The Complexity of Explicit

Construction Problems

UNIVERSITY OF

OXFORD

Hanlin Ren
Christ Church College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2025

Abstract

Explicit constructions of pseudorandom objects play a central role in theoretical computer
science. Unfortunately, for many properties of interest, while a randomly chosen object would
satisfy them with high probability, deterministically constructing such objects remains notori-
ously challenging. For example, Erdds famously showed that a random graph is almost always a
Ramsey graph, yet explicitly constructing Ramsey graphs has been a long-standing open prob-
lem.

Recently, several explicit construction problems have seen progress through complezity-
theoretic ideas. Unlike previous ad-hoc methods tailored to individual cases, these complexity-
theoretic approaches offer systematic solutions applicable to broad families of explicit con-
struction problems. Central to this line of research is the Range Avoidance problem (AvoOID),
which encapsulates a wide array of explicit construction problems: Deterministically solving
AvoID would simultaneously resolve many open questions in explicit construction. What are
the strengths and limitations of these complexity-theoretic techniques, and how can understand-
ing the complexity of AvOID illuminate these questions?

This thesis examines the complexity of explicit construction problems, with a particular focus
on the Range Avoidance problem. We uncover a strong connection between explicit construction
problems and fundamental questions in complexity theory, making progress in both domains.
Specifically, our contributions include:

e Algorithmic Method for Range Avoidance: We generalise Williams’s Algorithmic
Method (2011)—originally developed for proving circuit lower bounds—to solve the Range
Avoidance problem. Our results demonstrate that this method applies not only to circuit
lower bounds but also to explicit construction problems in general. Consequently, we derive
new complexity lower bounds and develop novel algorithms for special cases of AvOID.
Building on these techniques, we further show that a slight extension of the Algorithmic
Method fully characterises, i.e., is both necessary and sufficient for, proving circuit lower
bounds for ENP.

e Unconditional constructions: We present new unconditional results in explicit con-
structions. In particular, we devise an infinitely-often pseudodeterministic polynomial-
time algorithm for finding prime numbers. We also introduce a new algorithm for solving
the Range Avoidance problem. The latter result yields near-optimal circuit lower bounds
for the complexity classes Y.9E and SoE /4, resolving a 40-year-old open question from Kan-
nan (1982). These results are obtained through a novel “iterative win-win” method, which
is likely to have broader applications in complexity theory.

e Additional results: In addition, we study the related Heavy Range Avoidance prob-
lem, uncovering its connections to uniform lower bounds and derandomisation. We also
present new hardness results for the Range Avoidance problem under Rudich’s demi-bits
conjectures, which have implications in proof complexity as well.

Acknowledgements

First and foremost, I would like to thank my advisor Rahul Santhanam for basically ev-
erything: his guidance, his deep insights in the field, his support and encouragement, our long
walks at Magdalen’s Deer Park where we exchanged a lot of ideas and observations, the countless
many meetings where Rahul develops and adjusts my intuitions and guides me to more fruitful
directions, the many pieces of advice Rahul gives to me about how to become a better researcher,
and the moments when I feel down and hopeless and then Rahul cheer me up. With Rahul I am
never “stuck” at research: whenever I feel a lack of progress, just go to Rahul’s office and talk
about my failures, then Rahul will turn these failures into new ideas and directions to explore!
When I look back it is still hard to believe how much I have grown since I met Rahul, both as
a complexity theorist and as a human being.

I am also grateful to Lijie Chen—another person without whose support I would hardly
have achieved anything in complexity theory. The papers we wrote together, [CR22]' and
[CLO"23, CHR24], are not only my proudest works but also turning points in my life. The
project that resulted in [CR22| was a light in my darkest times and became my main raison
d’étre during that time. We would meet again three years later at Simons where we tried
really hard to design pseudodeterministic algorithms for Range Avoidance—while calling those
algorithms “circuit lower bounds.” In addition, I really admire Lijie for being a great mentor,
as can be seen from the number and later achievements of the students he has worked with. I
previously thought that the great names in the older generation are inspirations for the younger
generation; but Lijie inspires people barely younger than himself.

I also want to thank Igor C. Oliveira for our collaborations and time spent together. Igor’s
hospitality makes my every visit to Warwick a delightful and enjoyable journey. It is hard to
overstate how much I benefit from the intense exchange of ideas in Igor’s office, where the desk
fan spins quietly and whiteboard wipes accumulate in the bin. In fact, Igor’s office is one of the
places where I get struck by new ideas and make progress the most number of times.

I am grateful to my undergraduate mentor at Tsinghua University, Ran Duan, for bringing
me into the beautiful world of theoretical computer science and graph algorithms. From a
complete newbie in TCS research to a doctoral-student-to-be deciding between algorithms and
complexity, my undergraduate life became colourful because of Ran’s guidance and patience,
along with the haunting open problems and beautiful insights he shared with me.

I also want to thank Shuichi Hirahara for all the discussions and our friendship during the
years and for hosting me as a research intern at National Institute of Informatics. Besides
Shuichi, I also want to thank Mikito Nanashima and Nobutaka Shimizu for all the ideas shared

!The conference version of [CR22| was published in STOC’20.

ii

and all the time spent with me. You were my best friends in Tokyo. I am still looking forward
to our next lunch at “the Japanese restaurant” (Shuichi, you know which one I mean :-)).

I also want to thank Rahul Ilango and Zhenjian Lu for our long-term collaboration spanning
multiple projects. Rahul is a unique type of person with a unique approach to difficult problems
and a unique sense of humour. I am also grateful to Rahul for taking photos of mine, both good
and bad.” Zhenjian is both a cool person and a warm person, and has taught me many things
related or unrelated to research. I feel so lucky to have the chance of working with people like
them.

I had the precious opportunity of working with the (undergraduate) visitors at Oxford and
Warwick: Yeyuan Chen, Yizhi Huang, Jiatu Li, Jingyi Lyu, and Zhikun Wang. I want to thank
especially Zhikun for frequently inviting me to the St. Annes library and for tolerating my long-
winded complaint about how terrible human beings are (especially at proving lower bounds).
I also want to thank Jiatu for tirelessly attempting to teach me bounded arithmetic. It is a
privilege to work and live with brilliant young minds like them.

I also want to thank all my collaborators besides those mentioned above: Michal Garlik,
Svyatoslav Gryaznov, Yong Gu, Jiawei Li, Yuhao Li, Iddo Tzameret, Yichuan Wang, and Yan
Zhong. Many of my projects would be impossible without your ideas and efforts. A special
thanks to the Computational Complexity Conference (CCC) where many of my collaborations
begin inadvertently—my project with Jiawei and Yuhao |[LLR24] began at CCC’23 and my
project with Yichuan and Yan [RWZ26| began at CCC’24.

I also want to thank everyone who had supported or helped me at various time in my
DPhil journey—a partial list includes Robert Andrews, Levente Bodnar, Bruno Cavalar, Yijia
Chen, Yilei Chen, Kuan Cheng, Mahdi Cheraghchi, Matthew Gray, Siyao Guo, Stefan Grosser,
Alexandros Hollender, Valentine Kabanets, Antonina Kolokolova, Nutan Limaye, lan Mertz, Jan
Pich, Ninad Rajgopal, Srikanth Srinivasan, Roei Tell, Ryan Williams, and I’'m sure that this list
is far from being complete. In addition, I'm grateful to Stanislav Zivny and Valentine Kabanets
for reading my thesis and providing valuable comments and feedbacks.

I am also grateful to many friends in Oxford for their companionship during different phases
of my DPhil life and for our shared memories. I want to thank Zepeng Cao, Yishun Lu, Xiao Su,
Zhengyi Xiao, Yishan Xu, and Yuwen Yan for being my closest friends in my first year. I want
to thank Paul Chang, Shanshan Hua, and Yilong Yang for organising regular badminton games.
I want to thank Luzhi Chen for sharing and talking about VOCALOID music with me when I'm
stressful, and for making Curry Udon together. I'm also grateful for a musician (who wishes to
stay anonymous) and their four songs, which accompanied me through the most difficult times.

Finally, I want to thank my Dad and Mom for their unconditional support, even though they

might not understand what I've been doing.

2The good one is available at https://tinyurl.com/h4niinphoto.

iii

https://www.nicovideo.jp/watch/sm40354298
https://tinyurl.com/h4n1inphoto

Contents

Abstract
Acknowledgements
List of Figures
List of Tables

1 Introduction

1.1 Explicit Construction Problems
1.2 Complexity-Theoretic Constructions
1.3 The Range Avoidance Problem
1.4 Our Contributions: A Bird’s-Eye View
1.5 List of Papers

2 Preliminaries

2.1 Circuit Classes o o i e e e
2.2 The Computational Models
2.3 Machines That Take Advice
2.4 Error-Correcting Codes L
2.5 Probabilistically Checkable Proofs of Proximity

3 Range Avoidance via Satisfying-Pairs

3.1 Imntroductiono
3.2 Technical Overview e
3.3 Preliminaries e
3.4 Range Avoidance
3.5 Remote Point
3.6 Hard Partial Truth Tables,
3.7 Average-Case Hard Partial Truth Tables
3.8 Unconditional Algorithms for Range Avoidance

4 The “Complete” Algorithmic Method

4.1 OVErVIEW . . . o e
4.2 Preliminaries
4.3 Derandomisation with Preprocessing Implies Circuit Lower Bounds

v

ii

vi

vii

10
11
11
11

19
19
26
32
41
48
67
70
79

4.4 Strong Average-Case Circuit Lower Bounds 96
4.5 Applications L 102

4.6 Equivalences between Circuit Lower Bounds and Derandomisation with Prepro-

CESSINE . v v v v v v e e e e e e e e 106

5 Constructions of Rectangular PCPs of Proximity 112
5.1 Construction of Smooth and Rectangular PCPP 112
5.2 Rectangular PCPPs with Low Query Complexity 143

6 Polynomial-Time Pseudodeterministic Constructions 151
6.1 Introduction e 151
6.2 Preliminaries e 165
6.3 Pseudodeterministic Constructions for Dense Properties 168
6.4 Modified Shaltiel-Umans Generator with Uniform Learning Reconstruction . . . 175
6.5 Improved Chen—Tell Targeted Hitting Set Generator 186

7 Near-Maximum Circuit Lower Bounds and New Algorithms for Range Avoid-

ance 198
7.1 Introduction L 198
7.2 Preliminaries e e e 212
7.3 The Jerdabek—Korten Reduction 214
7.4 Circuit Lower Bounds for XoE 218
7.5 Circuit Lower Bounds for SoE 220
8 The Complexity of Avoiding Heavy Elements 233
8.1 Introduction e e e 233
8.2 Preliminaries e 242
8.3 Heavy Avoid and Uniform Lower Bounds 247
8.4 Heavy Avoid and Derandomisation 259
8.5 Properties of the PSPACE-Complete Language 271
9 Hardness of Range Avoidance from Demi-Bits 276
9.1 Introduction e 276
9.2 Preliminaries 283
9.3 Hardness of Range Avoidanceo 289
9.4 Lower Bounds for Student-Teacher Games 294
9.5 Candidate Demi-Bits Generators 298
9.6 Hardness of Range Avoidance from Predictable Arguments 300
10 Conclusions and Future Directions 303
Bibliography 306

List of Figures

3.1

3.2
3.3

3.4

4.1

5.1

5.2

5.3

5.4
9.5

7.1

7.2

Examples of the circuit Cseed sharedseed.col- In the left example, there are two
queries and no parity-check bits, the first query has type proof, and the second
query has type input. In the right example, there are one query with type proof
and one parity-check bit.o 45
Example of a Prodgj o Sumo @ circuit. 49
Construction of the circuit CP9. Note that for convenience, we only drew the

“relevant” parts of this circuit, e.g., C(z;) when itype[i] = proof and the copying

circuit for z; when itypeli] =input. L o 60
Detailed definition of CP™d. 61
The circuit C’. Tt is easy to see that C’ € NCYo%. 95

The bit-string bingm (a1, asg,. .., ay). In this figure, the leftmost bits are the least
significant ones. L L 118
The partition of the random seed.o oL 119
The binary representation of the address binpm (@) - £ + j'. In this figure, the

leftmost bits are the least significant ones. The lowest wproof bits are outputted

by Vo, while the rest bits are outputted by Vigw. 120
The bit-string bingm (@). Again, the leftmost bits are the least significant ones. . 120
The layout of the proof matrix I1°°™P of the composed PCPP. 128

An illustration of the GGM Tree, in which, for instance, it holds that (vs4,v35) =
C(V2,2). « v o o e 207
An illustration of the history of Jefabek—Korten(C, f). Here we have History(C, f) =
(2,1)oLllllovggowvgzovggo...owvsr and Jefabek—Korten(C, f) = v3 2 0 v3 3. 208

vi

List of Tables

2.1
2.2

5.1
5.2

5.3
5.4

5.5
5.6
5.7

8.1

Parameters of the PCPPs constructed in Theorem 2.5.10. 18
Parameters of the PCPP constructed in Theorem 2.5.11. 18
Parameters of the PCPP constructed in Theorem 5.1.3. 115

The parameters of the PCPPs in the composition theorem. Here 7ot := rout 4
rout 4 pout Note that the input length of the inner PCPP is d°"t = d°"*(n),

col) shared" :

e.g., '" in the table actually refers to " (d°"*(n)). 127
The parameters of the “smoothened” PCPP V"W, 132
The parameters of the soundness error reduction (where £ := (1/¢2)log(1/u) and

O(-) hides absolute constants).o 137
Parameters of the PCPP constructed in Theorem 2.5.11. 140
Parameters of the PCPP constructed in Theorem 5.2.4. 146
Parameters of the PCPP constructed in Theorem 5.2.6. 148
Constants used in this proof. o 0o 264

vii

Chapter 1

Introduction

“How difficult could it be to find hay in a haystack?”

Howard Karloff [AB09, Chapter 21|

1.1 Explicit Construction Problems

The Prime Number Theorem implies that a significant fraction of integers are prime: If
one samples an n-bit integer uniformly at random (i.e., from the interval [2"71 2")), then the
probability that it is prime is at least 2(1/n). Therefore, to find a large prime number, it suffices
to generate a few random integers and test each of them for primality. Perhaps surprisingly, it
is unknown if the same task can be accomplished efficiently without using randomness: current
deterministic methods for generating n-bit primes either rely on strong number-theoretic or
complexity-theoretic assumptions (such as Cramér’s conjecture [Cra36| or P = BPP [IW97]), or
require exponential (2°(") time [LO87, TCH12, BHP01].!

It turns out that the above example of finding prime numbers is just one of numerous
difficult “explicit construction” problems, where a random object is very likely to satisfy a certain
desired property, but it appears very difficult to find any object satisfying the same property

deterministically:

e In 1959, Erdgs |[Erd59| famously introduced the probabilistic method to show that a ran-
dom graph is likely to be a Ramsey graph. Since then, it has been a notorious open
problem to find an explicit construction of Ramsey graphs: the best known explicit con-

structions achieve parameters that are significantly weaker than those obtained by random
graphs [FW81, Alo98, Gro00, Bar06.

Ramsey graphs are closely related to two-source dispersers and two-source extractors in
the study of pseudorandomness. Although there has been substantial progress in explic-
itly constructing such objects [CG88, Raz05, Bou05, BKST10, BRSW12, Li12, CZ19, Lil6,
BDT16, CL16, Cohl6a, Coh16b, Cohl17, Mek17, Lil7, Lil9, Lew19, Li23], the challenge of

In fact, the problem of fast deterministic generation of primes was exactly the focus of the Polymath 4
project. This project establishes an improved algorithm for counting the parity of the number of primes in an
interval [TCH12|, but despite much effort, it did not improve the 2"/2%°() time bound established in [LO87]
for deterministically generating an n-bit prime. See https://michaelnielsen.org/polymath/index.php?title=
Finding_primes (Accessed: Aug 28, 2025) for more details.

https://michaelnielsen.org/polymath/index.php?title=Finding_primes
https://michaelnielsen.org/polymath/index.php?title=Finding_primes

constructing an explicit two-source extractor with parameters matching those of random

functions remains wide open.

e Valiant [Val77| showed, again via the probabilistic method, that a random matrix is very
likely to be a rigid matriz. Explicit constructions of rigid matrices would have major
consequences in complexity theory, with applications to circuit complexity [Val77, Pud94,
AW17|, communication complexity [Raz89, Wunl12, Lok01, Pud94|, and beyond [Lok09].
Yet, despite decades of work, the best known explicit constructions fall far short of the
rigidity parameters achieved by random matrices, and thus have not been strong enough
to yield the desired implications [Fri93,SSS97, GT18, VK21, Ram20).

e Random linear codes achieve a rate-distance trade-off known as the Gilbert—Varshamov
bound |[Gil52, Var64] with high probability. Yet, despite extensive work, constructing
such codes explicitly has remained a longstanding open problem in coding theory [Jus72,
AGHP92, ABN192,NN93,BT11,BT13, Ta-17].

e Perhaps the most dramatic example is that of circuit lower bounds. More than 75 years
ago, Shannon [Sha49| showed that most Boolean functions on n inputs require circuits
of size (2" /n). Yet the strongest known lower bounds for any explicit function remain
extremely weak: only 3n over the complete basis [KM65,Sch74,Sto77, Pau77, Blu84, DK11]
and 5n over the De Morgan basis [Sch76,Zwi91, LRO1,IM02|. Two recent breakthrough
works used intricate case analysis to push the bound slightly further, achieving 3.1n —o(n)
over the complete basis [FGHK16,LY22|. Even more embarrassingly, we are still unable to

ENP_the class of problems solvable in 20 time with an NP

rule out the possibility that
oracle—admits linear-size circuits. Arora and Barak’s textbook [AB09| described circuit

lower bounds as “complexity theory’s Waterloo.”

1.2 Complexity-Theoretic Constructions

Most previous explicit construction algorithms rely on ad-hoc insights tailored to the partic-
ular construction problems at hand. For example, the seminal zig-zag construction of expander
graphs [RVWO02] involves studying the spectral properties of the “zig-zag product” of two graphs
in terms of the spectral properties of the original graphs. As a result, we are often stuck at many
seemingly simple explicit construction problems (such as constructing rigid matrices) since they
do not seem amenable to “ad-hoc analysis.”

In contrast, there are a few notable (counter-)examples where construction algorithms are

driven by general ideas from complexity theory rather than problem-specific tricks:

e Pseudodeterministic constructions for primes. Oliveira and Santhanam [OS17b]
showed unconditionally that there is a subexponential-time pseudodeterministic algorithm
that constructs primes infinitely often. A pseudodeterministic algorithm [GG11] is a ran-
domised algorithm that, with high probability, outputs a fixed canonical answer, indepen-
dent of the internal randomness. It is easy to see that the naive randomised algorithm for
constructing primes using rejection sampling is not pseudodeterministic: Under different

choices of internal randomness, the algorithm is likely to output different primes.

Notably, the algorithm of Oliveira and Santhanam uses very few properties of primality:
only that there are a lot of primes (the Prime Number Theorem) and that primality can
be decided in deterministic polynomial time [AKS04|. Instead, the algorithm relies on
complexity-theoretic ideas such as derandomisation [IW01, TV07] and win-win analysis.
As a consequence, the algorithm solves the explicit construction problem (pseudodeter-

ministically) not only for primes, but for any dense property in P.

¢ Rigid matrices with an NP oracle. Alman and Chen [AC19| showed how to construct
rigid matrices with parameters much better than previously known, with the aid of an NP

PNP algorithm that, given 1" (the length-n unary string)

oracle. That is, they designed an F
as input, outputs an n X n matrix that is rigid (in some parameter regime). Previously, it

was unclear how to construct such matrices even with an NP oracle.

