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Abstract—We introduce and study the following natural total
search problem, which we call the heavy element avoidance
(Heavy Avoid) problem: for a distribution on N bits specified
by a Boolean circuit sampling it, and for some parameter
δ(N) ≥ 1/poly(N) fixed in advance, output an N -bit string that
has probability less than δ(N). We show that the complexity
of Heavy Avoid is closely tied to frontier open questions in
complexity theory about uniform randomized lower bounds and
derandomization. Among other results, we show:

1) For a wide range of circuit classes C, including ACC0,
TC0, NC1, and general Boolean circuits, EXP does not have
uniform randomized C-circuits if and only if Heavy Avoid
for uniform implicit C-samplers has efficient deterministic
algorithms infinitely often. This gives the first algorithmic
characterization of lower bounds for EXP against uniform
randomized low-depth circuits. We show similar algorith-
mic characterizations for lower bounds in PSPACE, NP
and EXPNP.

2) Unconditionally, there are polynomial-time pseudodeter-
ministic algorithms that work infinitely often for several
variants of Heavy Avoid, such as for uniform samplers of
small randomness complexity. In contrast, the existence of
a similar algorithm that solves Heavy Avoid for arbitrary
polynomial-time samplers would solve a long-standing
problem about hierarchies for probabilistic time.

3) If there is a time and depth efficient deterministic algorithm
for Heavy Avoid, then BPP = P. Without the depth-
efficiency requirement in the assumption, we still obtain a
non-trivial form of infinitely-often deterministic simulation
of randomized algorithms. These results are shown using
non-black-box reductions, and we argue that the use of
non-black-box reductions is essential here.

The full version is available on ECCC [1].
Index Terms—total search problems, lower bounds, pseudode-

terministic algorithms, derandomization

I. INTRODUCTION

Let C be a Boolean circuit sampling a distribution D on
N -bit strings. Say that an N -bit string y is δ-heavy in D if y
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occurs with probability at least δ in D. Assuming that some
2δ-heavy string exists, for δ ≥ 1/poly(N), how hard is it to
find a δ-heavy string given C as input?

We call this natural search problem the heavy element
finding (Heavy Find) problem. It is not difficult to see that the
complexity of Heavy Find is closely related to the complexity
of derandomization. There is a simple randomized polynomial-
time algorithm for Heavy Find: we use C to draw O(N/δ2)
independent samples from D and output the string that occurs
with the greatest multiplicity in the multiset of samples. A
standard application of Chernoff–Hoeffding bounds shows that
assuming that a 2δ-heavy string exists, the output of the
algorithm will be a string that is δ-heavy in D with high
probability.

Moreover, a deterministic polynomial-time algorithm for
Heavy Find implies BPP = P. Indeed, let M be a probabilistic
polynomial-time Turing machine with error bounded by 1/4
and x be an input to M . We can define a circuit sampler Cx

which interprets its input as randomness r for the computation
of M on x, outputting 1N if M accepts on x using randomness
r and 0N otherwise. Observe that if M accepts x, the unique
solution to Heavy Find on input Cx with parameter δ = 1/3
is 1N , and if M rejects x, the unique solution to Heavy Find
on input Cx with parameter 1/3 is 0N . Thus, a deterministic
polynomial-time algorithm for Heavy Find allows us to decide
if M accepts x, also in deterministic polynomial time.1

We now turn our original question on its head: given C as
input, how hard is it to find a string that is not δ-heavy? We
call this the heavy element avoidance (Heavy Avoid) problem.
Heavy Avoid is the complementary search problem to Heavy
Find: a string y ∈ {0, 1}N is a solution to Heavy Avoid if and
only if it is not a solution to Heavy Find. The complexity of
Heavy Avoid is the primary focus of this paper.

1Readers who are familiar with derandomization might already see that
the derandomization also holds for the promise version of BPP (prBPP). In
fact, it is not hard to show that Heavy Find can be solved in deterministic
polynomial time if and only if prBPP collapses to prP, the promise version
of P.



Superficially, Heavy Avoid seems to be a much simpler
problem to solve than Heavy Find. First, when δ > 2−N ,
Heavy Avoid is a total search problem, i.e., the promise that a
non-heavy N -bit string exists is automatically satisfied. In this
paper, we mainly focus on the regime where δ ≥ 1/poly(N),
hence this is always true if N is large enough. Second, there
is a trivial algorithm that list-solves Heavy Avoid: Since the
number of δ-heavy strings is at most 1/δ, at least one of
the lexicographically first ⌈1/δ⌉ + 1 strings of length N is
guaranteed to be a solution to Heavy Avoid. Third, there is
a very efficient randomized algorithm for Heavy Avoid with
overwhelming success probability: output a uniformly random
string of length N . Note that by the previous observation that
the number of δ-heavy strings is at most 1/δ, this randomized
algorithm fails on at most 1/δ ≤ poly(N) of its random
choices.

Our main contribution is to introduce Heavy Avoid as a
natural search problem of interest, and show that despite its
seeming simplicity, Heavy Avoid has applications to several
frontier questions in complexity theory regarding uniform
randomized lower bounds and derandomization. Indeed, we
show that in many settings the existence of algorithms for
Heavy Avoid is equivalent to a complexity lower bound.
The study of Heavy Avoid also illuminates recent almost-all-
inputs-hardness assumptions in the theory of derandomization
[2], and leads to novel white-box reductions in settings where
black-box reductions are hard to show. Moreover, the connec-
tions between Heavy Avoid and complexity lower bounds can
be used to derive efficient unconditional pseudodeterministic
algorithms (in the sense of [3]) for Heavy Avoid in several
settings, i.e., efficient randomized algorithms that output some
fixed solution to Heavy Avoid with high probability.

II. RESULTS

We now discuss our results in greater detail. We present
algorithmic characterizations of uniform lower bounds via
Heavy Avoid, unconditional pseudodeterministic algorithms
for Heavy Avoid, and connections between derandomization
with minimum assumptions and Heavy Avoid. Thus, our
results can be divided naturally into three sets.

