
Polynomial-Time Pseudodeterministic Construction
of Primes

Lijie Chen
UC Berkeley

Berkeley, CA, USA
lijiechen@berkeley.edu

Zhenjian Lu
University of Oxford

Oxford, UK
zhenjian.lu@cs.ox.ac.uk

Igor C. Oliveira
University of Warwick

Coventry, UK
igor.oliveira@warwick.ac.uk

Hanlin Ren
University of Oxford

Oxford, UK
hanlin.ren@cs.ox.ac.uk

Rahul Santhanam
University of Oxford

Oxford, UK
rahul.santhanam@cs.ox.ac.uk

Abstract—A randomized algorithm for a search problem is
pseudodeterministic if it produces a fixed canonical solution to
the search problem with high probability. In their seminal work
on the topic, Gat and Goldwasser [1] posed as their main open
problem whether prime numbers can be pseudodeterministically
constructed in polynomial time.

We provide a positive solution to this question in the
infinitely-often regime. In more detail, we give an unconditional
polynomial-time randomized algorithm B such that, for infinitely
many values of n, B(1n) outputs a canonical n-bit prime pn
with high probability. More generally, we prove that for every
dense property Q of strings that can be decided in polynomial
time, there is an infinitely-often pseudodeterministic polynomial-
time construction of strings satisfying Q. This improves upon a
subexponential-time construction of Oliveira and Santhanam [2].

Our construction uses several new ideas, including a novel
bootstrapping technique for pseudodeterministic constructions,
and a quantitative optimization of the uniform hardness-
randomness framework of Chen and Tell [3], using a variant
of the Shaltiel–Umans generator [4].

Index Terms—explicit construction, pseudodeterministic con-
struction, hardness vs. randomness

I. INTRODUCTION

How hard is it to construct an n-bit prime1? This is a
fundamental problem in number theory and in complexity
theory. Under reasonable assumptions, the problem is solvable
in deterministic polynomial time. In more detail, Cramér’s
conjecture [5] in number theory asserts that the largest prime
gap in any consecutive sequence of n-bit numbers is O(n2).
Assuming this conjecture, we can solve the prime construction
problem efficiently by testing the first O(n2) integers greater
than 2n−1 for primality and outputting the first one, where
the primality tests are done efficiently using the algorithm
of Agrawal, Kayal and Saxena [6]. An independent source
of evidence for the efficiency of prime construction is the
complexity-theoretic conjecture that DTIME(2O(n)) requires
Boolean circuits of exponential size on almost all input

1Recall that a positive integer q is an n-bit prime if q is a prime number
and 2n−1 ≤ q ≤ 2n − 1.

lengths. Under this conjecture, we can use the Impagliazzo–
Wigderson pseudorandom generator [7] to derandomize the
simple randomized algorithm that outputs a random n-bit
number, using the facts that primality testing is in polynomial
time and that an Ω(1/n) fraction of n-bit numbers are prime.

However, we seem very far from either settling Cramér’s
conjecture or proving strong complexity lower bounds. The
best upper bound we can prove on the gap between consecutive
n-bit primes is 2(0.525+o(1))n [8], and no super-linear circuit
lower bounds are known for DTIME(2O(n)) [9]. Indeed, the
best unconditional result we have so far is that deterministic
prime construction can be done in time 2(0.5+o(1))n [10],
which is very far from the polynomial-time bound we seek.
The Polymath 4 project (see [11]) sought to improve this upper
bound using number-theoretic techniques but did not achieve
an unconditional improvement.

In contrast to the situation with deterministic prime con-
struction, it is easy to generate an n-bit prime randomly, as
mentioned above: simply generate a random n-bit number, test
it for primality in polynomial time, and output it if it is a prime.
This algorithm has success probability Ω(1/n) by the Prime
Number Theorem, and the success probability can be amplified
to be exponentially close to 1 by repeating the process poly(n)
times independently, and outputting the first of these poly(n)
numbers that is verified to be prime, assuming that there is at
least one.

Gat and Goldwasser [1] asked whether it is possible to
generate primes efficiently by a randomized process, such
that the output is essentially independent of the randomness
of the algorithm. In other words, is there a polynomial-
time randomized algorithm, which on input 1n, constructs
a canonical prime of length n with high probability? They
call such an algorithm a pseudodeterministic algorithm, since
the output of the algorithm is (almost) deterministic even
though the algorithm might use random bits in its operation.
Note that the randomized algorithm for prime generation we
described in the previous paragraph is very far from being
pseudodeterministic, as different runs of the algorithm are

unlikely to produce the same prime. It is easy to see that
a pseudodeterministic construction serves as an intermediate
notion between a randomized construction (which is trivial for
primes) and a deterministic construction (where little progress
has been made so far).

[1] initiate a general theory of pseudodeterminism for search
problems, motivated by applications in cryptography and dis-
tributed computing. Since then, there have been a number of
papers on pseudodeterminism, in various contexts, such as
query complexity [12]–[14], streaming algorithms [15], [16],
parallel computation [17], [18], learning algorithms [19], Kol-
mogorov complexity [20], [21], space-bounded computation
[22], proof systems [23], [24], number theory and computa-
tional algebra [2], [25], approximation algorithms [26], and
many other settings (see, e.g., [27]–[32]).

Despite all this progress, the main problem about pseu-
dodeterminism posed in [1] has remained open: Is there a
pseudodeterministic polynomial-time algorithm for prime con-
struction? They describe this problem as “the most intriguing”
and “perhaps the most compelling challenge for finding a
unique output”.

Unlike in the case of deterministic construction, number-
theoretic techniques have so far not proven useful for the
pseudodeterministic construction problem for primes. Using
complexity-theoretic techniques, Oliveira and Santhanam [2]
(see also [21]) showed that for any ε > 0, there is an algorithm
that runs in time 2n

ε

and succeeds on infinitely many input
lengths.

II. OUR RESULTS

In this paper, we design a significantly faster algorithm and
provide an affirmative answer to the question posed by Gat and
Goldwasser in the infinitely-often regime. Our main result can
be stated in full generality as follows.

Theorem 1 (Infinitely-Often Polynomial-Time Pseudodeter-
ministic Constructions). Let Q ⊆ {0, 1}∗ be a language with
the following properties:
(Density.) there is a constant ρ ≥ 1 such that for every n ∈

N≥1, Qn ≜ Q ∩ {0, 1}n satisfies |Qn| ≥ n−ρ · 2n; and
(Easiness.) there is a deterministic polynomial-time algorithm

AQ that decides whether an input x ∈ {0, 1}∗ belongs
to Q.

Then there exist a probabilistic polynomial-time algorithm B
and a sequence {xn}n∈N≥1

of n-bit strings in Q such that the
following conditions hold:

1) On every input length n ∈ N≥1, PrB [B(1n) /∈
{xn,⊥}] ≤ 2−n.

2) On infinitely many input lengths n ∈ N≥1, PrB [B(1n) =
xn] ≥ 1− 2−n.