Perhaps what is more interesting is their technical insight: They treated low-rank ma-
trices as a (non-standard) circuit class ¢ and observed that constructing a rigid matrix
is equivalent to proving an (average-case) circuit lower bound against . Then, they in-
voked Williams’s seminal “Algorithmic Method” [Will3a, Will4] for proving circuit lower
bounds. The Algorithmic Method needs a “circuit-analysis” algorithm for %, which follows
from previous work [CW21].2 The only property of matrix rigidity used by [AC19] is the

existence of such a “circuit-analysis” algorithm for 4.

Compared to “ad-hoc” algorithms, algorithms based on complexity-theoretic ideas are able to
solve an entire class of explicit construction problems (e.g., all dense properties in P) and make
progress on many difficult problems that otherwise resist attack. However, one drawback is that
these algorithms only achieve weaker notions of explicitness: compared to standard, determin-
istic polynomial-time constructions, [OS17b] only achieves pseudodeterministic constructions,
and [AC19| requires an NP oracle. When can we leverage complexity theory to solve explicit
construction problems? Which notions of “explicitness” can we hope to achieve through such

methods? Is there a deeper “complexity theory” underlying these explicit construction problems?

1.3 The Range Avoidance Problem

It turns out that the following total search problem, known as the Range Avoidance problem

(AvoID), plays a central role in the study of explicit construction problems:

Problem 1.3.1 (Range Avoidance Problem). Given the description of a circuit C' : {0,1}" —
{0,1}*, where ¢ > n, output any string y € {0, 1} that is not in the range of C. That is, for every

z €{0,1}", C(x) # y.

The dual weak pigeonhole principle [KraOlb, Jer04] states that if N pigeons are placed into
M holes where M > 2N, then there is an empty hole. This principle implies that AvOID is a
total problem, i.e., it always has a valid solution. As a natural example of total search problems
in functional ¥3P (TFX2P), this problem was also studied in [KKMP21| under the name 1-
EMPTY.? Indeed, it is easy to see that AvOID belongs to (the function version of) X3P, but it

2The conference version of [CW21] appeared in SODA’2016.
3“EMPTY” stands for “empty pigeonhole principle”; the constant 1 means that the input circuit has stretch at
least one bit, i.e., £ > n + 1.

is unknown whether it is in FNP. We may try to solve AVOID by guessing a string y € {0,1}*
as an answer, but it seems unclear how to verify that y is not in the range of C' without using a
universal quantifier.

It was pointed out by Korten [Kor21| that the Range Avoidance problem nicely captures the
complexity of explicit constructions. Most explicit construction problems can be rephrased as
a unary total search problem: Given 1™ as input, find a valid object of size n. It was shown in
[Kor21, Section 3| that many explicit construction problems reduce to AvoID, including Ramsey
graphs, rigid matrices, circuit lower bounds, and many more.? In fact, for combinatorial objects
whose existence is proven via the probabilistic method, it tends to be the case that constructing

such objects reduces to the Range Avoidance problem.

Example 1.3.2. Consider, for example, the problem of proving circuit lower bounds. Fix a size
threshold such as s(n) := 2"/2, we want to solve the following (unary) total search problem: Given
1V as input where N := 2", find the length-N truth table of any function f : {0,1}" — {0,1} that
cannot be computed by circuits of size s(n).

Let TT : {0,1}9(185) 5 {0 1}2" denote the function that takes as input the description of
a size-s circuit, and outputs the truth table of this circuit. (Here TT stands for “truth table”.) If
we could solve AVOID on the particular instance TT, then we could find a truth table t¢ € {0,1}%"
without size-s circuits, therefore proving a circuit lower bound. More precisely, solving AvoID for
TT in polynomial time is equivalent to proving a circuit lower bound for E, and solving AvoID for

TT in FPVP is equivalent to proving a circuit lower bound for ENP.

Perhaps surprisingly, the main result of [Kor21] is that proving circuit lower bounds is the
hardest explicit construction: There is a PNP-reduction from AvoID to the total search problem
defined in Example 1.3.2 for any s(n) = 2", (As pointed out in [Kor21], the same result was
proven in the language of bounded arithmetic by Jefabek [Jef04].) In this regard, the study
of explicit construction sheds light on the (metamathematical) difficulty of circuit complexity:
Proving circuit lower bounds is hard because it is as hard as solving a wide class of explicit
construction problems, many of which (e.g., Ramsey graphs, rigid matrices, and so on) seem

unrelated at first glance.

1.4 Owur Contributions: A Bird’s-Eye View

In this thesis, we investigate the complexity of explicit construction problems, with a partic-
ular emphasis on the Range Avoidance problem. Our study reveals an intimate and bidirectional
connection between explicit construction and complexity theory: Insights in complexity theory
often lead to advances in explicit constructions, and, in turn, these advances yield consequences

back to complexity theory as well!

An Algorithmic Method for explicit construction. First, motivated by the success of
the Algorithmic Method in constructing rigid matrices [AC19, BHPT24, CLW20, CL21, HV21],

we study the effectiveness of the Algorithmic Method for general explicit construction problems.

4Primality appears to be an exception. It remains unknown whether there is a polynomial-time reduction
from finding prime numbers to Avoip [PWW88, Kor22].

In Chapter 3, we develop a version of the Algorithmic Method for solving the Range Avoid-
ance problem. While the traditional Algorithmic Method derives circuit lower bounds from
“non-trivial” circuit-analysis algorithms, our Algorithmic Method solves the Range Avoidance
problem with an NP oracle given a (different kind of) “non-trivial” circuit-analysis algorithm.
Using circuit-analysis algorithms that are implicit in the literature [Will8c|, we obtain uncon-
ditional FPNP algorithms for a special case of Range Avoidance for ACCY circuits. This both
recovers the best known ACC circuit lower bounds [CLW20] and implies new lower bounds.

Our results suggest a reinterpretation of the intuition behind [AC19]|, which treats low-rank
matrices as a “circuit class” and applies the Algorithmic Method to prove circuit lower bounds.
We propose that the Algorithmic Method is fundamentally a technique for explicit construction
problems—proving circuit lower bounds is just one of its applications.

We take a step back and consider the Algorithmic Method for proving circuit lower bounds
in Chapter 4. We first prove a slight extension of the Algorithmic Method: circuit-analysis

uENP

algorithms, even with preprocessing”, imply circuit lower bounds. Next, we show that this

is in fact the complete Algorithmic Method that characterises circuit lower bounds for ENP: for

ENP

circuit classes & satisfying mild technical conditions, is hard against % if and only if such

circuit-analysis algorithms with ENP

-preprocessing exist. Curiously, while this result itself is
entirely within the realm of circuit complexity, the most natural way of deriving it seems to be
via explicit constructions and the Range Avoidance problem. We view this characterisation of

circuit lower bounds for ENP as a “gift” from explicit constructions to circuit complexity.

The iterative win-win method. Next, we present new unconditional results in explicit

construction and circuit lower bounds:

e In Chapter 6, we present a polynomial-time, infinitely-often, pseudodeterministic construc-

tion of primes, improving upon the prior subexponential-time algorithm of [OS17b].

e In Chapter 7, we show that the complexity classes ¥9E and SoE/; cannot be computed by
circuits of size 2" /n. Previously, only super-polynomial size lower bounds for these classes
were known [Kan82, MVW99, CCHOO05, Cai07].

Both results rely on a novel iterative win-win method. Previous results only achieved sub-
optimal bounds: [OS17b| obtained subexponential-time constructions (ideally we would like
polynomial-time constructions) and [Kan82| proved super-polynomial circuit lower bounds (ide-
ally we would like exponential lower bounds). A common reason for the inefficiency of these
results is that their proofs use a win-win analysis that involves two cases; the structure of the
win-win analysis prevents us from obtaining optimal bounds in both cases. In fact, this proof
strategy yields so-called “half-exponential” bounds [MVW99].

Instead, in Chapter 6 and Chapter 7, we use a more refined win-win analysis involving not
two, but O(logn) many cases. A careful analysis of this iterative win-win approach gives optimal
bounds on each of the O(logn) cases.

We also remark that by the main result of [Kor21|, the new circuit lower bound in Chap-
ter 7 implies pseudodeterministic constructions with an NP oracle for a wide range of objects,

including Ramsey graphs, rigid matrices, optimal linear codes, and more. These results further

illustrate the strong synergy between circuit complexity and explicit constructions: advances in

one area would catalyse progress in the other.

Avoiding heavy elements. In Chapter 8, we study a variant of the Range Avoidance problem
which we call the Heavy Avoidance problem (Heavy-Avoid). In this problem, given a distribution
D over {0,1}" (described by a circuit sampling from D) and a parameter § > 1/poly(n) > 27",
the goal is to output any string x € {0,1}" that is sampled from D with probability at most
0. Clearly, this problem is total and can be solved in SearchBPP. Does it admit deterministic
algorithms? Or is it complete for prBPP?

We investigate both questions above and show that both are connected to long-standing
open problems in complexity theory. Just like AvOID is intimately connected to circuit lower
bounds, we show that Heavy-Avoid is also intimately connected to lower bounds against uniform
probabilistic circuits; in fact, deterministic algorithms for certain versions of Heavy-Avoid are
equivalent to such lower bounds. Then, we study the connection between Heavy-Avoid and
derandomisation. Leveraging recent advances in derandomisation [CT21a,LP23|, we show that
Heavy-Avoid is prRP-hard under very weak, non-black-box reductions. We also study whether
Heavy-Avoid is prBPP-complete under more standard types of reductions, but in general this

remains an intriguing open question.

Hardness of Range Avoidance. Finally, in Chapter 9, we study the hardness of AvoID with
respect to deterministic (and nondeterministic) algorithms. Ilango, Li, and Williams [ILW23]
showed that, assuming the existence of subexponentially-secure indistinguishability obfuscations
(i0) [BGIT12, GGH'16,JLS21] and that NP # coNP, there is no deterministic algorithm that
solves AvOID in polynomial time. This result may seem surprising, since there is a trivial
randomised algorithm for AvOID: simply output a random string and it is not in the range
of the input circuit with good probability. Building on this, Chen and Li [CL24| showed that
under certain subexponential assumptions in nondeterministic cryptography with a public-key
flavour (i.e., “Cryptomania” [Imp95]), there is no nondeterministic algorithm that solves AvOiD
in polynomial time.

The main result in Chapter 9 strengthens these findings: we show that the existence of
demi-bits generators [Rud97| implies the non-existence of nondeterministic polynomial-time al-
gorithms solving the Range Avoidance problem. This improves upon the previous results [[LW23,
CL24| in two aspects: First, the assumption we use is of “Minicrypt” flavour and is arguably
weaker than those in [CL24]. Second, our results do not require any subexponential hardness
assumption.

As observed in [RSW22|, the hardness of AvOID against nondeterministic algorithms is con-
nected to the theory of proof complexity generators [Kra25], hence our results have implications
in proof complexity as well. In Chapter 9, we further explore the consequences of our results in
proof complexity. A highlight is that we show how to build proof complexity generators from
demi-bits generators—even though, a priori, the definition of the former seemed much stronger
than that of the latter.

1.5

List of Papers

The results in Chapter 3, Chapter 4, and Chapter 5 are from the following two papers:

Hanlin Ren, Rahul Santhanam, and Zhikun Wang
On the Range Avoidance Problem for Circuits [RSW22]
Proceedings of 63rd IEEE Symposium on Foundations of Computer Science (FOCS 2022).

Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren

Range Avoidance, Remote Point, and Hard Partial Truth Tables via Satisfying-
Pairs Algorithms [CHLR23]

Proceedings of 55th Annual ACM Symposium on Theory of Computing (STOC 2023).

The results in Chapter 6 are from the paper:

Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam
Polynomial-Time Pseudodeterministic Construction of Primes [CLOT23|

Proceedings of 64th IEEE Symposium on Foundations of Computer Science (FOCS 2023).

The results in Chapter 7 are from the paper:

Lijie Chen, Shuichi Hirahara, and Hanlin Ren
Symmetric Exponential Time Requires Near-Maximum Circuit Size [CHR24|

Proceedings of 56th Annual ACM Symposium on Theory of Computing (STOC 2024).

Building on [CHR24|, Zeyong Li [Li24] presents a simplified and improved circuit lower bound

for SoE. Li’s proof gets rid of the win-win arguments completely, and implies a truly-uniform and

almost-everywhere version of the lower bound: The hard language lies in SoE (instead of SoE/1,

i.e., without the advice bit) and requires near-maximum circuit size for every input length

(instead, our hard language in [CHR24| is only hard on infinitely many input lengths). The
combined version of [CHR24| and |Li24] is published in Journal of the ACM, 2025 [CHLR25].

The results in Chapter 8 are from the paper:

Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam
On the Complexity of Avoiding Heavy Elements [LORS24]
Proceedings of 65th IEEE Symposium on Foundations of Computer Science (FOCS 2024).

The results in Chapter 9 are from the paper:

Hanlin Ren, Yichuan Wang, and Yan Zhong

Hardness of Range Avoidance and Proof Complexity Generators from Demi-
Bits [RWZ26]

To appear in proceedings of 17th Innovations in Theoretical Computer Science Conference
(ITCS 2026).

Independently and concurrently, Ilango [Ila25] proved the same main result (that demi-bits
generators imply hardness of AvoID) using different proof techniques.

The following papers are also coauthored during the author’s doctoral studies, but are not
directly related to the topic of this thesis (i.e., explicit constructions), hence are not included in
this thesis:

e Yizhi Huang, Rahul Ilango, and Hanlin Ren

NP-Hardness of Approximating Meta-Complexity: A Cryptographic Approach
[HIR23]

Proceedings of 55th Annual ACM Symposium on Theory of Computing (STOC 2023).
SIAM Journal of Computing, 2025.

e Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren
Bounded Relativization [HLR23]
Proceedings of 38th Computational Complezity Conference (CCC 2023).

e Noah Fleming, Stefan Grosser, Siddhartha Jain, Jiawei Li, Hanlin Ren, Morgan Shirley,
and Weiqiang Yuan
Total Search Problems in ZPP [FGJ'26]
To appear in proceedings of 17th Innovations in Theoretical Computer Science Conference
(ITCS 2026)

e Lijie Chen, Yang Hu, and Hanlin Ren

New Algebrization Barriers to Circuit Lower Bounds via Communication Com-
plexity of Missing-String [CHR26]

To appear in proceedings of 17th Innovations in Theoretical Computer Science Conference
(ITCS 2026)
e Jiawei Li, Yuhao Li, and Hanlin Ren

Finding Bugs in Short Proofs: The Metamathematics of Resolution Lower
Bounds [LLR24]

Unpublished Manuscript.

e Michal Garlik, Svyatoslav Gryaznov, Hanlin Ren, and Iddo Tzameret
The Weak Rank Principle: Lower Bounds and Applications [GGRT25|

Unpublished Manuscript.

Chapter 2
Preliminaries

We use Uy, to denote the uniform distribution over {0, 1}". For a circuit C : {0,1}" — {0, 1},
denote the range of C' as
Range(C) :={C(x) : x € {0,1}"}.

We use O(f(n)) to denote f(n) - (log f(n))?M). The concatenation of the strings = and y is
denoted by x o y.

Let S be a finite sample space and E be an event. We use Pr,. g[E] to denote the probability
that F happens if z is sampled uniformly from S. Similarly, for a random variable Y, we use
E.«s[Y] to denote the expectation of Y when x is sampled uniformly from S.

The relative Hamming weight of a string = € {0, 1}¢, denoted as 6(x), is the fraction of indices
i € [£] such that x; = 1. For two strings =,y € {0,1}* of equal length, the relative Hamming
distance between = and y, denoted as §(z,y), is the fraction of indices i € [¢] for which x; # y;.
A string x is said to be 7-far from (resp. y-close to) a string y if 6(x,y) > 7 (resp. §(z,y) < 7).
We say x € {0,1}" is y-far from L C {0, 1}" if is y-far from every y € L; otherwise z is -close

to L. For a vector & € R"™ and an integer d > 1, the ¢4 norm of i is

1/d
lillg = (E nuim) .
i+—[n]

A function f : N — N is said to be good if there is a Turing machine such that given n in
binary, it runs in time poly(logn,log f(n)) and outputs f(n) in binary.

A circuit class % is said to be typical if it contains the identity circuit and is closed under
negations and projections. More precisely, (1) every function that always outputs its input bits
is computable by a constant size € circuit; (2) for any € circuit C of size s and projection proj,
both —=C and C o proj have & circuits of size poly(s), and the descriptions of these circuits can

be computed in poly(s) time.

2.1 Circuit Classes

Throughout this thesis, the size of a circuit is defined as the number of wires (instead of
gates) in the circuit. We will use the following (single-output) circuit classes.
. AC?l refers to depth-d circuits with AND and OR gates of unbounded fan-in, and NOT

gates of fan-in 1. We define AC? := ;. ACY.

e ACY[m)] refers to depth-d circuits with AND, OR, and MOD[m] gates of unbounded fan-in,
and NOT gates of fan-in 1. A MOD[m] gate outputs 1 if and only if m does not divide
the number of 1 in its inputs. We define AC°[m] := | deN ACY[m)]. Furthermore, we define
ACCY := ,,en ACY[m].

e CCY[m)] refers to depth-d circuits with only MOD[m] gates of unbounded fan-in. We define
CCm] := Uyen CCy[m] and CC° =,y CCO[m).

° NCS refers to constant-size circuits such that the output depends on at most d input bits.
We define NC° := J oy NCY.

e Assume that F € {AND,OR,XOR,MOD[m],...} is a gate, we define an F circuit as a
circuit with only an F gate fed by some (or all) of the input bits. In particular, we define
an F, circuit as a circuit with an F gate of fan-in at most d fed by some (or all) of the
input bits.

We define SYM as the class of any symmetric Boolean function, i.e., f : {0,1}" — {0,1}

such that f(z) = g(z1 +x2+ -+ + z,) for some function g.

Suppose that) and %> are circuit classes, we denote %1 o %5 as the composition of these
two classes: the input bits feed an n-input m-output %5 circuit C3, and the m output bits of
Cs feed an m-input single-output % circuit C. For instance, a SYM o ACCY circuit contains a
symmetric output gate whose inputs are ACC? circuits.

For a circuit class €, we use €[s] to represent the sub-class of € circuits of size at most s.

2.2 The Computational Models

We need to deal with two (nondeterministic) computational models: standard multi-tape
Turing machines (TMs) and Random Access Machines (RAMs). The difference between TMs
and RAMs is the following: for each work tape of an RAM, there is a corresponding address
tape such that the head of the work tape is always in the cell whose index is the content of the
address tape [GS89]. We need to be careful about the machine model we are using. For example,
our ACC-SATISFYING-PAIRS algorithm runs in the RAM model, but the highly-efficient PCPP
[BGH™05] works in the TM model.

Fortunately, we can use the following result to simulate one machine model by the other
efficiently. Let T'(n) be a good function, we use NTIMEtm[T'(n)] and NTIMEgam[T'(n)] to denote
the set of languages computable in nondeterministic 7'(n) time on a multi-tape Turing machine

and an RAM respectively. Then we have:
Theorem 2.2.1 ([GS89)]). >, NTIMErm[nlog®n] = J.5; NTIMEram[n log®n].

By a padding argument, for some absolute constant ¢ > 1, for every good function T'(n),

NTlMETM[T(n)} - NTlMERAM[T(n) 10gc T(n)},
and NTIMEgam[T'(n)] € NTIMEtm[T'(n) log® T (n)].