• In Section II-A, we present algorithmic characterizations
of lower bounds against uniform probabilistic circuits via
Heavy Avoid. That is, deterministic algorithms for Heavy
Avoid (in certain settings and with certain parameters) are
equivalent to such lower bounds. In fact, we obtain very
general characterizations that hold for classes such as
EXP,PSPACE,EXPNP and NP, against uniform random-
ized circuit classes such as ACC0, TC0, or SIZE[poly].
This suggests that the analysis of Heavy Avoid could
be useful in attacking frontier open questions such as
EXP ⊈ BP-ACC0 and EXPNP ⊈ BPP.

• In Section II-B, we use our algorithmic characterizations
together with other ideas to give unconditional pseudo-
deterministic algorithms for several variants of Heavy
Avoid.

• In Section II-C, we give applications of Heavy Avoid
to derandomization, including novel white-box reductions
from promise problems that are hard for prRP or prBPP
to Heavy Avoid, as well as connections to “almost-all-
inputs-hardness” assumptions that have been explored in
recent work on derandomization.

We consider both uniform and non-uniform versions of
Heavy Avoid. In the uniform version, the search algorithm
is given N in unary, and needs to find a δ-light2 element in
DN , where D = {DN}N∈N is an ensemble of distributions
over N -bit strings that are sampled by some uniform sequence
of circuits from a circuit class. Since D is sampled by a
uniform sequence of circuits, we do not need to give the
circuit sampler explicitly to the search algorithm—the search
algorithm can compute the circuit sampler by itself. In this
uniform variant of the problem, fix a parameter δ : N → [0, 1],
(D, δ)-Heavy-Avoid is the problem of finding a δ(N)-light
element in DN , given 1N as input. This variant is the one we
consider in Sections II-A and II-B.

In the non-uniform variant of the problem, the search
algorithm is given as input a circuit sampler C from some
circuit class C, and needs to output a δ-light element in the
distribution sampled by C. This is the version we mostly
consider for the results in Section II-C.

There are also two kinds of samplability we consider:
implicit and explicit. In the implicit version, our sampler C
is Boolean: given randomness r as input together with an
index i ∈ [N ], it outputs the i’th bit of the string sampled
on randomness r. In this setting, the circuit size is typically
less than N . In the explicit version, the circuit C is given
randomness r as input and has N output bits: it outputs the
string sampled on randomness r. In this setting, the circuit size
is at least N , since there are N output bits. Note that when
we show an implication from solving Heavy Avoid to proving
lower bounds, the implication is stronger when we consider
implicit solvers, since the algorithmic problem is easier to
solve for implicit samplers.3 An implicit solver C(r, i) can
easily be converted to an equivalent explicit solver

CExplicit(r) := C(r, 1)C(r, 2) . . . C(r,N).

A. Equivalences Between Complexity Separations and Algo-
rithms for Heavy Avoid

It is a long-standing open question to prove lower bounds
against non-uniform circuits – we still have not ruled out the
possibility that every language computable in exponential time
with an NP oracle (EXPNP) has polynomial-size circuits. What
is more embarrassing is our inability to separate EXPNP from
BPP (see, e.g., [4], [5] for discussions), despite the belief
shared by many researchers that BPP = P [6], [7].4 Moreover,
the state of affairs is the same regarding lower bounds against

2A δ-light element is one that is not δ-heavy.
3We measure the complexity of solving the search problem as a function

of N , even in the implicit-sampler setting.
4Since BPP is strictly contained in SIZE[poly] [8], the open problem of

separating EXPNP from BPP is strictly more embarrassing than separating
EXPNP from SIZE[poly]! See also [5, Table 1] for a related perspective.



uniform probabilistic circuits from restricted circuit classes:
for example, it is open whether EXP can be simulated by
DLOGTIME-uniform probabilistic ACC0 circuits or EXPNP

can be simulated by DLOGTIME-uniform probabilistic TC0

circuits.5

Our first set of results gives equivalences between such
explicit lower bounds against uniform probabilistic circuits
and efficient deterministic algorithms for Heavy Avoid. The
equivalences work in a wide variety of settings, for a range of
circuit classes including ACC0,TC0,NC1 and general Boolean
circuits, and for explicit lower bounds in several standard
complexity classes of interest such as EXP,EXPNP,PSPACE
and NP. Notably, these results give new algorithmic charac-
terizations of uniform lower bound questions by the existence
of efficient algorithms for a natural search problem. Thus they
could potentially be useful in attacking frontier open questions
such as the EXP vs (uniform probabilistic) ACC0 question, or
the EXPNP vs BPP question.

We use BP-C to denote the set of languages computed by
DLOGTIME-uniform probabilistic C-circuits.

Theorem II.1 (Informal). Let C be a nice6 class of Boolean
circuits. The following equivalences hold:
(i) EXP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with

δ(N) = 1/polylog(N) can be solved in deterministic
polynomial time on infinitely many input lengths for any
D that admits implicit DLOGTIME-uniform C-samplers
of size polylog(N).

(ii) EXPNP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with
δ(N) = 1/polylog(N) can be solved in deterministic
polynomial time with an NP oracle on infinitely many
input lengths for any D that admits implicit DLOGTIME-
uniform C-samplers of size polylog(N).

(iii) PSPACE ⊈ BP- C if and only if (D, δ)-Heavy-Avoid
with δ(N) = 1/polylog(N) can be solved in determin-
istic logarithmic space on infinitely many input lengths
for any D that admits implicit DLOGTIME-uniform C-
samplers of size polylog(N).

(iv) NP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with
δ(N) = 1/polylog(N) can be solved by DLOGTIME-
uniform unbounded fan-in circuits of quasi-polynomial
size and constant depth on infinitely many input lengths
for any D that admits implicit DLOGTIME-uniform C-
samplers of size polylog(N).

For the PSPACE lower bounds, analogous algorithmic
characterizations hold for almost everywhere uniform lower
bounds and for lower bounds against uniform randomized
sub-exponential size circuits. Perhaps interestingly, it follows
from our arguments that the existence of efficient algorithms
for (D, δ)-Heavy-Avoid in the settings considered in Theo-

5It follows from EXPNP ⊈ ACC0 [9], [10], which is a non-uniform circuit
lower bound, that EXPNP cannot be simulated by DLOGTIME-uniform
probabilistic ACC0 circuits. (Note that we do not know how to prove such
lower bounds by exploiting the circuit uniformity condition.)

