α)+o(1)M,

and the query time of Dstart is Õ(r) = Õ(nαM). By Lemma 3.7, the preprocessing time of
D0 is

Õ(n2+αM + nωM) + n2α+ω(1,1−α,1−α)+o(1)M.

Now consider the preprocessing algorithm of Dfinal. We need to compute the all-pairs
distance matrix and in/out shortest path trees of G as required by Lemma 3.7, which
takes Õ(n2+µM) time by Theorem 1.6. We also need to run the preprocessing algorithm
of D0. Also, for every 0 ≤ i ≤ i⋆, we need to preprocess the oracle Di+1, which takes
n2 · Õ(nM/(r(3/2)i+1)) = Õ

(
n3−αM
(3/2)i

)
time.

Y. Gu and H. Ren 76:11

Therefore, the preprocessing time of Dfinal is:

Õ(n2+αM + nωM + n2+µM) + n2α+ω(1,1−α,1−α)+o(1)M +
⌊log3/2(nM/r)⌋∑

i=0
Õ

(
n3−αM

(3/2)i

)
≤ nmax{2+α,2+µ,3−α,2α+ω(1,1−α,1−α)}+o(1)M.

Let α = 0.420645, β = 1
1−α , then 1.5 < β < 1.75. Recall that for any real number λ, ω(λ)

is a shorthand for ω(1, 1, λ). We have

ω(1, 1 − α, 1 − α) = (1 − α)ω(β)

≤ (1 − α) · (1.75 − β)ω(1.5) + (β − 1.5)ω(1.75)
1.75 − 1.5 (1)

≤ 0.579355 · 4 · (0.023943 · ω(1.5) + 0.226058 · ω(1.75))
≤ 1.738094. (2)

Here, Equation (1) uses the convexity of the ω(·) function [21], and Equation (2) uses the
recent bounds in [15] that ω(1.5) ≤ 2.796537 and ω(1.75) ≤ 3.021591. We can see that

max{2 + α, 2 + µ, 3 − α, 2α + ω(1, 1 − α, 1 − α)} = 2α + ω(1, 1 − α, 1 − α) ≤ 2.579384.

By Lemma 3.7, the query time of Dfinal is O(1). Therefore, we can construct a DSO with
O(n2.5794M) preprocessing time and O(1) query time.

As the DSOs constructed in Lemma 3.7 always have size Õ(n2), our final DSO only
occupies Õ(n2) space. However, we remark that the preprocessing algorithm of our DSO
requires Õ(rn2) = O(n2.4207) space (in particular, to store SAZ(G)−1 mod xr).

4 Inverting a Polynomial Matrix Modulo xr

As we see in Section 3, the algorithm in Theorem 1.4 for inverting a polynomial matrix
modulo xr is very crucial for our results.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

Our algorithm is essentially the algorithm in [40]. In fact, the only difference is that we
only consider polynomials modulo xr. This allows us to invert the polynomial matrix in time
faster than Õ(n3d) using fast rectangular matrix multiplication algorithms.

In this section, we provide a very brief exposition of the algorithm in [40], and justify the
time bound in Theorem 1.4. A detailed description of the algorithm can be found in the full
version.

Let F be an input polynomial matrix where each entry has degree at most d. Suppose F
is invertible over (F[x]/⟨xr⟩)n×n. We will compute a kernel basis decomposition of F, which
is a chain of matrices A1, A2, . . . , Alog n and a diagonal matrix B, such that

F−1 = A1A2 . . . Alog nB−1. (3)

ICALP 2021

76:12 Constructing a DSO in O(n2.5794M) Time

Then, to compute F−1, we simply multiply the above matrices. Note that B is a diagonal
matrix, so its inverse is easy to compute.3

To start, we write F =
[
FU
FD

]
, where each FU or FD is an (n/2) × n matrix. Then we

compute two n × (n/2) matrices NR and NL with full rank, such that FUNR = 0, and
FDNL = 0. (This can be done by [39, Theorem 4.2].) Let A1 =

[
NL NR

]
, then A1 has full

rank, and

F · A1 =
[
FUNL FUNR
FDNL FDNR

]
=

[
FUNL

FDNR

]
.

