
On the Range Avoidance Problem for Circuits
Hanlin Ren

Dept. of Computer Science
University of Oxford

Oxford, UK
hanlin.ren@cs.ox.ac.uk

Rahul Santhanam
Dept. of Computer Science

University of Oxford
Oxford, UK

rahul.santhanam@cs.ox.ac.uk

Zhikun Wang
School of CS&T

Xi’an Jiaotong University
Xi’an, China

nocrizwang@gmail.com

Abstract—We consider the range avoidance problem (called
Avoid): given the description of a circuit with more output gates
than input gates, find a string that is not in the range of the
circuit. This problem is complete for the class APEPP that
corresponds to explicit constructions of objects whose existence
follows from the probabilistic method (Korten, FOCS 2021).

Motivated by applications in explicit constructions and com-
plexity theory, we initiate the study of the range avoidance
problem for weak circuit classes, and obtain the following results:

1) Generalising Williams’s connections between circuit-
analysis algorithms and circuit lower bounds (J. ACM 2014),
we present a framework for solving C -Avoid in FPNP using
circuit-analysis data structures for C , for “typical” multi-
output circuit classes C . As an application, we present a
non-trivial FPNP range avoidance algorithm for De Morgan
formulas.
An important technical ingredient is a construction of
rectangular PCPs of proximity, building on the rectangular
PCPs by Bhangale, Harsha, Paradise, and Tal (FOCS 2020).

2) Using the above framework, we show that circuit lower
bounds for ENP are equivalent to circuit-analysis algorithms
with ENP preprocessing. This is the first equivalence result
regarding circuit lower bounds for ENP. Our equivalences
have the additional advantages that they work in both
infinitely-often and almost-everywhere settings, and that
they also hold for larger (e.g., subexponential) size bounds.

3) Complementing the above results, we show that in some
settings, solving C -Avoid would imply breakthrough lower
bounds, even for very weak circuit classes C . In particular,
an algorithm for AC0-Avoid with polynomial stretch implies
lower bounds against NC1, and an algorithm for NC0

4-Avoid
with very small stretch implies lower bounds against NC1

and branching programs.
4) We show that Avoid is in FNP if and only if there is a

propositional proof system that breaks every non-uniform
proof complexity generator. This result connects the study
of range avoidance with fundamental questions in proof
complexity.

Index Terms—computational complexity; circuit complexity;
pseudorandomness

Note: Various proofs are either abridged or omitted in this
extended abstract; proofs of all stated results can be found in
the full version: https://eccc.weizmann.ac.il/report/2022/048/

I. INTRODUCTION

In this paper, we consider the range avoidance problem,
denoted as AVOID:

Problem I.1 (Range Avoidance Problem, AVOID). Given the
description of a circuit C : {0, 1}n → {0, 1}ℓ, where ℓ > n,

output any string y ∈ {0, 1}ℓ that is not in the range of C.
That is, for every x ∈ {0, 1}n, C(x) ̸= y.

The dual weak pigeonhole principle [33], [37] states that
if N pigeons are placed into M holes where M ≥ 2N , then
there is an empty hole. This principle implies that AVOID is
a total problem, i.e., it always has a valid solution. But what
is the computational complexity of finding this solution?

This problem was studied in [34] under the name 1-
EMPTY.1 In their paper, the motivation was to identify natural
total search problems in the polynomial hierarchy, in particular
TFΣ2. Indeed, it is easy to see that AVOID belongs to (the
function version of) Σ2, but it is unknown whether it is in FNP.
We may try to solve AVOID by guessing a string y ∈ {0, 1}ℓ
as an answer, but it seems unclear how to verify that y is not in
the range of C without using a universal quantifier. Then, [34]
defines a natural subclass of TFΣ2 called APEPP (Abundant
Polynomial Empty Pigeonhole Principle), which is the class
of total search problems polynomial-time reducible to AVOID.

The avoidance problem is also motivated by proof complex-
ity and bounded arithmetic, in particular, the proof complexity
of the dual weak pigeonhole principle. Jeřábek [33] defined
a theory of bounded arithmetic called APC1 for formalising
probabilistic reasoning by incorporating the dual weak pi-
geonhole principle as an axiom. Krajíček [37], [38] connects
the dual weak pigeonhole principle to hard candidates for
Extended Frege and stronger proof systems, as well as to the
provability of circuit lower bounds.

A. Explicit Constructions

Another motivation for studying AVOID, which is more
relevant to the current paper, is its connection to explicit
construction problems. The existence of many combinatorial
objects, such as Ramsey graphs, expander graphs, and rigid
matrices, are proved by the probabilistic method [21], [46],
[54]. These probabilistic arguments are able to show that
a random object has the desired property with non-zero
probability, but are usually unable to explicitly construct such
an object. Indeed, many explicit construction problems, such
as deterministically constructing Ramsey graphs and rigid
matrices, are long-standing open questions.

1“EMPTY” stands for “empty pigeonhole principle”; the constant 1 means
that the input circuit has stretch at least one bit, i.e., ℓ ≥ n+ 1.

Arguably, for complexity theorists, the most interesting
explicit construction problems are circuit lower bounds. It is
well-known that almost every Boolean function on n input bits
requires circuits of size Ω(2n/n) to compute [52], but so far
the best lower bound for any explicit function against general
circuits is only 5n [32] or 3.1n [22], [41], depending on the
circuit model.

It was pointed out by Korten [36] that the range avoid-
ance problem nicely captures the complexity of explicit con-
structions. Most explicit construction problems fall into the
category where a “non-random” object of length n can be
compressed into strictly less than n bits, and there is an
efficient decompression algorithm; see [36, Section 3]. In this
case, the problem of constructing a “random” object lies in
APEPP, as it suffices to find an object outside the range of
the decompression algorithm.

Example I.2. Consider, for example, the problem of proving
circuit lower bounds. We want to find a function f : {0, 1}n →
{0, 1} that cannot be computed by circuits of size s := 2n/2

(say).
Let TT : {0, 1}O(s log s) → {0, 1}2

n

be the circuit that takes
as input the description of a size-s circuit, and outputs the truth
table of this circuit. (Here TT denotes truth table.) If we could
solve AVOID on the particular instance TT, then we could find
a truth table tt ∈ {0, 1}2

n

without size-s circuits, therefore
proving a circuit lower bound. More precisely, solving AVOID
for TT in polynomial time is equivalent to proving a circuit
lower bound for E, while solving AVOID for TT in FPNP is
equivalent to proving a circuit lower bound for ENP.

Korten was interested in the structure of APEPP. Indeed,
one of the main results in [36] was that constructing a hard
truth table is complete for APEPP under PNP reductions. In
other words, if we could construct a hard truth table in FPNP,
then APEPP ⊆ FPNP, which means that any “typical” explicit
construction problem can be solved in FPNP.

We are especially interested in the “easier” regime of
APEPP. Let C be a (multi-output) circuit class, we assume C
is also associated with a stretch function ℓ(n) > n such that
every circuit in C maps n bits to ℓ(n) bits. Let C -AVOID be
the range avoidance problem for C circuits, we ask:

Question I.3. For which circuit classes C are the C -AVOID
problems easy?

To the best of our knowledge, we are the first to consider
the C -AVOID problem for restricted circuit classes C . We
think this is an interesting research direction for the following
reasons:

• For an explicit construction problem Π, one could identify
the weakest circuit class C such that Π reduces to
C -AVOID. Therefore, progress on Question I.3 implies
progress on explicit constructions.

• This consideration reveals some new phenomena. For
example, even for very weak circuit classes such as
C = NC0, solving the C -AVOID problem (with stretch
ℓ(n) := n+ no(1)) implies strong lower bounds that are
currently out of reach! (See Theorem II.11.)