6In brief, a nice circuit class is one that contains AC0[⊕], is closed under
composition, and admits universal circuits for the corresponding class.

rem II.1 is robust with respect to the threshold parameter
δ(N): the existence of algorithms for any δ(N) = o(1)
yields the existence of algorithms of similar complexity for
δ(N) = 1/polylog(N).

Theorem II.1 has direct corollaries that characterize frontier
open questions in complexity theory.

Corollary II.2 (Informal). The following results hold:
(i) EXPNP ⊈ BP-TC0 if and only if Heavy-Avoid for im-

plicit DLOGTIME-uniform TC0-samplers can be solved
in deterministic polynomial time with access to and NP
oracle on infinitely many input lengths.

(ii) PSPACE ⊈ BP-ACC0 if and only if Heavy-Avoid for im-
plicit DLOGTIME-uniform ACC0-samplers can be solved
in logarithmic space on infinitely many input lengths.

Previously, algorithmic characterizations of non-uniform
lower bounds were known for classes such as NEXP [11], [12]
and EXPNP [13], [14], and such characterizations for uniform
randomized lower bounds against general circuits (that is,
against BPP) were known for EXP [15] and NEXP [12]. We
are not aware of any previous algorithmic characterization of
super-polynomial non-uniform or uniform randomized lower
bounds for NP.

As a consequence of our results, we also observe a sharp
threshold phenomenon in the setting of quantified derandom-
ization of search problems (see Section IV below for related
work on quantified derandomization and some discussions, and
Section 3.3 of the full version for a proof of this corollary).

Corollary II.3. For every function e(N) = ω(1), there is a
unary BPP search problem S such that:

• S(1N ) can be solved in randomized poly(N) time by an
algorithm that uses N random bits and errs on at most
e(N) random bit sequences;

• If there exists a randomized polynomial-time algorithm
for S with non-zero success probability that errs on at
most O(1) random bit sequences for any input, then
EXP ̸= BPP.

B. Unconditional Pseudodeterministic Algorithms for Heavy
Avoid

Recall that a randomized algorithm is pseudodeterministic
if it outputs the same answer with high probability. In the next
result, we use the results of the previous subsection together
with other ideas to obtain unconditional pseudodeterministic
algorithms for different variants of Heavy Avoid.

Theorem II.4. Let D = {DN}N≥1 be a distribution ensem-
ble, where each DN is supported over {0, 1}N . The following
results hold:
(i) Let C be a nice class of Boolean circuits, and sup-

pose D admits implicit DLOGTIME-uniform C-samplers
of size polylog(N). Then, for every function δ(N) =
1/(logN)k, where k ∈ N, either (D, δ)-Heavy-Avoid
can be solved in logarithmic space on infinitely many
input lengths, or (D, δ)-Heavy-Avoid can be solved



pseudodeterministically by DLOGTIME-uniform BP- C-
circuits of size polylog(N) on all input lengths.7

In particular, when C is the class of general Boolean
circuits and δ(N) = 1/(logN)k, there is a
polynomial-time pseudodeterministic algorithm for the
(D, δ)-Heavy-Avoid problem that succeeds on infinitely
many inputs.

(ii) Suppose D admits a polynomial-time sampler of ran-
domness complexity (logN)O(1). Then, for every func-
tion δ(N) = 1/(logN)k, where k ∈ N, there is a
polynomial-time pseudodeterministic algorithm for the
(D, δ)-Heavy-Avoid problem that succeeds on infinitely
many inputs.8

(iii) Suppose D admits a polynomial-time sampler. Then, for
every function δ(N) = 1/Nk, where k ∈ N, and for every
constant ε > 0, there is a pseudodeterministic algorithm
for the (D, δ)-Heavy-Avoid problem that runs in time
2N

ε

and succeeds on infinitely many inputs.
Moreover, in all items the corresponding algorithm behaves
pseudodeterministically on every input.

While the pseudodeterministic algorithms above are for
natural algorithmic problems about samplers, the design and
analysis of the algorithms rely heavily on connections to
complexity theory.

The first item of Theorem II.4 provides a pseudodeterminis-
tic polynomial-time infinitely-often algorithm for Heavy Avoid
for implicit samplers. Moreover, this algorithm computes
pseudodeterministically on all input lengths. We observe that
the existence of a pseudodeterministic algorithm with these
properties for the larger class of explicit samplers (as in the
third item of Theorem II.4) would solve the longstanding open
problem of showing a tight hierarchy theorem for probabilistic
time [16], [17], [18], [19], [20]. This is captured by the
following result (see Section 4.4 of the full version for a more
detailed discussion).

Proposition II.5. Suppose that for every polynomial-time
samplable distribution ensemble D = {DN}N≥1, the corre-
sponding (D, δ)-Heavy-Avoid problem for δ(N) = 1/ logN
admits a pseudodeterministic polynomial-time algorithm that
succeeds on infinitely many input lengths and behaves pseudo-
deterministically on all input lengths. Then, for every constant
k ≥ 1, we have BPE ⊈ BPTIME[2k·n] (in particular, for every
constant c ≥ 1, BPP ⊈ BPTIME[nc]).

C. Connections to Derandomization

Our final set of results explore relations between the com-
plexity of Heavy Avoid and fundamental questions in deran-
domization. We consider the non-uniform variant of Heavy
Avoid, where a Boolean circuit sampler is given as input
to the algorithm solving Heavy Avoid. For δ : N → [0, 1],

7In other words, the corresponding DLOGTIME-uniform BP- C-circuit
E(i) is given i ∈ [N ] = {0, 1}logN and outputs the i-th bit of the solution
with high probability.

8Note that the result in this item subsumes the “in particular” result from
the previous item.