10

2.3 Machines That Take Advice

Let C be a complexity class and f : N — N. Denote C/; the class of functions computable
by a C machine with f(n) bits of advice [KL80|. More formally, a language L is in C/; if there
is another language L’ € C and a sequence of “advice” strings {ozn e {0, 1}10(")}71GN such that

VneNzxe{0,1}"r el <— (1",z,a,,) € L.

For example, P/,o1y denotes the class of languages computable in polynomial time given ad-
vice strings of polynomial length, which is equal to the class of languages with polynomial-size
circuits [Pip79, KL80].

In particular, this thesis will deal with the following complexity classes with advice:

e In Chapter 3, we use NTIMEGUESS|T'(n),n/10]/(,/10) to denote the class of languages
computed by a nondeterministic machine in 7'(n) time, using n/10 nondeterministic bits
and n/10 advice bits. (See Theorem 3.3.1.)

e In Chapter 7, we prove a circuit lower bound for the class SoE/1, the class of languages

computable in symmetric exponential time with one bit of advice.

e One of the assumptions used in Chapter 9 is the existence of demi-bits generators se-
cure against AM/p(q), the class of Arthur-Merlin adversaries with O(1) advice bits (see

Section 9.2.2 for a precise definition).

2.4 Error-Correcting Codes

An error-correcting code with message length n, rate r, and relative distance § is a function
Enc : {0,1}" — {0,1}"™ such that for every pair of distinct z1,2z9 € {0,1}", the Hamming
distance between Enc(x1) and Enc(zg) is at least 0 - rn. It is said to correct v fraction of errors
if there is a function Dec : {0,1}"™ — {0, 1} such that for every y that is y-close to Enc(z) for
some z € {0,1}", Dec(y) = x.

We need the following standard construction of error-correcting codes.

Theorem 2.4.1 (|Spi96|). There is a GF(2)-linear error-correcting code (Enc, Dec) with a con-
stant rate and constant relative distance that can correct a constant fraction of errors. Moreover,

both Enc and Dec are uniformly computable in linear time.

2.5 Probabilistically Checkable Proofs of Proximity

We introduce Probabilistically Checkable Proofs of Proximity (PCPPs) [BGH'06] and the
two properties of PCPPs that will be useful for us: rectangularity and smoothness.

In what follows, a pair language is simply a subset of {0,1}* x {0,1}*. For an instance (z, x)
of a pair language, we treat z as the ezplicit input (which the PCPP verifier can read entirely)
and z as the implicit input (which the PCPP verifier could only read a few bits). For example,
CIRCUIT-EVAL is a pair language with two inputs, i.e., a circuit C and an input z, and the task

11

is to evaluate C(x). A PCPP verifier for CIRCUIT-EVAL knows the input circuit C entirely but

can only access a few bits of x.

2.5.1 Basic Definitions

Definition 2.5.1 (PCP of Proximity Verifiers). Let r = r(n), ¢ = q(n), £ = £(n), d = d(n) be
good functions and L C {0,1}* x {0,1}* be a pair language. A PCPP verifier VPCPP for L
with proof length £, randomness complexity r, decision complexity d, and query complexity q is
a tuple of Turing machines (Viype, Vindex, Vdec) that verify a proof 7 € {0, 1}¢ of the statement
(z,2) € LN{0,1}* x {0,1}" in the following fashion.

e It randomly samples a seed € {0,1}" and generates

(itype[1], itype[2], ..., itype[q]) <= Viype(seed, 2),
(2[1],4]2], ..., i[q]) < Vindex(seed, 2).

For every j € [q], itype[j] € {input,proof} determines the type of the j-th query: If
itype[j] = input, the j-th query probes the i[j]-th bit of the “implicit input” z; otherwise
(i.e., itype[j] = proof), the j-th query probes the i[j]-th bit of the proof .

e Let ansy,...,ans, be the answers to the queries defined above, we say VPCPP accepts
(z,z,7), denoted by VPCPP*°!I(z seed) = 1, if and only if Vyec(seed, z,ansy, ..., ansy)=1.
The machine Vyec is said to be the decision predicate of VPCPP, and has circuit complexity
at most d(n).

We may represent the “implicit input” @ as Iinpyt : [n] — {0,1} and the proof 7 as Ilpoof :
[/] — {0,1} to emphasise that they are given as oracles to VPCPP. We sometimes denote the
outputs of Viype and Vingex as I and denote the answers (ansi,...,ansy) as (Ilinput © Mproof)|1-

We will also consider the PCPP verifier of pure languages (i.e. the first part z of any input

is always the empty string). In such case, we simply omit all the z in the definition above.

Definition 2.5.2 (PCP of Proximity). Let s = s(n) and § = d(n) be good functions, L C
{0,1}* x {0,1}* be a pair language, and VPCPP = (Viype, Vindex; Vdec) be a PCPP verifier for L.
We say VPCPP is a PCPP verifier for L with completeness error 1 — ¢, soundness error s, and

prozimity parameter 0 if the following two conditions hold for every (z,x) € {0,1}* x {0,1}".

¢ (Completeness). If (z,2) € L, then there is a proof = € {0, 1}¢ such that VPCPP accepts
(z,x,7) with probability at least c.

e (Soundness). Denote L(z) to be the set of y € {0,1}" such that (z,y) € L. If x is d-far
from L(z), then for every proof m € {0,1}¢, VPCPP accepts (z,x,n) with probability at

most s.

For most of the constructions of PCPPs, the completeness error can be made 0, which means
that for (z,z) € L, there is a proof such that the verifier accepts with probability 1. Therefore,
we assume that the completeness error of a PCPP is 0 when it is not specified.

We need to define a stronger version of soundness called robust soundness as follows, as an

intermediate step for constructing PCPPs with nice parameters.

12

Definition 2.5.3 (Robust PCP of Proximity [BGHT06]). Let s = s(n), § = 6(n), and p = p(n)
be good functions, L C {0, 1}* x{0, 1}* be a pair language, and VPCPP = (Viype, Vindex; Vdec) be a
PCPP verifier for L. We say VPCPP is a robust PCPP verifier for L with robust soundness error
s, robustness parameter p, and proximity parameter ¢ if it satisfies the completeness property of

PCPP and the following robust soundness property.

¢ (Robust Soundness). The following holds for every (z,z) € {0,1}* x {0,1}". Denote
L(z) to be the set of y € {0,1}" such that (z,y) € L. If z is -far from L(z), then for every
proof m € {0,1}*, with probability at least 1 — s over the random bits seed, the answer
(ansy,...,ansy) of the queries of VPCPP is p-far from being accepted (i.e. we need to flip

at least a p fraction of the bits of the answers (ansy, ..., ans;) to make the verifier accept).

2.5.2 Rectangular PCPs of Proximity

Roughly speaking, a rectangular PCPP verifier [BHPT24| treats the input as an Hippye X
Winput matrix and the proof as an Hproor X Wiroof matrix, and generates the query indices in a
“rectangular” fashion. In particular, the random seed is split into two parts denoted as seed.row

and seed.col respectively, and there are two algorithms Vo, and Vi such that:

e Viow takes seed.row as input and generates irow[1], ..., irow[q];
o Vo takes seed.col as input and generates icol[1], ..., icol[q];
e The final indices of the queries i[1], ..., i[q] are defined as i[j] := (irow[j] — 1) - W +icol[j],

where W = Winput or W = W00 depending on the the type of the j-th query.
In other words, the row verifier Vo (resp. the column verifier Vo) takes the row randomness
seed.row (resp. the column randomness seed.col) and generates the row indices (resp. the column

indices) of the queries. Ideally, a rectangular PCPP should satisfy the following properties:

e (Perfect Rectangularity). The row randomness seed.row and column randomness
seed.col are independent random bits (i.e. the row and column query indices are inde-

pendent).

¢ (Randomness-Oblivious Type Predicate). The type predicate Viype, which deter-
mines the types of the queries (i.e. whether a query is to the input or the proof oracle),

does not depend on the row and column random seeds.

¢ (Randomness-Oblivious Decision Predicate). The decision predicate Vgec, which
decides whether to accept the proof given the answers to the queries, does not depend on

the row and column random seeds.

However, as in [BHPT24], we do not know how to construct such rectangular PCPPs. Nev-
ertheless, we could construct a weaker version where the row and column randomness are almost
independent, and the dependencies of the decision and type predicates on the random seeds are
relatively simple. In particular, the random seed of an almost rectangular PCPP is partitioned
into three parts: seed.row, seed.col, and (a short portion) seed.shared and the following properties

are satisfied:

e (Almost Rectangularity). V., takes seed.row and seed.shared as inputs and gener-
ates the row query indices (irow[1],irow[2],...,irow[g]). Similarly, V. takes seed.col and

seed.shared as inputs and generates the column query indices (icol[1],icol[2], ... icol[q]).

13

¢ (Randomness-Oblivious Type Predicate). The type predicate Viype only depends on
seed.shared.

¢ (Randomness-Oblivious Decision Predicate). The decision predicate Vgec only de-
pends on seed.shared and p additional parity-check bits, where each parity-check bit pc; is

a PARITY function over (a subset of indices in) (seed.row, seed.col).

We formally define such rectangular PCPPs as follows (for simplicity, we only define rectan-

gular PCPPs for pure languages).

Definition 2.5.4 (Rectangular PCPPs with Randomness-Oblivious Predicates). Let L C {0,1}*
be a language, Hinput = Hinput (1), Winput = Winput(1), Hproof = Hproof (1), Woroof = Woroof (1),
Trow = Trow(N), Tcol = Teol(N), Tshared = Tshared(2), and p = p(n) be good functions such that
Hinput - Winput = O(n). A PCPP verifier VPCPP is said to be an almost rectangular PCPP
with row randomness 7y, column randomness 7., and shared randomness 7shared, that has a

randomness-oblivious predicate (ROP) with parity-check complexity p, if the following hold.

¢ (Randomness). The randomness complexity is 7 = Tyow + Tcol + T'shared and the random
seed can be partitioned into three independent parts: row randomness seed.row € {0, 1}~

column randomness seed.col € {0,1}"«', and shared randomness seed.shared € {0, 1}"shared

¢ (Query Pattern). There are algorithms Viype, Viow, and Vo running in deterministic

poly(|seed|) time that generates the queries in a rectangular fashion. More specifically:

o (itype[l],...,itypelq]) < Viype(seed.shared), where itype[j] € {input, proof} for all j €
[q];

o (irow[1],...,irow[q]) < Viow(seed.row, seed.shared);

o (icol[1],...,icolg]) < Voi(seed.col, seed.shared);

o For every j € [q], the index of the j-th query is i[j] := irow[j] - W + icol[j], where
W = Winput if itype[j] = input and W = Wiyoor otherwise.

Like normal PCPP verifiers, the j-th query is to the i[j]-th bit of the input if itype[j] =
input, and is to the i[j]-th bit of the proof if itype[j] = proof. Note that since Hinput - Winput
may be larger than n, the query to the input is not well-defined when i[j] > n. In such

case, we define the answer to be _L.

e (Decision Predicate). There are algorithms Vgec and V,c running in deterministic

poly(|seed|) time such that the following holds.

o The algorithm Vgec(seed.shared) generates a circuit VDec : {0, 1, L }PT7 — {0,1}.
o The algorithm Vj.(seed.shared) generates p XOR gates (i.e., GF(2)-linear functions)
pet, ..., pep s {0, 1} ot el — {0, 1},

Assume that (ansy,...,ans;) € {0,1, L} are the answers to the queries. For every i € [p],

we denote pc; := pc;(seed.row, seed.col). The PCPP verifier accepts the proof if
VDec(ansy, . ..,ansy, pci, ..., pcp) = 1.

The decision complexity of this PCPP verifier is said to be the circuit complexity of Vgec.

14

Remark 2.5.5. For clarity, we now present the streamlined procedure of how a rectangular PCPP
with randomness-oblivious predicate works:
1. Sample shared randomness seed.shared € {0, 1}"snred. Based on it,
(a) Construct a decision predicate circuit VDec < Vyec(seed.shared).
(b) Construct the parity-checks functions (pecy, ..., pcy) < Vic(seed.shared). Here, each pe;
is a PARITY function over (a subset of indices in) seed.row and seed.col.
(¢) Compute query types

(itype[1], itype[2], . .., itype[q]) <= Viype(seed.shared).
2. Sample row randomness seed.row € {0,1}"~. Compute row indices
(irow[1], irow[2], . .., irow[q]) < Viow(seed.row, seed.shared).
3. Sample column randomness seed.col € {0,1}"='. Compute column indices
(icol[1],icol[2], ... ,icol[g]) + Veoi(seed.col, seed.shared).
4. Compute randomness parity checks
PC := (pc (seed.row, seed.col), , . . ., pc,(seed.row, seed.col)).

5. Compute ans := (ans;,ansy,...,ansy) as in Definition 2.5.4.
6. Output the result of the computation VDec(ans, PC).

In the Algorithmic Method, we also care about the circuit complexity of computing the query
indices from the random seed. In fact, our rectangular PCPPs will have the lowest possible
circuit complexity: the query indices are computable by a projection (i.e., NCY circuit of locality

1). More formally:

Definition 2.5.6. We say that the query indices of a rectangular PCPP can be computed by
(polynomial-time) projections if for every seed.shared, the functions V™ and V' (which maps
seed.row and respectively seed.col to the row/column parts of query indices) are projections
over seed.row and respectively seed.col, and moreover these projections can be computed in

polynomial time given seed.shared.

2.5.3 Smooth PCP of Proximity

Apart from rectangularity, we also want our PCPPs to be smooth: each location is probed

with equal probability.! The formal definition is as follows.

Definition 2.5.7 (Smooth PCPPs for Pure Languages). Let r = r(n), ¢ = ¢(n) be good
functions, L C {0,1}* be a language, and VPCPP = (Viype, Vindex, Vdec) be a PCPP verifier for
L with randomness complexity r. We say VPCPP is a smooth PCPP verifier if for all locations
locy, locg in the proof oracle, over a uniformly random seed < {0,1}" and a uniformly random

index j < [q], loc; and locy are probed by VPCPP with equal probability in the j-th query.

'In some literature (e.g. [Par21]), the smoothness of PCPPs is defined differently: the queries to both the input
oracle and the proof oracle need to be smooth, i.e., each location in the input (resp. the proof) is queried with
equal probability. Here, we only require the queries to the proof oracle to be smooth and pose no requirement
on the query distribution over the input oracle.

15

Smooth PCPPs can be viewed as PCPPs that can tolerate errors in the proof: since all the
locations in the proof are queried with equal probability, a slightly corrupted version of a correct

proof is still likely to be accepted, as shown in the following lemma.

Lemma 2.5.8. Let ¢ = q(n), £ = {(n), s = s(n) be good functions, L C {0,1}* be a language,
and VPCPP be a smooth PCPP wverifier for L with soundness error s, proof length £, and query
complexity q. Assume that x € LN {0,1}"* and 7 € {0,1}¢ is a correct proof for x € L, i.e.,
VPCPP**" (seed) accepts with probability 1 over seed < {0,1}". Then for every ©' such that
the relative Hamming distance between ©' and m is at most €, VPCPP*o™ (seed) accepts with

probability at least 1 — q - £ over seed < {0,1}".

Proof. We say a location ¢ € [¢] of the proof oracle is bad if 7[i] # 7'[i]. Let B; be the event
that the j-th query of VPCPP probes a bad location in the proof. By the smoothness, we know
that

Pr Bl <e
seed«+{0,1}",5<[q]
By a union bound, we can see that
P dj e | < <gq-e. 2.1
seed<—{rO,1}T[Z seed<—{0 1}T] ¢ ()

Denote E to be the event that there exists a j € [¢] such that B; happens. Then it follows that

Pr [VPCPP:”O”, (seed) rejects}
seed+{0,1}"

< Pr [VPCPPfOW’(seed) rejects|—|E} v Pr [E]
seed«+{0,1}" seed«+{0,1}"

<04gq-e

=4q-ée
where the second inequality follows from (2.1) and the perfect completeness of VPCPP. O

Note that smoothness can be defined for rectangular PCPPs, in which case each location in
the proof matrix is probed with equal probability. This further means that each row (resp. col-
umn) index is queried by the row (resp. column) verifier with equal probability.

Remark 2.5.9. A stronger definition of smoothness is as follows: for every fixed i € [g], condition on
the i-th query probing the proof oracle, the i-th query is uniformly random over the proof oracle.
By randomly permuting the g queries, we can make a smooth PCPP satisfy this stronger definition
of smoothness. In particular, if we have a smooth and rectangular PCPP, we can make it satisfy this
stronger definition of smoothness by adding O(qlog ¢) bits in the shared randomness for a random

permutation over the ¢ queries.

2.5.4 Our Constructions

In this thesis, we provide two new constructions of rectangular PCPPs. For solving the Range
Avoidance problem and constructing worst-case hard partial truth tables, we need a rectangular

PCPP with query complexity 3 or 2 (depending whether perfect completeness is required); for

16

solving the Remote Point problem and constructing average-case hard partial truth tables, we
need a smooth and rectangular PCPP with query complexity O(1).” These rectangular PCPPs

are constructed in Chapter 5.

Theorem 2.5.10 (3-Query and 2-Query Rectangular PCPPs). For every constant 6 € (0,1),
there are constants s3 € (0,1) and 0 < sg < ca < 1 such that the following holds. Let m = m(n),
T(n), Woroof(n), Winput(n) be good functions such that 1 < m < (logT(n))%!, n < T(n) <
2P () w00f() < log T(n), and winpu(n) < logn. Then there are good functions R (n),

proof
hi?oof(n)7 and hinput(n) satisfying
h;?;?oof(n)’ hpz)?oof(n) = lOg T(n) + @(m log 10g T(n)) — Wproof (n)’ and

hinput () = [log n] — Winput(n),

such that the following holds.
Suppose that Wproof, p3 2 > (5/m)logT(n), and for some absolute constant C' > 1,

proof? '“proof —

Winput () Rinput(1) Ainput(n) < _leoglogT(n)
Weroof (1) B34 (n)” B2 (n) ~ log T'(n)

proof proof

2q

3
Let Wovoof(n) = 2eat("), HE () = 2"er), H2L (1) = 9t), Wiggye() 1= 20w (",

proof proof

and Hipput(n) := 2w Then NTIME[T(n)] has:

o a rectangular PCP of provimity Viq with perfect completeness, soundness error sz, an
3q
H

oroof (1) X Woreof (1) proof matriz and an Hinput(n) X Winpue(n) input matriz;

e a rectangular PCP of proximity Voq with completeness error 1 — ca, soundness error sz, an
H™

oroof () X Woreof (n) proof matriz and an Hinput(n) X Winput(n) input matriz.

Other parameters of Vaq and Voq are specified in Table 2.1.

Furthermore, given the randomness seed € {0,1}", the total number of queries and parity-
check bits is at most 3 for V39 and 2 for V29, and the decision predicate VDec < Ve (seed.shared)
of the rectangular PCPP wverifier is an OR of the input bits (including queries and parity-check
bits) or their negations for every seed.shared. Also, the query indices of Vzq and Voq can be

computed by projections.

Theorem 2.5.11 (Smooth and Rectangular PCPP). For all constants 6 € (0,1) and s € (0,1),
there is a constant ¢ > 1 such that the following holds. Let m = m(n), T(n), Weroof (1), Winput(n)
be good functions such that 1 < m(n) < (logT(n))!, n < T(n) < 2PN wio0r(n) < log T(n),

and winput(n) < logn. Then there are good functions hprof(n) and hinput(n) satisfying

hproof (1) 1= log T'(n) + ©(mloglog T'(n)) — Wpreof (1), and

hinput(n) := [logn] — Winput(n),

such that the following holds.