There are many interpretations of the word “easy”, but for
now, let us think of it as “provably in FPNP”. Note that if
strong enough circuit lower bounds hold, then by [36], every
explicit construction problem is in FPNP. Therefore we insist
that the correctness of the avoidance algorithm does not rely
on unproven assumptions.

Why FPNP? There are at least two reasons to study FPNP

algorithms for AVOID.
• First, FPNP is one of the most powerful notions of

algorithms that we do not know how to solve AVOID.
This is similar to the situation that ENP is one of the
biggest complexity classes for which we have no super-
polynomial size circuit lower bounds.2

Actually, AVOID can be solved in FPNP if and only if ENP

cannot be computed by 2o(n)-size circuits [36]. Therefore,
if we could solve C -AVOID in FPNP unconditionally
for more and more powerful classes C , we could make
progress towards the notorious open problem of proving
circuit lower bounds against the class ENP.

• Second, APEPP has a very nice structure under FPNP

reductions. Many reductions among problems in APEPP
are only known to be computable in PNP, such as the
reductions among AVOID for different stretch functions
[34], [36] and the APEPP-completeness of finding a hard
truth table [36]. In this paper, we will see more examples
where we can make progress when considering FPNP

algorithms.
For comparison, the structure of APEPP under (say)
polynomial-time reductions is less clear. For example, it
is not known if finding a hard truth table is APEPP-
complete under polynomial-time reductions. It is also
open whether AVOID ∈ FP or its negation is implied
by any “plausible” assumption in complexity theory (or
cryptography).

Note that AVOID can be solved in FZPPNP: simply guess a
random string y ∈ {0, 1}ℓ and use the NP oracle to verify if
y is not in the range of the input circuit. Therefore, whether
AVOID is in FPNP is essentially a derandomisation question.

B. The Algorithmic Method

Building on his previous work [57], Williams [58] famously
proved that NEXP ̸⊆ ACC0, the first non-uniform lower
bound against the notorious circuit class ACC0. Interest-
ingly, the lower bound is proved by an algorithmic method:
Williams designed a “non-trivial” satisfiability algorithm for
ACC0 circuits, and then showed that such algorithms imply
lower bounds against ACC0. The only property of ACC0 that
Williams uses is that ACC0-SAT has a non-trivial algorithm;
the algorithm-to-lower-bound connection works for any circuit
class satisfying some mild technical conditions.

There have been a long line of subsequent developments of
the Algorithmic Method [9], [13]–[19], [42], [50], [55], [56],

2Slightly higher classes, such as ZPENP and MA-E (the exponential-time
analogue of MA), are known to require super-polynomial size circuits [11],
[35].

[59]–[61]. A recent highlight is the following result proved in
[16]:

Theorem I.4 ([16], Informal). There is a language in ENP that
does not have sub-exponential size ACC0 circuits on almost
every input length.

Thinking of circuit lower bounds as explicit construction
problems, [16] gave an FPNP-explicit construction of hard
truth tables against sub-exponential size ACC0 circuits. We
can even formulate Theorem I.4 in the language of circuit
range avoidance:

Theorem I.5 (Theorem I.4, Reformulated). Let s(n) :=

2n
o(1)

, TTACC0 : {0, 1}O(s(n) log s(n)) → {0, 1}2n be the
circuit that takes as input the description of a size-s(n) ACC0

circuit, and outputs its truth table. Then, there is an FPNP

algorithm for solving AVOID on the instance TTACC0 .

Recently, the Algorithmic Method has found applications
to another problem: constructing rigid matrices! Alman and
Chen [2] showed how to construct rigid matrices in FPNP with
parameters much better than previously known constructions;
their results were later improved by [10], [15], [16], [27]. The
key insight in [2] is to treat low-rank matrices as a special type
of circuit class, and the task of constructing rigid matrices
reduces to proving average-case circuit lower bounds against
this class.

Given the success of the Algorithmic Method, it is natural
to ask the following question:

Question I.6. Under which conditions can the Algorithmic
Method be used to solve general explicit construction prob-
lems, such as AVOID?

II. OUR RESULTS

In this work, we present new algorithmic and structural
results for the range avoidance problem. Along the way, we
obtain a version of the Algorithmic Method that characterises
circuit lower bounds for ENP. We begin by presenting a high-
level overview of our results, and then we discuss each result
in detail.

a) An algorithmic method for range avoidance: In our
first main result, we present a version of the Algorithmic
Method for solving AVOID. Let C be a multi-output circuit
class under some closure properties. We show that if the
Hamming weight estimation problem for C has a non-trivial
data structure, then the range avoidance problem for C circuits
can be solved in FPNP. Here, a data structure for Hamming
weight estimation for C has a preprocessing phase and a
query phase: During the preprocessing phase, it is given the
description of a C circuit C and produces a data structure DS
in FPNP, i.e., polynomial time with access to an NP oracle.
Each query consists of an input x, and we want to estimate
deterministically, with the aid of DS, the Hamming weight of
C(x) in time faster than brute force.

For comparison, the Algorithmic Method for proving circuit
lower bounds works as follows. Let C be a (single-output)

circuit class under some closure properties. If there is a non-
trivial CAPP algorithm for C circuits,3 then ENP ̸⊆ C . A
CAPP algorithm for C can be seen as a Hamming weight
estimation algorithm (without preprocessing) for TTC , where
TTC is the multi-output circuit which takes the description
of a C circuit as input and outputs its truth table. Thus, our
result is a generalisation of the Algorithmic Method.

As an application of this result, we show unconditional
FPNP algorithms for the range avoidance problem for De
Morgan formulas. In particular, let s = s(n) be a polynomial,
C be a function that maps n input bits to nω(

√
s log s) output

bits where each output bit is computed by a De Morgan
formula of size s(n), then our algorithm finds a non-output
of C in FPNP.

b) Circuit lower bounds for ENP are data structures: An
easy corollary of our main result is that in the Algorithmic
Method, CAPP data structures for C , even with ENP pre-
processing, implies ENP ̸⊆ C .4 In our second main result,
we show that this is the “complete” Algorithmic Method for
proving lower bounds for ENP! For strong enough circuit
classes C (such as TC0, NC1, or P/poly), ENP ̸⊆ C if and
only if it can be proved by a non-trivial CAPP algorithm with
ENP preprocessing.

Of course, it would be nicer to obtain a similar equivalence
for weaker circuits classes C , namely those that are unable
to compute MAJORITY and perform hardness amplifica-
tion [25], [26], [51]. We achieve this by considering strong
average-case circuit lower bounds and CAPP algorithms with
inverse-circuit-size error5: ENP cannot be (1/2+ 1/poly(n))-
approximated by C if and only if there is a non-trivial
CAPP algorithm for C with inverse-circuit-size error and ENP

preprocessing.
c) Range avoidance for smaller stretch implies break-

through lower bounds: Note that we ignored the role of
the stretch function in the above discussion. Actually, even
with “perfect” Hamming weight estimation data structures,
our main result only solves the range avoidance problem for
circuits that maps n input bits to n1+ϵ output bits, for every
constant ϵ > 0.

How does the stretch function affect the difficulty of
(provably) solving AVOID? We show that solving the range
avoidance problem for circuits with small enough stretch
implies breakthrough lower bounds:

• Solving AC0-AVOID with quasi-polynomial stretch

3CAPP stands for “circuit acceptance probability problem”. A CAPP
algorithm for C is a deterministic algorithm that takes as input a C circuit C,
and outputs an estimation of Prx←{0,1}n [C(x) = 1] within some additive
error.

4Here, a CAPP data structure for C with ENP preprocessing is the
following data structure: In the preprocessing phase, we are given the input
1n, and need to produce a data structure DS in 2O(n) time with an NP
oracle. In the query phase, we are given a C circuit C on n input bits, and
need to estimate Prx←{0,1}n [C(x) = 1] in non-trivial time, with the aid of
DS. Equivalently, it is a Hamming weight estimation data structure for TTC .