Implicit-δ-Heavy-Avoid is the problem where we are given
as input a circuit C implicitly sampling a distribution on N
bits (as explained at the beginning of Section II), and would
like to output a δ-light element in the distribution.

Our first result shows that the existence of efficient deter-
ministic algorithms for Heavy Avoid that in addition can be
implemented by sub-polynomial depth uniform circuits leads
to a complete derandomization of prBPP. Note that in this
result, to obtain the desired conclusion it is sufficient for this
algorithm to solve the problem for implicit samplers.

Theorem II.6. Let δ(N) = o(1) be any function. Suppose
there is a constant ϵ > 0 and a deterministic algorithm A
that solves the Implicit-δ-Heavy-Avoid problem on implicit
samplers of size N ϵ. Moreover, assume that A can be im-
plemented as a logspace-uniform circuit of size poly(N) and
depth No(1). Then prBPP = prP.

If we could eliminate the circuit depth constraint from the
statement of Theorem II.6, it would be possible to establish
an equivalence between the derandomization of prBPP and
algorithms for Heavy Avoid (in both the implicit and explicit
settings). While obtaining this strong characterization remains
elusive, in the next result we get a non-trivial derandomization
consequence from the existence of an efficient algorithm for
Heavy Avoid without assuming a circuit depth bound.

Let GAP-SAT denote the promise problem where YES
instances are Boolean circuits with at least half of assignments
being satisfying, and NO instances are unsatisfiable Boolean
circuits. It is well known that GAP-SAT is complete for the
promise version of RP.

Theorem II.7 (Informal). Let δ(N) = o(1) be any function.
Suppose there is an algorithm for Implicit-δ-Heavy-Avoid
on maps G : {0, 1}poly(n) → {0, 1}N (where N = 2n

ϵ

)
implicitly computable by an input circuit of size poly(n),
where the Heavy Avoid algorithm runs in poly(N) time and
is infinitely-often correct. Then there is an algorithm for
GAP-SAT that runs in subexponential time and is infinitely-
often∗ correct.9

Theorem II.6 and Theorem II.7 are both established using
non-black-box reductions that make use of recent hardness-
randomness tradeoffs. In more detail, as explained in Sec-
tion III below, Theorem II.6 crucially relies on the instance-
wise hardness-randomness tradeoff for low-depth circuits of
Chen and Tell [2], while Theorem II.7 combines the frame-
work of [2] and the “leakage-resilient” hardness-randomness
framework of Liu and Pass [21]. In contrast to the non-black-

9In Theorem II.7, we only obtain GAP-SAT algorithms satisfying a
technical condition called infinitely-often∗ correctness, which is a nonstandard
variant of infinitely-often correctness. The crucial difference is that, for a
sequence of inputs {xn}n∈N, given 1n, the algorithm is allowed to inspect
every input x1, x2, . . . , xpoly(n), and needs to provide a solution for xn. In
other words, the algorithm is correct infinitely-often∗ if it outputs the correct
answer on infinitely many input lengths n while having access to all input
strings from the sequence that have length polynomial in n. We refer the
reader to Definition 5.7 and Theorem 5.8 of the full version of this paper for
more details.



box nature of the proofs given for these two results, we show
that it will be quite difficult to obtain them using black-box
reductions. In particular, we show that improving Theorem II.7
to a polynomial-time Levin reduction [22] would derandomize
prBPP.10 Stated more precisely, if there is an efficient black-
box Levin reduction from the search version of GAP-SAT
to Heavy Avoid (even with respect to non-uniform explicit
samplers), then prBPP = prP holds unconditionally. We refer
to Section 5.3 of the full version for more details.

Finally, we establish a deeper connection between the
implicit non-uniform variant of Heavy Avoid considered in
this section and the recent paradigm of instance-wise hardness-
randomness tradeoffs alluded to above [2], [23], [21], [24].
Roughly speaking, in this paradigm, we convert a hard func-
tion f : {0, 1}n → {0, 1}poly(n) with multiple output bits
into pseudorandomness, where the obtained derandomization
is instance-wise: for every x ∈ {0, 1}n, if f is hard to compute
on x, then the derandomization of the corresponding compu-
tation over input x succeeds. Naturally, the derandomization
assumptions used in these results need almost-all-inputs hard-
ness, meaning that f is hard on all but finitely many inputs
(instead of input lengths).11 In Section 5.4 of the full version of
this paper, we prove that the existence of efficient deterministic
algorithms for Heavy Avoid in the implicit non-uniform setting
is equivalent to the existence of functions f with multiple
output bits that are easy to compute deterministically but
are hard against fixed polynomial-size randomized algorithms.
This result sheds light into the relevance of the techniques that
we employ to prove Theorem II.6 and Theorem II.7, and sug-
gest that developing further connections between Heavy Avoid
and these modern hardness-randomness tradeoffs paradigms
could be a fruitful research direction.

III. TECHNIQUES

We now discuss the proofs of Theorem II.1, Theorem II.4,
Theorem II.6, and Theorem II.7. We make use of a variety of
techniques to establish these results:

• The proof of Theorem II.1 Item (iii) relies on ex-
tremely efficient instance checkers for a special PSPACE-
complete problem investigated in [26]. This allows us
to establish equivalences for very weak circuits classes
C at the frontier of existing separations. Extending the
equivalence result to NP, EXP, and EXPNP in the context
of weak circuit classes poses some additional challenges
that we address through different ideas and techniques.

• In the proof of Theorem II.4 Item (i), we use an instance
checker to design a polynomial-time pseudodeterministic
algorithm for the (D, δ)-Heavy-Avoid problem. To our
knowledge, this is the first application of instance check-
ers in the design of an algorithm for a natural problem.

10Recall that in a Levin reduction between search problems we have a pair
(f, g) of functions, where f maps to an instance of the other problem while
g converts a given solution into a solution to the original problem.

11Compared with classical hardness-randomness frameworks such as [6],
[7], [25], the advantage of the new paradigm is that lower bounds against
uniform algorithms (instead of non-uniform circuits) suffice for worst-case
derandomization.