Interestingly, our construction is non-black-box, in the sense
that changing the code of the algorithm AQ deciding property
Q affects the canonical output of the corresponding algorithm
B. We will revisit this point when we discuss our techniques
(see the remark at the end of Section IV-B).

Letting Q be the set of prime numbers and noticing that
Q is both dense (by the Prime Number Theorem) and easy
(by the AKS primality test [6]), we immediately obtain the
following corollary of Theorem 1.

Corollary 2 (Infinitely-Often Polynomial-Time Pseudodeter-
ministic Construction of Primes). There is a randomized
polynomial-time algorithm B such that, for infinitely many
values of n, B(1n) outputs a canonical n-bit prime pn with
high probability.

Corollary 2 improves upon the subexponential-time
infinitely-often pseudodeterministic construction of primes
from [2] mentioned above. Note that the result for prime
construction is a corollary of a far more general result about
properties that are dense and easy. This is evidence of the
surprising power of complexity theory when applied to a
problem which seems to be about number theory (but where
number-theoretic techniques have not so far been effective).
The famous efficient primality testing algorithm of [6] sim-
ilarly applied complexity-theoretic derandomization ideas to
solve a longstanding open problem in computational number
theory, though their argument does require more information
about primes.

For a string w ∈ {0, 1}∗ and t : N → N, we let rKt(w)
denote the length of the smallest randomized program that
runs for at most t(|w|) steps and outputs w with probability
at least 2/3. (We refer to [33] for a formal definition and
for an introduction to probabilistic notions of time-bounded
Kolmogorov complexity.) By encoding the (constant-size)
randomized polynomial-time algorithm B and each good input
length n using O(1) + log n bits in total, the following result
holds.

Corollary 3 (Infinitely Many Primes with Efficient Succinct
Descriptions). There is a constant c ≥ 1 such that, for t(n) =
nc, the following holds. For every m ≥ 1, there is n > m and
an n-bit prime pn such that rKt(pn) ≤ log(n) +O(1).

In other words, there are infinitely many primes that admit
very short efficient descriptions. The bound in Corollary 3
improves upon the sub-polynomial bound on rKpoly(pn) from
[21].

In the next section, we describe at a high level the ideas
in the proof of Theorem 1, and how they relate to previous
work.

III. PROOF IDEAS

The proof of Theorem 1 relies on uniform hardness-
randomness tradeoffs [34], [35]. For concreteness, assume that
Q = {Qn}n∈N≥1

, with each Qn ⊆ {0, 1}n consisting of
the set of n-bit prime numbers. Let AQ be a deterministic
polynomial-time algorithm that decides Q (e.g., AQ is the
AKS primality test algorithm [6]). Before we present our
algorithm and the main ideas underlying our result, it is
instructive to discuss the approach of [2], which provides
a subexponential-time pseudodeterministic construction that
succeeds on infinitely many input lengths.

Subexponential-time constructions of [2]: We first recall
how uniform hardness-randomness tradeoffs work. Given a
presumed hard language L, a uniform hardness-randomness
tradeoff for L states that either L is easy for probabilistic
polynomial-time algorithms, or else we can build a pseudo-
random set Gn ⊆ {0, 1}n computable in subexponential time
(thus also has subexponential size), which fools probabilis-
tic polynomial-time algorithms on inputs of length n (for
infinitely many n). In particular, Trevisan and Vadhan [35]
give a uniform hardness-randomness tradeoff for a PSPACE-
complete language LTV they construct, which has certain
special properties tailored to uniform hardness-randomness
tradeoffs.2

The subexponential-time construction in [2] uses a win-
win argument to derive an unconditional pseudodeterministic
algorithm from the uniform hardness-randomness tradeoff of
[35]. There are two cases: either LTV ∈ BPP, or it is not. If
the former is the case, then PSPACE ⊆ BPP by the PSPACE-
completeness of LTV. Now, since we can in polynomial space
test all n-bit numbers using AQ until we find the lexicographic
first prime number, we can also do it in randomized polynomial
time, i.e., there is a randomized algorithm B(1n) that runs
in polynomial time and outputs the lexicographically first
n-bit prime with high probability. Thus, in this case, the
lexicographically first n-bit prime is the “canonical” output of
the pseudodeterministic algorithm, and the algorithm works
on every input length n.

Suppose, on the other hand, that LTV ̸∈ BPP. Using the
uniform hardness-randomness tradeoff of [35], we have that
for each ε > 0, there is a pseudorandom set G = {Gn},
where each Gn ⊆ {0, 1}n is of size at most 2n

ε

, such that
for infinitely many n, Gn fools the algorithm AQ on inputs
of length n. Since AQ accepts an Ω(1/n) fraction of strings
of length n by the Prime Number Theorem, we have that the
fraction of strings in Gn that are prime is Ω(1/n) (by choos-
ing the error parameter of the uniform hardness-randomness
tradeoff to be small enough). In particular, there must exist
an element of Gn that is prime. Since Gn is computable
in subexponential time, we can define a subexponential time
deterministic algorithm that enumerates elements of Gn and
tests each one for primality until it finds and outputs one
that is prime. This algorithm is deterministic but it runs in
subexponential time, and is only guaranteed to be correct for
infinitely many n.

Thus, in either case, we have a pseudodeterministic al-
gorithm for constructing primes that runs in subexponential
time and works infinitely often. Note that we do not know a
priori which of the two cases above holds, and therefore the
argument is somewhat non-constructive. By exploiting further
properties of the uniform hardness-randomness tradeoff, [2]
manage to give an explicit construction algorithm that runs in
subexponential time infinitely often.

2For the pseudorandomness experts, these special properties are downward
self-reducibility and random self-reducibility.

Win-win arguments: The above argument gives a
subexponential-time construction, but the win-win structure
of the argument seems incapable of giving an optimal
polynomial-time construction. Indeed, this is the case for many
win-win arguments used in complexity theory:

• A win-win argument based on the Karp–Lipton theorem
[36] gives that Σ2EXP requires super-polynomial size
Boolean circuits [37], but seems incapable of giving truly
exponential (2Ω(n)) Boolean circuit lower bounds.

• A win-win argument based on uniform hardness-
randomness tradeoffs gives that either E ⊆ BPP or BPP
can be simulated infinitely often in deterministic subex-
ponential time on average [34], but it remains unknown if
such a tradeoff holds at the “high end”, i.e., whether it is
the case that either E is in probabilistic subexponential-
time or else BPP can be simulated infinitely often in
deterministic polynomial time on average.

• A win-win argument based on the Easy Witness Lemma
gives that if NEXP ⊆ SIZE(poly), then NEXP = MA
[38], but it is unknown if any interesting uniform collapse
follows from the simulation of NEXP by subexponential-
size Boolean circuits.