5A CAPP algorithm with inverse-circuit-size error approximates the prob-
ability that C accepts a random input within additive error 1/|C|, where |C|
is the size of C.

(for a small enough quasi-polynomial) implies super-
polynomial lower bounds against NC1.

• Even for the very simple circuit class NC0
4 (where every

output bit only depends on four input bits), solving NC0
4-

AVOID with stretch ℓ(n) := n+no(1) implies exponential
lower bounds against NC1 and ⊕L/poly (parity branching
programs).

We interpret these results as an indication that it may be
difficult to generalise Korten’s results [36] to restricted circuit
classes such as ACC0 or formulas. Korten showed that AVOID
reduces to finding a truth table with large circuit complexity
(in PNP); if Formula-AVOID (actually, NC0

4-AVOID) reduces
to finding a truth table with large formula complexity, then
formula lower bounds would imply lower bounds for an even
stronger model, namely parity branching programs.

d) Complexity of range avoidance below FPNP: We also
study the complexity of range avoidance w.r.t. algorithms less
powerful than FPNP. As mentioned before, it is unknown
whether AVOID ∈ FNP, AVOID ∈ FP, or their negations are
implied by any plausible assumptions. As far as we know, we
do not even have a good idea of what the “ground truth” should
be! (For comparison, by Korten’s result [36], if one believes
circuit lower bounds, one should also believe AVOID ∈ FPNP.)

It turns out that the statements “AVOID ∈ FNP” and
“AVOID ∈ FP” can be characterised by classical notions in
complexity theory. In particular, we connect the existence of
FNP algorithms for AVOID with the security of proof complex-
ity generators, and connect the existence of FP algorithms for
AVOID with a version of time hierarchy theorem with advice.

We now discuss our results in more detail.

A. An Algorithmic Method for Range Avoidance

Our first main result is a version of the Algorithmic Method
for solving the range avoidance problem. Here, instead of non-
trivial circuit-analysis algorithms, we consider data structures
with PNP preprocessing and non-trivial query time.

For a binary string s, let δ(s) denote the relative Hamming
weight of s, i.e., the fraction of bits in s that is equal to 1.
For a multi-output circuit class C , let C -HammingHit be the
following data structure problem:
(Preprocessing) Given the description of a C circuit C :

{0, 1}n → {0, 1}ℓ, preprocess C in polynomial time with
access to an NP oracle (that is, in PNP), and produce a
data structure DS ∈ {0, 1}poly(ℓ).

(Query) Given a string x ∈ {0, 1}n, distinguish between the
case that δ(C(x)) = 1 and the case that δ(C(x)) < 0.01
in deterministic ℓ/ logω(1) ℓ time with oracle access to
DS.

We show that if we want to solve C -AVOID in FPNP, it
suffices to design a data structure for the C ′-HammingHit
problem, where C ′ := NC0 ◦ C . Here, C ′ = NC0 ◦ C means
that each output gate of a C ′ circuit is a function over a
constant number of C circuits.

Theorem II.1 (Main Result 1, Informal). Let C be a (multi-
output) circuit class, and C ′ := NC0 ◦ C . Suppose there is

a data structure for the C ′-HammingHit problem with PNP

preprocessing and non-trivial (i.e., ℓ/ logω(1) ℓ) query time.
Then C -AVOID is in FPNP.

Remark II.2. The power of PNP preprocessing for data struc-
tures remains to be investigated. Some examples in the literature
where PNP preprocessing seems helpful are:
• The currently fastest data structure for the Online

Matrix-Vector Multiplication problem achieves amortised
n2/2Ω(

√
logn) query time [40]. It is implicit in their

paper that if we allow PNP preprocessing, then the query
algorithm can be made worst-case.

• The optimal expander decomposition can be computed
in PNP (see e.g., [47]). However, in this case, there are
also very good expander decomposition algorithms in
deterministic polynomial time [24].

a) A note on the stretch functions: It is clear that a
non-trivial data structure for HammingHit is possible only
when n < ℓ/ logω(1) ℓ. In the above informal statements,
we omitted the stretch of C and C ′ circuits for simplicity.
Actually, even assuming the best possible HammingHit data
structures, Theorem II.1 could only solve the range avoidance
problem for circuits with stretch ℓ(n) = n1+ϵ. We refer to the
full version for the precise statement of Theorem II.1.

b) Application: Range avoidance for De Morgan formu-
las: We apply our connection to show a non-trivial FPNP

algorithm that solves the range avoidance problem for De
Morgan formulas.

Theorem II.3. Let s(n) be a polynomial, C be the class of
multi-output functions where each output bit is computed by a
size-s(n) De Morgan formula, and the number of output bits
is at least ℓ := nω(

√
s log s). Then there is an FPNP algorithm

for C -AVOID.

Roughly speaking, Theorem II.3 is proved by the “quantum
method” [53] for De Morgan formulas: every function com-
puted by a De Morgan formula of size s has approximate
degree O(

√
s log s). By Theorem II.1, it suffices to solve

the HammingHit problem for De Morgan formulas. In the
preprocessing phase, we compute the low-degree polynomials
that approximate each output gate and add them into a single
polynomial p of degree O(

√
s log s). In the query phase, we

use nO(
√
s log s) ≪ ℓ time to evaluate p, which gives a good

estimation of the relative Hamming weight.

B. Equivalences between ENP Circuit Lower Bounds and Non-
trivial Derandomisation with Preprocessing

In our second set of results, we show that circuit lower
bounds for ENP and CAPP algorithms with ENP preprocessing
are equivalent. From Theorem II.1 we know that a non-trivial
GapUNSAT algorithm for C , even with ENP preprocessing,
would imply ENP ̸⊆ C . We show that for powerful enough
circuit classes C (e.g., TC0, NC1, or P/poly), the converse is
also true:

Theorem II.4 (Main Result 2.1, Informal). Let C ∈
{TC0,NC1,P/poly}. The following are equivalent:

• ENP cannot be computed by polynomial-size C circuits
on almost every input length.

• There is a non-trivial GapUNSAT algorithm for C cir-
cuits with ENP preprocessing.

For circuit classes C that are less powerful (i.e., that might
not be able to efficiently compute MAJORITY), we show that
strong average-case circuit lower bounds against C and CAPP
algorithms for C with inverse-circuit-size error are equivalent:

Theorem II.5 (Main Results 2.2, Informal). Let C be a
“weak” circuit class under some mild closure properties. The
following are equivalent:
• ENP cannot be (1/2 + 1/poly(n))-approximated by C

circuits on almost every input length.
• There is a non-trivial CAPP algorithm for C circuits with
ENP preprocessing and inverse-circuit-size error.

Actually, we can show equivalences among a lot of
notions, including strong average-case lower bounds for
ENP, non-trivial CAPP algorithms with ENP preprocessing,
subexponential-time CAPP algorithms with ENP preprocess-
ing, and ENP-computable PRGs. For details please refer to the
full version.

It is remarkable that although these equivalences do not
refer to AVOID, the most natural way of deriving them seems
to go through it. In particular, in the range avoidance problem,
it is impossible to estimate the Hamming weight of an ℓ-
output circuit in o(ℓ) time without preprocessing it, so the
preprocessing phase appears naturally. It turns out that adding
this preprocessing phase to the (standard) Algorithmic Method
makes it an equivalence!6 Our results are also a rare instance
where a data structure problem (HammingHit or CAPP with
preprocessing) plays a crucial role in a fundamental problem
in complexity theory.