On the other hand, the algorithms in Items (ii) and (iii) of
Theorem II.4 explore a connection to randomized time-
bounded Kolmogorov complexity [27], [28] and its source
coding theorem [29], [30].

• The proof of Theorem II.6 relies on a novel application
of the Chen–Tell non-black-box hitting set generator con-
struction from [2], [31]. In contrast to previous applica-
tions, here the reconstruction procedure of the generator
itself, as well as the assumed algorithm for Heavy Avoid,
plays a key role in the specification of a “hard” function.

• Finally, the proof of Theorem II.7 builds on the proof of
Theorem II.6. It combines for the first time the Chen–
Tell derandomization framework [2] with the leakage
resilience derandomization framework of [21], using a
win-win analysis. We show that either the Heavy Avoid
algorithm is leakage resilient, which allows us to use the
framework of [21], or it can be implemented by a low-
depth circuit, which allows us to use the framework of [2].
This enables us to derive a non-trivial derandomization
consequence without the circuit depth constraint present
in the hypothesis of Theorem II.6.

Next, we describe some of our proofs and techniques in
more detail.

a) Sketch of the Proof of Theorem II.1: We first explain
the proof of Item (iii), i.e., the equivalence between the com-
plexity separation PSPACE ⊈ BP- C and the existence of (in-
finitely often) logarithmic-space algorithms for Heavy-Avoid
over implicit DLOGTIME-uniform C-samplers.

First, we show how to obtain the separation using algo-
rithms for the implicit heavy avoid problem. Using standard
arguments, it suffices to show that for every choice of k ≥ 1,
there is L ∈ DSPACE[n2] such that L cannot be computed by
DTIME[k · log n]-uniform randomized C-circuits of size nk.

Let N = 2n. We consider a map GN : {0, 1}nO(k) →
{0, 1}N that views its input string x as a pair (M, r), where
M is a short encoding (say, log n bits) of a clocked machine
running in time 10k · log n, and r is a random string. Let DM

be the C-circuit of size at most n2k whose direct connection
language is encoded by the machine M . For i ∈ [N ], we
define the i-th output bit of GN (x) as DM (r, i). Due to
its running time, the computation of M can be uniformly
converted into an AC0 circuit of size at most n10k. Using
that C is a nice circuit class, GN can be implicitly computed
by a DLOGTIME-uniform probabilistic C-circuit CN of size
at most nO(k).

Let B(1N ) be an algorithm of space complexity O(logN)
that solves C-Implicit-δ-Heavy-Avoid on infinitely many
values of N for the sequence GN , and let LB be the lan-
guage defined by B. Note that LB is in DSPACE[O(n)] ⊆
DSPACE[n2]. To argue that LB cannot be computed by
DTIME[k · log n]-uniform randomized C-circuits of size nk,
it is enough to show that for every language L computed by
such circuits, each string in the sequence {yLN}N of truth-
tables obtained from L is δ-heavy in GN (Um(N)). Since B
solves C-Implicit-δ-Heavy-Avoid for the sequence {GN},
it follows that LB ̸= L.



The proof that the sequence {yLN}N of truth-tables obtained
from L is δ-heavy in GN (Um(N)) relies on the definition
of GN . In more detail, under the assumption that L admits
DTIME[k · log n]-uniform randomized C-circuits of size nk,
it is not hard to show that its truth-table is produced with
probability comparable to 2−|M |. However, this probability
is sufficiently large under the assumption that the encoding
length |M | is small in the definition of GN .

The proof of the other direction in Theorem II.1 is more
interesting. We establish the contrapositive. Suppose that for
some GN : {0, 1}poly(n) → {0, 1}N implicitly computed by
DLOGTIME-uniform C-circuits of size poly(n), every al-
gorithm A(1N ) running in space O(logN) fails to solve
C-Implicit-δ-Heavy-Avoid on every large enough input
length N . We employ this assumption to show that PSPACE ⊆
BP- C. For this, we recall the notion of instance checkers. Let
L ⊆ {0, 1}∗ be a language, and let {C(−)

n (x, z)}n∈N be a
family of probabilistic oracle circuits. We say that C is an
instance checker for L if for every input x ∈ {0, 1}∗:

1) Prz[C
L
|x|(x, z) = L(x)] = 1, and

2) for every oracle O, Prz[C
O
|x|(x, z) /∈ {L(x),⊥}] ≤

1/2n.

We will rely on an appropriate PSPACE-complete language
L⋆ that admits highly efficient instance checkers computable
in any nice circuit class. This is a consequence of a result from
[26], as explained in Appendix B of the full version.

We then consider a candidate algorithm A(1N ) that com-
putes as follows. On input 1N , define ttN to be the truth table
of L⋆ on n-bit inputs; we simply output ttN . It is possible to
show that A computes in space O(logN) after an appropriate
scaling of parameters, which we we omit here for simplicity.
Therefore, A fails to solve C-Implicit-δ-Heavy-Avoid on
every large enough input length N . This means that for every
large enough N , the probability of ttN under the distribution
GN (Upoly(n)) from above is at least δ = 1/(logN)O(1) =
1/poly(n).

To explain how we compute L⋆ on an input x ∈ {0, 1}n,
assume for simplicity that the oracle instance checker circuit
(call it IC) only queries its oracle on input length n. We sample
v := nO(1) strings z1, . . . , zv ∈ {0, 1}poly(n) uniformly and
independently at random, and for each string zi, we define an
oracle Oi whose truth table is the string GN (zi) ∈ {0, 1}N .
We run IC in parallel and obtain bi := ICOi

n (x) for each i ∈ [v].
We output 1 if at least one bit among b1, . . . , bv is 1, and 0
otherwise.

Next, we argue that A computes L⋆ with high probability.
Let ttN denote the truth table of L⋆ on input length n.
By our choice of v, with high probability the string ttN
appears among the strings GN (z1), . . . , GN (zv), meaning that
one of the oracles Oi computes L⋆ on inputs of length n.
Consequently, in this case, if L⋆(x) = 1 then at least one
bit bi = 1, and the procedure outputs 1. On the other hand,
if L⋆(x) = 0, then by a union bound over the internal
randomness of IC, with high probability every bit bi ∈ {0,⊥}.
In this case, the procedure outputs 0. This establishes the

correctness of A. Using the efficiency of the instance checker
and that C is a nice circuit class, it is also possible to upper the
circuit complexity of A and to analyze the uniformity of the
corresponding circuits. This implies that L⋆ ∈ BP- C. Since L⋆

is PSPACE-complete under DLOGTIME-uniform projection
reductions, we get that PSPACE ⊆ BP- C, as desired.