In each of these cases, the win-win argument seems to have
inherent limitations that prevent us from getting optimal lower
bounds or tradeoffs. Indeed, a paper by Miltersen, Vinodchan-
dran and Watanabe [39] studies the “fractional exponential”
lower bounds that seem to be the best provable using win-win
arguments in the context of Boolean circuit lower bounds for
exponential-time classes.3

Thus, in order to obtain a polynomial-time pseudodeter-
ministic algorithm for primality, it seems that we need to
go beyond win-win arguments. One natural idea is to apply
uniform hardness-randomness tradeoffs recursively. However,
this seems hard to do with the uniform hardness-randomness
tradeoff of [35]. Their tradeoff applies only to the special
language LTV. If we argue based on the hardness or other
properties of LTV, then in the case where LTV ∈ BPP,
we get a pseudodeterministic polynomial-time algorithm for
constructing primes, but in the case where LTV ̸∈ BPP, we
get a subexponential-time constructible pseudorandom set, and
it is unclear how to apply the uniform hardness-randomness
tradeoff to the algorithm for constructing this set.

Recursive application of uniform hardness-randomness
tradeoffs: One of our main ideas is to exploit very recent
work on uniform hardness-randomness tradeoffs [3] which
applies to generic computations, as long as they satisfy cer-
tain mild properties. These tradeoffs yield hitting sets rather
than pseudorandom sets based on hardness — a hitting set
H ⊆ {0, 1}M is a set that has non-empty intersection with

3For example, a function f : N → N is sub-half-exponential if
f(f(n)c)c ≤ O(2n) for every constant c. (The exact definition of sub-half-
exponential functions may be different in different papers.) Functions such
as nk and 2log

k n are sub-half-exponential, while 2εn and 2n
ε

are not. It
is known that Σ2EXP cannot be computed by f(n)-size circuits for every
sub-half-exponential f , but it remains open to show that Σ2EXP requires
circuit complexity 2n

ε
for any constant ε > 0.

every QM ⊆ {0, 1}M that is dense (i.e., accepts at least a
1/poly(M) fraction of strings) and is efficiently computable.
It turns out that for our application to pseudodeterministic
algorithms, uniform hardness-randomness tradeoffs that yield
hitting sets are sufficient.

Specifically, Chen and Tell [3] show that for any multi-
output function f : {1n} → {0, 1}n computed by uniform
Boolean circuits of size T = T (n) and depth d = d(n),
either there is a hitting set H ⊆ {0, 1}M computable in time
poly(T), or f(1n) can be computed with high probability in
time (d+n)·poly(M) (which could be much less than T). Note
that this tradeoff is applicable to any multi-output function f
given bounds on its uniform circuit complexity.

Our key idea is that this more generic uniform hardness-
randomness tradeoff can be applied recursively. Indeed, we
apply it to multi-output functions which capture the very task
we are trying to solve, i.e., constructing a prime! In our base
case, we use the function f which does a brute-force search
over n-bit numbers and outputs the lexicographically first one
which is prime. This function can be computed by uniform
Boolean circuits of size 2O(n) and depth poly(n), and hence
we can apply the Chen–Tell tradeoff to it. We set M = nβ

for some large enough constant β > 1 in the tradeoff. If
we have that f(1n) is computable with high probability in
time (d + n) · poly(M), then we are done, since this gives
us a pseudodeterministic algorithm for primes at length n.
If not, we have that there is a hitting set H ⊆ {0, 1}nβ

computable in time 2O(n). In particular, by iterating over the
elements of H and outputting the first one that is prime,
we gain over the naı̈ve brute-force search algorithm, since
we are now outputting a prime of length nβ in time 2O(n).
Now this new algorithm can be captured by a multi-output
function with output length nβ to which we apply the Chen–
Tell tradeoff again. In each recursive step, we either obtain a
pseudodeterministic polynomial-time construction of primes,
or we obtain a significantly faster deterministic construction
of primes (of a larger input length). Intuitively, analyzing this
process after O(log n) steps of recursion, we can hope to
show that at least one of the steps leads to a polynomial-time
pseudodeterministic algorithm at the input length considered
at that step.

This doesn’t quite work as stated because the Chen–Tell
tradeoff uses the Nisan–Wigderson generator [40], which is not
known to have optimal parameters for all levels of hardness.4

Our recursive process explores essentially all possible levels
of hardness for the uniform hardness-randomness tradeoff,
since each recursive step corresponds to a different level of
hardness. Using the original Chen–Tell tradeoff gives a quasi-
polynomial-time pseudodeterministic construction, but in order
to get a polynomial-time pseudodeterministic construction, we
need to work harder.

Another crucial idea for us is to optimize the Chen–Tell

4Informally speaking, given a “hard truth table” of length T , we want to
construct a hitting set H ⊆ {0, 1}M in poly(T) time; however, the Nisan–
Wigderson generator requires 2Θ(log2 T/ logM) time to construct.

tradeoff by using the Shaltiel–Umans generator [4] rather
than the Nisan–Wigderson generator. This idea comes with
its own implementation challenges, since the Shaltiel–Umans
generator is not known to have a crucial learnability property
that is required for the uniform hardness-randomness trade-
off. We sidestep this issue using a further win-win analy-
sis, together with some other tricks; see Section IV-C for
details. This enables us to achieve an optimal polynomial-
time pseudodeterministic construction on infinitely many input
lengths, and thereby establish Theorem 1.5 We note that the
subexponential-time construction of [2] also only works for
infinitely many input lengths, and it is still open even to get
a subexponential-time construction that works on all input
lengths.

The intuitive description here does not address several
subtleties that arise in the proof, such as maintaining the right
uniformity and depth conditions when recursively applying the
uniform hardness-randomness tradeoff. We refer to Section IV
for a more detailed discussion of such matters.

IV. TECHNICAL OVERVIEW

As explained above, we consider a chain of t = O(log n) re-
cursively defined (candidate) HSGs H0,H1, . . . ,Ht operating
over different input lengths. These HSGs are obtained from the
recent construction of Chen and Tell [3], which we informally
describe next. Recall that we use QM to denote the easy and
dense property over inputs of length M .

The Chen–Tell [3] targeted HSG (“ideal version”): Let
c ≥ 1 be a large enough constant, and let f : {1n} → {0, 1}n
be a family of unary functions computed by (uniform) Boolean
circuits of size T = T (n) and depth d = d(n). Then, for every
log T ≤ M ≤ T there is a set H ⊆ {0, 1}M computable in

time T̃ ≜ T c and depth d̃ ≜ d · log(T) +M c

such that, if QM ⊆ {0, 1}M avoids H, (i.e., QM is dense
but QM ∩ H = ∅), then we can compute f(1n) with high
probability in time (d+ n) ·M c.

In other words, if f admits low-depth circuits, we can
construct a candidate HSG H over length-M inputs such that
breaking the generator H allows us to compute f(1n) in time
poly(n, d,M). For d,M ≪ T , this can be much faster than
the original time T required to compute f .

The statement above differs from the results in [3] (stated
for unary functions) in two important ways. First, the claimed
upper bound on T̃ (the running time of the HSG) is not
obtained by [3] for all choices of M . Secondly, we have
not formally specified the uniformity of the family of circuits
computing f . While these are crucial points in [3] and when
proving our result, for simplicity we will assume for now that
this upper bound can be achieved and omit the discussion on
uniformity.

5While we do not explore this direction in the current work, we believe
that our improvement on the Chen-Tell tradeoff can be used to improve
the tradeoff from [41, Theorem 5.2 and Theorem 5.3], thus getting a better
uniform hardness vs randomness connection in the low-end regime.