One advantage of our equivalence is that it also holds
for larger size bounds and the case of infinitely-often lower
bounds:

Theorem II.6 (Informal). Let C be a “weak” circuit class
under some mild closure properties. The following are equiv-
alent:
• ENP cannot be (1/2 + 1/2n

o(1)

)-approximated by C

circuits of size 2n
o(1)

.
• There is a CAPP algorithm for C circuits of size
2n

o(1)

with 2n−n
Ω(1)

query time, ENP preprocessing, and
inverse-circuit-size error, that works for infinitely many
n.

Remark II.7 (Equivalences between Derandomisation and
Lower Bounds).

Equivalences between derandomisation and lower bounds are
known in many settings.
• Impagliazzo, Kabanets, and Wigderson [28] showed that
NEXP ̸⊆ P/poly if and only if there is a non-deterministic

6Note that the proof that adding the ENP preprocessing phase still gives us
lower bounds is highly non-trivial and requires some new ideas. See Section III
for an overview.

subexponential-time algorithm for CAPP with no(1) bits
of advice and error 1/6 that works infinitely often.

• Korten’s result [36] can also be interpreted as an equiv-
alence between derandomisation and lower bounds: A
full derandomisation of the trivial FZPPNP algorithm for
AVOID is equivalent to both ENP ̸⊆ SIZE[20.1n] and
ENP ̸⊆ SIZE[2n/3n].

• Equivalences between derandomisation and uniform lower
bounds are also known. Impagliazzo and Wigderson [29]
showed that EXP ̸= BPP is equivalent to an infinitely-
often, subexponential time derandomisation of BPP on
average (BPP ⊆ i.o.-heurDTIME[2n

o(1)

]). Williams [59]
showed that NEXP ̸= BPP is equivalent to an infinitely-
often, subexponential time nondeterministic derandomi-
sation of BPP on average, with no(1) bits of advice
(BPP ⊆ i.o.-heurNTIME[2n

o(1)

]/no(1)).
In our opinion, compared to the above equivalences, our

results have the following features that make them particularly
attractive:
• First, they work in both infinitely-often and almost-

everywhere settings; in contrast, [29] and [59] only hold
for infinitely-often lower bounds.

• Second, they scale better with large circuit size bounds
(such as 2n

o(1)

); no similar equivalences to [28] for
NEXP ̸⊆ SIZE[2n

o(1)

] or to [29] for EXP ̸⊆
BPTIME[2n

o(1)

] are known.
• Third, they are also true for weaker circuit classes such

as formulas or ACC0 circuits; in contrast, the arguments
in [36] does not seem to yield any characterisation of the
lower bound ENP ̸⊆ Formula[20.1n].

• Finally, our equivalences include both subexponential-
time derandomisation and non-trivial derandomisation;
none of the equivalences above are known to include non-
trivial derandomisation.

An interesting corollary of Theorems II.4 and II.5 is the
following “speed-up” result for derandomisation with ENP

preprocessing:

Corollary II.8 (Informal). The following are true:
• If there is a non-trivial GapUNSAT algorithm for
TC0 circuits with ENP preprocessing, then there is a
subexponential-time CAPP algorithm for TC0 circuits
with ENP preprocessing.

• Let C be a “weak” circuit class under some mild closure
properties. If there is a non-trivial CAPP algorithm for
C circuits with ENP preprocessing and inverse-circuit-
size error, then there is a subexponential-time CAPP
algorithm for C circuits with ENP preprocessing and
inverse-circuit-size error.

Remark II.9 (Comparison with Other Speed-Ups in Complexity
Theory).

Williams [57] showed that if CAPP has a nondeterministic
algorithm with non-trivial running time, then CAPP also has a
nondeterministic subexponential time algorithm. One caveat of
this result is that the speed-up algorithm is only infinitely-often
correct, and requires nϵ bits of advice. Therefore, the speed-up
algorithm does not imply the non-trivial algorithm. In contrast,
in Corollary II.8, the speed-up algorithms always imply the
non-trivial algorithms.

Oliveira and Santhanam [44] showed a similar speed-up

result in learning theory: a typical circuit class is “non-trivially
learnable” if and only if it is learnable in sub-exponential
time. Their result is proved using the connection between
natural proofs and learning [12], [49], while our result is a
strengthening of the Algorithmic Method.

C. The Role of the Stretch Function

The input to AVOID is a circuit C : {0, 1}n → {0, 1}ℓ(n).
How does the stretch function ℓ(n) affect the complexity of
AVOID? Clearly, the larger ℓ is, the easier it is to solve AVOID.
But is there any qualitative difference between (say) ℓ(n) =
n+ 1, ℓ(n) = 2n, and ℓ(n) = n100?

Korten [36] suggests that the answer might be no, at least
w.r.t. FPNP algorithms. The range avoidance problem for
stretch n + 1 reduces to the problem of finding a truth table
without 20.001n-size circuits in PNP; the latter problem trivially
reduces to the range avoidance problem for some circuit of
stretch n100.

However, when we consider C -AVOID for restricted circuit
classes C , we show that the answer is yes! We think this is
an interesting phenomenon revealed by the investigation of
C -AVOID for very weak classes C .

Theorem II.10 (Informal). Suppose that for a small enough
quasi-polynomial ℓ(·), AC0-AVOID with stretch ℓ is solvable
in FPNP. Then ENP ̸⊆ NC1.

Theorem II.11 (Informal). Suppose that NC0
4-AVOID with

stretch ℓ := n + no(1) is solvable in FPNP. Then ENP does
not have subexponential-size formulas and parity branching
programs.

Roughly speaking, Theorem II.10 is proved by the
subexponential-size simulation of NC1 circuits by AC0 circuits
[43], and Theorem II.11 is proved by the randomised encoding
techniques of [3], [30], [31].

Our results imply that if Korten’s result can be generalised
to formula complexity (i.e., Formula-AVOID reduces to finding
a hard truth table w.r.t. formula complexity in PNP), then
formula lower bounds imply parity branching program lower
bounds! This raises several interesting open questions: Is
there any fundamental reason that Korten’s techniques do not
work for formula complexity? What is the difference between
circuits and formulas that plays a crucial role here? Are
these results connected to the open question of constructing
randomised encodings for polynomial-size circuits [3]? We
leave these questions as interesting research directions.

D. Is AVOID in FNP or FP?

Finally, we turn to the problem of whether AVOID is in FNP
or FP.7 We note that the results in this section involve some
technicalities in the stretch functions (see the full version for

7If the following is true, then we say AVOID ∈ FNP. There is a
nondeterministic algorithm that takes a circuit C : {0, 1}n → {0, 1}ℓ
as input, where ℓ > n, such that the following holds. (1) The algorithm
accepts at least one nondeterministic branch. (2) On every accepting branch,
the algorithm outputs a string y ∈ {0, 1}ℓ that is not in the range of C
successfully.

details), but we ignore this issue in the informal overview. We
show that:

Theorem II.12 (Informal). The following are true:

• There is an FNP algorithm for AVOID if and only if there
is a propositional proof system that breaks every non-
uniform proof complexity generator.

• There is an FP algorithm for (a sparse version of) AVOID
if and only if a version of time hierarchy for E holds with
near-maximum advice, i.e.,

E ̸⊆ i.o.-DTIME[2n+1]/(2n−ω(1)).

a) Background: proof complexity generators: Let ℓ > n,
a circuit C : {0, 1}n → {0, 1}ℓ is a proof complexity generator
secure against a propositional proof system, if the proof system
cannot efficiently prove any string not in the range of C [1].
More formally, for every y ∈ {0, 1}ℓ, the (properly encoded
version of the) statement “∀x ∈ {0, 1}n, C(x) ̸= y” does not
have proofs of polynomial length, even though the statement
is true for most y.