2Unfortunately, our smooth PCPP requires a large (although constant) number of queries, because of the
arguments in Section 5.1.4.

17

’ PCPP Verifier V3a ‘ V2

Completeness error 0 1—ocy
Soundness error S3 S9
Proximity parameter)
Row randomness h?)?oof (5/m)log T'(n) ‘ proof —(5/m)logT(n)
Column randomness Wproof — (5/m)logT'(n)
Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlogm)
Query complexity 3 9
Parity check complexity
Decision complexity poly(loglog T')

Table 2.1: Parameters of the PCPPs constructed in Theorem 2.5.10.

Suppose that Wproof s hproof = (5/m)log T'(n), and that for some absolute constant C' > 1,

winput(n) hinput(n) <1_ Cm2 log log T(?’L)
Wproof (’I’L) ’ hproof (n) o log T(n)

Let Wyroof(n) = QWproof (12) Hproof(n) = Qrproot (1) Winput(n) = 2Winput () - g Hinput(n) =
2hineut (") Then NTIME[T (n)] has a smooth and rectangular PCP of prozimity with an Hinpu(n) %
Winput(n) input matriz and an Hyroof (1) X Woroof (0) proof matriz, with query indices computable

by projections, and whose other parameters are specified in Table 2.2.

Soundness error 5
Proximity parameter 0

Row randomness Trow = Nproof — (5/m)log T'(n)
Column randomness Tcol := Wproof — (5/m)log T'(n)

Shared randomness Tshared := (10/m)log T'(n) + O(loglog T'(n) + mlog m)
Query complexity _

Parity check complexity ¢ = 0s5(1)

Decision complexity poly (T (n)t/™)

Table 2.2: Parameters of the PCPP constructed in Theorem 2.5.11.

Remark 2.5.12 (Comparison with [BHPT24]). Our rectangular PCP of proximity differs from the
rectangular PCP in [BHPT24] in the following ways.

e The biggest difference is that our construction is a smooth PCP of proximity. As a result, the

input is also treated as a matrix, and its query pattern is also rectangular.

e The input matrix size and the proof matrix size in our rectangular PCPP are flexible, while
the proof matrix in [BHPT24]| is /m X /m. It is easy to make the proof matrix size flexible,
but more care needs to be taken for the input matrix. (See Section 5.1.2 where we artificially
define a bijection called bingm.) This is quite important as in our application, we need the

input matrix width to be as small as possible!

18

Chapter 3

Range Avoidance via Satisfying-Pairs

3.1 Introduction

3.1.1 The Algorithmic Method

Building on his previous work [Will3a|, Williams [Will4] famously proved that NEXP ¢
ACC?, the first non-uniform lower bound against the circuit class ACC. This lower bound is
proved by designing a “non-trivial” satisfiability algorithm for ACC® circuits and then showing
that such algorithms imply lower bounds against ACC?. Indeed, the only property of ACC®
that Williams uses is that ACC’-SAT has a non-trivial algorithm; the algorithm-to-lower-bound
connection works for any circuit class satisfying some mild technical conditions.

Let € be a circuit class and e(n) € (0,1) be a parameter. Given as input a ¢ circuit

C :{0,1}" — {0,1}, we consider the following circuit-analysis problems:

Circuit-Analysis Problems
(€-SAT) decide whether there is an input z € {0,1}" such that C(z) = 1;
(¢-GapUNSAT) distinguish between the case that Pr,. ;o13»[C(z) = 1] > &(n) and that C

is unsatisfiable;

(€-#SAT) count the number of satisfying assignments of C;
©-CAPP.) estimate the quantity Pr,. o 11»[C(z) = 1] within additive error .¢
{0,1}

“CAPP stands for “circuit acceptance probability problem.”

Clearly, all problems above can be solved in deterministic 2" - poly(|C/|) time by brute force.
We say a deterministic algorithm for these problems is non-trivial if its time complexity is
2”/n°’(1), i.e., slightly less than the brute-force time bound. The Algorithmic Method states

that such algorithms imply circuit lower bounds against %

Theorem 3.1.1 (Informal; see |Will4|). Let € be a “nice” circuit class. If €-SAT admits a
deterministic algorithm running in 2”/n“’(1) time, then NEXP Z % .

Since there exists a deterministic algorithm for ACC’-SAT running in on=n time [Wil14],
it follows that NEXP ¢ ACCP.

There has been a long line of subsequent developments of the Algorithmic Method, both
improving the algorithms and tightening the connection between algorithms and circuit lower
bounds [SW13,BV14, Wil16, Wil18c, COS18, MW20, Wil18b, Che19, CW19b, VW20, Vio20,CR22,
CLW20, CL21, CLLO21,Che23|. A recent highlight is the following result proved in [CLW20)]:

19

Theorem 3.1.2 ([CLW20|, Informal). There is a language in ENP that does not have subexpo-

nential size ACCY circuits on almost every input length.

Thinking of circuit lower bounds as explicit construction problems, [CLW20| gave an FPNP_
explicit construction of hard truth tables against subexponential size ACC? circuits. When

formulated in the language of Range Avoidance, Theorem 3.1.2 becomes:

Theorem 3.1.3 (Theorem 3.1.2, Reformulated as Range Avoidance). Let s(n) := Y and
TTacco : {0,1}06Moesn)) 5 £0 132" be the circuit that takes as input the description of a
size-s(n) ACC® circuit and outputs its truth table. Then, there is an FPNP algorithm for solving
AVOID on the instance TT pcco.

Recently, the Algorithmic Method has found applications to another problem: constructing
rigid matrices. Alman and Chen [AC19] showed how to construct rigid matrices in FPNP with
parameters much better than previously known constructions; their results were later improved
by [BHPT24, CLW20, HV21, CL21|. The key insight in [AC19] is to treat low-rank matrices as
a special type of circuit class; thus, the task of constructing rigid matrices reduces to proving
average-case circuit lower bounds against this class.

Given the success of the Algorithmic Method, it is natural to ask the following question:

Question 3.1.4. Under which conditions can the Algorithmic Method be used to solve general

explicit construction problems, such as AVOID?

3.1.2 An Algorithmic Method for Range Avoidance

In this chapter, we present a version of the Algorithmic Method for solving AvoIiD. This

method requires a non-trivial algorithm for the Satisfying Pairs problem:'

Problem 3.1.5 (6-SATISFYING-PAIRS). Let N, M, s,n be parameters. Given as inputs N € circuits
C1,Co,...,CNn :{0,1}™ — {0, 1} of size s each and M strings x1,xa, ...,xp € {0,1}™, compute or
estimate

[C; (@) =1]. (3.1)

Pr
14— [M],j<+[N]

Analogous to the circuit-analysis problems such as SAT and CAPP defined in Section 3.1.1,

we define the decisional and counting versions of the Satisfying Pairs problem as follows:

Satisfying Pairs Problems
(€-SATISFYING-PAIRS) decide whether (3.1) > 0;
(Gap.-€¢-SATISFYING-PAIRS) distinguish between (3.1) = 0 and (3.1) > ¢;
(#%-SATISFYING-PAIRS) compute (3.1) exactly;
(Approx_-%€-SATISFYING-PAIRS) estimate (3.1) within additive error e.

"We remark that our definition of ¥-SATISFYING-PAIRs is different from the fine-grained complexity literature
(e.g., [AHWW16, CW19a]). The input of the €-SATISFYING-PAIRS problem defined in [AHWW16, CW19a)
consists of a circuit C(—, —) and two sets of input strings {a;} and {b;}, and one wants to compute or approximate
the number of pairs (7, ;) such that C(ai,b;) = 1; in our €-SATISFYING-PAIRS problem, we receive as input a
list of circuits {C;} and a list of inputs {z,}, and we want to compute or approximate the number of pairs (i, j)
such that Cj(z;) = 1. The new definition fits our purpose better. We also remark that for circuit classes that
can “evaluate themselves” (such as AC®, ACC°, and TC®), these two definitions are computationally equivalent.

20

We consider the regime where the input length n and the circuit size s are much smaller
than N and M. In such case, a deterministic algorithm for ¥-SATISFYING-PAIRS is said to be
non-trivial if it runs in time NM/log®) (N M).

Remark 3.1.6. The circuit-analysis problems that arise in the Algorithmic Method are special
cases of Satisfying Pairs problems. For instance, we can solve #SAT of the circuit C' by solving
#SATISFYING-PAIRS with N = 27/2 and M = 2"/2 where the inputs (x1, 22, ...,z consists of all
strings of length n/2, and the circuits are {C,, : y € {0,1}"/?}, where Cy(z) := C(xoy). This reduc-
tion shows that a non-trivial algorithm for Satisfying Pairs problem implies a non-trivial algorithm

for the corresponding circuit-analysis problem.

PNP

Satisfying Pairs with preprocessing. In fact, our results also hold for Satisfying Pairs

PNP preprocessing on circuits. Such an algorithm consists of two phases: First,

algorithms with
the algorithm receives N % circuits C7,Co,...,Cy, is allowed to preprocess them in some fixed
polynomial 7' = N time deterministically with an NP oracle and produce a “data structure”
DS of length at most T. Then the algorithm receives M inputs x1,x2,...,2) and needs to

output an estimation of (3.1) in non-trivial (i.e., MN/log® (MN)) time, with the aid of DS.

Remark 3.1.7. The preprocessing phase might seem strange at first sight (especially since it is
allowed to use an NP oracle), so we provide an example to motivate it. Suppose that N > n (i.e.,
the number of circuits is much larger than the input length of these circuits) and we want to solve
Approx_-SATISFYING-PAIRS. It is easy to show (using a Chernoff bound and a union bound) that
there is a subset S C [N] of size |S| = O(ne~2) such that for every x € {0,1}",

If for some polynomial T', such a subset S can be found in deterministic time 7'(n) with an NP
oracle, then there is a non-trivial algorithm for Approx_-SATISFYING-PAIRS with PNP preprocessing:

In the preprocessing phase, given % circuits Cp,Cy,...,Cy, we simply calculate S; in the query
phase, given inputs x1, za,..., 2y € {0,1}", we calculate
Pr Ci(xz;) = 1].
ieS,je[M][i(z5) =1l

Since this algorithm takes O(nMe~2) time, it is non-trivial as long as N > (ne=2)!T2(M) In fact, a
similar example will play an important role in Chapter 4 and characterise the “complete” Algorithmic

Method for proving circuit lower bounds.

The main result of this chapter is that non-trivial algorithms for Satisfying Pairs imply FPNP
algorithms for AvoID. Furthermore, this is true even if the Satisfying Pairs algorithm has a PNP

preprocessing phase.

Theorem 3.1.8 (Theorem 3.4.2, Informal). Let € be a typical circuit class and €' := ORg o
€.> Suppose that for every constant € > 0 there is a non-trivial algorithm for Approx.-¢"-
SATISFYING-PAIRS with PN preprocessing, then €-AvoID with certain parameters can be solved

in FPNP

?Here, OR4 0 € refers to the composition of a single fan-in-d OR gate being the output gate of the circuit and
(at most) d € circuits feeding the top OR gate.

21

A note on the stretch functions. The above informal statement omitted the stretch of
the € circuits for simplicity. Actually, even assuming the best possible algorithms for Satisfying
Pairs, Theorem 3.1.8 could only solve the Range Avoidance problem for € circuits with stretch

{(n) = n'*=. We refer to Theorem 3.4.2 for the precise statement.

3.1.3 Extension: The Remote Point Problem

The Algorithmic Method is extremely good at proving average-case circuit lower bounds
[CR22, CLW20, CL21|. In this subsection, we define the Remote Point problem, which is an
“average-case” analogue of the Range Avoidance problem, and present an Algorithmic Method
for it. Here, for two strings =,y € {0,1}", their relative Hamming distance is defined as the

fraction of indices where z and y differ, formally §(z,y) := 2|{i € [n] : 2; # yi}|.

Problem 3.1.9 (Remote Point Problem (4-REMOTE-POINT)). Given the description of a circuit
C :{0,1}* - {0,1}¢ and a parameter § > 0, where each output bit of C' is a ¥ circuit, output any
string y € {0, 1}* that is §-far from the range of C. That is, for every z € {0,1}", §(C(x),y) > 0.

By Chernoff bound, if § < 1/2 — ¢/n/¢ for some absolute constant ¢ > 0, then a random
length-¢ string is a valid solution for REMOTE-POINT with high probability. Therefore, the
challenge is to find deterministic algorithms for REMOTE-POINT.

It is not hard to see that ¥-REMOTE-POINT for the truth table generator TT corresponds
to average-case circuit lower bounds. In particular, the regime where § is a small constant
corresponds to proving “weak” average-case lower bounds (e.g. [COS18,Chel9]), and the regime
where 9 is close to 1/2 (say, 6 = 1/2 — 1/n) corresponds to proving “strong” average-case lower
bounds (e.g. [CR22, CLW20]).?

The remote point problem was also discussed in [KKMP21]|. Indeed, an important special
case of the problem has been studied by Alon, Panigrahy, and Yekhanin [APY09], namely the
case that C is a linear transformation over GF(2). In other words, we are given a linear code
C : {0,1}» — {0,1}* and we want to find a string that is far from every codeword. They
introduced this problem as an intermediate step towards constructing rigid matrices.

It is already quite hard to solve this special case deterministically. Alon, Panigrahy, and
Yekhanin [APY09] designed a polynomial-time algorithm for XOR-REMOTE-POINT when ¢ > 2n
and 6 = O(logn/n). For slightly larger d, say 6 = 0.1, no deterministic algorithm is known
even with an NP oracle. Arvind and Srinivasan [AS10| showed that for certain parameters, a
polynomial-time algorithm for XOR-REMOTE-POINT implies a polynomial-time algorithm for
ACY-PARTIAL-HARD (defined later in Section 3.1.4).

In this chapter, we also extend our Algorithmic Method to the Remote Point problem.
(Below, recall that a circuit class is typical if it contains the identity circuit and is closed under

negations and projections.)

Theorem 3.1.10 (Theorem 3.5.1, Informal). Let € be a typical circuit class and €' := AN Doqyo
€. Suppose that there is a non-trivial algorithm for Approx,.-¢”’-SATISFYING-PAIRS for every

3Typically, a strong average-case lower bound states that certain problems cannot be (1/241/s)-approximated
by size-s circuits. Suppose TT : {0,1}" — {0,1}¢ is the truth table generator, then n is roughly the size of the
circuit (i.e., n & s). In this regard, strong average-case circuit lower bounds correspond to REMOTE-POINT where
6=1/2—-1/n.

22

constant € > 0, then €-REMOTE-POINT with certain parameters can be solved in FPNP.

In particular, suppose for every constant e > 0, there is a non-trivial algorithm for Approx.-¢"-
SATISFYING-PAIRS for N = quasi-poly(n) ¢’ -circuits of size O(s) and M = quasi-poly(n) in-
puts of length n - polylog(n); then for some stretch function £ = quasi-poly(n), there is an FPNP
algorithm for € -REMOTE-POINT that takes as input a circuit C : {0,1}" — {0,1}* where each

output bit of C' is a € -circuit of size s, and outputs a y that is 0.49-far from Range(C).

Our framework provides REMOTE-POINT algorithms for the regime corresponding to “strong
average-case lower bounds” [CR22|, i.e., the distance between the output y and Range(C) is
close to 1/2. In fact, the distance can be as large as 1/2 — 1/poly(n) given an Approx-%-
SATISFYING-PAIRS algorithm with a small enough error. (see Theorem 3.5.1 for details).

The stretch of circuits for which we can solve REMOTE-POINT via Theorem 3.1.10 is worse
than that for Theorem 3.1.8: Even assuming the best possible Satisfying Pairs algorithms, we
could only solve REMOTE-POINT for circuits with quasi-polynomial stretch. This is because we
use an approximate list-decodable code with linear-sum decoders in [CLW20] which has a quasi-
polynomial rate. It is an interesting open problem to improve the stretch of REMOTE-POINT
that can be solved by our framework, possibly by designing new linear-sum decodable codes
with a better rate; see, e.g., [CL21].

3.1.4 Extension: Hard Partial Truth Tables

Besides AvoID and REMOTE-POINT, we also consider the following problem that generalises
the task of proving circuit lower bounds (in a different way):
Problem 3.1.11 (Hard Partial Truth Tables against € (%-PARTIAL-HARD)). Given a list of input
strings z1, 22, - . ., 2¢ € {0,1}"™ and a parameter s, find a list of output bits by, bs, ..., b € {0,1} such
that the partial function defined by {(z;,b;)}:c[¢ cannot be computed by % circuits of size s. In

other words, for every size-s € circuit C, there exists an index i € [¢] such that C(z;) # b;.

It is easy to see that ¥-PARTIAL-HARD generalises the problem of proving circuit lower
bounds against €. Indeed, if we take £ := 2™ and z1, 29, ..., 2¢ be an enumeration of length-n
strings, then ¥-PARTIAL-HARD becomes exactly the problem of proving circuit lower bounds
against €. It is also easy to see that when ¢ > O(slog s), this problem reduces to AvOID: given
the input (21, 29, . .., 2¢), we can construct a circuit TT : {0, 1}0(Slog) {0,1}* which takes the
description of a € circuit C as input, and outputs the concatenation of C(z1),C(z2),...,C(2).
Finding a non-output of TT is equivalent to finding a solution of ¢-PARTIAL-HARD.

This problem was introduced by Arvind and Srinivasan [AS10| under the name “circuit lower
bounds with help functions.” Let hy, ho,..., h, : {0,1}™ — {0,1} denote a sequence of help
functions, € be a circuit class, and s € N be a size parameter. The goal is to construct the truth
table of a function f: {0,1}™ — {0, 1} that is hard to compute for size-s € circuits, even when
the circuit has access to these help functions. Formally, for any size-s circuit C' : {0,1}" — {0, 1},
there exists an input = € {0, 1}™ such that

Clh (), ha(@), ... b)) # f(2).

This problem is equivalent to PARTIAL-HARD with £ = 2" inputs of length n, namely for every

23

x € {0,1}™, there is an input hy(x)ohg(z)o---oh,(x) € {0,1}" in the PARTTIAL-HARD instance.

This problem appears to be very hard. Neither [AS10] nor we are aware of an efficient de-
terministic solution for € = ACY with (say) ¢, s € quasi-poly(n). That is, although exponential-
size lower bounds against AC” are known [Ajt83, FSS84, Yao85, Has89|, we do not have any idea
about how to prove such a lower bound for partial functions. Even when % is the class of
polynomial-size DNF, to the best of our knowledge, there is no known deterministic algorithm
for €-PARTIAL-HARD.

Besides being a natural problem itself, 4-PARTIAL-HARD also arises when we study the
closure of non-uniform complexity classes (under reductions). Recall that AC® denotes the class
of languages computable by a non-uniform family of polynomial-size constant-depth circuits; in
particular, AC? contains undecidable languages such as unary versions of the halting problem. A
language L Turing-reduces to some language in ACY if and only if L € P /poly |Pip79], thus proving
EXP 4. ACY is likely beyond current techniques. But what about mapping reducibility? Can we
show that EXP %%, AC?? Tt turns out that a deterministic algorithm for AC’-PARTIAL-HARD
implies that EXP £}, ACY [AS10, Theorem 5]. Of course, there is nothing special with ACY, and
it can be replaced by other non-uniform classes. Therefore, -PARTIAL-HARD sheds light on
ruling out many-one reducibility of EXP (and other complexity classes) to non-uniform classes.