We now briefly comment on the additional ideas needed for
the proofs of the other items in Theorem II.1. The proof of
Item (ii) requires a different approach, since instance checkers
for EXPNP-complete languages are not known. We provide
two different proofs in this case. In more detail, the result
for EXPNP can be obtained using a win-win argument and
a reduction to Item (iii), or through the use of selectors
for EXPNP-complete languages [32]. These two approaches
provide different extensions of the result, which we discuss
in detail in Section 3.3 of the full version. On the other
hand, the proof of Item (iv) relies on a randomized depth-
efficient version of the search-to-decision reduction for SAT
based on the Valiant-Vazirani Isolation Lemma [33], as well
as the equivalence between the polynomial hierarchy and
DLOGTIME-uniform constant-depth circuits of exponential
size [34].

b) Sketch of the Proof of Theorem II.4: First, we discuss
the proof of Item (i) in the case where C = “general Boolean
circuits”. Consider a map GN : {0, 1}poly(n) → {0, 1}N that is
implicitly computable in time poly(n). We consider two cases,
based on whether EXP = BPP.

If EXP ⊈ BPP, then by Theorem II.1 Item (i) (with circuit
class C = “general Boolean circuits”) the heavy avoid problem
over GN can be solved in deterministic polynomial time (i.e.,
in time poly(N)) on infinitely many input lengths. Note that
the correctness of the procedure obtained from Theorem II.1
Item (i) relies on the existence of instance checkers for EXP-
complete languages.

In the remaining case, assume that EXP ⊆ BPP. Let B(j)
be the following deterministic machine with input j ∈ {0, 1}n:
It first goes over all choices of x ∈ {0, 1}poly(n) and computes
GN (x), then calculates the probability of each string in
{0, 1}N produced in this way, and finally outputs the j-th bit
of the lexicographic first string y such that Pr[GN (Upoly(n)) =
y] ≤ δ. Note that B runs in time exponential in n, its
input length. Therefore, it defines a language LB ∈ EXP. By
the assumption, LB ∈ BPP. Consequently, we can compute
y ∈ {0, 1}N from 1N in pseudodeterministic time poly(N).
Note that in this case the algorithm succeeds on every input
length.12

More generally, to obtain the result claimed in Item (i) for
a nice circuit class C, we use a similar approach but consider
whether PSPACE ⊈ BP- C instead (see Section 4.1 of the full
version).

12We remark that using a more involved construction that employs the
instance checker as a subroutine, one can simultaneously consider both cases
to describe a single explicit algorithm that succeeds infinitely often. We omit
the details. For a similar situation where a non-constructive win-win argument
can be turned into an explicit algorithm, see [35, Section 3.4].



In contrast, the proof of Theorem II.4 Item (iii) relies on
ideas from randomized time-bounded Kolmogorov complexity.
More specifically, we consider the randomized Levin com-
plexity of a string y ∈ {0, 1}n [27], denoted rKt(y). Roughly
speaking, rKt(y) measures the minimum description length of
a time-bounded machine that outputs y with high probability.
Our key idea is that, by the coding theorem of [29], if a string
y can be sampled in polynomial time with probability at least
δ, then rKt(y) = O(log 1/δ). Consequently, to avoid the set
of heavy strings produced by a polynomial-time samplable
distribution D, it is sufficient to construct a string z such
that rKt(z) ≥ C · log n, where C is large enough. In order
to implement this idea, we employ a related sub-exponential
time pseudodeterministic construction of strings of large rKt
complexity from [36].

Finally, the proof of Theorem II.4 Item (ii) is obtained via
a translation to Item (iii), using a simple “prefix” reduction
described in Section 4.3 of the full version.

c) Sketch of the Proof of Theorem II.6: Using existing
results [37], in order to derandomize prBPP it is suffi-
cient to describe an algorithm that, given an input circuit
D : {0, 1}M → {0, 1} of size O(M) with the promise that
Pry[D(y) = 1] ≥ 1/2, runs in deterministic time poly(M)
and outputs a positive input of D. To achieve this, we will rely
on a novel application of the Chen–Tell generator [2] (with
the improved parameters from [31]). In more detail, given
a function f : {0, 1}n → {0, 1}T (n) computed by logspace
uniform circuits of size T (n) and depth d(n), and a parameter
M(n) such that c · log T ≤ M ≤ T 1/c (for a constant c), [2],
[31] provides algorithms HSGf and Reconf depending on f
such that:

• The algorithm HSGf (x) runs in deterministic T c time
and outputs a set of M -bit strings.

• Given x ∈ {0, 1}n and i ∈ [T ] as inputs, and oracle
access to a candidate distinguisher D : {0, 1}M → {0, 1},
ReconDf (x, i) runs in randomized (dnM)c time. If D is
dense and avoids HSGf (x), then with probability ≥ 1−
2−M , ReconDf (x, i) outputs the i-th bit of f(x).

We consider an appropriate function f ′ : {0, 1}Õ(M) →
{0, 1}N , where N = MC1 for a large enough constant C1. We
view the input of f ′ as the description of an arbitrary circuit
D : {0, 1}M → {0, 1} of size O(M). In this construction, the
parameter T = MC2 for a large enough constant C2 > C1,
while d = Mo(1) = No(1). Moreover, f ′ will be computed
by a logspace-uniform family of circuits. We then show that
HSGf ′(D) hits D if D is a dense circuit. Note that the
generator runs in time poly(T ) = poly(M) by our choice
of parameters.