The study of proof complexity generators is partly motivated
by the search for explicit tautologies that are hard for strong
propositional proof systems such as Extended Frege [38]. It is
also motivated by meta-mathematical questions about circuit
lower bounds: are strong circuit lower bounds efficiently
provable in propositional proof systems such as Frege and
Extended Frege? Razborov has made several conjectures sup-
porting the possibility that the truth table generator8 is secure
against Frege [48], while Krajíček has examined the evidence
in favour of the truth table generator being hard even for
Extended Frege [38]. In other words, it has been hypothesised
that EF cannot efficiently prove super-polynomial circuit lower
bounds for any truth table.

Krajíček [39] has also studied the possibility that some proof
complexity generator is secure against every proof system.
Conversely, we could ask: Is there a proof system that can
break every proof complexity generator? This question turns
out to be characterised by the statement AVOID ∈ FNP.

b) Discussion: generating Kt-random strings: Along the
way, we show that the problem of generating strings with
near-maximum time-bounded Kolmogorov complexity (Kt) is
complete for (the sparse version of) AVOID under polynomial-
time reductions.9

Consider the following hypothesis:

Hypothesis II.13. There is a deterministic polynomial-time
algorithm that given (1t, 1n), finds a string x ∈ {0, 1}n such
that Kt(x) is large.

We show that this hypothesis is equivalent to the afore-
mentioned “time-hierarchy” hypothesis. The plausibility of
Hypothesis II.13 remains to be investigated.

8The truth table generator is the function TT introduced in Example I.2.
If TT is hard for a propositional proof system, then this proof system cannot
efficiently prove circuit lower bounds of any truth table.

9Again, we emphasize that this result has some technicalities in the stretch.

Hypothesis II.13 is a natural generalisation of circuit lower
bounds. If we replace Kt with circuit complexity, we obtain
the statement that truth tables with high circuit complexity
can be generated in deterministic polynomial time, which is
equivalent to circuit lower bounds for E. Is there any for-
mal connection between Hypothesis II.13 and other hardness
assumptions (such as circuit lower bounds or cryptographic
assumptions)? We leave this question for future research.

We also define a proof complexity generator based on
Kt, and show that the Kt generator is the “hardest” proof
complexity generator. A proof system breaks every proof
complexity generator if and only if it breaks the Kt generator.

E. A Rectangular PCP of Proximity

A crucial technical ingredient for proving Theorem II.1 is
a rectangular PCP of proximity (or rectangular PCPP). Here
we introduce the rectangular PCPP and discuss its features in
the context of the Algorithmic Method. We refer the reader to
Section III for the reason that this notion of PCPP is needed.

PCPs (probabilistically checkable proofs) provide a surpris-
ingly efficient way to verify NP proofs. The PCP theorem
[4], [5] states that any NP proof can be converted into a
polynomially-longer PCP such that a verifier can check its
validity by only reading a constant number of bits (at randomly
selected locations).

It is often desirable that a PCP has additional properties.
One property is shortness: suppose the original NP instance
has length n and the NP proof has length m, then the PCP
has length Õ(n+m). Short PCPs are constructed in [6], [7],
[20]. Another property is proximity [6]: instead of being in
the language, we only verify that the input is close to being in
the language. The benefit of proximity is that a super efficient
verifier is now possible: instead of seeing the whole input, the
verifier only probes a few bits of both the input string and
the proof. We also want the PCP to have projection queries
[9], which means the circuit that maps the PCP randomness to
its query indices is a projection (i.e., has the lowest possible
circuit complexity). This is useful in the Algorithmic Method.

The final property we consider is rectangularity, recently
introduced in [10]. In a perfectly rectangular PCP, the proof
is a

√
m ×

√
m matrix Π, and the PCP randomness seed is

partitioned into two parts: seed.row and seed.col. Each PCP
query to the proof matrix is specified by a coordinate (r, c)
(where we want to probe Π[r, c]). Rectangularity means that
r only depends on seed.row and c only depends on seed.col.
In other words, the queries of a rectangular PCP is generated
as follows:
• First, the verifier reads seed.row and produces
(r1, r2, . . . , rq) without seeing seed.col.

• Then, the verifier forgets about seed.row, reads seed.col
and produces (c1, c2, . . . , cq).

• The query locations are (r1, c1), (r2, c2), . . . , (rq, cq).
We do not know if perfectly rectangular PCPs exist. We can

only construct almost rectangular PCPs, where the randomness
seed also contains a short shared portion seed.shared. The
verifier sees both seed.row and seed.shared while generating

(r1, r2, . . . , rq), and sees both seed.col and seed.shared while
generating (c1, c2, . . . , cq).

The motivation for considering rectangular PCPs in [10] was
to construct rigid matrices (and improve [2]). In this paper, we
show another application of rectangular PCPs (actually, PCPs
of proximity): they are a crucial ingredient in our Algorithmic
Method for range avoidance!

In this paper, we construct a short and almost rectangular
PCP of proximity with projection queries. Here, the input is
also a matrix that is queried in a rectangular fashion; see the
full version for a precise definition.

Theorem II.14 (Informal). For every constant τ > 0 and
functions Winput(n),Wproof(n) satisfying some technical con-
ditions, NTIME[T (n)] has a τ -almost rectangular PCP of
proximity with proof length T (n)·polylog(T (n)), input matrix
width Winput(n), and proof matrix width Wproof(n). Here, τ -
almost rectangularity means that |seed.shared| ≤ τ · |seed|.

Moreover, for fixed seed.shared, the maps from seed.row or
seed.col to the query indices (i.e., ri or ci) are projections,
computable in polynomial time given seed.shared.

Remark II.15 (Comparison with [10]). Our rectangular PCP
of proximity differs from the rectangular PCP in [10] in the
following ways.
• The biggest difference is that our construction is a PCP of

proximity. As a result, the input is also treated as a matrix,
and its query pattern also has to be rectangular.

• The rectangular PCP in [10] is smooth, i.e., every bit in
the proof is queried with equal probability. Smoothness is
not required in our application, and our rectangular PCPP
has no smoothness guarantee.

• Finally, the input matrix size and the proof matrix size in
our rectangular PCPP are flexible, while the proof matrix
in [10] is

√
m×

√
m. It is easy to make the proof matrix

size flexible, but more care needs to be taken for the input
matrix. (See the full version where we artificially define
a bijection called binHm .) This is quite important as in
our application, we need the input matrix width to be as
small as possible!

Remark II.16 (Comparison with [9]). To reduce the circuit com-
plexity “overhead” of the Algorithmic Method, [9] constructed
PCPs where the query indices are computable by a projection
over seed. To achieve this property, [9] needed to use the PCP
in [8]. Unfortunately, this PCP needs polylog(n) queries; even
worse, this property is broken when we use PCP composition
to reduce query complexity to O(1).

However, if we allow the queries to depend arbitrarily on
a small portion of seed (namely seed.shared), but has to be a
projection over the rest of the bits, then this is also achievable
using the PCP in [6]. The [6] PCP has the advantage of being
almost rectangular. We are also able to compose PCPs now, by
simply adding the (very short) randomness of the inner PCP
into seed.shared. Thus, the query complexity can be reduced
to O(1). It turns out that having such a small portion (i.e.,
seed.shared) does not hurt the Algorithmic Method at all.

III. TECHNICAL OVERVIEW

In this section, we present an overview of the proof of
Theorem II.1.

It is helpful to review the Algorithmic Method for proving
ENP lower bounds. Let Lhard ∈ NTIME[2n] \ NTIME[o(2n)]
be a hard language constructed by the nondeterministic time
hierarchy theorem [62]. Let V be the PCP verifier of [6]; here
V is an oracle circuit V (−) : {0, 1}r → {0, 1}. This oracle
circuit takes PCP randomness as input (so the input length is
r = n+O(log n)), and receives the PCP proof as the oracle.