We also define the average-case version of ¥-PARTIAL-HARD, which requires us to construct
partial functions that are average-case hard against %:

Problem 3.1.12 (Average-Case Hard Partial Truth Tables against ¥ (%-PARTIAL-AVGHARD)).
Given a list of input strings 21, 22,...,2¢ € {0,1}" and parameters s, 9, find a list of output bits
bi,b2,...,by € {0,1} such that the partial function defined by {(zi,b;)}icq is d-far from being

computable by & circuits of size s. In other words, for every size-s € circuit C, there are at least
0¢ indices i € [{] such that C(z;) # b;.

Similar to the frameworks for AvoID and REMOTE-POINT, we can solve PARTIAL-HARD and
PARTIAL-AVGHARD via non-trivial algorithms for SATISFYING-PAIRS.

Theorem 3.1.13 (Informal). Let € be a typical circuit class.

e Suppose that there is a non-trivial algorithm for Approx.-¢”’-SATISFYING-PAIRS for every
€ >0 and ¢’ == ORy 0 €, then €-PARTIAL-HARD with certain parameters can be solved
in FPNP,

e Suppose that there is a non-trivial algorithm for Approx.-€¢" -SATISFYING-PAIRS for every
e >0 and €" := ANDp(1) 0 €, then €-PARTIAL-AVGHARD with certain parameters can
be solved in FPNP.

These results are proved using essentially the same approach as the framework for AvoIiD

and REMOTE-POINT; consequently, the trade-off between parameters for SATISFYING-PAIRS and

PARTIAL-HARD (resp. PARTIAL-AVGHARD) is similar to that for AvOID (resp REMOTE-POINT).

We omit the details and refer the readers to Theorem 3.6.2 and Theorem 3.7.1.

Remark 3.1.14. Tt is not surprising to have a unified framework for AvOIiD and PARTIAL-HARD
(and their average-case analogues REMOTE-POINT and PARTIAL-AVGHARD), since AvOID and
PARTIAL-HARD can be considered as the dual problem of each other. Let Eval : {0,1}9(108%) x
{0,1}™ — {0,1} be the circuit-evaluation function that takes a circuit C of size s and an input of

24

length n, and outputs C(x). We can interpret AVOID and PARTIAL-HARD as follows:
e (AvoID). Given size-s circuits C1,Cs,...,Cy, find y1,ys,...,y¢ € {0,1} such that for every
x € {0,1}", there is an ¢ € [¢] such that Eval(C;, z) # y;.
e (PARTIAL-HARD). Given inputs z1,zs,...,z¢ € {0,1}", find y1,92,...,9¢ € {0,1} such
that for every size-s circuit C, there is an 7 € [¢] such that Eval(C, ;) # y;.
Clearly, AvoID and PARTIAL-HARD are essentially the same problem on the table Eval(-,) with the

rows and columns being exchanged.

3.1.5 Unconditional Results

By slightly adapting the technique introduced by Williams [Will8¢| to design non-trivial
#SAT algorithms for ACCY circuits (which uses an earlier quasi-polynomial size simulation of
SYM o ACCP circuits by SYM o AND circuits [BT94, AG91]), we obtain a non-trivial algorithm
for #ACCY-SATISFYING-PAIRS:

Theorem 3.1.15. For every constants m,/l,c, there is a constant ¢ € (0,1) such that the
following holds. Let n := 21°°N gnd s := 2198°" There is a deterministic algorithm run-
ning in O((N/n)?) time that given N strings x1,Ts,...,zx € {0,1}* and N ACY[m)] circuits
C1,Cay...,Cn : {0,1}" — {0,1} of size s, outputs the number of pairs (i,7) € [N] x [N] such
that Ci(xj) = 1.

The FPNP algorithm for ACC’-REMOTE-POINT and ACCY-PARTIAL-AVGHARD follows from
this algorithm together with Theorem 3.1.10 and Theorem 3.1.13.

Theorem 3.1.16 (ACCO—REMOTE—POINT € FPNP). There is a constant ¢, > 1 such that for
every constant d,m > 1, there is a constant csty := csie(d, m) > 1, such that the following holds.

Let n < s(n) < 22" be a size parameter, £ = e(n) > 2n=% be an error parameter and
0 = f(n) > 28" be g stretch function, then there is an FPN algorithm that takes as input
a circuit C : {0,1}" — {0, 1}, where each output bit of C is computed by an ACY[m] circuit of
size s, and outputs a string y that is (1/2 — €)-far from Range(C).

Theorem 3.1.17 (ACC’-PARTIAL-AVGHARD € FPNP). There is a constant ¢, > 1 such that
for every constants d,m > 1, there is a constant csty := cste(d, m) > 1, such that the following
holds.

Let n < s(n) < 27’ be a size parameter, € 1= g(n) > 2n~% be an error parameter and
(= {(n) > 2log™s be o stretch function, then there is an FPNP algorithm that given inputs
x1,...,x0 € {0,1}7, it outputs a string y € {0,1} such that for any s(n)-size ACY[m) circuit C,
y is (1/2 — e)-far from C(x1) oo C(xy).

It is worth noting that the ACC’-REMOTE-POINT algorithm here recovers the best known
almost-everywhere average-case circuit lower bounds against ACC® [CLW20]. This is done
by considering the special case where the input circuit is the truth table generator TT :
{0,1}0(s1ogs) 5 £0,1}2" that prints the truth table of a given ACCY circuit (see Section 3.8.2).

Corollary 3.1.18. For every constants d,m > 1, there is an e > 0 and a language L € EN? such
that Ly, cannot be (1/2 4+ 27")-approzimated by ACY[m] circuits of size 2", for all sufficiently

large n.

25

Following the observation of Arvind and Srinivasan [AS10], the FPNP algorithm for ACCO-
PARTIAL-AVGHARD can be used to prove unconditionally that ENP cannot be mapping reduced
to languages decidable by small-size non-uniform families of ACC? circuits.* To the best of our
knowledge, this is the first unconditional result ruling out the mapping reducibility from uniform

classes to non-trivial non-uniform classes.

Corollary 3.1.19. Let d,m € N be constants, ACg[m} denote the class of languages computable
by a non-uniform family of polynomial-size ACg[m] circuits. Then, there is a language LM €

ENP that does not have polynomial-time mapping reductions to any language in Acg[m],

3.2 Technical Overview

In this subsection, we present an overview of the proof of Theorem 3.1.8.

It would be helpful to review the Algorithmic Method for proving ENP lower bounds. Let
Lhard ¢ NTIME[2"] \ NTIME[0o(2")] be a hard language constructed by the nondeterministic time
hierarchy theorem [Zak83|. Let V be the PCP verifier of [BGHT06]; here V is an oracle circuit
V(=) :{0,1}" — {0,1}. This oracle circuit takes PCP randomness as input (so the input length
is 7 :=n+ O(logn)) and receives the PCP proof as the oracle.

For a proof oracle m : {0,1}" — {0,1}, denote pacc(7) := Preeeq—{0,1}+[V " (seed) accepts].
The PCP theorem guarantees that for every input x € {0, 1}*:

o If x € LM then there is a proof oracle 7 such that pyec(7) = 1.
o If x ¢ LM then for every proof oracle 7, we have pacc(m) < 0.01.

Now, suppose that for every input o € LM, there is a proof oracle 7 such that pacc(m) = 1,
and in addition, m can be computed by a € circuit. (Call this assumption the “easy-witness as-
sumption”.) Moreover, suppose that the GapUNSAT problem for V¢ can be solved in 2 /(1) <
0(2") time. Then there is a faster nondeterministic algorithm for LM as follows. Given an
input x, we first guess a circuit ¢ that computes a valid proof oracle w, and use the GapUNSAT
algorithm to distinguish between the case that pacc(m) = 1 and that pacc(m) < 0.01.

By the nondeterministic time hierarchy theorem, the above speed-up algorithm has to be
incorrect. Therefore, our “easy-witness assumption” has to be false, i.e., there is an input = €

Lhad which does not have valid PCP proofs computable by a small € circuit.

A naive attempt. Given a circuit C : {0,1}" — {0,1}*, our goal is to find a non-output of
C in FPNP. Again, let L4 € NTIME[¢] \ NTIME[o(¢)] be the hard language constructed by the

nondeterministic time hierarchy.” Our “easy-witness” assumption now becomes:
Assumption 3.2.1. For every z € L' there is a PCP proof for x that is in the range of C.

Now we design a faster nondeterministic algorithm Mg, that tries to solve LM, For every
PCP randomness seed € {0,117, let Q% : {0,1}* — {0,1} be the circuit that takes a PCP

In fact, it suffices to have an FPN? algorithm for ACC®-PARTIAL-HARD (which is a trivial consequence of an
FPNP algorithm for ACCP-PARTIAL-AvGHARD) for this application.

®Note that we have not specified the input length for L', We only know that L' is in non-deterministic £
time on this input length. This important issue will be discussed later.

26

proof m € {0, 1}4 as input® and outputs whether the verifier accepts © when given seed as the
randomness. Suppose we guess w € {0,1}" such that C(w) is the PCP proof for z € LM, then
it suffices to estimate Preeeq[@%¢4(C(w)) = 1] to verify this PCP proof.

However, there is a serious problem with this approach: The description length of C is
already (¢), therefore it is impossible to estimate Pr[Q%¢(C(w)) = 1] in o(¢) time.

Idea 1: Making copies. Our first idea is simple but crucial: we pick a large enough number
H = poly(¢) and make H copies of C. That is, instead of the Range Avoidance problem for C,

we consider the Range Avoidance problem for the circuit
CH(xb L2y ey :Z:H) = (C(ml)a 0(1:2)7 SRR C(xH))

There is a simple FPNP reduction from avoiding C' to avoiding C*. Suppose y = (y1,---,YH)
is not in the range of C¥, then we can use the NP oracle to check whether each y; is in the range
of C and pick the first y; that is not. Hence, it suffices to solve the Range Avoidance problem
for C.

Now, let Lhad € NTIME[H - ¢] \NTIME[o(H - £)]. Let @**¢: {0,1}*** — {0, 1} be the circuit
that accepts a PCP proof 7 € {0, 1} £if and only if the PCP verifier accepts it given seed as the
PCP randomness. After guessing w € {0, 1} (which corresponds to the PCP proof C(w)),
It suffices to estimate pest := Preeed[@°°4(CH (w)) = 1]. The good news is that we only need
~ { < H -/ bits to describe the circuit C¥, thus, at least in principle, it could be possible to
estimate pes in less than H - £ time.

But how do we actually estimate pest? It seems likely that we need to exploit some special

properties of the PCP verifier. What property should our PCP have?

Idea 2: Rectangular PCP. Our second idea is to use rectangular PCPs [BHPT24]. In this
overview, let us assume the PCP is perfectly rectangular, which means that the PCP proof =
is formatted as an H x ¢ matrix and the PCP randomness seed is partitioned into two parts:
seed.row and seed.col. More importantly, the row index of each query only depends on seed.row
and the column index of each query only depends on seed.col. Correspondingly, our easy-witness
assumption becomes that every row of 7 is in the range of C.

Suppose the easy-witness assumption holds and there are strings wi, wo, ..., wqg such that
the i-th row of 7 is equal to C(w;). Each seed.row corresponds to g rows ry,rg,...,rs such
that V™ (seed.row, —) will only access these rows of w. Hence, we define the following input

corresponding to seed.row:

INpUteeed row = (Wrys Wiy, - - . ,qu).

Similarly, each seed.col corresponds to ¢ columns ci,ca,...,¢q such that V7(—,seed.col) will
only access these columns of 7. Let @%¢d-<°! : {0,1}9¢ — {0,1} be the circuit that takes the ¢

rows (determined by seed.row) of 7 as inputs and outputs whether the verifier accepts when the

5The length of the PCP proofs is slightly larger than ¢; using efficient PCPs [BGH ™05, BS08, Din07], one can
achieve PCP proof length ¢ - polylog(¢). In this informal exposition, we do not distinguish between the time
complexity of L' and the length of its PCP proofs.

27

column randomness is seed.col. We define the circuit
Cseed'°°'(w1, W, ..., W) = Qseed'w'(C(wl), C(wa),...,C(wy)).

After guessing wi,ws,...,wy € {0,1}" such that the i-th row of 7 is equal to C(w;), we
need to test whether the verifier accepts. Note that for each seed = (seed.row, seed.col), V7 (seed)

seed.coly — 1. Therefore, it suffices to solve an instance of

accepts if and only if Cseed.col(Input
Satisfying Pairs with 2/%¢¢d-"%l many inputs and 2/¢¢d-<!l many circuits. The time complexity of
Mtast 18

glseed-row| glseed.coll /(|seed.row| - [seed.col|)“(V) < (H¢)/log* M (HY).

The “right” time hierarchy theorem. The above Range Avoidance algorithm is only correct
on infinitely many input lengths. This is because the nondeterministic time hierarchy in [Zak83|

only works infinitely often, i.e., for any NTIME[o(H¢)] machine M, Lhard

and M only disagree
on infinitely many input lengths.

To obtain an almost-everywhere algorithm, we follow the ideas of [CLW20]. The crucial
observation is that M does not guess too many nondeterministic bits. (In the case of the
Algorithmic Method, it only guesses a small circuit encoding the PCP proof; in our case, it only
guesses Hn < H/ bits.) There is an almost-everywhere nondeterministic time hierarchy against

such machines [FS16]. Let NTIMEGUESS[T'(N), g(N)] denote the class of languages decidable

by a nondeterministic machine running in 7°(NN) time and guessing g(N) bits. Then:

Theorem 3.2.2 ([FS16]). Let T(N) be a time-constructible function such that N < T(N) <
2Py (N) - There is a language L' € NTIME[T(N)] \ i.0.-NTIMEGUESS[o(T(N)), N/10].

Since we need to guess Hn bits, we set the input length to be N := 10Hn. We also set T'(N)
to be a slightly super-linear function such that T'(10Hn) ~ HY.
There is a small issue: Mg, needs to access the circuit C. More generally, if our Satisfying

pNP preprocessing, then Mr,s needs to access the “data structure” DS

Pairs algorithm has
produced in the preprocessing phase. Fortunately, the above NTIME hierarchy theorem also
holds against machines with N/10 advice bits, and we can hardwire C' or DS as nonuniform

advice.

Theorem 3.2.3. Let T(N) be a time-constructible function such that N < T(N) < 2Po(NV),
There is a language L' € NTIME[T(N)] \ i.0.-NTIMEGUESS|[o(T'(N)), N/10]/ (n/10)-

Our FPNP algorithm needs one more ingredient from [CLW20]: a refuter for Theorem 3.2.3.
Given 1V and the code of the machine Meg that attempts to compute L' as well as the
N/10 advice bits, if Mg runs in o(T'(N)) time and uses at most N/10 nondeterministic bits,
then the refuter finds an input = € {0,1}"V such that Mg (7) # LM9(z). The refuter runs in
polynomial time with access to an NP oracle.

Our FPNP algorithm for AvoID works as follows. We first compute (the code of) the machine
Myast; recall that it is a machine in NTIMEGUESS[o(T'(N)), N/10]/(n/10)- (This includes running
the PNP preprocessing phase of our Satisfying Pairs algorithm if there is one, and hardwiring
the circuit C' and the DS it produces into the code of Mias.) Then we use the refuter to find

28

an input Tharg € {0, 1} such that Mest(Thard) 7 L™ (2harg). It follows that in any valid proof
matrix of Zpag € L' there is some row that is not in the range of C'. We can then simply use

the NP oracle to pick the first such row.

Rectangular PCP of proximity. There is another issue: the PCP verifier depends on the
input Thard- AS Tharg might depend on DS (recall that xpaqg is found by the refuter, which takes
the code of Mpe as input, and Mg, needs to hardcode DS), we cannot preprocess the circuits
{Cseed-coll hefore we know Tharg.

Our solution is to use a rectangular PCP of prozimity (henceforth rectangular PCPP). Recall
that a PCPP verifier can only query a small number of bits in both the proof oracle and the
input oracle. (As it does not even have time to read the whole input, its query pattern does not
depend on it.) In a rectangular PCPP, the input oracle is also accessed in a rectangular fashion.

There are three predicates Viype, Viow, and V"

o Viype, without looking at seed, outputs ¢ symbols, where each symbol is either input or

proof.
e Viow reads seed.row and outputs ¢ row indices r1,72,...,74.
o Vo reads seed.col and outputs ¢ column indices ¢y, c2,. .., ¢4.

e For each query i € [g], if the i-th symbol is input, then the i-th query asks the (r;, ¢;)-th
entry of the input matrix; if the i-th symbol is proof, then the i-th query asks the (r;, ¢;)-th

entry of the proof matrix.

We now revise our speed-up algorithm Mjs,g for Lhard using rectangular PCPPs. Given an
input = € {0,1}",® we still guess wy, wo, ..., wy and construct the PCPP proof matrix 7 whose
i-th row is C(w;). Also, the input is treated as an H' x W’ matrix”; let x; be the i-th row of the
input matrix. Now we estimate the probability that V*7™(seed) accepts, where V is the PCPP

verifier with oracle access to x and 7.

e Each seed.row corresponds to gproof Tows in the proof matrix and gnpye rows in the input
matrix, where gproof + Ginput = ¢, and the output of V*7(seed.row,—) only depends on

these rows. Let these indices be i1,...,%4, we define
INputeeed.row ‘= (Wiys - - -, Wi, ooer Ligoopss - y Tig)-

e For each seed.col, let Qseed-<ol : {(), 1 }9proor EHainpue W 5 £0 1} be the circuit that takes these

rows as inputs and outputs whether the verifier accepts them when the column randomness

"Note that we consider perfect rectangularity here for simplicity. In an almost rectangular PCPP, the ran-
domness also contains a short part denoted as seed.shared that is read by every predicate. In particular, Viype
depends on seed.shared, Viow depends on seed.row and seed.shared, and Vo depends on seed.col and seed.shared.

8Note that a PCPP could only distinguish between = € L and z being far from L. Thus, we need to apply
an error-correcting code to the input. For simplicity, we still use « to denote the encoded input.

9A technicality here is that we want to set W’ to be as small as possible, as the size of Cley o is Proportional
to W'. Tt turns out that we can achieve W’ = n - polylog(¥).

29

is seed.col.'” We define
seed.col __ yseed.col
C (w17""wq;:rooﬁxl""’xqmput) - Q (C(w1)7'"7C(prroof)’x17"'7xqmput)'

Note that the description of Cseed-col jtself does not depend on xpad NOW.

It follows that

Pr[V®7(seed) =1 = Pr [Pr [Cseedm'(Inputseed_row) = IH,

seed seed.row | seed.col

which, by our Satisfying Pairs algorithms, can be estimated in time
glseed.row| glseed.coll /(|seed row| - |seed.col|)*(V) < H/log* ™M (HY).

Finally, our FPNP avoidance algorithm is the same as before, except that we use the rectan-

gular PCPP in the code of My, .

3.2.1 Extensions to Remote Point and Hard Partial Truth Tables

Remote Point Problem. Our start point is the following reduction from REMOTE-POINT
to AvoID. Suppose that C : {0,1}"* — {0,1}¢ is the input circuit. Let Enc : {0,1}* — {0,1}*
be the encoding procedure of an error-correcting code, and Dec : {0,1} — {0,1}* be the
corresponding decoding procedure, where Dec can correct a ¢ fraction of errors. Define the
circuit C’(x) := Dec(C(x)), and let z be any string not in the range of C’, then Enc(z) is (1—0)-
far from Range(C). To see this, assume for contradiction that Enc(z) is (1 — §)-close to some
C(z), then Dec(C(x)) should return exactly z, contradicting that z is a non-output of C".