Therefore, F · A1 is a block diagonal matrix with two blocks, each of size (n/2) × (n/2).
We can then recursively invoke the kernel basis decomposition of these two blocks, and
form the matrices A2, . . . , Alog n. The diagonal matrix B is created at the base case of the
recursion, where the diagonal blocks of F · A1 · · · · · Alog n are of size 1 × 1. It is shown in [40]
that the kernel basis decomposition takes only Õ(dnω) time to compute.

We still need to compute Equation (3). From the above algorithm, we can see that each
Ai is a block-diagonal matrix, which consists of 2i−1 blocks of size (n/2i−1) × (n/2i−1). Now
we assume that each entry in Ai also has degree at most d · 2i−1. (In reality, the behavior
of degrees in Ai may be complicated, and we need the notion of shifted column degree to
control them; see the full version of this paper for more details.)

To compute Equation (3), we define Mi = A1A2 . . . Ai, and compute each Mi by the
formula

Mi+1 = MiAi+1. (4)

The degree of each entry in Mi will be at most O(2i · d). As we only need the results
modulo xr, we can assume the degrees are actually O

(
min{r, 2i · d}

)
. Note that Ai+1 consists

of 2i blocks, each of size (n/2i) × (n/2i), and the degree of each (nonempty) entry in Ai+1 is
also O

(
min{r, 2i · d}

)
. Therefore, we can compute Equation (4) in

O
(
min{r, 2i · d}

)
· 2i · MM(n, n/2i, n/2i) (5)

time. (It is basically 2i matrix products of size n × (n/2i) and (n/2i) × (n/2i); we need to
multiply another factor of min{r, 2i · d} which is the degree of polynomials in these matrices.)

Now, it is easy to see that the bottleneck of this algorithm occurs when r = 2i · d, and
the time for computing Equation (4) is:

(5) = (r2/d) · MM(n, nd/r, nd/r).

5 Computing Unique Shortest Paths in Directed Graphs

In this section, we show how to compute unique shortest paths in a directed graph in
Õ(n2+µM) time, matching the current best time bound for computing the all-pairs dis-
tances [42]. Here µ < 0.5286 is the solution of ω(1, 1, µ) = 1 + 2µ [15]. This algorithm is
needed before we use Lemma 3.7.

3 Every diagonal element of B is a divisor of the largest invariant factor of F (see [40, Section 5.1]), which
is (again) a divisor of det(F). Since det(F) is invertible modulo xr, every diagonal element of B is also
invertible modulo xr.

Y. Gu and H. Ren 76:13

We may assume that before we proceed, we have already computed the all-pairs distances
∥uv∥ for every u, v ∈ V , using the APSP algorithm in [42].

Our tie-breaking method requires a (random) permutation π of all vertices, or equivalently
a bijection between the vertex set V and [n], i.e. π : V → [n]. According to π, for every
graph G on V and every u, v ∈ V , we will specify a shortest path ρG(u, v) in G from u to
v in a certain way. These shortest paths will be consistent and easy to compute, which is
captured by the following theorem. (See also [22, Theorem 1.3 and 1.4].)

▶ Theorem 5.1. Given a graph G on V , a representation of the set of shortest paths
{ρG(u, v)}u,v∈V can be computed in Õ(n2+µM) time, with high probability over the random
choice of permutation π, such that the following hold.

(Property a) Let G be a graph on V . For every u′, v′ ∈ ρG(u, v) such that u′ appears before
v′, the portion of u′ ⇝ v′ in ρG(u, v) coincides with the path ρG(u′, v′).

(Property b) Let G be a graph on V , u, v ∈ V , and G′ be a subgraph of G. Suppose ρG(u, v)
is completely contained in G′, then ρG′(u, v) = ρG(u, v).