For a proof oracle π : {0, 1}r → {0, 1}, denote pacc(π) :=
Prseed←{0,1}r [V

π(seed) accepts]. For every input x ∈ {0, 1}⋆:
• If x ∈ Lhard, then there is a proof oracle π such that
pacc(π) = 1.

• If x ̸∈ Lhard, then for every proof oracle π, we have
pacc(π) ≤ 0.01.

Now, suppose that for every input x ∈ Lhard, there is a
proof oracle π such that pacc(π) = 1, and in addition, π can
be computed by a C circuit. (Call this assumption the “easy-
witness assumption”.) Moreover, suppose that the GapUNSAT
problem for V C can be solved in 2r/rω(1) < o(2n) time.
Then there is a faster nondeterministic algorithm for Lhard as
follows. Given an input x, we first guess a circuit C that
computes a valid proof oracle π, and use the GapUNSAT
algorithm to distinguish between the case that pacc(π) = 1
and that pacc(π) ≤ 0.01.

By the nondeterministic time hierarchy theorem, the above
speed-up algorithm has to be incorrect. Therefore, our “easy-
witness assumption” has to be false, i.e., there is an input
x ∈ Lhard which does not have valid PCP proofs computable
by a small C circuit.

a) A naïve attempt: Given a circuit C : {0, 1}n →
{0, 1}ℓ, our goal is to find a non-output of C in FPNP.
Again, let Lhard ∈ NTIME[ℓ] \ NTIME[o(ℓ)] be the hard
language constructed by the nondeterministic time hierarchy.10

Our “easy-witness” assumption now becomes:

Assumption III.1. For every x ∈ Lhard, there is a PCP proof
for x that is in the range of C.

Now we design a faster nondeterministic algorithm Mfast

that tries to solve Lhard. Let QPCP : {0, 1}ℓ → {0, 1}2|seed|

be the circuit such that for every PCP proof π ∈ {0, 1}ℓ and
every seed, the seed-th output of QPCP(π) is the verifier’s
output when given π as the PCP proof and seed as the
randomness. (Here we interpret seed as both a random string
of length |seed| and an integer in [2|seed|].) Note that if the
PCP is efficient enough, then QPCP is an NC0 circuit. Let
C ′(x) := QPCP(C(x)). To solve Lhard, it suffices to solve the
Hamming weight estimation problem for C ′, i.e., distinguish
between δ(C ′(x)) = 1 and δ(C ′(x)) ≤ 0.01.

There is a serious problem with this approach: The descrip-
tion length of C is already Ω(ℓ), therefore it is impossible to
solve the Hamming weight estimation problem in o(ℓ) time.

b) Idea 1: Make copies: Our first idea is simple but
crucial: we pick a large enough number H = poly(ℓ) and

10Note that we have not specified the input length for Lhard. We only know
that Lhard is in non-deterministic ℓ time on this input length. This important
issue will be discussed later.

make H copies of C. That is, instead of the avoidance problem
for C, we consider the avoidance problem for the circuit

CH(x1, x2, . . . , xH) = (C(x1), C(x2), . . . , C(xH)).

There is a simple FPNP reduction from the avoidance
problem of C to the avoidance problem of CH . Suppose
y = (y1, y2, . . . , yH) is not in the range of CH , then we can
use the NP oracle to check whether each yi is in the range of
C, and pick the first yi that is not. Hence, it suffices to solve
the avoidance problem for CH .

Now, let Lhard ∈ NTIME[H · ℓ] \ NTIME[o(H · ℓ)]. Let
QPCP : {0, 1}H·ℓ → {0, 1}2|seed| be the NC0 circuit mapping
the PCP proof to the verifier’s outputs on each seed. It suffices
to design a HammingHit data structure for the circuit C ′(x) :=
QPCP(C

H(x)). Note that we only need O(ℓ) bits to describe
C ′: QPCP is completely determined by the PCP verifier, and
we can use O(ℓ) bits to describe C. As O(ℓ) ≪ H · ℓ, at least
in principle, it could be possible to solve the HammingHit
problem for C ′ in less than H · ℓ time.

But how do we actually solve the HammingHit problem?
We need to exploit the structures of the circuit QPCP (if any)!
What property should the PCP have?

c) Idea 2: Rectangular PCP: Our second idea is to use
rectangular PCPs. In this overview, let us assume the PCP is
perfectly rectangular.

We recall the definition of rectangular PCPs. Here, the PCP
proof π is an H × ℓ matrix, and our easy-witness assumption
becomes that every row of π is in the range of C. The
PCP randomness seed is divided into two parts: seed.row
and seed.col. The row index of each query only depends on
seed.row, and the column index of each query only depends
on seed.col.

We enumerate seed.row. Denote the PCP verifier as V , we
want to estimate

Pr
seed.col

[V π(seed.row, seed.col) accepts]. (1)

As seed.row is fixed, we now know q rows r1, r2, . . . , rq
such that V π(seed.row,−) will only access these rows of
π. Call these rows πr1 , πr2 , . . . , πrq ∈ {0, 1}ℓ. Let QPCP :

({0, 1}ℓ)q → {0, 1}2|seed.col| be the NC0 circuit such that for ev-
ery seed.col, the seed.col-th output of QPCP(πr1 , πr2 , . . . , πrq)
is 1 if and only if V π(seed.row, seed.col) accepts. Let
x1, x2, . . . , xq ∈ {0, 1}n, define the following NC0◦C circuit:

C ′(x1, x2, . . . , xq) = QPCP(C(x1), C(x2), . . . , C(xq)).

We guess the strings w1, w2, . . . , wH ∈ {0, 1}n such that
the i-th row of π is equal to C(wi). It is easy to see that

(1) = δ(C ′(wr1 , wr2 , . . . , wrq)).

Therefore, we can use a HammingHit data structure for C ′ to
estimate Eq. (1). Note that q is a constant, and |seed.col| ≈
log ℓ, so C ′ : {0, 1}qn → {0, 1}2|seed.col| is indeed small (instead
of only having a short description).

To summarise, our speed-up algorithm Mfast proceeds as
follows. First, we guess the inputs w1, w2, . . . , wH , (implic-
itly) construct an H × ℓ proof matrix π whose i-th row is

equal to C(wi), and hope that π is a valid PCP proof. Then,
we estimate the probability that the PCP verifier accepts. To
do so, we enumerate seed.row and use the HammingHit data
structure to estimate Eq. (1). If for any seed.row it happens
that (1) ≤ 0.01, then we reject; otherwise, we accept.

Since the query algorithm for HammingHit takes
2|seed.col|/|seed.col|ω(1) time, the time complexity of Mfast is

2|seed.row| · 2|seed.col|/|seed.col|ω(1) ≤ (Hℓ)/ logω(1) ℓ.

d) The “right” time hierarchy theorem: The above
avoidance algorithm is only correct on infinitely many input
lengths. The reason is that the nondeterministic time hierarchy
in [62] only works infinitely often, i.e., for any NTIME[o(Hℓ)]
machine M , Lhard and M only disagree on infinitely many
input lengths.

To obtain an almost-everywhere avoidance algorithm, we
follow the ideas of [16]. The crucial observation is that
Mfast does not guess too many nondeterministic bits. (In
the case of the Algorithmic Method, it only guesses a small
circuit encoding the PCP proof; in our case, it only guesses
Hn ≪ Hℓ bits.) There is an almost-everywhere nonde-
terministic time hierarchy against such machines [23]. Let
NTIMEGUESS[T (N), g(N)] denote the class of languages
decidable by a nondeterministic machine running in T (N)
time and guessing g(N) bits. Then:

Theorem III.2 ([23]). Let T (N) be a time-constructible
function such that N ≤ T (N) ≤ 2poly(N). There is a language
Lhard ∈ NTIME[T (N)]\i.o.-NTIMEGUESS[o(T (N)), N/10].