Bootstrapping the win-win argument: We now review
the idea discussed in Section III, using notations that will be
more convenient for the remainder of this technical overview.
Fix an arbitrary n ∈ N≥1, and consider the corresponding
property Qn ⊆ {0, 1}n decided by AQ(x) on inputs of length
n. Our initial H0 is trivial and set to {0, 1}n. (Intuitively, this
corresponds to the first case of the argument in [2] sketched
above where LTV ∈ BPP.) Consider now a “brute-force”
algorithm BF(1n) that computes the first x ∈ H0 such that
AQ(x) = 1. We let f(1n) ≜ BF(1n) in the Chen–Tell HSG.
Note that f(1n) can be uniformly computed in time T = 2O(n)

and depth d = poly(n), since AQ(x) runs in polynomial
time and all elements of H0 can be tested in parallel. We
set M(n) ≜ nβ , where β > 1 is a large enough constant. Let
H1 ⊆ {0, 1}M be the candidate HSG provided by Chen–Tell.
Note that H1 can be computed in time T̃ = 2O(n) and depth
d̃ = poly(n).

Next, we consider a win-win argument based on whether
QM avoids H1. If this is the case, then Chen–Tell guarantees
that we can compute f(1n) = BF(1n) ∈ Qn with high
probability in time (d + n) ·M c = poly(n). In other words,
we can pseudodeterministically produce a string in Qn in
polynomial time. On the other hand, if H1 ∩ QM ̸= ∅, we
now have a set H1 of strings of length M = nβ that contains
a string in QM and that can be deterministically computed in
time 2O(n). That is, we are back to the former case, except
that we can compute H1 (a set containing at least one M -bit
prime) in time much faster than 2O(M). Crucially, in contrast
to the approach of [2], the Chen–Tell HSG does not limit us
to the use of the special language LTV, effectively allowing
us to reapply the same argument (with a speedup) over a
larger input length.

In the next subsection, we discuss the “bootstrapping” and
its parameters in more detail and explain how it gives a
polynomial-time pseudodeterministic construction, assuming
we have the ideal version of [3] described above.

A. Infinitely-Often Pseudodeterministic Polynomial-Time Con-
structions

Let n0 ∈ N be an “initial” input length, and t = O(log n0)
be a parameter. For each 1 ≤ i ≤ t, we define the i-th input
length to be ni ≜ nβ

i−1, for a large enough constant β > 1. Our
goal is to design a pseudodeterministic algorithm for finding
elements in Q that will be correct on at least one of the input
lengths n0, n1, . . . , nt. On each input length ni we will have:

1) the property Qni
that we want to hit;

2) a candidate hitting set generator Hi ⊆ {0, 1}ni ; and
3) the brute-force algorithm BFi : {1ni} → {0, 1}ni , which

iterates through all elements in Hi and outputs the first
element that is in Qni .

Note that BFi is completely defined by Hi. Suppose that
Hi can be computed (deterministically) in time Ti and depth
di, then BFi can also be computed (deterministically) in
time T ′

i ≜ Ti · poly(ni) and depth d′i ≜ di · poly(ni). As

discussed above, initially, H0 ≜ {0, 1}n0 is the trivial hitting
set generator, T0 ≜ 2O(n0), and d0 ≜ poly(n0).

For each 0 ≤ i < t, we let f(1ni) ≜ BFi,M ≜ ni+1,
and invoke the Chen–Tell HSG to obtain the HSG Hi+1 ⊆
{0, 1}ni+1 . Recall that Chen–Tell guarantees the following:
Suppose that QM = Qni+1

avoids the HSG Hi+1, then one
can use Qni+1 to compute f(1ni) with high probability in time
poly(d′i, ni,M) ≤ poly(di, ni), by our choice of parameters.
Recall that if Hi indeed hits Qni

, then f(1ni) implements
the brute-force algorithm and outputs the first element in Hi∩
Qni

(i.e., a canonical element in Qni
). To reiterate, Chen–Tell

gives us the following win-win condition:
• either Qni+1

avoids Hi+1, in which case we obtain
a probabilistic algorithm that outputs a canonical ele-
ment in Qni (thus a pseudodeterministic algorithm) in
poly(di, ni) time;

• or Hi+1 hits Qni+1
, in which case we obtain a hitting set

Hi+1 that hits Qni+1
, thereby making progress on input

length ni+1.
The HSG Hi+1 can be computed in time Ti+1 ≜ (T ′

i)
c

and depth di+1 ≜ d′i · log T ′
i + nc

i+1. Crucially, although T0

is exponential in n0, it is possible to show by picking a large
enough β > 1 that the sequence {ni}i∈N grows faster than the
sequence {Ti}i∈N, and eventually when i = t = O(log n0),
it will be the case that Tt ≤ poly(nt) and we can apply the
brute-force algorithm to find the first element in Ht that is in
Qnt

in time polynomial in nt.
A more precise treatment of the growth of the two sequences

{ni} and {Ti} are as follows. There is some absolute constant
α ≥ 1 such that T0 ≤ 2αn0 and

Ti+1 ≤ Tα
i (for each 0 ≤ i < t).

We set β ≜ 2α (recall that each ni+1 = nβ
i). It follows from

induction that for each 0 ≤ i ≤ t,

Ti+1 ≤ Tαi

0 = 2α
i+1n0 and ni+1 = nβ

i = nβi+1

0 = n
(2α)i+1

0 .

Since
log Tt

log nt
≤ αtn0

(2α)t log n0
=

n0

2t log n0
,

it follows that when t ≈ log(n0/ log n0), Tt will be com-
parable to nt (rather than 2nt). Similarly, one can show that
di ≤ poly(ni) for every i ≤ t.

Informal description of the algorithm and correctness:
To wrap up, we arrive at the following pseudodeterministic
algorithm that is correct on at least one of the input lengths
n0, n1, . . . , nt. On input length ni, if i = t, then we use
poly(Tt) ≤ poly(nt) time to find the first string in Hi that
is also in Qni

(i.e., simulate BFi); otherwise, use Qni+1
as

a distinguisher for the Chen–Tell hitting set Hi and print the
output of BFi in poly(ni, di) ≤ poly(ni) time. To see that our
algorithm succeeds on at least one ni, consider the following
two cases:

1) Suppose that Ht indeed hits Qnt . Then clearly, our
algorithm succeeds on input length nt.

2) On the other hand, suppose that Ht does not hit Qnt
.

Since our trivial HSG H0 hits Qn0 , there exists an index
0 ≤ i < t such that Hi hits Qni but Qni+1 avoids Hi+1.
Since Qni+1

avoids Hi+1, Chen–Tell guarantees that we
can speed up the computation of BFi using Qni+1

as an
oracle. Since Hi hits Qni

, the output of BFi is indeed a
canonical element in Qni

. It follows that our algorithm
succeeds on input length ni.