From (Property a), for every vertex u, the shortest paths from u to every other vertex in
G form a tree, and we call this tree the outgoing shortest path tree rooted at u, denoted as
T out(u). Similarly, the shortest paths to u from every other vertex in G also form a tree, and
we call this tree the incoming shortest path tree rooted at u, denoted as T in(u). Actually, the
“representation” computed is exactly the set of n outgoing shortest path trees {T out(u)}u∈V

and the set of n incoming shortest path trees {T in(u)}u∈V .

The rest of this section

We first define the paths ρG(u, v) in Section 5.1. Then we explain how to compute them
efficiently in Section 5.2, by presenting an algorithm that computes the incoming and outgoing
shortest path trees in Õ(Mn2+µ) time. Finally, we prove (Property a) and (Property b) in
Section 5.3.

5.1 Defining ρG(u, v)

Let G be an input graph, and π : V → [n] be a (random) bijection. Let u, v ∈ V , P be a
path from u to v, we will say that any vertex on P that is neither u nor v is an internal
vertex of P .

Recall that we defined |uv| as the largest number of edges in any shortest path from u to
v. In particular:

|uv| = 0 if and only if u = v;
|uv| = 1 if and only if the edge (u, v) is the only shortest path from u to v;
|uv| = ∞ if there is no path from u to v in G;
otherwise, we have 2 ≤ |uv| < ∞.

We claim that the set of vertices mapped to small values by π is a good “hitting set”
w.h.p:

▷ Claim 5.2. Fix the graph G. For some large constant C, with high probability over the
choice of π, the following holds. For every pair of vertices u, v ∈ V such that 2 ≤ |uv| < ∞,
there is a shortest path ρ′(u, v) from u to v, and an internal vertex z on ρ′(u, v), such that
π(z) ≤ CMn ln n/∥uv∥.

ICALP 2021

76:14 Constructing a DSO in O(n2.5794M) Time

Proof. Fix two vertices u, v ∈ V , and any shortest path ρ′(u, v) from u to v. Denote r = ∥uv∥,
if r ≤ M ln n then the claim is trivial. Otherwise, there are at least r/1.1M vertices on
ρ′(u, v). Therefore, the probability over a random bijection π : V → [n] that π maps every
vertex on ρ′(u, v) to an integer greater than CMn ln n/r is at most

(1 − CM ln n/r)r/1.1M ≤ 1/nC/1.1.

Thus by a union bound, the probability that the above condition holds (for every u, v) is at
least 1 − 1/nC/1.1−2, which is a high probability. ◁

Let u, v ∈ V such that 2 ≤ |uv| < ∞. Define w(u, v) as the intermediate vertex with the
smallest label in any shortest path from u to v, i.e.

w(u, v) = argw min{π(w) : ∥uv∥ = ∥uw∥ + ∥wv∥, w ̸= u and w ̸= v}. (6)

Claim 5.2 states that w.h.p. for every vertices u, v ∈ V such that 2 ≤ |uv| < ∞, we have
that

π(w(u, v)) ≤ CMn ln n/∥uv∥. (7)

In the rest of this section, we assume that Equation (7) holds for every vertices u, v ∈ V

such that 2 ≤ |uv| < ∞. Now we define the paths ρG(u, v).

▶ Definition 5.3. Let u, v ∈ V such that |uv| ≠ ∞. The path ρG(u, v) is recursively defined
as follows.

If u = v, then ρG(u, v) is the empty path that starts and ends at u.
If |uv| = 1, then ρG(u, v) consists of a single edge, i.e. the edge from u to v.
Otherwise, let w = w(u, v), then ρG(u, v) is the concatenation of ρG(u, w) and ρG(w, v).

For every u, v such that 2 ≤ |uv| < ∞, since w is an intermediate vertex on some shortest
path from u to v, it is easy to see that |uw| < |uv| and |wv| < |uv|. Therefore ρG(u, v) is
well defined – it is inductively defined in the nondecreasing order of |uv|.