Suppose that the function Dec can be implemented in the circuit class %pec, then this is a
reduction from ¢-REMOTE-POINT to (4peco%)-AvOID. Therefore, we would like the complexity
of @pec to be as small as possible. There are decoders that tolerate a small constant fraction
of errors in AC° [GGH™07], so it might be possible to implement épec in ACY. However, when
J is very close to 1/2 (say 6 = 1/2 — ¢), we enter the list-decoding regime where %pec seems
to need the power of majority [GR08|. Can we solve €-REMOTE-POINT without invoking any
circuit-analysis algorithms for MAJ o €7

Fortunately, the required techniques already appeared in previous works on the Algorithmic
Method for proving strong average-case circuit lower bounds. In [CLW20|, they provided an
error-correcting code that corrects a 1/2 — ¢ fraction of errors, where the decoder Decciw can
be implemented as a linear sum, i.e., each output is a linear combination of the input bits.'!
Intuitively, this means that we can reduce ¥-REMOTE-POINT to (Sum o €’)-AvoID, where Sum
denotes the layer of Deccpw. Using the framework for Range Avoidance established above,
12

it suffices to solve the SATISFYING-PAIRS problem for Sum o & circuits."® But it is easy to

19 Actually, @**%< also depends on O(q) parity-check bits. We ignore this technical detail in the overview.

1 [CTLW20] stated this result as a non-standard XOR, lemma in their Appendix A. We re-prove it in the form
of error-correcting codes in Section 3.3.2.

12\We made a simplification here. Actually, we need to solve SATISFYING-PAIRsS for NC° o Sum o & circuits.
Using the distributive property, we can push the NC° circuits below the Sum layer, thus it suffices to solve
SATISFYING-PAIRS for Sum o NC° 0 % circuits. In this informal exposition, we may assume that % is closed under
top NC° gates, which means that a SATISFYING-PAIRs algorithm for Sum o % now suffices.

30

see that SATISFYING-PAIRS for Sum o € circuits directly reduces to SATISFYING-PAIRS for &
circuits! Therefore, the error-correcting code in [CLW20| allows us to use an algorithm for
€ -SATISFYING-PAIRS to directly solve €-REMOTE-POINT, with little or no circuit complexity
overhead.

The above discussion omitted several important technical details:

e [t turns out that Deccpy is only an approzimate list-decoding algorithm: given a corrupted
codeword that is (1/2 — ¢)-close to the correct codeword, we can only recover a message

that is 0-close to the correct message (instead of perfectly recovering the correct message).

This drawback is handled by smooth PCPPs [Par21|, which has the property that any
slightly corrupted version of a correct proof is still accepted with good probability. In fact,
we actually need a smooth and rectangular PCPP, which we construct in Section 5.1. We
remark that [CLW20] also encountered this difficulty; they got around it by combining a
PCP and a PCPP for CIRCUIT-EVAL. It is not clear how to generalise this strategy to our

case.

e Another technical complication is that Deccpw outputs real values instead of Boolean
values. It is only guaranteed that the decoded message is close to the original message in
¢1-norm. Consequently, after guessing the PCPP proof, we also need to verify that it is
“close to Boolean”, This difficulty also appears in [CLW20]; however, we need to carefully

define what it means by “close to Boolean” in our case.

e Since Deccpw works in the list-decoding regime, it also receives an advice string (specifying
the index of the codeword in the list). In the above discussion, we omitted the advice
string to highlight the main ideas. It turns out that the dependency of the decoder on the
advice string cannot be captured by linear sums. This is why we define an ad-hoc “linear
sum” circuit class (see Section 3.3.2) that receives both an input and an advice string and
computes a linear combination over the input, where the “linear combination” depends
on the advice. It turns out that we need the dependency on the advice to be local (see
Section 3.3.2 for details), which is fortunately satisfied by the XOR-Lemma-based code in
[CLW20].

Another reduction via succinct dictionaries. We mention that there is another reduc-
tion from REMOTE-POINT to AvOID which appears in [Kor21, GLW22|. Let C : {0,1}" — {0,1}*
be a circuit, y € {0,1}* be a string that is not d-far from Range(C). Then we can find a string
x € {0,1}" and a “noise” string e € {0,1}" of relative Hamming weight at most ¢ such that
y = C(x)®e, where @ refers to bit-wise XOR. Consider the circuit C'(z, e) := C(z)@e. To solve
the remote point problem for C, it suffices to solve the Range Avoidance problem for C’. Using
a “succincter” dictionary to represent e [Pat08|, [GLW22| managed to show that this reduction
also preserves circuit complexity, and in particular reduces NC'-REMOTE-POINT to NC!'-AvoIp.

A drawback of this approach is that it only reduces REMOTE-POINT to Range Avoidance

instances with a small stretch. Indeed, suppose C' is a circuit from n’ inputs to ¢ outputs, and
d =Q(1), then

W > [T(e)] > log ((fg) —).

31

In contrast, our algorithmic method could not solve Range Avoidance instances with such
a small stretch (¢ = ¢ - n for some constant c), even with the best possible algorithms for
SATISFYING-PAIRS. Therefore, we do not use this approach here.

Hard Partial Truth Tables. There is a simple reduction from PARTIAL-HARD to AvVOID.
Suppose we are given strings 1,2, ...,2xy. Let TT’ be the circuit that receives a size-s circuit
C' as input, and outputs the concatenation of C(x1), C(x2), ..., C(xn). If N > O(slogs), then
the circuit TT' is stretching. It is also easy to see that solving the Range Avoidance of TT' is
equivalent to solving the PARTIAL-HARD problem.

In Section 3.6, we essentially combine this reduction with the frameworks in Section 3.4. In
other words, we could have reduced PARTIAL-HARD to AVOID in a black-box way and derived
the main results in Section 3.6. However, this reduction only reduces %-PARTIAL-HARD to
%’-AvoID, where ¢ is any circuit class that can solve €-EVAL in the following sense: for every
fixed input x, there is a ¢” circuit C’ that takes as input the description of a € circuit C, and
outputs C(z). For most circuit classes of interest (e.g., ¥ € {AC?, ACCY, NC!, P /poly }), we could
simply let €’ = €’; however, this is not necessarily true for more refined circuit classes (such as
% = ACC o THR). We choose to derive the main results in Section 3.6 from scratch instead of
reducing it to Section 3.4, partly because we also want our framework to hold for these more

refined circuit classes.

3.3 Preliminaries

3.3.1 An Almost-Everywhere NTIME Hierarchy with a Refuter

We need the almost-everywhere NTIME hierarchy against bounded nondeterminism |[FS16],
which has an FPNP refuter as shown in [CLW20|. Let T'(n), G(n) be good functions, we define
NTIME[T(n)] to be the class of languages decidable by nondeterministic Turing machines in
T'(n) time, and NTIMEGUESSgram[T'(n), G(n)] to be the class of languages decidable by nonde-
terministic Random-Access Turing Machines (RAMs) in 7'(n) time with G(n) nondeterministic
bits.

Theorem 3.3.1 ([FS16, CLW20|). Let ¢ be a large universal constant, T : N — N be a good
function such that nlog®n < T(n) < 2°°Y() . There is a language

LM e NTIME[T (n)] \ i.0.-NTIMEGUESSram[T'(n)/ log® T(n),1/10]/ (1 10)-

Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1™, M,«), where M is a nondeterministic RAM and o €
{0,137/ is an advice string. It is guaranteed that M runs in T(n)/log® T(n) time and

uses at most n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fized M, every sufficiently large n, and every advice o € {0,1}”/10,
R(1™, M,) outputs a string x € {0,1}" such that M (z;a) # L (x).

(Complexity) R runs in poly(T'(n)) time with adaptive access to an NP oracle.

32

We provide a proof of Theorem 3.3.1 here for completeness; in particular, we show that the
time hierarchy and the refuter could also deal with N/10 advice bits. (This essentially follows
from the original proofs in [FS16, CLW20].)

We need the following binary search algorithm.

Lemma 3.3.2 ([CLW20, Lemma 4.4|). There is an algorithm A satisfying the following.

e Input. A is given an explicit integer n > 2 (written in binary form) as input, together

with oracle access to a list (a1, az,...,a,) € {0,1}" such that a1 # ay,.
e Output. An indezx p € [1,n — 1] such that a, # apy1.

e Efficiency. A runs in O(logn) time and makes at most O(logn) queries to the list.

Proof of Theorem 3.3.1. We first define L', Let 2 € {0,1}" be the input of Lh4 we parse
it into z := ((M), o, w, Trest). Here, (M) is the description of a nondeterministic RAM M,
a € {0,1}19 is the advice string for M, w € {0,1}™/10 is a witness of M, and Zest denotes
the rest input bits. We interpret M as a nondeterministic RAM that guesses at most n/10
nondeterministic bits and runs in at most 7”7 := T/ log®T time; if the nondeterminism or time

complexity exceeds the corresponding bounds, we force M to reject.
(i) If M accepts the input ((M), o, 0%/19, 2,es;) with witness w and advice a, then LM (z) = 0.
(ii) Otherwise, if w = 1"/, then L"d(z) = 1.

(iii) Otherwise, let w + 1 be the lexicographically next string after w, L' (x) = 1 if and only
if M accepts ((M), o, w + 1, Trest) With advice a.

Since a nondeterministic RAM of time complexity 77 = T'/log®T can be simulated by a
nondeterministic TM of time complexity o(T), it follows that Lh4 € NTIMEm[T(n)].

Before describing the refuter, it is instructive to understand why LP does not admit a
nondeterministic RAM algorithm with time 7”7, n/10 nondeterministic bits, and n/10 advice
bits. Let M be such an algorithm and « € {0, 1}”/ 10 he the corresponding advice string. For
the sake of contradiction, suppose M computes L', Fix an arbitrary est. For a witness string
w € {0,1}19) denote z,, := ((M), @, w, Zrest). Abusing notation, for an integer 0 < i < 27/10,
let w; be the (i + 1)-th lexicographically smallest string (with wg = 0"/10 and Won/10_q = 17%/10y,

we also denote x; := xy,.

e Suppose M (xg) accepts. Let w be the lexicographically smallest witness w such that M
accepts o on witness string w. It follows from (i) that L"(x,) = 0. However, for every

w' < w, since M does not accept .y, by (iii) we have that
Lhard(xw/) _ M(xw/+1) — Lhard(xw/+1)‘

It follows that 1 = M (xg) = LMd(z) = LM4(z,,) = 0, a contradiction.

e Suppose M(xg) rejects. Then M rejects xy on every possible witness, which means (i)
never happens. It follows from (iii) that for every w € {0,1}%/10\ {1%/10},

Lhard(xw) — M(SCerl) — Lhard(xw+1)'

33

This is a contradiction as LMd(xq) = 0 but L (z,,/10) = 1.

Now we describe our refuter. On input (1™, M, «), our refuter R first uses the NP oracle to

decide if M (z¢) accepts.

o If M(xp) accepts, then it uses the NP oracle to find the lexicographically smallest w such

that M accepts zg on witness string w. Consider the list
1= M(zo), M(x1),..., M(xy), L"4(z,) = 0.

We use Lemma 3.3.2 to find two adjacent entries in the list that are different. This takes
O(log(2™)) = O(n) time with random access to the list. As random access to the list can
be simulated by an NP oracle, this pair of entries can be found in polynomial time with

an NP oracle. Now there are two cases:

— (Case I) Suppose the two entries are M(x,,) and L"9(x,). The refuter simply

outputs xy,.
— (Case IT) Suppose the two entries are M (x,,) and M (x,s 1) where w’ < w. Since M

does not accept o on witness string w’ and w’ < 1*/10, (iii) applies to w’. Therefore
Lhad(2,0) = M (24 41) # M (2,), and the refuter can output .

o If M(xg) rejects, then consider the list
0= M(l’o), M(:L'l), ey M(:L‘ln/m), Lhard(l‘ln/m) =1.

Again, we use Lemma 3.3.2 to find two adjacent entries in the list that are different, in

polynomial time with an NP oracle. There are two cases:

— (Case I) Suppose the two entries are M (xn/10) and L (2,,/10). The refuter simply

outputs xyn/10.

— (Case II) Suppose the two entries are M (x,,) and M (2,,41) for some w € {0, 1}/10\
{17/19} Since M does not accept zq (at all) and w < 1%19 (iii) applies to w.
Therefore L"4(x,,) = M (2y11) # M(2), and the refuter can output . O

3.3.2 Linear Sum Circuits and Hardness Amplification with Them

We need an XOR lemma with “linear sum” decoders: given a corrupted codeword f that is
(1/2 —)-close to Amp(f), there is an affine transformation A such that A(f) is d-close to f.

The actual definition of linear sum circuits is more involved for the following reason. Our
XOR lemma works in the list-decoding regime, therefore it also receives an advice string « (i.e.,
the index in the list) and outputs the a-th decoded message in the list. When « is fixed, A(f: a)
is simply an affine function over f; but the dependence on a can be more complicated. It turns

out that we need an upper bound on the locality of the dependence on «, defined as follows.

Definition 3.3.3 (Linear Sum Circuits). Let = € {0,1}" and a € {0,1}* be two inputs. A

linear sum circuit on input z with advice a is a function C' : {0,1}" x {0,1}* — R™ of the

34

following form:
C(z,a); = Z coeffr () - Tidy (ayi)-
ke[A]
Here, A is the fan-in of C. The circuit is described by two functions coeffy(«) and idxy(c,7);
note that coeffy () does not depend on 4. For technical convenience, we will also allow idx(c, 7)
to take special values ZERO and ONE, where x7gro is always 0 and xong is always 1.

Besides the fan-in A, the following complexity measures of C' will also be important:

e We say the coefficient sum of C' is at most U, if for every advice «, we have

> Jcoeffy(a)] < U.

ke[A]

e We say that C has locality [, if for every fixed k, there is a subset Sy of [bits of o such
that the functions coeffy(a) and idxj(c, 7) only depends on g, .

Example 3.3.4. Counsider the following example (simplified from the proof of Theorem 3.3.5).
Suppose the advice a consists of a list of strings (o, as, ..., .) where a’ ~ 1/£2; given an index k,
coeffi (a) only depends in oy, and idxg(c, i) only depends on «y and i. Suppose each ay has length

1, then regardless of the number a’, the linear sum has locality [.

We need the following XOR lemma with linear sum decoders. The XOR lemma was proved
in [Lev87, GNW11], and it was shown in [CLW20, Section A] to admit linear sum decoders. For
completeness, we provide a proof below and verify the locality of the linear sum. Note that the

XOR lemma is stated below as an approximately locally list-decodable code.

Theorem 3.3.5. Let N € N, 0 < £,6 < 1/10, k := O(log(1/€)/8), N := N*, and a :=
O(log® N/(£6)?). There is an algorithm Amp : {0,1}N — {0,1} computable in deterministic
poly(N) time, and a linear sum circuit C : {0,1}N x {0,1}* — RN such that the following hold.

(List-decoding) For every string f € {0, 1}N that is (1/2—¢)-close to Amp(f) for some hidden
string f, there is an advice o € {0,1}%, such that (1) for every i € [N], C(f,a); € [0,1];
and (2) [|C(f,a) = fl1 <6.

(Complexity) The fan-in, coefficient sum, and locality of C are at most O(log N/(g6)?),
O(1/¢), and log N respectively.

Proof. For simplicity, we identify a string f of length N and a Boolean function f : [N] — {0, 1},
where f(z) outputs the z-th bit of f. For a string f € {0,1}", denote f®* to be the following
string of length N*. For each (1, xs,...,x;) € [N]¥, we have

k

F @y, wa, . wk) = @D flai) = fla1) © fa2) @ -+ @ flag),

=1

where @ denotes bitwise XOR. We simply let Amp(f) := fF.

35

The decoder. For a length-k vector 7+ € ([N]U{L})* and i € [N], let & denote the vector

where each | in ¢+

is replaced by 4. (In the decoder, we will only need the case where each 7+
contains exactly one L, so ¢" simply replaces that single L by i.)
Let f : [N]* — {0,1} be a codeword (treated as a Boolean function). We set A’ :=

O(log N/(6)?) and r := (2;66)6. Our decoder will take a list of vectors 17%,77%,.. T4 €

([NJU {L})* and a list of signs o1,09,...,04 € {0,1} as advice. Intuitively, ©;- denotes a
segment of f that has noticeable correlation with f, and o; denotes whether the correlatlon is
positive or negative; our linear sum decoder uses the average of f (v) @ o; as a prediction of f;.

More formally, given an input i € [N], the decoder outputs

dec(f); := ! [(f(ﬁ;’) @ oj) —1/2| +1/2. (3.2)

r]<—[A

Correctness. We establish the correctness of this decoder by the following lemma.

Lemma 3.3.6. Letk > 1,6 € (0,1/10), ¢ := (1-6)*"1(1/2—46), and A" := O(log N/(£6)?). For
every string f € {0, l}Nlc that is (1/2 —¢)-close to &% for some hidden string f € {0,1}", there
is a list of A" vectors v, vy, ..., o4 C ([NJU{L}F, and a list of signs o1,02,...,04 € {0,1},

such that (1) for every i € [N], dec(f); € [0,1]; and (2) ||dec(f) — fl1 < 6.

Proof. We use induction on k. Suppose k = 1, then one can verify by direct calculation that
the lemma holds by setting Ull = (1) and o1 = 0. Now suppose k > 1 and the lemma holds for
k—1.

Fix i € [N] and let o+ € ([N] U {L})* denote some vector whose first coordinate is | and
other coordinates are from [N]. Think of every coordinate of 4+, except the first, is drawn
independently and uniformly from [N]. Define

7 k(i
pi=, P [RE) =)
Case I: Suppose there is some iy € [N] such that |p;, —1/2] > ¢/(1 —). Let b € {0,1} be
a bit, consider the sub-string f' € {0,1}¥" ™" such that f/(¢+) = f(#) @ b. Then, for some
be{0,1}, fis (1/2 — /(1 — §))-close to fEED),
By the induction hypothesis, there is a list of A’ vectors 41, ..., i C ([N —1JU{L}*) and

a list of signs o1, ...,0%, € {0,1} such that the vector dec’ satisfies the conclusion of the lemma,
where .
dec) = - [N*@ —12] 1/2.
b= B[P ed) - 12] +1/

For each j, let 17’]4- be the concatenation of ¢y and ﬁj‘, and let 0; = 0} ©b. We have that dec(f);

is exactly dec; and we are done.

13(3.2) is perhaps easier to understand when we change the basis from {0,1} to {1, —1}; we choose the basis
{0,1} only to be consistent with other parts of this chapter. When we change the basis to {1, —1}, XOR becomes
multiplication and the assertion “a = b” becomes simply a - b. Thus (3.2) becomes

dec(f); = 1 E [f(ﬁ';) 'ij],

T j[A]

which is simply the average of all A’ predictions, amplified by a factor of 1/7.

36

Case II:
(1/2 — ¢)-close to €%, we have

E [p]>1/2+e.
HN][pL /2+e¢

We sample each 27']L < {1} x [N]*~! independently at random. Let

pi = f(]‘)

@k (i
P 7))

Suppose for every i € [N], we have |p; — 1/2] < ¢/(1 —9).