This completes the sketch of the algorithm and its correctness.
We note that while this exposition explains how the second
bullet of Theorem 1 is achieved, it does not address the
behavior of the algorithm on other input lengths (i.e., the first
bullet in the same statement). For simplicity, we omit this
here and refer to the formal presentation in Section 3 of the
full version.6

While the aforementioned construction conveys the gist
of our approach, there are two important issues with our
presentation. Firstly, as explained before, the results of [3]
do not achieve the ideal parameters of the HSG stated
above. Secondly, we have only vaguely discussed the circuit
uniformity of the function f(1n). The uniformity of f is
critical for the reconstruction procedure of [3] to run in time
comparable to the circuit depth of f . On the other hand, since
our HSGs and functions f (corresponding to the algorithm
BF) are recursively defined, the circuit uniformity of the [3]
generator itself becomes another critical complexity measure
in the proof.

In the next subsection, we discuss the Chen–Tell generator
in more detail and explain how to obtain an improved gener-
ator construction satisfying our requirements.

B. Improving the Chen–Tell Targeted Hitting Set Generator

The uniform hardness-to-randomness framework of Chen–
Tell builds on two important ingredients:7

1) A layered-polynomial representation of a shallow uni-
form circuit.

2) A hitting set generator with a uniform learning recon-
struction algorithm.
Layered-polynomial representation: We now discuss the

first ingredient. Let f : {0, 1}n → {0, 1}n be a logspace-
uniform circuit family of size T (n) and depth d(n).8 Let
M : N → N be the parameter for output length. Building on
the doubly efficient interactive proof system by [42] (and its
subsequent simplification by [43]), for any z ∈ {0, 1}n, [3]
showed that there is a sequence of polynomials {P z

i }i∈[d′] for
d′ = d · polylog(T) with the following nice properties:

6Alternatively, the guarantee from the first bullet of Theorem 1 can always
be achieved via a general argument. We refer to [2, Proposition 2] for the
details.

7Below we will focus on the high-level picture of the Chen–Tell framework
without diving into too many details. Our presentation is also somewhat
different from the original presentation in [3].

8Intuitively, a circuit family is logspace-uniform if each circuit in the family
can be printed by a fixed machine that runs in space that is of logarithmic
order in the size of the circuits. See Section 2.3 of the full version for the
precise definition of logspace-uniform circuits.

• (Arithmetic setting.) Let F be a finite field of size M c

for a large universal constant c > 1, and let m be of order
log T
logM . All the P z

i map Fm to F and have total degree at
most M .

• (Base case.) There is an algorithm Base such that, given
the input z ∈ {0, 1}n and w⃗ ∈ Fm, computes P z

1 (w⃗) in
poly(M) time.

• (Downward self-reducibility.) There is an oracle algo-
rithm DSR that, given input i ∈ {2, . . . , d′} and w⃗ ∈ Fm,
together with the oracle access to P z

i−1(·), computes
P z
i (w⃗) in poly(M) time.

• (Faithful representation.) There is an oracle algorithm
OUT that, given input i ∈ [n] and oracle access to P z

d′ ,
outputs f(z)i in poly(M) time.

Intuitively, these polynomials form an encoded version of
the computation of f in the sense that they admit both down-
ward self-reducibility and random self-reducibility: every P z

i

has low degree and hence admits error correction properties;
downward self-reducibility follows from definition.

We note that the proof of this result depends in a crucial way
on the logspace-uniformity of the circuit family computing f .
(This allows one to arithmetize a formula of bounded size
that computes the direct connection language of the circuit,
while also controlling the circuit uniformity of the resulting
polynomials.)

Hitting set generators with a uniform learning recon-
struction algorithm: The second ingredient of [3] is the Nisan-
Wigderson generator combined with Reed-Muller codes [40],
[44]. The most important property of this generator is that
it supports a uniform learning reconstruction algorithm. In
more detail, for a polynomial P : Fm → F, the generator
NWP takes s = O

(
log2 T
logM

)
bits as seed, such that there is

a uniform oracle algorithm R (for “reconstruction”) where the
following holds. Given oracle access to both P and an oracle
D : {0, 1}M → {0, 1} that distinguishes NWP (Us) from the
uniform distribution, RP,D runs in poly(M) time and with
high probability outputs a polynomial-size D-oracle circuit
that computes P .

Now, the hitting set Hf (z) is defined as

Hf (z) ≜
⋃

i∈[d′]

NWP z
i .

The uniform reconstruction algorithm: One key observa-
tion here is that if a distinguisher D : {0, 1}M → {0, 1} avoids
Hf (z), meaning that D accepts a large fraction of inputs from
{0, 1}M but rejects all strings in Hf (z), then clearly D also
distinguishes all NWP z

i (Us) from the uniform distribution.
Following [34], [3] then shows that there is a uniform oracle
algorithm Rf that takes input z ∈ {0, 1}n and any “avoider”
D of Hf (z) as oracle, and outputs f(z) with high probability.
In more detail, Rf works as follows:

1) It is given input z ∈ {0, 1}n and oracle access to an
avoider D : {0, 1}M → {0, 1} of Hf (z).

2) For every i ∈ {2, . . . , d′}:

a) The goal of the i-th step is to construct a poly(M)-
size D-oracle circuit Ci that computes P z

i .
b) It runs the learning reconstruction algorithm RP z

i ,D

to obtain a poly(M)-size D-oracle circuit. To answer
queries to P z

i , we first run the algorithm DSR to
convert them into queries to P z

i−1. Next, when i = 2,
we answer these queries by calling Base directly, and
when i > 2 we answer these queries by evaluating our
D-oracle circuit Ci−1.

3) For every i ∈ [n], output OUTCD
d′ (i).

Issue with the original Chen–Tell construction: Super-
logarithmic seed length of NW: The main issue with the
construction above is that NWP z

i has seed length O
(

log2 T
logM

)
.

In particular, this means that when logM ≤ o(log T), the
hitting set Hf (z) has super-polynomial size, and therefore
cannot be computed in poly(T) time as in the “ideal version”
of [3] stated above.9 Hence, to improve the computation time
of Hf (z) to poly(T), we need an HSG with seed length
O(log T) for all possible values of M , together with a uniform
learning reconstruction, when it is instantiated with polynomi-
als. Jumping ahead, we will replace NW with the Shaltiel–
Umans Hitting Set Generator [4], obtaining an optimized
version of the Chen–Tell generator with better parameters.
However, the original generator from [4] does not provide a
uniform learning reconstruction procedure. By a clever use of
the classical construction of a cryptographic pseudorandom
generator from a one-way permutation and of another idea,
we managed to modify their construction to allow a uniform
learning reconstruction. See the next subsection for more
details.