5.2 Computing Shortest Path Trees in Õ(Mn2+µ) Time
We will need the following classical algorithm for computing distance products:

▶ Lemma 5.4 ([42]). Let A be an n × m matrix, and B be an m × n matrix. Suppose every
entry in A or B is either +∞ or an integer with absolute value at most M . Then the distance
product of A and B can be computed in Õ(M · MM(n, m, n)) time.

Computing w(u, v)

We first show how to compute w(u, v) for every u, v ∈ V such that 2 ≤ |uv| < ∞ in Õ(Mn2+µ)
time. Then we use the values of all w(u, v) to compute the incoming and outgoing shortest
path trees in Õ(n2) additional time. Our strategy for computing w(u, v) is to mimic the
algorithm in [17,28] for computing maximum witness of Boolean matrix multiplication. In
particular, we divide the possible witnesses into blocks, and use fast matrix multiplication
algorithms to find the block containing w(u, v), for every u, v. After that, we use brute force
to find w(u, v) inside that block. Details follow.

Let r = 2k be a parameter, we show how to compute w(u, v) for every pair of vertices
u, v ∈ V such that r ≤ ∥uv∥ < 2r. Let

Y. Gu and H. Ren 76:15

Hr = {z ∈ V : π(z) ≤ CMn ln n/r}.

By Claim 5.2, for every vertices u, v such that ∥uv∥ ∈ [r, 2r), we have w(u, v) ∈ Hr.
We define an n × |Hr| matrix A and an |Hr| × n matrix B as follows. For every u ∈ V

and z ∈ Hr, we define

A[u, z] =
{

∥uz∥ if ∥uz∥ ≤ 2r and u ̸= z

+∞ otherwise
, and B[z, u] =

{
∥zu∥ if ∥zu∥ ≤ 2r and u ̸= z

+∞ otherwise
.

Then we compute the minimum witness of the distance product A ⋆ B. To be more precise,
we compute the matrix W [·, ·] such that for every u, v ∈ V ,

W [u, v] = argz min{π(z) : ∥uv∥ = A[u, z] + B[z, v]}.

Correctness. Fix u, v ∈ V , where ∥uv∥ ∈ [r, 2r). We will show that if |uv| = 1, then W [u, v]
does not exist; otherwise W [u, v] coincides with w(u, v) defined in Equation (6).

First, suppose |uv| = 1, then there are no intermediate vertex z such that ∥uv∥ =
∥uz∥ + ∥zv∥, which means W [u, v] does not exist.

Now we assume |uv| ≥ 2. Since ∥uv∥ ≥ r, by Claim 5.2, there is an intermediate vertex
z ∈ Hr such that ∥uz∥ + ∥zv∥ = ∥uv∥. Since ∥uz∥, ∥zv∥ ≤ ∥uv∥ < 2r, we can see that
∥uv∥ = A[u, z] + B[z, v], therefore W [u, v] exists. Let z = W [u, v], then by Equation (6),
π(w(u, v)) ≤ π(z). On the other hand, Claim 5.2 shows that w(u, v) ∈ Hr, so by the
definition of z = W [u, v], we have π(z) ≤ π(w(u, v)). Therefore z = w(u, v) and we have
established the correctness of W [·, ·].

Time complexity. Now we show how to compute the matrix W [·, ·] efficiently.
Let s = nµ, where µ ∈ (0, 1) is a parameter to be determined later. If |Hr| < s, then

we can compute the matrix W by brute force in Õ(n2s) time. Otherwise, we partition Hr

into blocks of size s, where the i-th block contains vertices that are mapped by π to values
between (i − 1) · s + 1 and i · s. For every block i, we compute the distance product of A and
B where only vertices in block i are allowed as witnesses. In other words, we compute the
following matrix

Di[u, v] = min{A[u, z] + B[z, v] : (i − 1) · s + 1 ≤ π(z) ≤ i · s}.