Since we need to guess Hn bits, we set the input length to
be N := 10Hn. We also set T (N) to be a slightly super-linear
function such that T (10Hn) ≈ Hℓ.

There is a small issue: Mfast needs to access the data
structure DS for HammingHit. We cannot compute DS inside
Mfast as it needs an NP oracle, therefore our only option is
to hardcode DS as advice for Mfast. Fortunately, the above
NTIME hierarchy theorem also holds against machines with
N/10 advice bits:

Theorem III.3. Let T (N) be a time-constructible function
such that N ≤ T (N) ≤ 2poly(N). There is a language Lhard ∈
NTIME[T (N)] \ i.o.-NTIMEGUESS[o(T (N)), N/10]/(N/10).

Note that we only need the HammingHit data structure for
the circuit C ′ whose size is independent of H . By setting H
large enough, we can still guarantee that the advice length is
≤ N/10 = Hn/10.11

To complete the description of our FPNP avoidance al-
gorithm, we still need one ingredient from [16]: a refuter
for Theorem III.3. Given 1N and the code of the machine
Mfast that attempts to compute Lhard, as well as the N/10
advice bits, if Mfast runs in o(T (N)) time and uses at most
N/10 nondeterministic bits, then the refuter finds an input

11In the case of almost rectangular PCPs, we need to hardcode a data
structure for every possible value of seed.shared. It is still possible to set the
parameters so that the total length of these data structures is ≤ N/10.

x ∈ {0, 1}N such that Mfast(x) ̸= Lhard(x). The refuter runs
in polynomial time with access to an NP oracle.

Our FPNP avoidance algorithm is as follows. We first
compute the HammingHit structure DS in FPNP. We also
compute (the code of) the machine Mfast. Then we use
the refuter to find an input xhard ∈ {0, 1}N such that
Mfast(xhard) ̸= Lhard(xhard). It follows that in any valid proof
matrix of xhard ∈ Lhard, there is some row that is not in the
range of C. We can then simply use the NP oracle to pick the
first such row.

e) Rectangular PCP of proximity: There is another issue:
QPCP depends on the input xhard! As xhard depends on DS
(recall that xhard is found by the refuter, which takes DS as
input), we cannot preprocess C ′ = QPCP ◦C before we know
xhard.

Our solution is to use a rectangular PCP of proximity
(henceforth rectangular PCPP). Recall that a PCPP verifier
can only query a small number of bits in both the proof
oracle and the input oracle. (As it does not even have time
to read the whole input, its query pattern does not depend on
it.) In a rectangular PCPP, the input oracle is also accessed in
a rectangular fashion. There are three predicates Vtype, Vrow,
and Vcol:

• Vtype, without looking at seed, outputs q symbols, where
each symbol is either input or proof.12

• Vrow reads seed.row and outputs q row indices
r1, r2, . . . , rq .

• Vcol reads seed.col and outputs q column indices
c1, c2, . . . , cq .

• For each query i ∈ [q], if the i-th symbol is input, then the
i-th query asks the (ri, ci)-th entry of the input matrix;
if the i-th symbol is proof, then the i-th query asks the
(ri, ci)-th entry of the proof matrix.

We now revise our speed-up algorithm Mfast for Lhard using
rectangular PCPPs. Given an input x ∈ {0, 1}N ,13 we still
guess w1, w2, . . . , wH and construct the PCPP proof matrix
π whose i-th row is C(wi). Also, the input is treated as an
H ′ ×W ′ matrix14; let xi be the i-th row of the input matrix.
Now we estimate the probability that V x,π(seed) accepts,
where V is the PCPP verifier with oracle access to x and
π. After enumerating seed.row, we have fixed qproof rows in
the proof matrix and qinput rows in the input matrix, where
qproof + qinput = q, and the output of V x,π(seed.row,−) only
depends on these rows. Let QPCPP : {0, 1}qproof ·n+qinput·W ′ →
{0, 1}2|seed.col| be the circuit that maps these rows to the

12Note that we consider perfect rectangularity here. In an almost rectangular
PCPP, Vtype depends on seed.shared, but does not depend on seed.row and
seed.col.

13Note that a PCPP could only distinguish between x ∈ L and x being
far from L. Thus, we need to apply an error-correcting code to the input. For
simplicity, we still use x to denote the encoded input.

14A technicality here is that we want to set W ′ to be as small as possible,
as the size of C′ is proportional to W ′. It turns out that we can achieve
W ′ = n · polylog(ℓ).

verifier’s outputs on each seed.col,15 and

C ′(w1, w2, . . . , wqproof , x1, x2, . . . , xqinput)

=QPCPP(C(w1), C(w2), . . . , C(wqproof), x1, x2, . . . , xqinput).

Note that QPCPP does not depend on the input x.
For each seed.row, we feed the corresponding rows in

the proof matrix and the input matrix into C ′, and use the
HammingHit data structure to estimate the probability over
seed.col that V x,π(seed) accepts. The total running time is

2|seed.row| · 2|seed.col|/|seed.col|ω(1) < Hℓ/ logω(1) ℓ.

Finally, our FPNP avoidance algorithm is the same as before,
except that we use the rectangular PCPP in the code of Mfast.

ACKNOWLEDGMENT

Hanlin Ren wants to thank Yuichi Yoshida for helpful
discussions about hypergraph cut sparsifiers, Stanislav Živný
for helpful discussions about [45], and Lijie Chen for helpful
discussions in general and about THR ◦ THR circuits specif-
ically. We thank Jiatu Li for helpful comments on a draft
version of this paper. We thank Ján Pich for helpful discussions
during the early stage of this research.

REFERENCES

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi
Wigderson. Pseudorandom generators in propositional proof complexity.
SIAM J. Comput., 34(1):67–88, 2004.

[2] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using
an NP oracle. In Proc. 60th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1034–1055, 2019.

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. SIAM Journal of Computing, 36(4):845–888, 2006.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and the hardness of approximation
problems. Journal of the ACM, 45(3):501–555, 1998.

[5] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A
new characterization of NP. Journal of the ACM, 45(1):70–122, 1998.

[6] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil Vadhan. Robust PCPs of proximity, shorter PCPs and applications
to coding. SIAM J. Comput., 36(4):889–974, 2006.

[7] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. Short PCPs verifiable in polylogarithmic time. In Proc.
20th Annual IEEE Conference on Computational Complexity (CCC),
pages 120–134, 2005.

[8] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query
complexity. SIAM J. Comput., 38(2):551–607, 2008.

[9] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries.
In Proc. 41st International Colloquium on Automata, Languages and
Programming (ICALP), volume 8572 of Lecture Notes in Computer
Science, pages 163–173, 2014.

[10] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid
matrices from rectangular PCPs or: Hard claims have complex proofs.
In Proc. 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 858–869, 2020.

[11] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing
separations. In Proc. 13th Annual IEEE Conference on Computational
Complexity (CCC), pages 8–12, 1998.

[12] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and
Antonina Kolokolova. Learning algorithms from natural proofs. In
Proc. 31st Computational Complexity Conference (CCC), volume 50 of
LIPIcs, pages 10:1–10:24, 2016.

15Actually, QPCPP also depends on O(q) parity-check bits. We ignore this
technical detail in the overview.

[13] Lijie Chen. Non-deterministic quasi-polynomial time is average-case
hard for ACC circuits. In Proc. 60th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1281–1304, 2019.

[14] Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor Carboni Oliveira. Majority
vs. approximate linear sum and average-case complexity below NC1.
In Proc. 48th International Colloquium on Automata, Languages and
Programming (ICALP), volume 198 of LIPIcs, pages 51:1–51:20, 2021.

[15] Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and
extremely rigid matrices from a new derandomized XOR lemma. In
Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC),
pages 761–771, 2021.