Controlling the circuit uniformity of the optimized Chen–
Tell generator: As stressed above, in order to construct a
layered-polynomial representation for f with the aforemen-
tioned parameters, it is crucial that f admits a logspace-
uniform circuit family. Since we will rely on multiple appli-
cations of the generator, and each new function BF on which
the result is invoked contains as a subroutine the code of the
previous generator, we must upper bound the circuit uniformity
of our optimized Chen–Tell generator. This turns out to require
a delicate manipulation of all circuits involved in the proof
and of the Turing machines that produce them, including the
components of the Shaltiel–Umans generator. For this reason,
whenever we talk about a Boolean circuit in the actual proof,
we also bound the description length and space complexity
of its corresponding machine. Additionally, as we manipulate
a super-constant number of circuits (and their corresponding
machines) in our construction, we will also consider the
complexity of producing the code of a machine M2 encoding
a circuit C2 from the code of a machine M1 encoding a
circuit C1 (see, e.g., the “Moreover” part in the statement
of Theorem 3.1 in the full version). The details are quite

9Indeed, if we rely on the original Chen–Tell construction to implement
the bootstrapping method described above, we would only obtain a quasi-
polynomial-time pseudodeterministic construction, instead of a polynomial-
time one.

tedious, but they are necessary for verifying the correctness
and running time of our algorithm. In order to provide some
intuition for it, we notice that as we move from the HSG
Hi to Hi+1, we also increase the corresponding input length
parameter from ni to ni+1 = nβ

i . While there is an increase
in the uniformity complexity, it remains bounded relative to
the new input length. (Think of a truncated geometric series
whose value is dominated by the complexity over the current
input length.) We omit the details in this proof overview.

Non-black-box behavior: We note that the recursive
application of the Chen–Tell generator is responsible for
the fully non-black-box behavior of our pseudodeterministic
construction. Indeed, since we invoke the Chen–Tell generator
on each function BF (which contains the code of the algorithm
AQ deciding property Q as a subroutine), the collection of
strings in the hitting set generator depends on the layered-
polynomial representation that is obtained from the code
of BF. As a consequence, our construction has the unusual
feature that the canonical outputs of the algorithm B in
Theorem 1 are affected by the code of AQ. In other words,
by using a different primality test algorithm (or by making
changes to the code implementing the AKS routine), one
might get a different n-bit prime!

The parameters of our hitting set generator appear in Section
3 of the full version. The proof of the result is given in Section
5 of the full version.

C. Modified Shaltiel–Umans Generator with Uniform Learn-
ing Reconstruction

As explained above, in order to complete the proof of
Theorem 1 we need to design a variant of the Shaltiel–
Umans generator [4] with a uniform learning reconstruction
procedure.

The Shaltiel–Umans generator takes as input a low-degree
polynomial P : Fm

p → Fp (in our case p will be a power of
2) and produces a set of binary strings (which is supposed to
be a hitting set). The construction of this generator also relies
on “generator matrices”. A matrix A ∈ Fm×m

p is a generator
matrix if it satisfies {Ai · 1⃗}1≤i<pm = Fm

p \ {⃗0}. Roughly put,
the matrix A can be thought of as performing multiplication
with a generator of the multiplicative group of Fpm .

Recall that a generator has a uniform learning reconstruction
algorithm if the following holds. Given an algorithm D that
avoids the output of the generator constructed using P , as well
as P itself, we can uniformly and efficiently generate (with high
probability) a D-oracle circuit that computes the polynomial
P . (In other words, we can query P while producing the
circuit, but the circuit itself does not have access to P .)

However, the reconstruction procedure provided by the orig-
inal Shaltiel–Umans generator only guarantees the following:
If the generator is constructed using P and some generator
matrix A, then using an algorithm D that avoids the output
of the generator, and given the matrix A and oracle access to
P , one can obtain a (D-oracle) circuit C : [pm − 1] → Fm

p

such that C(i) = P (Ai · 1⃗).10 (For the precise statement, see
Theorem 4.9 of the full version.) That is, this reconstruction
is not a uniform learning algorithm in the following sense:

1) It needs to know the matrix A (which can be viewed as
non-uniform advice).

2) Given oracle access to P , it only learns a circuit that
computes the mapping i 7→ P (Ai · 1⃗), instead of a circuit
that computes P (x⃗) on a given x⃗ ∈ Fm

p .

We now describe how to modify the Shaltiel–Umans generator
to make its reconstruction a uniform learning algorithm.

For the first issue, our idea is that, instead of using a
generator matrix that is obtained by brute-force search as
in the original construction (we note that the reconstruction
cannot afford to perform the brute-force search due to its
time constraints), we will use a generator matrix that is from
a small set of matrices that can be constructed efficiently.
More specifically, using results about finding primitive roots of
finite fields (e.g., [45]), we show that one can efficiently and
deterministically construct a set S of matrices that contains
at least one generator matrix. The advantage is that the
reconstruction algorithm can still afford to compute this set
S. Note that although we don’t know which matrix in S is
a valid generator matrix (as verifying whether a matrix is a
generator matrix requires too much time), we can try all the
matrices from S, and one of them will be the correct one. This
allows us to obtain a list of candidate circuits, one of which
computes P (provided that we can also handle the second
issue, which will be discussed next). Then by selecting from
the list a circuit that is sufficiently close to P (note that given
oracle access to P , we can easily test whether a circuit is close
to P by sampling) and by using the self-correction property of
low-degree polynomials, we can obtain a circuit that computes
P exactly.

With the above idea, we may now assume that in the
reconstruction we know the generator matrix A used by the
Shaltiel–Umans generator. Next, we describe how to handle
the second issue. Recall that the reconstruction algorithm of
the Shaltiel–Umans generator gives a circuit C such that
C(i) = P (Ai · 1⃗), for i ∈ [pm − 1], and we want instead
a circuit that given x⃗ ∈ Fm

p computes P (x⃗). Now suppose
given x⃗ ∈ Fm

p \ {⃗0}, we can also efficiently compute the value
i ∈ [pm − 1] such that Ai · 1⃗ = x⃗. Then we would be able to
combine this with C to get a circuit E that computes P , i.e.,
if x⃗ = 0⃗ then E outputs P (⃗0) (where the value P (⃗0) can be
hardcoded); otherwise, E computes i for x⃗ as described above
and then outputs C(i). However, the task of finding such i
given A and x⃗ is essentially the discrete logarithm problem,
for which no efficient algorithm is known!

A classical result in cryptography is that one can construct a
pseudorandom generator based on the hardness of the discrete
logarithm problem (see, e.g., [46], [47]). More generally,
given a permutation f whose inverse admits random self-

10In fact, the circuit only computes P (Ai · v⃗) for some v⃗ output by the
reconstruction algorithm. We assume v⃗ = 1⃗ here for simplicity.

reducibility11, one can construct a generator G based on f
so that if there is a distinguisher D that breaks G, then it can
be used to invert f via a uniform reduction. Our idea is to
consider the bijection f : [pm − 1] → Fm

p \ {⃗0} such that for
each i ∈ [pm − 1], f(i) = Ai · 1⃗ (where the random self-
reducibility of f−1 follows easily from that of the discrete
logarithm problem), and try to construct a pseudorandom
generator G based on f . We then combine the output of G
with that of the Shaltiel–Umans generator constructed with the
polynomial P and the generator matrix A. Now if there is an
algorithm D that avoids this combined generator, which means
D simultaneously avoids both the Shaltiel–Umans generator
and the generator G, then D can be used to obtain

• a circuit C such that C(i) = P (Ai · 1⃗) for every i ∈
[pm − 1], and

• a circuit C ′ that inverts f , i.e., C ′(x⃗) outputs i such that
Ai · 1⃗ = x⃗ for every x⃗ ∈ Fm

p \ {⃗0}.
Then it is easy to combine C and C ′ to obtain a circuit that
computes P .