By Lemma 5.4, this matrix can be computed in Õ(r·MM(n, s, n)) time. There are O(|Hr|/s) =
Õ(Mn/(rs)) blocks, and we need to compute a distance product Di for each block i. Therefore
the total time for computing all these distance products is

Õ(r · MM(n, s, n) · Mn/(rs)) = Õ(M · (n/s) · MM(n, s, n)).

Now for every u, v ∈ V such that ∥uv∥ ∈ [r, 2r) and |uv| ≥ 2, we want to compute W [u, v],
which is the vertex z ∈ Hr with the minimum π(z), such that ∥uv∥ = A[u, z] + B[z, v]. First,
we find the smallest i such that Di[u, v] = ∥uv∥, and we know that W [u, v] is in the i-th
block. (If such i does not exist, then W [u, v] does not exist either, and |uv| = 1.) This step
takes Õ(Mn/(rs)) time. Then we iterate through the vertices in this block, and find the
vertex z with the smallest π(z) such that A[u, z] + B[z, v] = ∥uv∥. This step takes O(s) time.

ICALP 2021

76:16 Constructing a DSO in O(n2.5794M) Time

It follows that the time complexity for computing every w(u, v) where ∥uv∥ ∈ [r, 2r) is

Õ(M · MM(n, s, n) · (n/s) + n2 · Mn/(rs) + n2s)
≤ Õ(M · MM(n, s, n) · (n/s) + n2s) (8)

≤ Õ(M · nω(1,µ,1)+1−µ + n2+µ).

Here, Equation (8) is because n2 · Mn/(rs) ≤ n2 · M · (n/s) ≤ M · MM(n, s, n) · (n/s).
Let µ be the solution to ω(1, µ, 1) = 1 + 2µ, then µ < 0.5286 ([15,42]). It follows that the

time complexity for computing every w(u, v), where r ≤ ∥uv∥ < 2r, is at most Õ(Mn2+µ).

Putting it together. We run the above algorithm for k from 0 to ⌊log(nW)⌋, and for each
k, we update the values w(u, v) where ∥uv∥ ∈ [2k, 2k+1). The total time to compute w(u, v)
for all u, v is thus Õ(Mn2+µ).

From w(u, v) to unique shortest paths

For every u, v ∈ V , we will compute the parent of u in the tree T in(v), denoted as parentv(u).
In other words, parentv(u) is the second vertex in the path ρG(u, v) (the first being u). After
computing parentv(u) for every u, v ∈ V , it is easy to construct T in(v) for every vertex v. We
can compute every T out(u) in a symmetric fashion.

We proceed by nondecreasing order of ∥uv∥. Suppose that for every (u′, v′) such that
∥u′v′∥ < ∥uv∥, we have already computed parentv′(u′). Now we compute parentv(u) as follows.
Let w = w(u, v). If w does not exist, let parentv(u) = v; otherwise parentv(u) = parentw(u).

This algorithm (that given every w(u, v), computes every parentv(u)) clearly runs in
Õ(n2) time. Notice that if w exists, then w is an intermediate vertex in ρG(u, v), thus
∥uw∥ < ∥uv∥, and the second vertex in the path ρG(u, v) coincides with the second vertex in
the path ρG(u, w). Hence, the correctness of the algorithm can be easily proved by induction
on ∥uv∥.

5.3 Proof of Theorem 5.1
▶ Theorem 5.1. Given a graph G on V , a representation of the set of shortest paths
{ρG(u, v)}u,v∈V can be computed in Õ(n2+µM) time, with high probability over the random
choice of permutation π, such that the following hold.

(Property a) Let G be a graph on V . For every u′, v′ ∈ ρG(u, v) such that u′ appears before
v′, the portion of u′ ⇝ v′ in ρG(u, v) coincides with the path ρG(u′, v′).