The function f ′ makes use of the algorithm A that
solves the Implicit-δ-Heavy-Avoid problem on instances
G : {0, 1}Nϵ → {0, 1}N that are implicitly computable in
N ϵ size. In more detail, we let f ′(D) = A(CD), where CD

is an implicit (non-uniform) sampler of size N ϵ for a map
GD : {0, 1}Nϵ → {0, 1}N described next.

First, we make a simplifying assumption: The sampler GD

has access to the code of a machine Mf ′ that serves as a
logspace-uniform description of a circuit family that computes
f ′. (Observe that this is self-referential, since we have defined
f ′(D) = A(CD) above, while we will also use f ′ to define
CD. We will handle this issue later.)

The sampler GD stores D as advice. This is possible
because D is of size M , and if C1 is large enough then
M ≪ N ϵ. The implicit sampler CD(r, i) for GD then uses
its random input string r of length N ϵ and i ∈ [logN ] to
compute ReconDf ′(D, i, r), where we have made explicit the
random string r used by ReconDf ′ . Since d = Mo(1) and C1 is
large enough, we get that ReconDf ′(D, i, r) can be computed in
time (d ·M1+o(1) ·M)c ≤ M c+o(1) ≤ N ϵ. This completes the
definition of f ′(D) and of HSGf ′(D). We note that to establish
the size, depth, and logspace-uniformity of the sequence of
circuits computing f ′ we can rely on the fact that f ′ only
needs to produce the code of CD.13

Next, we argue that HSGf ′(D) hits any dense circuit D. As-
sume this is not the case. Then, since D avoids the generator,
ReconDf (D, i) outputs the i-th bit of f ′(D) with probability at
least 1− 2−M . Consequently, by a union bound over i ∈ [N ],
it follows that the string A(CD) = f ′(D) ∈ {0, 1}N is
output by ReconDf (D, ·) with probability 1 − o(1). In other
words, the string f ′(D) is sampled with high probability by
the sampler GD encoded by CD. On the other hand, since
f ′(D) = A(CD) and A solves the heavy avoid problem for
GD, we get that the string f ′(D) has probability o(1) under
GD. This contradiction implies that HSGf ′(D) indeed hits D.

It remains to explain how to fix the self-referential nature
of the definition of GD via the implicit sampler CD, which
depends on f ′ (and which in turn depends on CD). In more
detail, the construction is self-referential due to the use of the
routine ReconDf ′ , which depends on f ′. To patch the argument,
we combine the following key points:

• There is a deterministic algorithm that, given the Turing
machine Mf ′ that prints the circuit for f ′ in logspace,
outputs the description of Reconf ′ in poly(|⟨Mf ′⟩|) time.

• We can combine constantly many samplers into a single
sampler that produces the convex combination of the
corresponding distributions. A string with weight o(1)
under the new distribution must have weight o(1) under
each original sampler.

Therefore, we can change the description of GD so that it
interprets a small prefix of its random input string as the
description of a Turing machine Mf that prints a circuit of the
expected size using logarithmic uniformity, then use the first
bullet above to produce the procedure Reconf corresponding
to f . Notice that with this change the sampler GD no longer
depends on f ′. Moreover, since f ′ is encoded by some finite
machine Mf ′ , using the second bullet the argument described
above to reach a contradiction and establish the correctness of

13We make a brief comment about the novelty of this argument. In order
to define the “hard” function f ′, here we make use of the reconstruction
procedure of the generator. This is different from an application of this
generator in [31], where the code of the hitting set procedure plays a key
role in the definition of the hard function.



the hitting set generator still holds: When D avoids HSGf ′(D)
the modified sampler GD outputs the string f ′(D) = A(CD)
with constant probability, while as a solution to the heavy
avoid problem for GD this string has probability o(1). This
completes the sketch of the argument.14

d) Sketch of the Proof of Theorem II.7: Since this is a
more sophisticated construction, we only provide a brief sketch
of the idea. As alluded to above, the argument combines the
two instance-wise hardness-randomness tradeoffs introduced
by Chen and Tell [2] and by Liu and Pass [21], respectively.

We employ a win-win analysis based on whether the as-
sumed algorithm for Implicit-δ-Heavy-Avoid (call it Avoid)
is “leakage resilient” hard. In more detail, let f : {0, 1}n →
{0, 1}T be a function, A be a randomized algorithm, and
x ∈ {0, 1}n be an input of f . We say that f(x) is ℓ-leakage
resilient hard against A if for every “leakage string” leak ∈
{0, 1}ℓ, there is some i ∈ [T ] such that Pr[A(x, leak, i) =
f(x)i] ≤ 2/3, where the probability is taken over the internal
randomness of A. Liu and Pass [21] showed that leakage
resilient hardness can be used for derandomization.

We can now explain the main idea behind the win-win anal-
ysis. If Avoid is leakage resilient hard, we use the hardness-
randomness tradeoffs in [21]. If this is not the case, we show
that Avoid can actually be implemented by a low-depth circuit.
We can then use the hardness-randomness tradeoffs in [2],
which requires the hard function to be computed by a low-
depth circuit family.

Implementing this plan turns out to require a delicate
construction and the notion of infinitely-often∗ correctness
appearing in the statement of Theorem II.7. We refer to Section
5.2 of the full version for more details.

IV. RELATED WORK

Our work relates to several recent lines of research in
algorithms and complexity theory.

a) Algorithmic Characterizations of Uniform Lower
Bounds: The algorithmic method of Williams [38], which
derives C-circuit lower bounds for NEXP or EXPNP from
non-trivial algorithms for Satisfiability or GAP-SAT for C
circuits, has been successful in showing several new circuit
lower bounds [9], [39], [40], [41], [42], [10]. However, in
settings where non-uniform lower bounds are unknown, it is
unclear how to use such methods to at least give uniform ran-
domized lower bounds. A step towards such methods is to give
algorithmic characterizations of uniform lower bounds, which
show that certain algorithmic results are both necessary and
sufficient for lower bounds. An algorithmic approach to the
NEXP vs BPP problem is given in [4], but this does not seem
to give a characterization. An algorithmic characterization of
EXP ̸= BPP follows from [15], but this characterization
does not extend to frontier lower bound questions such as
EXPNP ⊈ BP-TC0 and EXP ⊈ BP-ACC0. Theorem II.1