A careful implementation of these ideas allows us to ob-
tain a variant of the Shaltiel–Umans generator with uniform
learning reconstruction, as needed in our optimized Chen–Tell
generator. We refer to Theorem 4.1 in the full version for more
details.

This completes the sketch of the proof of Theorem 1.

Further remarks about the proof: We note that in our
proof the gap between two good input lengths on which
the algorithm outputs a canonical prime can be exponentially
large. It would be interesting to develop techniques to reduce
this gap.

Additionally, the proof assumes the existence of a deter-
ministic polynomial-time algorithm that decides the dense
property. In contrast, the sub-exponential time algorithm from
[2] also works with a dense property that is decidable by
a randomized polynomial-time algorithm. This is caused by
the non-black-box nature of our approach via the Chen-Tell
generator, which employs the code of the algorithm A deciding
the property as part of the description of the generator. Con-
sequently, as alluded to above, changing the code of A could
result in a different canonical output on a given input length.
If A is randomized, fixing the randomness of A is similar
to the consideration of a different algorithm that decides the
property, and it is not immediately clear how to maintain the
pseudodeterministic behaviour in this case.

Finally, we note that the most important guarantee on the
output of the algorithm obtained in Theorem 1 comes from
Item 2. It is possible to achieve the guarantee from Item 1 in
a generic way through a simple argument (see Proposition 2.2
in [2]).

ACKNOWLEDGMENT

Lijie Chen is supported by a Miller Research Fellowship.
Zhenjian Lu is supported by an NSERC Postdoctoral Fellow-

11Roughly speaking, a function has random self-reducibility if computing
the function on a given instance can be efficiently reduced to computing the
function for uniformly random instances.

ship. Igor C. Oliveira received support from the EPSRC New
Horizons Grant EP/V048201/1, the Royal Society University
Research Fellowship URF\R1\191059, and the Centre for
Discrete Mathematics and its Applications (DIMAP) at the
University of Warwick. Hanlin Ren received support from DI-
MACS through grant number CCF-1836666 from the National
Science Foundation. Rahul Santhanam received support from
the EPSRC New Horizons Grant EP/V048201/1. This work
was done in part while the authors were visiting the Simons
Institute for the Theory of Computing.

REFERENCES

[1] E. Gat and S. Goldwasser, “Probabilistic search algorithms with unique
answers and their cryptographic applications,” Electronic Colloquium
on Computational Complexity (ECCC), vol. 18, p. 136, 2011. [Online].
Available: https://eccc.weizmann.ac.il/report/2011/136/

[2] I. C. Oliveira and R. Santhanam, “Pseudodeterministic constructions
in subexponential time,” in Symposium on Theory of
Computing (STOC), 2017, pp. 665–677. [Online]. Available:
https://doi.org/10.1145/3055399.3055500

[3] L. Chen and R. Tell, “Hardness vs randomness, revised: Uniform,
non-black-box, and instance-wise,” in IEEE Symposium on Foundations
of Computer Science (FOCS), 2021, pp. 125–136. [Online]. Available:
https://doi.org/10.1109/FOCS52979.2021.00021

[4] R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and
a new pseudorandom generator,” J. ACM, vol. 52, no. 2, pp. 172–216,
2005. [Online]. Available: https://doi.org/10.1145/1059513.1059516

[5] H. Cramér, “On the order of magnitude of the difference between
consecutive prime numbers,” Acta Arithmetica, vol. 2, pp. 23–46, 1936.

[6] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of
Mathematics, vol. 160, no. 2, pp. 781–793, 2004. [Online]. Available:
https://doi.org/10.4007/annals.2004.160.781

[7] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma,” in ACM Symposium on
Theory of Computing (STOC). ACM, 1997, pp. 220–229. [Online].
Available: https://doi.org/10.1145/258533.258590

[8] R. C. Baker, G. Harman, and J. Pintz, “The difference
between consecutive primes. II,” Proc. London Math. Soc.
(3), vol. 83, no. 3, pp. 532–562, 2001. [Online]. Available:
https://doi.org/10.1112/plms/83.3.532

[9] J. Li and T. Yang, “3.1n − o(n) circuit lower bounds for explicit
functions,” in STOC. ACM, 2022, pp. 1180–1193. [Online]. Available:
https://doi.org/10.1145/3519935.3519976

[10] J. C. Lagarias and A. M. Odlyzko, “Computing π(x): An analytic
method,” J. Algorithms, vol. 8, no. 2, pp. 173–191, 1987. [Online].
Available: https://doi.org/10.1016/0196-6774(87)90037-X

[11] T. Tao, E. Croot, III, and H. Helfgott, “Deterministic methods to
find primes,” Math. Comp., vol. 81, no. 278, pp. 1233–1246, 2012.
[Online]. Available: https://doi.org/10.1090/S0025-5718-2011-02542-1

[12] O. Goldreich, S. Goldwasser, and D. Ron, “On the possibilities
and limitations of pseudodeterministic algorithms,” in Innovations in
Theoretical Computer Science (ITCS), 2013, pp. 127–138. [Online].
Available: https://doi.org/10.1145/2422436.2422453

[13] S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam, “On
the pseudo-deterministic query complexity of NP search problems,” in
Computational Complexity Conference (CCC), 2021, pp. 36:1–36:22.
[Online]. Available: https://doi.org/10.4230/LIPIcs.CCC.2021.36

[14] A. Chattopadhyay, Y. Dahiya, and M. Mahajan, “Query
complexity of search problems,” Electronic Colloquium on
Computational Complexity (ECCC), 2023. [Online]. Available:
https://eccc.weizmann.ac.il/report/2023/039/

[15] S. Goldwasser, O. Grossman, S. Mohanty, and D. P. Woodruff,
“Pseudo-deterministic streaming,” in Innovations in Theoretical
Computer Science (ITCS), 2020, pp. 79:1–79:25. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2020.79

[16] V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir,
“Lower bounds for pseudo-deterministic counting in a
stream,” CoRR, vol. abs/2303.16287, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.16287

[17] S. Goldwasser and O. Grossman, “Bipartite perfect matching in
pseudo-deterministic NC,” in International Colloquium on Automata,
Languages, and Programming (ICALP), 2017, pp. 87:1–87:13. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2017.87

[18] S. Ghosh and R. Gurjar, “Matroid intersection: A pseudo-deterministic
parallel reduction from search to weighted-decision,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), 2021, pp. 41:1–41:16. [Online].
Available: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41

[19] I. C. Oliveira and R. Santhanam, “Pseudo-derandomizing learning and
approximation,” in International Conference on Randomization and
Computation (RANDOM), 2018, pp. 55:1–55:19. [Online]. Available:
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.55

[20] I. C. Oliveira, “Randomness and intractability in Kolmogorov
complexity,” in International Colloquium on Automata, Languages,
and Programming (ICALP), 2019, pp. 32:1–32:14. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ICALP.2019.32