(Property b) Let G be a graph on V , u, v ∈ V , and G′ be a subgraph of G. Suppose ρG(u, v)
is completely contained in G′, then ρG′(u, v) = ρG(u, v).

In this subsection, for any path P and vertices u′, v′ ∈ P such that u′ appears before v′

on P , we use P [u′, v′] to denote the portion of u′ ⇝ v′ on the path P .

Proof of (Property a). We prove it by induction on the number of edges of ρG(u, v). Let
P = ρG(u, v). If u = v or P has only one edge, (Property a) is trivial. Now suppose P has k

edges where k > 1. Let w = w(u, v), then w must lie on P . Consider the following three
cases:

Suppose u′ appears after (or coincides with) w on P . By definition, P [w, v] = ρG(w, v).
Then P [u′, v′] = ρG(u′, v′) by induction hypothesis on ρG(w, v) since it has fewer edges
than ρG(u, v).
Suppose v′ appears before (or coincides with) w. This case is symmetric to the above
case.

Y. Gu and H. Ren 76:17

Otherwise, w lies between u′ and v′ on P .
First, we claim that w = w(u′, v′). As w lies on some shortest path from u′ to v′

(i.e. P [u′, v′]), we have π(w(u′, v′)) ≤ π(w). On the other hand, suppose there exists w′

such that π(w′) < π(w) and w′ is on some shortest path from u′ to v′. Then w′ also lies
on some shortest path from u to v, so it is a better candidate for w(u, v), contradicting
the definition of w.
Second, by induction hypothesis on ρG(u, w), which has fewer edges than ρG(u, v), we
have P [u′, w] = ρG(u′, w). Similarly, P [w, v′] = ρG(w, v′). Therefore, by definition,
P [u′, v′] = P [u′, w] ◦ P [w, v′] = ρG(u′, v′). ◀

Proof of (Property b). We prove it by induction on the number of edges of ρG(u, v). Let
P = ρG(u, v). If u = v or P has only one edge, (Property b) is trivial.

Now suppose P has more than one edge. Let w = wG(u, v) (i.e. the vertex w(u, v)
defined in Equation (6) in graph G), we claim that w coincides with wG′(u, v) (i.e. the vertex
w(u, v) defined in Equation (6) in graph G′). Since P is also a shortest path from u to v

in G′, we have π(wG′(u, v)) ≤ π(w). On the other hand, suppose there exists w′ such that
π(w′) < π(w) and w′ is on some shortest path from u to v in G′. Then w′ also lies on some
shortest path from u to v in G, so it is a better candidate for wG(u, v), contradicting the
definition of w.

Since ρG(u, w) has fewer edges than ρG(u, v), and ρG(u, w) is completely contained in G′,
we can use induction hypothesis on ρG(u, w) to conclude that P [u, w] = ρG′(u, w). Similarly,
we can use the induction hypothesis on ρG(w, v) to conclude that P [w, v] = ρG′(w, v).
Therefore, by definition, ρG′(u, v) = ρG′(u, w) ◦ ρG′(w, v) = P . ◀

6 Conclusions and Open Problems

We presented an improved DSO for directed graphs with integer weights in [1, M]. The
preprocessing time is O(n2.5794M) and the query time is O(1). However, there is still a small
gap between the preprocessing time of our DSO and the current best time bound for the
APSP problem in directed graphs, which is Õ(n2+µM) ≤ O(n2.5286M) [42]. Can we improve
the preprocessing time to Õ(n2+µM), matching the latter time bound? Another interesting
problem is to investigate the complexity of preprocessing a DSO in undirected graphs – here,
the best time bound for APSP is Õ(nωM) [27, 30]. Can we preprocess a DSO in Õ(nωM)
time on undirected graphs?

Compared to other DSOs [8, 16, 36], our oracle has two drawbacks. First, our query
algorithm only outputs the shortest distance, but we do not know how to find the actual
shortest paths. So another open problem is whether we can find the actual shortest path
with additional O(l) query time, where l is the number of edges in the returned shortest
path. Second, since we used [22, Observation 2.1], our oracle can only deal with positive
edge weights. Can we extend our oracle to also deal with negative edge weights?