Note that, since f is

Let n := 2(%6). By a Chernoff bound, w.p. 1 — Ne=21"t > 0, for every i € [N], we have

pi = Bil <. Let oy == fEFV((@} o)
e =)

Note that

dec(f); = ~(Bi - (fi = 1/2) +

_1
_ fi=1/2)(2pi = 1)

+1/2.
We first show that for every i € [N], dec(f); € [0,1]. In fact,

dec(f)s — 1/2] = 1(i — 1/2)(2p1 — 1)

1

= —|p;i —1/2

i~ 1/2

< 1-6 € n
=@2+ae\1-0 "
=1/2.

Then we show that

ldec(f) — fll = S [IdeC(fi— fill <6

This is because

E [ldec(f): — f;]

1+[N]
_ i(_H_E:N} H (fi — 1/23(2@: -1) +1/2- f,]
0 |
12— i (N [Di] — 1/2

§1/2—ﬂ§5,
r

where (3.3) is because 1|p; — 1/2| < 1/2 for every i. The lemma follows.

37

- @B, F((T)1), then we have

(1—=pi)- (/2= fi)) +1/2

(3.3)

Complexity. It remains to determine the complexity of the decoder defined in (3.2). The
advice string o contains the vectors oy, ¥y, .. ., Uj, and the signs o1, 09,...,04/. It is clear that
the fan-in is at most A’ + 1 = O(log N/(g6)?). The coefficient sum is O(1/r) = O(e~!). Since
the k-th term is

coeff(a) = (=1)% /(A'r), and idxy(a,i) = ¥},

it follows that each term only depends on log N bits of c. O

We will also use the notation dec,(f) to denote C(f,), emphasising that dec, is an affine

transformation that depends on a.

3.3.3 A Stretch Reduction for REMOTE-POINT and PARTIAL-AVGHARD

In our framework for solving REMOTE-POINT (Section 3.5), for technical convenience, we
only consider circuits C' : {0,1}" — {0,1}¥™) where £(n) is a certain stretch function. (For
example, it might be the case that £(n) is rounded to a power of 2 for every n.) In this section, we
show that such an algorithm can also solve REMOTE-POINT for circuits of larger stretches (such
as %Z(n)) This justifies that it is without loss of generality to only consider stretch functions
that are equal to £(n).

Lemma 3.3.7 (Stretch Reduction for REMOTE-POINT). Let € be a typical circuit class and
s be a size parameter. Suppose that €[s]-REMOTE-POINT with stretch ¢'(n) and distance pa-
rameter 1/2 — €'(n) admits an FPNP algorithm. Then for any stretch £ = £(n) > £'(n + 1)/2,
% [s]-REMOTE-POINT with stretch £(n) and distance parameter 1/2 — (n) also admits an FPNP

algorithm, where e(n) :==2-¢'(n+1).

Proof. Denote ¢/ :== ¢'(n+1), ' :=&'(n+ 1), £ := {(n), and € := &(n), and let C : {0,1}" —
{0,1}* be an input circuit. If £ is a multiple of £, we can split the £-bit output of C into blocks of
size /' and add a dummy input bit to construct m := £/¢ circuits Cy,Ca, ..., Cy, : {0, 1} —
{0,1}¢(+1) such that for every z € {0,1}" and b € {0,1},

C(z) = Ci(x,b) o Cy(x,b) o - -+ 0 Cpy(x,b).

Using the FPNP algorithm for ¥-REMOTE-POINT with stretch #(n + 1) and error parameter
¢'(n + 1), we can construct y,ya,...,ym € {0,1}¥ such that each y; is (1/2 — &')-far from
Range(C;). It then follows that the concatenation y; o yg 0 -+- 0y, is (1/2 — &')-far from
Range(C).

We now consider the case where £ is not a multiple of #. Let I : {0,1}""1 — {0,1} be
defined as the projection I(z) = x,1, that is, it always outputs the last bit. For any ¢, let I®" :
{0,1}™*1 — {0,1}* denote the concatenation of ¢ copies of I. Therefore, Range(I®?) = {0¢, 1t}.
Since € is typical, we have I® € €.

Let M = k- be the smallest multiple of # larger than ¢, and ¢ := M —¢. For a multi-output
% circuit C, we define C : {0,1}"" — {0,1}M as

C(z,b) = C(z) o I®(z,b),

38

where z € {0,1}" and b € {0,1}. Since C is of input length n + 1 and output length being
a multiple of ¢, we can get a remote point s € {0,1}™ in FPNP that is (1/2 — ¢)-far from
Range(C).

Let s = s1 o s9, where 51 and sy has length ¢ and ¢, respectively. We then prove that s; is
(1/2—¢) far from Range(C). Towards a contradiction, we assume that s; is not (1/2—¢)-far from
Range(C). In other words, there is an z € {0,1}" such that 6(C(x), s1) < 1/2—e. By considering
the Hamming weight of so we know that there is a b € {0,1} such that §(I®(z,b), s3) < 1/2.

It then follows that

5(s, C(z,b)) = 8(s1 0 s9,C(x) 0 I®(2,b)))

l
1 /

< _

<3 o™
1

<-—dn+1)
2

This leads to a contradiction as s is (1/2 — &’(n + 1))-far from Range(C). O

Similar to REMOTE-POINT, another average-case problem PARTIAL-AVGHARD can also be

reduced to the instances with smaller stretch in the same way.

Lemma 3.3.8 (Stretch Reduction for PARTIAL-AVGHARD). Let € be a typical circuit class
and s be a size parameter. Suppose that NCS o (€[s])-PARTIAL-AVGHARD with stretch £'(n)
and distance parameter 1/2 — '(n) admits an FPNP algorithm, then for any stretch £ = £(n) >
V'(n+1)/2, €[s]-PARTIAL-AVGHARD with stretch £(n) and distance parameter 1/2—e(n) admits

PNP

an F algorithm, where e(n) :=2-&'(n+1).

Proof Sketch. The proof of this lemma is similar to that of Lemma 3.3.7. Here we use the same
notation as the proof of Lemma 3.3.7.

Let X = {x1,...,2,} denote input strings, and let y; := z; 0 0. We create £ copies of 0" o 1
and use yyy1,...,ynm to denote these copies.

we solve NC9 o €-PARTIAL-AVGHARD on {y1, ...,y } and get an average-case hard partial
truth table s = s 0 sy that is (1/2 — ’(n + 1))-far from any truth table of NC3 o & circuit,
where s; and sy has length ¢ and £. Then we prove s; is a solution to the original problem.
For some % circuit C, if s; is not (1/2 —e(n)) far from partial truth table of C' on X, we can
define C1,Cs : {0,1}™ x {0,1} — {0,1} as C1(2;b) := C(z) Vb, Ca(z;b) := C(x) A (=b). Then
one of Cy and Cy has partial truth table on Y := {y1,...,yax} not (1/2 — &'(n + 1)) far from
s, which leads to a contradiction. Therefore, s; has to be a solution. The analysis is similar to
Lemma 3.3.7. O

3.3.4 Satisfying Pairs for NC o0 %

We show that satisfying pairs for NC?I o € circuits can be reduced to the satisfying pairs of
ANDY 0 €, XORY 0 &, or ORY 0 ¥ via standard Fourier analysis (see, e.g., [CW19b, Section 4]).

This will be beneficial for the unconditional results for weak circuit classes.

39

Theorem 3.3.9. For every constants 6 € [0,1] and d > 1, there is a constant &' such that the fol-
lowing holds. Let N = N(n), M = M(n),n,s = s(n) be parameters, Cq € {AND4, ORy, XORy}.

Then #(NCY o €)-SATISFYING-PAIRS (resp. Approxs-(NC) o €)-SATISFYING-PAIRS) with
parameters (N, M,n, s) is O(n)-time Turing-reducible to #(Cq o €)-SATISFYING-PAIRS (resp.
Approxs -(C4 © €)-SATISFYING-PAIRS) with parameters (©O(N),M,n,s), as long as each input
circuit of the #(NCYo%)-SATISFYING-PAIRS (resp. Approxs-(NCYo%)-SATISFYING-PAIRS) prob-
lem are given explicitly as a top NCg circuit Ciop together with d circuits C1,Cy,...,Cq € €
feeding Ciop.

Moreover, the oracle algorithm for #(NC%o%)-SATISFYING-PAIRS (resp. Approxs-(NCGo%)-
SATISFYING-PAIRS) only makes O(1) non-adaptive queries to the #(Cqo0 %)-SATISFYING-PAIRS
(resp. Approxs -(Cyq o €)-SATISFYING-PAIRS) oracle.

Proof. Let N, M,n,s be the parameters. Suppose that we are given C1,Cs,...,Cxn € €[s] and
x1,%2,...,xp € {0,1}" as input. We assume that Cp,Cs,...,Cy share the same upper NC?l
function computing f : {0,1}¢ — {0,1}, that is for every i € [N], C; = f o D; for some d-
output ¥ circuit D; of size at most s. This is without loss of generality since there are at most
22" = O(1) different NCY functions and we can (approximately) count the number of satisfying
pairs for each of these cases separately.

We first consider the case for C; = AND,;. We use the basis {0,1} C R for Boolean values

and write f as
fx)="Y as-]]a

SC[d] i€s

where each coefficient ag € [~29,2%] N Z. Note that we can compute the coefficients by writing
the truth table of f in the canonical disjunctive normal form, represent by =, -z by 1 —z, A
by multiplication, and (disjoint) V by addition, and then expanding the multi-linear polynomial
using a brute-force algorithm in O(1) time.

Let xs(z) := [[;eg xi for S C [d]. Then the number of (4, j) € [N]x [M] such that Cj(x;) = 1

is

>0 D F(Dilxy)

i€[N] je[M]

=> > > as-xs(Dil;))

i€[N] je[M] SCd]

=Y as- | > > xs(Di(x))
scld LielV)jep)

=Y as | > > ANDg o Dils(z)) |,
SCld] Li€[N] j€[M]

where D;|s : {0,1}15] — {0,1} representing the circuit obtained from D; by restricting to the
output bits in S. Then our algorithm is as follows: We enumerate all S C [d] and count (resp.
approximately count) the number Ag of satisfying pairs for circuits AND|g| o D1lg, ..., AND|g o
Dy|s and inputs x1, ..., z)s, then we output the answer ng[d] ag - Ag.

40

For C; = XOR; and C; = ORy, we only need to write f as

f(z) = Z alg @xi, (3.4)

SC[d] i€S
f)= a%-\/ = (3.5)

SCld) ieS
where oy, o’y < 20(4). Note that (3.4) can be obtained using the basis {true := —1,false := 1}
and (3.5) can be obtained using the basis {true := 0, false := 1}. O

3.4 Range Avoidance

Definition 3.4.1 (Algorithms for SATISFYING-PAIRS with PNP Preprocessing on Circuits). Let
P be one of €-SATISFYING-PAIRS, #%-SATISFYING-PAIRS, Approxs-%-SATISFYING-PAIRS, and
Gaps-6-SATISFYING-PAIRS. A t-time algorithm for P with PNP preprocessing of an f-size data

structure on circuits is a pair of algorithms (A;, A2) that solves P in two phases:

1. Given the circuits C1,Cs,...,Cn : {0,1}" — {0,1} of size s, the polynomial-time algo-
rithm A; with oracle access to a SAT oracle computes a string DS € {0,1}*.

2. Given the inputs z1,2s,...,za € {0,1}" and the string DS € {0, 1}, the algorithm A

solves P on the instance (C1,...,Cn,x1,...,x)) in time ¢.

In this subsection, we establish the connection between the AVOID and SATISFYING-PAIRS.

The main result is the following theorem.

Theorem 3.4.2. There are constants € > 0 and cg > 1 such that the following holds. Let
0 <1 < 1/2 be a constant, £(n) > n'™" be a good function. Let €[s] be a typical circuit class
where s = s(n) is a size parameter, and €'[2s] := ORg 0 €[s] (i.e. a €’ circuit of size 2s refers
to the OR of at most two € circuits of size s).

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/log®(NM))-time algo-

rithm for Approx.-¢"-SATISFYING-PAIRS with N := ¢~ .polylog(¥) circuits of size 2s(n)

PNP

and M := £¢T1=1 . polylog(¢) inputs of length n - polylog(¥), allowing a preprocessing

of an N¢-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for €[s]-Avoip with stretch £(n).

3.4.1 Proof of Theorem 3.4.2

Proof. Suppose that we are given a € circuit C : {0,1}" — {0,1}¢. Without loss of generality,

we may assume £ is a power of 2 and ¢ > 2. We set the following parameters:

mi=5(c +2)/n = O(1),
Wproof 1= log ¢, Wproof = 21pref = ¢,
hproof := (¢4 1) log ¥, Hppoof 1= 2ot = fet1,
Thard := 10Hproof - 12 - polylog(¢),

41

T := Hproof . Wproof/ logCtm (e)

The constants €, ¢y, and ¢ty will be determined later.
Let Lhard bhe the hard language constructed in Theorem 3.3.1. We use nparg and 1" to denote
the input length and the time complexity of L', respectively, i.e.

L € NTIMEw[T] \ i.0.-NTIMEGUESSgam[T/ log™=(T"), 1thard/10]/ (ny.a/10)

where charg is some large universal constant. Note that since T = 2 /polylog(f), Nhard =
Ot - n), £ > n'*™1 we can see that n:]:r?(l) < T < n, 4, which satisfies the technical
condition of Theorem 3.3.1.

We describe a nondeterministic RAM MPCPP that runs in T/ log®=d(T) time, uses nparg/10
advice bits, guesses npard/10 nondeterministic bits, and attempts to solve Lh2rd o0 nparg-bit
inputs. By the definition of L MPCPP has to fail on some input = € {0,1}" when nparq is
sufficiently large. Our goal is to design such an algorithm MPCPP that (1) rejects every = ¢ Lhd,
and (2) accepts every = € LM with an easy witness. Thus, if MPCPP fails on some input z,
then € LM and it has only “hard witnesses”, which will be exploited for finding a non-output
of C.

Here, to define the inputs x “with an easy witness”, we will need the 2-query rectangular

PCPP in Theorem 2.5.10 for the following language
L& := {Encode(z) : x € LM},

where we fix an error-correcting code (Encode, Decode) as in Theorem 2.4.1. Let dcode be the
distance of the code. Suppose a string of length npaq is encoded (via Encode) into a string of

length Mpard := O(nhard). We set the following parameters:

O(loglog T .
hinput = <1 - (l(;gg]-%)> hproof; Hinput = thPUt = Hproof/pOIYIOg(£)7
Winput = DOg ﬁhard1 - hinput’ VVinput 1= 2Wineut — . . p01y10g(€)'

We assume without loss of generality that finard = Hinput - Winput- (This can always be done
by adding at most Winput < ftharg dummy bits into the codeword of the error-correcting code,
where the resulting code is still of constant rate and distance.)

We apply Theorem 2.5.10 to obtain a 2-query rectangular PCPP for L®"® with an Hinput X

Winput input matrix and an Hproof X Wireof proof matrix, where

hproof :=log T'(n) + ©(mloglog T'(n)) — Wereof = (¢ + 1) log £ + ©(mloglog ¢),
ﬁproof = 2;Lpr°°f =t polylog(¥).
We can check that the technical conditions of Theorem 2.5.10 for the 2-query rectangular

PCPP construction holds:
® Wproof > (5/m)log T because n;'fgg%?f >1/n>1.

® Nproof > (5/m) log T because Aproof > Wproof -

42

Rinput CmloglogT . h|np|_|t o O(loglogT) 2
° s <1- ThogT because Foveot = 1-— “TogT and Nproof < Pproof-
Winput Cm loglogT' . _ e(log log T) proof
¢ o S < == Note that hinput = hp,oof—T > (c+1)log ¢— O(log log).
Winput “Og nhardw hlnput (C+1)€+10g n+0(10g log ‘e)fhlnput log n+0(10g log Z)
We have Woroof log ¢ < log ¢ < log ¢ ()

By Theorem 2.5.10, there is a PCPP verifier VPCPP for L®" with oracle access to Il :=
Enc(z) o m, where the input Enc(x) is treated as a matrix of size Hinput X Winput, and the proof ©

is treated as a matrix of size H, proof X Wproof. The PCPP verifier has the following parameters:

o completeness error = 1 — ¢pep,

o soundness error = Spcp,

o proximity parameter = dcode/3,

o query complexity < 2,

o parity-check bits < 2,

o total randomness = r :=logT + O(loglog T + mlogm),

o row randomness = Trow := oot — (5/m)log T = (¢ 4+ 1 — 1) log £ + O(loglog ¢),

o column randomness = reo| 1= Wproof — (5/m)logT = (1 — n)log £ + O(loglog ¢),

o shared randomness = rshared := (10/m)log T + O(loglogT') = 2nlog ¢ + O(loglog ¢).

Moreover, the total number of parity-check bits and queries is at most 2, and the decision
predicate VDec <— Vyec(seed.shared), which takes the parity-check bits and the answers to the
queries as the input, is an OR of its input bits or their negations.

For an input z € L"dn {0,1}™erd | we say that x has an easy witness if there is a proof

matrix 7 for the statement “Encode(x) € L®"” such that:
(completeness) Prseed<_{071}r[VPCPPE”COde("’:)OW(seed) accepts] > cpep; and

(easiness) for every row m; of m, there exists a string w; such that m; = C(w;).

Description of MP PP, Now we define MPPP_ which is a non-deterministic algorithm that
runs in 7'/ log®= T time and takes at most £°*1 < nya4/10 bits of advice. The goal of MPCPP g

to reject every = ¢ LM and accept every x € LM with easy witness when appropriate advice
is given.
On input x € {0,1}"rd we guess _[:Iproof strings wi,ws,...,wgy € {0,1}". Let m be the

proof
Hproof X Woroof proof matrix where for each i € [Hproof], the i-th row of 7 is equal to C(w;).

Let pacc be the acceptance probability of the PCPP verifier VPCPP for L®"¢ given the input
Encode(z) and the proof , i.e.,

Dacc i= seedf{O 1}T[VPCPPE"°°0"3("”3)°7T(seed) accepts).

We need to distinguish between the case that pacc > cpep and the case that paec < spep. We set
€ := (Cpcp — Spcp) /4 so that this can be done by estimating pacc with an additive error at most ¢,
which will be done by applying the Approx_-¢’-SATISFYING-PAIRS algorithm in the assumption.
(Recall that cpep and spep are absolute constants that only depend on dcode, Which means that

¢ is also an absolute constant.)

43

In what follows, we reduce the problem of estimating pacc to 27shared instances of Approx.-%"'-
SATISFYING-PAIRS, where each instance consists of 27l = (1= . polylog(¥) circuits and 27 =
£¢T1=1 . polylog(¢) inputs. Then we will use the algorithm for Approx_-6’-SATISFYING-PAIRS to
estimate pacc, where the data structure in the preprocessing phase will be treated as an advice

of MPCPP.

For the simplicity of presentation, we define the notation:

(itype[1], ..., itype[q]) < Viype(seed.shared),
(irow[1], ..., irow[q]) <= Viow(seed.shared, seed.row),
(icol[1], ... ,icol[g]) <= Vcol(seed.shared, seed.col), and
(pct, ..., pep) = Vpc(seed.shared),

where p = p(seed.shared), ¢ = g(seed.shared), p + ¢ < 2, and pc; : {0, 1} 7l — {0,1} is an
XOR of (some of) its input bits (i.e. a GF(2)-linear function) for every i € [p].