14We note that this argument is non-black-box. The code of a machine
Mf ′ that describes a uniform circuit family for f ′ is needed to instantiate
the Chen-Tell generator. In the aforementioned construction, this means that
black-box access to the algorithm A is not enough.

gives generic characterizations that apply to these and other
frontier questions – this showcases the benefits of considering
the Heavy Avoid problem rather than the previously studied
Gap-SAT or Circuit Acceptance Probability Problem (CAPP).
Theorem II.1 also gives characterizations of uniform lower
bounds for NP, where no algorithmic characterizations at all
where known before. An algorithmic approach to uniform
lower bounds for NP is given in [43], but the method there
does not seem to extend to randomized lower bounds, and
moreover does not give unconditional algorithmic characteri-
zations.

b) Range Avoidance: There have been several recent
works on the Range Avoidance problem [44], [13], [14], [45],
[46], [47], [48], [49], [50], which is a total search problem
where we are given a circuit C from n bits to m bits, m > n,
and need to output an m-bit string that is not in the range
of C.15 The Range Avoidance problem is tightly connected
to proving non-uniform lower bounds (see, e.g., [52], [13],
[14], [54], [55], [50]). Heavy Avoid can be thought of as an
easier version of Range Avoidance, where we are asked to
output some m-bit string that does not have many pre-images,
rather than a string that has no pre-images at all. Indeed, for δ
that is inverse polynomial, Heavy Avoid with parameter δ is a
BPP search problem, which is unknown for Range Avoidance
and would have new circuit lower bound consequences if it
were the case. We refer to Appendix A of the full version for
reductions from both Heavy Avoid and Heavy Find to Range
Avoidance. One of our motivations for defining and studying
Heavy Avoid is that algorithms for this easier problem might
give a way to exploit uniformity in the lower bound.

c) Quantified Derandomization: In the quantified deran-
domization setting [56], [57], we are interested in the possibil-
ity of derandomizing algorithms with overwhelming success
probability, e.g., derandomization of randomized algorithms
for a decision problem that err on at most S(n) random bit
sequences, for some S(n) that is sub-exponential or even
just slightly super-polynomial. Note that this derandomization
setting is quite specialized, since bounded-error randomized
algorithms are in general allowed to err on an inverse poly-
nomial fraction of all random bit sequences. A naive way
to derandomize such algorithms for decision problems is to
run the randomized algorithm on the lexicographically first
2S(n)+1 random bit sequences, and take the majority answer.
The question of when it is possible to do better has been
studied extensively [56], [58], [59], [60], [57]. Our Corol-
lary II.3 identifies an interesting phenomenon for quantified
derandomization of BPP search problems, which has not
been studied before. In this setting, the previously mentioned
“naive” method to derandomize doesn’t work, as verifying
a candidate solution itself involves the use of randomness.
We show that for any δ = o(1) there is a natural search
problem, i.e., Heavy Avoid with parameter δ, such that the
problem can be solved by a randomized algorithm which

15The problem is closely related to the dual weak pigeonhole principle,
which has been widely investigated in logic and bounded arithmetic (see [51],
[52], [53], [50] and references therein).



errs on at most 1/δ = ω(1) random bit sequences, but any
efficient randomized algorithm which errs on at most O(1)
random bit sequences would imply EXP ̸= BPP! Thus even
slightly beating the performance of a known algorithm in a
quantified derandomization sense would imply a breakthrough
lower bound.

d) Pseudodeterministic Algorithms: The notion of pseu-
dodeterminism was introduced in the influential work of [3].
A pseudodeterministic algorithm for a search problem is a
randomized algorithm that outputs some fixed solution to the
search problem with high probability. There has been a lot of
recent work on pseudodeterminism in various settings, as well
as connections to complexity theory (see, e.g., [61], [35], [62],
[63], [64], [65], [66], [36], [67], [68]). In general, one might
hope to show that every BPP search problem can also be
solved pseudodeterministically, but this is not known, though
there are important special cases such as finding an N -bit
prime for which efficient pseudodeterministic algorithms are
known infinitely often [31]. Theorem II.4 gives unconditional
pseudodeterministic algorithms for Heavy Avoid that can be
implemented in low depth when the circuit sampler for Heavy
Avoid is itself low depth. Moreover, improving our strongest
pseudodeterministic algorithms would have immediate con-
sequences for the long-standing open problem of showing a
hierarchy for randomized time (Proposition II.5). Note that
unlike the problem of finding an N -bit prime, Heavy Avoid
is a fairly powerful BPP search problem, as evidenced by
Theorems II.6 and II.7.

e) Minimal Assumptions for Derandomization: The stan-
dard “hardness vs. randomness” approach towards prBPP =
prP requires lower bounds against non-uniform circuits [6],
[7], [69]; another line of work employs uniform lower bounds
such as EXP ̸= BPP to obtain heuristic (i.e., average-
case) derandomization of BPP [15], [70], [71], [72]. A long-
standing open problem is whether circuit lower bounds such
as EXP ⊈ SIZE[poly] are indeed necessary for derandomiza-
tion (see, e.g., [73] and [71]). Recently, Chen and Tell [2]
proposed an instance-wise hardness-randomness tradeoff and
showed that almost-all-inputs hardness suffices for worst-case
derandomization. The Chen-Tell result has already sparked a
new line of research on instance-wise hardness-randomness
tradeoffs and minimal assumptions for derandomization [23],
[21], [72], [24], [74] (see also the survey [75]). As demon-
strated in Theorems II.6 and II.7, these instance-wise hardness-
randomness tradeoffs can be used as proof techniques to
connect Heavy Avoid to the problem of derandomizing prRP
or prBPP. Moreover, as shown in Section 5.4 of the full
version of this paper, the almost-all-inputs hardness assump-
tions used in [2] are closely connected to Heavy Avoid. Given
the rich interplay between Heavy Avoid and derandomization,
we believe that investigating the complexity of Heavy Avoid
is likely to shed further light on the minimal assumptions
required for derandomization.
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