For every parameter f , the r-truncated DSO in Section 3.2 can actually handle f

edge/vertex deletions in Õ(fωr) query time. (See also [35].) However, as far as we know, [22,
Observation 2.1] only works for one failure. It would be exciting to extend [22, Observation 2.1]
or our (full) DSO to also handle f failures.

ICALP 2021

76:18 Constructing a DSO in O(n2.5794M) Time

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proc. 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 522–539, 2021. doi:10.1137/1.9781611976465.32.

3 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic combinatorial replacement paths and
distance sensitivity oracles. In Proc. 46th International Colloquium on Automata, Languages
and Programming (ICALP), volume 132 of LIPIcs, pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences, 54(2):255–262, 1997. doi:10.1006/jcss.
1997.1388.

5 Aaron Bernstein and David R. Karger. Improved distance sensitivity oracles via random
sampling. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 34–43, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347087.

6 Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

7 James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation, 28(125):231–236, 1974. doi:10.2307/2005828.

8 Shiri Chechik and Sarel Cohen. Distance sensitivity oracles with subcubic preprocessing time
and fast query time. In Proc. 52nd Annual ACM Symposium on Theory of Computing (STOC),
pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

9 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

10 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. Journal of the ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

11 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM Journal of Computing, 37(5):1299–
1318, 2008. doi:10.1137/S0097539705429847.

12 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proc. 20th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. doi:
10.1137/1.9781611973068.56.

13 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck
shortest paths. In Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 384–391, 2009. doi:10.1137/1.9781611973068.43.

14 Ran Duan and Tianyi Zhang. Improved distance sensitivity oracles via tree partitioning. In
Proc. 15th International Symposium on Algorithms and Data Structures (WADS), volume
10389 of LNCS, pages 349–360, 2017. doi:10.1007/978-3-319-62127-2_30.

15 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In Proc. 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1029–1046, 2018. doi:10.1137/1.9781611975031.67.

16 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster replacement paths and distance
sensitivity oracles. ACM Transactions on Algorithms, 16(1):15:1–15:25, 2020. doi:10.1145/
3365835.

17 Miroslaw Kowaluk and Andrzej Lingas. LCA queries in directed acyclic graphs. In Proc. 32nd
International Colloquium on Automata, Languages and Programming (ICALP), volume 3580
of LNCS, pages 241–248, 2005. doi:10.1007/11523468_20.

18 George Labahn, Vincent Neiger, and Wei Zhou. Fast, deterministic computation of the Hermite
normal form and determinant of a polynomial matrix. Journal of Complexity, 42:44–71, 2017.
doi:10.1016/j.jco.2017.03.003.

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1006/jcss.1997.1388
http://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.2307/2005828
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.1137/1.9781611973068.43
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.1007/11523468_20
https://doi.org/10.1016/j.jco.2017.03.003

Y. Gu and H. Ren 76:19

19 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th International
Symposium on Symbolic and Algebraic Computation, (ISSAC), pages 296–303, 2014. doi:
10.1145/2608628.2608664.

20 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Proc. 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1236–1252, 2018. doi:10.1137/1.9781611975031.80.

21 Grazia Lotti and Francesco Romani. On the asymptotic complexity of rectangular matrix
multiplication. Theoretical Computer Science, 23:171–185, 1983. doi:10.1016/0304-3975(83)
90054-3.

22 Hanlin Ren. Improved distance sensitivity oracles with subcubic preprocessing time. In Proc.
28th European Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 79:1–79:13,
2020. doi:10.4230/LIPIcs.ESA.2020.79.

23 Karthik C. S. and Merav Parter. Deterministic replacement path covering. In Proc. 32nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 704–723, 2021. doi:
10.1137/1.9781611976465.44.