[21] Z. Lu, I. C. Oliveira, and R. Santhanam, “Pseudodeterministic
algorithms and the structure of probabilistic time,” in ACM Symposium
on Theory of Computing (STOC), 2021, pp. 303–316. [Online].
Available: https://doi.org/10.1145/3406325.3451085

[22] O. Grossman and Y. P. Liu, “Reproducibility and pseudo-
determinism in Log-Space,” in Symposium on Discrete
Algorithms (SODA), 2019, pp. 606–620. [Online]. Available:
https://doi.org/10.1137/1.9781611975482.38

[23] S. Goldwasser, O. Grossman, and D. Holden, “Pseudo-
deterministic proofs,” in Innovations in Theoretical Computer
Science, (ITCS), 2018, pp. 17:1–17:18. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2018.17

[24] M. X. Goemans, S. Goldwasser, and D. Holden, “Doubly-efficient
pseudo-deterministic proofs,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 26, p. 135, 2019. [Online]. Available:
https://eccc.weizmann.ac.il/report/2019/135

[25] O. Grossman, “Finding primitive roots pseudo-deterministically,”
Electronic Colloquium on Computational Complexity
(ECCC), vol. 22, p. 207, 2015. [Online]. Available:
https://eccc.weizmann.ac.il/report/2015/207

[26] P. Dixon, A. Pavan, and N. V. Vinodchandran, “On pseudodeterministic
approximation algorithms,” in Symposium on Mathematical Foundations
of Computer Science (MFCS), 2018, pp. 61:1–61:11. [Online].
Available: https://doi.org/10.4230/LIPIcs.MFCS.2018.61

[27] B. Berger and Z. Brakerski, “Zero-knowledge protocols for search
problems,” in International Conference on Security and Cryptography
for Networks (SCN), 2018, pp. 292–309. [Online]. Available:
https://doi.org/10.1007/978-3-319-98113-0 16

[28] O. Goldreich, “Multi-pseudodeterministic algorithms,” Electronic
Colloquium on Computational Complexity (ECCC), vol. 26, p. 12,
2019. [Online]. Available: https://eccc.weizmann.ac.il/report/2019/012

[29] P. Dixon, A. Pavan, and N. V. Vinodchandran, “Complete problems
for multi-pseudodeterministic computations,” in Innovations in
Theoretical Computer Science (ITCS), 2021. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2021.66

[30] P. Dixon, A. Pavan, J. V. Woude, and N. V. Vinodchandran,
“Pseudodeterminism: promises and lowerbounds,” in ACM Symposium
on Theory of Computing (STOC), 2022, pp. 1552–1565. [Online].
Available: https://doi.org/10.1145/3519935.3520043

[31] J. V. Woude, P. Dixon, A. Pavan, J. Radcliffe, and N. V.
Vinodchandran, “The geometry of rounding,” Electronic Colloquium
on Computational Complexity (ECCC), vol. TR22-160, 2022. [Online].
Available: https://eccc.weizmann.ac.il/report/2022/160

[32] S. Chakraborty, M. Prabhakaran, and D. Wichs, “A map of witness maps:
New definitions and connections,” Cryptology ePrint Archive, Paper
2023/343, 2023. [Online]. Available: https://eprint.iacr.org/2023/343

[33] Z. Lu and I. C. Oliveira, “Theory and applications of probabilistic
Kolmogorov complexity,” Bull. EATCS, vol. 137, 2022. [Online].
Available: http://bulletin.eatcs.org/index.php/beatcs/article/view/700

[34] R. Impagliazzo and A. Wigderson, “Randomness vs time:
Derandomization under a uniform assumption,” Journal of Computer
and System Sciences, vol. 63, no. 4, pp. 672–688, 2001. [Online].
Available: https://doi.org/10.1006/jcss.2001.1780

[35] L. Trevisan and S. P. Vadhan, “Pseudorandomness and average-case
complexity via uniform reductions,” Computational Complexity,
vol. 16, no. 4, pp. 331–364, 2007. [Online]. Available:
https://doi.org/10.1007/s00037-007-0233-x

[36] R. M. Karp and R. J. Lipton, “Some connections between nonuniform
and uniform complexity classes,” in ACM Symposium on Theory
of Computing (STOC), 1980, pp. 302–309. [Online]. Available:
https://doi.org/10.1145/800141.804678

[37] R. Kannan, “Circuit-size lower bounds and non-reducibility to sparse
sets,” Inf. Control., vol. 55, no. 1-3, pp. 40–56, 1982. [Online].
Available: https://doi.org/10.1016/S0019-9958(82)90382-5

[38] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search of an easy
witness: exponential time vs. probabilistic polynomial time,” J. Comput.
Syst. Sci., vol. 65, no. 4, pp. 672–694, 2002. [Online]. Available:
https://doi.org/10.1016/S0022-0000(02)00024-7

[39] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe,
“Super-polynomial versus half-exponential circuit size in the
exponential hierarchy,” in International Computing and Combinatorics
Conference (COCOON), ser. Lecture Notes in Computer Science,
vol. 1627. Springer, 1999, pp. 210–220. [Online]. Available:
https://doi.org/10.1007/3-540-48686-0 21

[40] N. Nisan and A. Wigderson, “Hardness vs randomness,” Journal of
Computer and System Sciences, vol. 49, no. 2, pp. 149–167, 1994.
[Online]. Available: https://doi.org/10.1016/S0022-0000(05)80043-1

[41] L. Chen, R. D. Rothblum, and R. Tell, “Unstructured hardness
to average-case randomness,” in 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022. IEEE, 2022, pp. 429–437. [Online].
Available: https://doi.org/10.1109/FOCS54457.2022.00048

[42] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” Journal of the
ACM, vol. 62, no. 4, pp. 27:1–27:64, 2015. [Online]. Available:
https://doi.org/10.1145/2699436

[43] O. Goldreich, “On the doubly-efficient interactive proof
systems of GKR,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 24, p. 101, 2017. [Online]. Available:
https://eccc.weizmann.ac.il/report/2017/101

[44] M. Sudan, L. Trevisan, and S. P. Vadhan, “Pseudorandom generators
without the XOR lemma,” J. Comput. Syst. Sci., vol. 62, no. 2, pp. 236–
266, 2001. [Online]. Available: https://doi.org/10.1006/jcss.2000.1730

[45] V. Shoup, “Searching for primitive roots in finite fields,” Mathematics
of Computation, vol. 58, no. 197, pp. 369–380, Jan. 1992.

[46] M. Blum and S. Micali, “How to generate cryptographically strong
sequences of pseudo-random bits,” SIAM J. Comput., vol. 13, no. 4, pp.
850–864, 1984. [Online]. Available: https://doi.org/10.1137/0213053

[47] A. C. Yao, “Theory and applications of trapdoor functions
(extended abstract),” in IEEE Symposium on Foundations of
Computer Science (FOCS), 1982, pp. 80–91. [Online]. Available:
https://doi.org/10.1109/SFCS.1982.45