[16] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit
lower bounds from non-trivial derandomization. In Proc. 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages
1–12, 2020.

[17] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from
non-trivial derandomization. In Proc. 52nd Annual ACM Symposium on
Theory of Computing (STOC), pages 1327–1334, 2020.

[18] Lijie Chen and R. Ryan Williams. Stronger connections between circuit
analysis and circuit lower bounds, via PCPs of proximity. In Proc. 34th
Computational Complexity Conference (CCC), volume 137 of LIPIcs,
pages 19:1–19:43, 2019.

[19] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An
average-case lower bound against ACC0. In Proc. 13th Latin American
Theoretical Informatics Symposium (LATIN), volume 10807 of Lecture
Notes in Computer Science, pages 317–330, 2018.

[20] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12,
2007.

[21] Paul Erdős. Graph theory and probability. Canadian Journal of
Mathematics, 11:34–38, 1959.

[22] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and
Alexander S. Kulikov. A better-than-3n lower bound for the circuit
complexity of an explicit function. In Proc. 57th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 89–98, 2016.

[23] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds
for uniform classes. In Proc. 31st Computational Complexity Conference
(CCC), volume 50 of LIPIcs, pages 19:1–19:14, 2016.

[24] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan
Tan. The expander hierarchy and its applications to dynamic graph
algorithms. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 2212–2228, 2021.

[25] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishabil-
ity by adaptive procedures with advice, and lower bounds on hardness
amplification proofs. In Proc. 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 956–966, 2018.

[26] Dan Gutfreund and Guy N. Rothblum. The complexity of local
list decoding. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, 11th International Workshop,
APPROX 2008, and 12th International Workshop, RANDOM 2008,
Boston, MA, USA, August 25-27, 2008. Proceedings, volume 5171 of
Lecture Notes in Computer Science, pages 455–468. Springer, 2008.

[27] Xuangui Huang and Emanuele Viola. Average-case rigidity lower
bounds. In Proc. 16th International Computer Science Symposium in
Russia (CSR), volume 12730 of Lecture Notes in Computer Science,
pages 186–205, 2021.

[28] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search
of an easy witness: exponential time vs. probabilistic polynomial time.
J. Comput. Syst. Sci., 65(4):672–694, 2002.

[29] Russell Impagliazzo and Avi Wigderson. Randomness vs time: De-
randomization under a uniform assumption. Journal of Computer and
System Sciences, 63(4):672–688, 2001.

[30] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new
representation with applications to round-efficient secure computation.
In Proc. 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 294–304, 2000.

[31] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure compu-
tation via perfect randomizing polynomials. In Proc. 29th International
Colloquium on Automata, Languages and Programming (ICALP), pages
244–256, 2002.

[32] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n−
o(n) for Boolean circuits. In Proc. 27th International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 2420
of Lecture Notes in Computer Science, pages 353–364, 2002.

[33] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and
derandomization. Ann. Pure Appl. Log., 129(1-3):1–37, 2004.

[34] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos
Papadimitriou. Total functions in the polynomial hierarchy. In Proc. 12th
Conference on Innovations in Theoretical Computer Science (ITCS),
volume 185 of LIPIcs, pages 44:1–44:18, 2021.

[35] Johannes Köbler and Osamu Watanabe. New collapse consequences of
NP having small circuits. SIAM J. Comput., 28(1):311–324, 1998.

[36] Oliver Korten. The hardest explicit construction. In Proc. 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages
433–444. IEEE, 2021.

[37] Jan Krajíček. Tautologies from pseudo-random generators. Bull. Symb.
Log., 7(2):197–212, 2001.

[38] Jan Krajíček. Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds. J. Symb. Log., 69(1):265–
286, 2004.

[39] Jan Krajíček. On the proof complexity of the Nisan-Wigderson generator
based on a hard NP ∩ coNP function. J. Math. Log., 11(1), 2011.

[40] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector
multiplication. In Proc. 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2182–2189. SIAM, 2017.

[41] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for
explicit functions. In Proc. 54th Annual ACM Symposium on Theory
of Computing (STOC), 2022. To appear.

[42] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for
nondeterministic quasi-polytime from a new easy witness lemma. SIAM
J. Comput., 49(5), 2020.

[43] V. A. Nepomnjascii. Rudimentary predicates and Turing computations.
In Doklady Akademii Nauk, volume 195, pages 282–284. Russian
Academy of Sciences, 1970.

[44] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between
learning algorithms, circuit lower bounds, and pseudorandomness. In
Proc. 32nd Computational Complexity Conference (CCC), volume 79
of LIPIcs, pages 18:1–18:49, 2017.

[45] Eden Pelleg and Stanislav Živný. Additive sparsification of CSPs. In
Proc. 29th European Symposium on Algorithms (ESA), volume 204 of
LIPIcs, pages 75:1–75:15, 2021.

[46] Mark S Pinsker. On the complexity of a concentrator. In 7th
International Telegraffic Conference, volume 4, pages 1–318, 1973.

[47] Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast connectivity
updates. In Proc. 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 263–271, 2007.

[48] Alexander Razborov. Pseudorandom generators hard for k-DNF res-
olution and polynomial calculus resolution. Annals of Mathematics,
181(2):415–472, 2015.

[49] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of
Computer and System Sciences, 55(1):24–35, 1997.

[50] Rahul Santhanam and R. Ryan Williams. On medium-uniformity
and circuit lower bounds. In Proceedings of the 28th Conference on
Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7
June, 2013, pages 15–23. IEEE Computer Society, 2013.

[51] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs
require majority. SIAM J. Comput., 39(7):3122–3154, 2010.

[52] Claude E. Shannon. The synthesis of two-terminal switching circuits.
Bell System technical journal, 28(1):59–98, 1949.

[53] Avishay Tal. Formula lower bounds via the quantum method. In Proc.
49th Annual ACM Symposium on Theory of Computing (STOC), pages
1256–1268. ACM, 2017.

[54] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity.
In Proc. 6th International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 53 of Lecture Notes in Computer
Science, pages 162–176, 1977.

[55] Emanuele Viola. New lower bounds for probabilistic degree and AC0

with parity gates. Electron. Colloquium Comput. Complex., page 15,
2020.

[56] Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse
symmetric functions of ACC circuits: Expanding the reach of #SAT
algorithms. In Proc. 37th Symposium on Theoretical Aspects of Com-
puter Science (STACS), volume 154 of LIPIcs, pages 59:1–59:17, 2020.

[57] R. Ryan Williams. Improving exhaustive search implies superpolynomial
lower bounds. SIAM Journal of Computing, 42(3):1218–1244, 2013.

[58] R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM,
61(1):2:1–2:32, 2014.

[59] R. Ryan Williams. Natural proofs versus derandomization. SIAM
Journal of Computing, 45(2):497–529, 2016.

[60] R. Ryan Williams. Limits on representing Boolean functions by linear
combinations of simple functions: Thresholds, ReLUs, and low-degree
polynomials. In Proc. 33rd Computational Complexity Conference
(CCC), volume 102 of LIPIcs, pages 6:1–6:24, 2018.

[61] R. Ryan Williams. New algorithms and lower bounds for circuits with
linear threshold gates. Theory Comput., 14(1):1–25, 2018.

[62] Stanislav Zák. A Turing machine time hierarchy. Theor. Comput. Sci.,
26:327–333, 1983.

	Introduction
	Explicit Constructions
	The Algorithmic Method

	Our Results
	An Algorithmic Method for Range Avoidance
	Equivalences between E NP Circuit Lower Bounds and Non-trivial Derandomisation with Preprocessing
	The Role of the Stretch Function
	Is Avoid in FNP or FP?
	A Rectangular PCP of Proximity

	Technical Overview
	References