24 Piotr Sankowski. Shortest paths in matrix multiplication time. In Proc. 13th European
Symposium on Algorithms (ESA), volume 3669 of LNCS, pages 770–778, 2005. doi:10.1007/
11561071_68.

25 Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Proc. 11th
International Computing and Combinatorics Conference (COCOON), volume 3595 of LNCS,
pages 461–470, 2005. doi:10.1007/11533719_47.

26 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

27 Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences, 51(3):400–403, 1995. doi:10.1006/jcss.1995.
1078.

28 Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex weighted
graphs. Algorithmica, 59(4):621–633, 2011. doi:10.1007/s00453-009-9328-x.

29 Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127,
1950. URL: http://www.jstor.org/stable/2236561.

30 Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights.
In Proc. 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
605–615, 1999. doi:10.1109/SFFCS.1999.814635.

31 Arne Storjohann. High-order lifting and integrality certification. Journal of Symbolic Compu-
tation, 36(3-4):613–648, 2003. doi:10.1016/S0747-7171(03)00097-X.

32 Andrew James Stothers. On the complexity of matrix multiplication. PhD thesis, The University
of Edinburgh, 2010.

33 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In Proc. 60th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 436–455, 2019. doi:10.1109/FOCS.2019.
00035.

34 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In Proc. 60th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 456–480, 2019. doi:
10.1109/FOCS.2019.00036.

35 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles
for large batch updates. In Proc. 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 424–435, 2019. doi:10.1109/FOCS.2019.00034.

36 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Transactions on Algorithms, 9(2):14:1–14:13, 2013.
doi:10.1145/2438645.2438646.

ICALP 2021

https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.4230/LIPIcs.ESA.2020.79
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1137/1.9781611976465.44
https://doi.org/10.1007/11561071_68
https://doi.org/10.1007/11561071_68
https://doi.org/10.1007/11533719_47
https://doi.org/10.1145/322217.322225
https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.1007/s00453-009-9328-x
http://www.jstor.org/stable/2236561
https://doi.org/10.1109/SFFCS.1999.814635
https://doi.org/10.1016/S0747-7171(03)00097-X
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1145/2438645.2438646

76:20 Constructing a DSO in O(n2.5794M) Time

37 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proc. 44th Annual ACM Symposium on Theory of Computing (STOC), pages 887–898, 2012.
doi:10.1145/2213977.2214056.

38 Max A Woodbury. Inverting modified matrices. Memorandum report, 42(106):336, 1950.
39 Wei Zhou, George Labahn, and Arne Storjohann. Computing minimal nullspace bases. In

Proc. 37th International Symposium on Symbolic and Algebraic Computation, (ISSAC), pages
366–373, 2012. doi:10.1145/2442829.2442881.

40 Wei Zhou, George Labahn, and Arne Storjohann. A deterministic algorithm for inverting a
polynomial matrix. Journal of Complexity, 31(2):162–173, 2015. doi:10.1016/j.jco.2014.
09.004.

41 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, EUROSAM ’79, volume 72 of LNCS, pages 216–226, 1979. doi:10.1007/
3-540-09519-5_73.

42 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2442829.2442881
https://doi.org/10.1016/j.jco.2014.09.004
https://doi.org/10.1016/j.jco.2014.09.004
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1145/567112.567114

	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Warm-Up: DSO in O~(n^{(3+omega)/2}M) Preprocessing Time

	2 Preliminaries
	3 Constructing a DSO in O(n^{2.5794}M) Time
	3.1 Preliminaries
	3.2 Constructing an r-Truncated DSO
	3.3 Constructing the Full DSO

	4 Inverting a Polynomial Matrix Modulo x^r
	5 Computing Unique Shortest Paths in Directed Graphs
	5.1 Defining rho_G(u, v)
	5.2 Computing Shortest Path Trees in O~(Mn^{2+mu}) Time
	5.3 Proof of Theorem 5.1

	6 Conclusions and Open Problems