Reduction to Satisfying Pairs. The input strings in the Approx.-¢”’-SATISFYING-PAIRS

instance will be of the form (ay,...,aq,pct®, ... ,pc"). For each j € [g], the meaning of a; is
as follows:
e if itype[j] = input, then a; is interpreted as a row of the input matrix, and we use (a;)co

to denote the col-th bit of a;;

o if itype[j] = proof, then a; is interpreted as a “seed” such that C(a;) is a row of the proof
matrix, and we use (a;j)q to denote the col-th bit of C'(a;j). (NOT the col-th bit of a;!)

row

For each j € [p], pc?™ is a bit representing the contribution of seed.row in the j-th parity-check
bit, i.e. pcP" 1= pcj(seed.row, Qlseed-colly,

We first enumerate seed.shared € {0, 1}"shared. For each seed.shared, we create an instance
T := Tseed shared Of Approx.-¢’-SATISFYING-PAIRS as follows. Let Z; be the j-th row of Encode(x)
(viewed as an Hinpyt X Winput matrix). For each seed.row € {0,1}", we add the following input

to Z:

— row row
InPUtseed.shared,seed.row - (ala <o Qg PCL -5 PG)7

where for every j € [q],

s = i‘irow[j] if itype[j] = input,
J e)
Wirow[s] if itype[j] = proof,

row

and pc?" is the contribution of seed.row to the j-th parity-check bit as defined above. Note
that since 7ihard = Hinput * Winput; Tirow[;] € {0, 1}Wimewt when itype[j] = input, i.e., Tirow[;] Will not
contain L (see Definition 2.5.4). The length of a; is at most max{Winput,n} < n - polylog(¢),
thus the total length of Inputeeed shared seed.row 15 @ls0 bounded by n - polylog(#).

Then, for every seed.col € {0, 1}"«!, we define a circuit Cseed.shared,seed.col as follows. On input

row row
(a1, ..., aq,pet™, ... pey™),

44

it outputs

row

VDeC<(a1>iC°|[1}’ T (a(I>icol[q} 7PCEOW ® pCEOI7 A @ pc;f’l)_

Here, VDec < Vgec(seed.shared) is the decision predicate of VPCPP and pcf°' represents the
contribution of seed.col to the i-th parity-check bit, i.e., pcs°! := pei(01seedro%l seed.col). Note
that by definition, pc;(seed.row,seed.col) = pc®™ @ pch'. Also note that Cseed shared seed.col 15

indeed an ORg 0 ¥ circuit, since VDec is always the OR of its two input bits or their negation.

C'seed.shared ,seed.col Cseed .shared,seed.col

Figure 3.1: Examples of the circuit Cseed.sharedseed.col- I the left example, there are two
queries and no parity-check bits, the first query has type proof, and the second query has
type input. In the right example, there are one query with type proof and one parity-check
bit.

Now, our instance Z contains M := 2" inputs and N := 27« circuits. By definition,
Encod
VPCPP nco e(I)Oﬂ(Seed) - C’seed.shared,seed.co|(InpL]tseed,shared,seed.row)'

Since M = ¢“T1=" . polylog(f) and N = ¢~ . polylog(¢), there is a non-trivial algorithm for
Approx_-¢’'-SATISFYING-PAIRS with N circuits of size s and M inputs of length n-polylog(¢). In
particular, we can estimate pacc(seed.shared) using this algorithm on Zgeed shared Up to an additive

error €, where

Pacc(seed.shared) := Pr [VPCPPE“COde(:”)O”(seed)} .
seed.row,seed.col
In other words, we can obtain a p,..(seed.shared) € pacc(seed.shared) +e. The overall acceptance

probability of VPCPP on the input Encode(x) and proof is

o Encode(z)om
poec = Pr [VPCPP (seed)} .

Pr [VPCPPE“C(I)‘”(seed)H

seed.shared |:seed.row,seed.co|

= E [pacc(seed.shared)]

seed.shared

/
seed.shared)| + €.
seed.shared [paCC()]
Hence we can estimate pacc up to an additive error € by taking average over all p, .(seed.shared)
obtained by the Approx.-¢’-SATISFYING-PAIRS algorithm over Zgeed shared-

MPCPP works as follows. It first computes Encode(z) in O(n)

To summarise, our algorithm
time. Then, it enumerates seed.shared, produces the instance Zgeed.shared, and feeds it to the

algorithm for Approx.-¢’-SATISFYING-PAIRS to obtain p,..(seed.shared). Let pl . be the average

45

of pl..(seed.shared) over all seed.shared € {0, 1}"shared. It accepts if and only if pl .. > cpep — €.

MPCPP

Correctness of For every = € {0,1}™rd we know by the discussion above that:

o If x ¢ Lh* we know that Encode(z) is dcode far from being in L"¢. By the soundness of
VPCPP, pacc < Spep, which further means that pl.. < pacc +& < ¢pep — €, hence MPCPP

will reject x.

o If z € Lh has an easy witness, we can see by the definition of easiness that there is a
proof 7 of Encode(z) € L such that for every row m; € {0,1}Weeof of 7, there is a string
w; € {0,1}" such that m; = C(w;). These w; can be found by non-deterministic guessing
at the beginning of MP PP In such case, we know by the completeness of VPCPP that
Dacc = Cpcp, Which further means that Phec = Pacc — € = Cpcp — €. Therefore M PCPP will

accept x.

Complexity of MP PP, Each instance Z of Approx.-%’-SATISFYING-PAIRS contains M :=
27w inputs and N := 2"« circuits. Since each instance can be solved in NM/log® (N M) time,

the total time are

oshared . N M/ log® (N M)
S 27"shared . 27'row . 2TcoI/T‘CO

<27 /re.

Recall that r = log T'+ O(loglog '+ mlog m), where O(-) hides some absolute constant, we can
see that 2" /r® =T logo(l) T/log®™ T. By setting ¢y to be an sufficiently large absolute constant
depending on chard, we can make 2" /r < T'/log®dT. Also, we can compute Encode(z) in
O(Nharg) time, and this is not the bottleneck. Therefore, the total running time of MPPP is at
most 7'/ log®d T

It then suffices to determine the advice and non-determinism complexity of MPPP. For every
seed.shared, the machine M PCPP eeds the data structure DSceed shared as advice to support the
algorithm for Satisfying Pairs. Since |DSeeed.shared| < N¢ = 2! by the assumption, the advice

complexity of MPPP ig
2crco|+rshared < eC—C’I]‘i‘Qn < €C+1 < nhard/lo'

Also, the number of nondeterministic bits that MPPP guesses is at most H proof * 1 < Thard/10.

Therefore, we can see that

MPPP € NTIMEGUESSRam[T/ log®=¢ (T'), nthard/10] /(npora /10) -

The final algorithm. Given a multi-output circuit C : {0,1}"* — {0,1}*, our algorithm for
finding a non-output of C' works as follows. First, we construct the hard language L' and the
algorithm MPCPP . Since MPCPP is a nondeterministic algorithm that runs in T /log®=d(T) time,
uses at most nparg/10 bits of nondeterminism and at most npaq/10 bits of advice, it follows that
there is an input 2paq € {0,1}74 such that MPPP(2p.q) # L' (2parg). Moreover, let o be

46

the advice string fed to MPCPP i e., the data structures DSgeed shared for each seed.shared. (Note
that we can obtain « since the avoidance algorithm has an NP oracle.) We can find such an
input Tharg by running R(17=rd, MPCPP o) where R is the refuter guaranteed by Theorem 3.3.1.
Thus, we can find xpaq in poly(7') time with an NP oracle.

If Zharg & LM, then MPCPP also rejects Tharg, which means MPPP (z..4) = LM (2p004).
Thus, it has to be the case that zhaq € LM but MPCPP rejects Xnard. Therefore, xpaq does not
have an easy witness. We can then use the NP oracle to find the lexicographically first proof

matrix 7 such that

Seedf{ro 1}T[VPCPPE"C°de(x)°”(seed) accepts] > Cpep-

Treating 7 as a matrix of dimension Hproof X Whiroof, there has to be a row that is not in the

range of C. We can pick such a row by using the NP oracle. O

Remark 3.4.3. In Theorem 3.4.2, we assumed a non-trivial SATISFYING-PAIRS algorithm for the
circuit class ORg 0 %. By Theorem 3.3.9, a non-trivial SATISFYING-PAIRS algorithm for AND3 0% or
XORs 0 ¥ also suffices. This property might be useful for some circuit classes with a better closure

property under top XOR; gates (or AND; gates).

By replacing the 2-query PCPP (with imperfect completeness) with the 3-query PCPP (with
perfect completeness) in Theorem 2.5.10, we can show that non-trivial algorithms for Gap_.-¢"-
SATISFYING-PAIRS where 4’ = OR3 o € also imply FPNP algorithms for €-AvoIp.

Corollary 3.4.4. There are constants € > 0 and co such that the following holds. Let 0 < n <
1/2 be a constant, £(n) > n'*7 be a good function. Let s = s(n) be a size parameter, €[s] be
a typical circuit class where s is a size parameter, and €'[3s] := OR3 0 €[s] (i.e. a €’ circuit of

size 3s refers to an ORg of at most two € circuits of size s).

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/log® (N M))-time algo-
rithm for Gap.-¢’-SATISFYING-PAIRS with N := (1= -polylog(¥) circuits of size s(n) and
M := (171 . polylog(¢) inputs of length n - polylog(£), allowing a PNP preprocessing of an

NE€-size data structure.
Conclusion: Then there is an FPNP algorithm for €[s]-AvoID with stretch £(n).

Proof Sketch. Compared to the proof of Theorem 3.4.2, the only difference is that the Gap.-¢”-
SATISFYING-PAIRS algorithm can only distinguish between the case that p,cc(seed.shared) = 1
and that p,cc(seed.shared) < 1 — ¢, and our algorithm MPCPP rejects immediately if there is a
seed.shared such that pacc(seed.shared) # 1.

If the PCPP has perfect completeness, we can still distinguish between the case that « &
and the case that € LM has an easy witness. Indeed, if z ¢ L' then pacc < 1—¢, hence by

Lhard

an averaging argument there exists some seed.shared such that p,cc(seed.shared) < 1 — ¢; on the
other hand, if z € L' has an easy witness, then (on some nondeterministic guess of M7CPP)

we have that p,cc(seed.shared) = 1 for every seed.shared. d

47

3.5 Remote Point

Theorem 3.5.1. There is a universal constant ¢, > 1 such that the following holds. Let N :=
N(n) be a parameter such that 21°8™ " < N < 2n*™
and £ := N°:1°8(1/2) " Let €[s] be a typical circuit class, where s := s(n) < N is a size parameter,
and denote €'[cys] == AND,, o €[s] (i.e. a €' circuit of size c,s refers to the AND of at most

cu € circuits of size s).

, €:=¢(n) > n" be the error parameter,

Assumption: Let P := (log N)log(l/‘f). Suppose there is a deterministic algorithm running in
time T& := N2 /P that, given as input a list of N €"[cys] circuits {C;} and a list of N
inputs {x;} with input length n - polylog(f), estimates Pr; j(n[Ci(x;)] with additive error

PNP

n = e%. For some constant c, this algorithm is allowed to have a preprocessing phase

on circuits that outputs a “data structure” of length fpg := N€.

Conclusion: Then there is an FPNP algorithm that takes as input a circuit C = {0,1}" — {0,1}¢,
where each output bit of C' can be computed in €[s], and prints a string y that is (1/2—¢)-
far from Range(C).

The rest of this section is devoted to proving Theorem 3.5.1. Since the proof is quite technical

and consists of a few components, we give an overview below:
OVERVIEW OF SECTION 3.5

e In Section 3.5.1, we define a circuit class called ProdjoSumo%’, and show that a SATISFYING-PAIRS
algorithm for ANDy o € implies a SATISFYING-PAIRS algorithm for this class. This will be a

convenient tool for our subsequent arguments.

e To solve the remote point problem, we need to define a nondeterministic machine called M PCPP
trying to contradict the nondeterministic time hierarchy (Theorem 3.3.1). In Section 3.5.2, we
set the framework for this machine: it uses the PCPP theorem in Theorem 2.5.11, guesses a
“compressed” version of the PCPP proof, and verifies the validity of this PCPP proof without

decompressing it.

e The first problem we encounter is the “non-Booleanness” of the PCPP proof. As we use Theo-
rem 3.3.5, the decompressed proof consists of real numbers instead of Boolean values, and we need
to check whether the decompressed proof is “close to Boolean” (in a carefully defined technical
sense). This is done in Section 3.5.3 via the SATISFYING-PAIRS algorithm.

e In Section 3.5.4, we use the faster algorithm for SATISFYING-PAIRS to verify the PCPP proof.
This step is straightforward but tedious.

e After we obtain a non-trivial algorithm for verifying the PCPP proof, we conclude the machine

MPCPP in Section 3.5.5. Then we use this machine to build an FPNP algorithm for the remote

point problem in Section 3.5.6.

3.5.1 SATISFYING-PAIRS for Prod; o Sum o ¢ Circuits

It turns out that as an intermediate step, we need a SATISFYING-PAIRS algorithm for the
following class of multi-output circuits that output real numbers. Let d > 1 be a constant,
denote by Prod; o Sum o % the class of multi-output circuits which take two inputs z € {0,1}"

and «, and have the following components:

48

Figure 3.2: Example of a Prod; o Sum o % circuit.

e Let ¢4 denote the number of bottom % circuits. For each i € [¢4], the i-th bottom circuit
is a € circuit computing a function C; : {0,1}" — {0, 1}.

e Let ls,m denote the number of middle “linear sum” gates. For each i € [{syy], the i-th

gate outputs a real number

Sum;(z, @) := Z coeffi(a) - Cigxy (a,i) (T)-
ke[A]

(See Definition 3.3.3 for the definition of linear sum circuits, in particular the coefficient
sum and locality of a linear sum circuit. Note that this definition is different from the
definitions in [Will8b, CW19b] and in Chapter 4.)

e Let lp,oq denote the number of output gates. Each output gate is a product (i.e., multi-
plication) gate of fan-in d and is connected to the q1 (i), ¢2(7), . . ., gq4(7)-th linear sum gate.

It outputs the real number

cPrd(z,a) = HSum , Q).

Remark 3.5.2. The important complexity measures of a Prod; o Sum o € circuit are:
e the number of gates in each level (¢, lsum, Lprod);
e the fan-in of the top Prod gates (d);

e the fan-in (A), coefficient sum (U), and locality (I) of the linear sum layer.

We show that a Satisfying Pairs algorithm for ANDg o € circuits implies a “Satisfying Pairs
algorithm” for Prodg o Sum o & circuits that given a Prodg o Sum o % circuit and a list of input
strings, estimates the expected output value (as a real number) of a random output Prod gate

in the circuit on a random input string in the list.

Theorem 3.5.3. Let € be a typical circuit class and n € (0,1) be a parameter. Suppose there
is a deterministic algorithm running in time T™% = T®8(N, M) that, given as inputs a list of
N < N ANDy o € circuits {C;} and a list of M < M inputs {x;}, estimates the following

quantity with additive error n:

Then, there is a deterministic algorithm running in time A4(2% +M' /M) - [{prog/NT-O(T?8)
that, given as input a Prodg o Sum o€ circuit CP™Y with parameters specified in Remark 3.5.2,

and a list of M inputs {(x;,c;)}, estimates the following quantity with additive error n - U?:

Prod
, G5 (g ay)|-
Z(—[éprod],j%[M}

PNF’

Moreover, if the algorithm in the hypothesis requires a preprocessing phase on the circuits

that outputs a “data structure” of length fpg, then the algorithm in the conclusion requires a PNP
preprocessing phase on CP™9 that outputs a “data structure” of length O(A%2%) . [¢poq /N7 - fps.

Proof. For any fixed ¢ and j, we know that

Prod
Ci %), a) HSum y(24, ;)

d
_ H Z coeffi () * Ciay (o.00(0)) (%)
=1 ke[l

= Z > H(Coeffkt a;) Cidxkt(ajﬂt(i))(xj))' (3.6)

k1 E }kQE[A] kdE[A t 1

As we can enumerate ki, ko, ..., kg € [A] in A? time, it suffices to estimate

d
H(coeffkt(aj) : Cidxkt(aj,Qt(i))(xj))] . (37)

E
<_[ZF’md} 7j<_ [M,] [tzl

Fix ki, ks, ..., kq € [A]. Since CP™9 is of locality I, we can see that (3.7) only depends on dl
bits of ;. We partition j € [M'] into 2% groups as follows: For each a € {0,1}%, let J, be the
set of j € [M'] such that the dl bits of «; (that (3.7) for this j depends on) equals to a. We will
estimate (3.7) by enumerating o € {0, 1}%, estimating it for j < J, (instead of j « [M’]), and
then taking the (weighted) average over all possible a.

Now we fix any o € {0,1}%. We can rephrase the following two expressions as they no longer

depend on «;:

coeffy, (a;) =: coeffy;

Cldxy, (0,0:(1)) (T5) =1 Claxg (1) ()

It then suffices to estimate

d
coeff} - Cigwr iy (75) | = coeff}
Epmd]m_ja [H t - Ciax (i) (j)] (g t) Eprod T

Each expression of the form E; ; [/\;l:1 Ciax (i) (xj)} can be reduced to the SATISFYING-PAIRS

/\ CIdXt (%)] (38)

problem for AND, o € circuits. More precisely, we split 7, into blocks of size M, split [(pyod]
into blocks of size N, and use the assumed algorithm (which works for N AND, 0% circuits and
M inputs) to estimate (3.8) within an additive error of (77 . Hlelcoeffﬂ) in T2 . [|7,|/M] -

o0

[lprod/N] time.'* We substitute this estimation in (3.7) and then in (3.6) to obtain our final
algorithm.

Running time. Consider the subroutine for estimating (3.7). This subroutine itself is reduced
to subroutines for each 7., which takes 7% - [|J,|/M7] - [¢prod/N] time. The time complexity

of this subroutine is

O(T™) - [tproa /N1 - S [1Tal /M1 < O(T™8) - (2% + M'/M) - [fpro0/N].

(6%
We invoked this subroutine A% times by enumerating ki, ko, ..., kg € [A] to estimate (3.6), so
the total time complexity of our algorithm is A%(2% + M’ /M) [lpog/N]1O(T#).

Additive error. Our estimation of (3.8) is within an additive error of (77 : Hle‘coeff”).

Thus, our estimation of (3.7) is within an additive error of

Z ’ja H |coeff}| =n -]E[H|coeffkt oz])|]

aE{O,l}dl

It follows that our estimation of (3.6) is within an additive error of

k1€[A] ka€[A] kg€ A]

Y Y E f[|coeffkt (o]

Preprocessing. Finally, suppose the assumed SATISFYING-PAIRS algorithm for ANDy o ¥
circuits require a PNP preprocessing phase on the circuits. The PNP preprocessing phase for
our algorithm enumerates ki, ks, ..., kg € [A] and « € {0,1}%. For each (ki,ks,..., kq,), it
splits the lproq circuits {Cigy(;y} into blocks of size N, invokes the preprocessing algorithm on
each block, and computes a “data structure” for this block. The final “data structure” outputted
by the preprocessing phase of our algorithm consists of the concatenation of all these “data
structures” computed, which has total length O(A92%) - [¢pyog/N] - fps. d

3.5.2 Set Up

Suppose that we are given a € circuit C' : {0,1}* — {0,1} as input. Let g, cm, ctm be

constants that will be determined later. Define
§:= (109q)_10q2,

m = ¢y log(1/e) /4,

14 Note that at most one of the block may contain less than M inputs. However, the assumed algorithm works
for input number < M as well, and this will not have any blow-up on the error factor.

51

Wproof = (3OOQ/m> IOgE, Wproof 1= 2Wproof — 60(6/10g(1/€))7
hproof = (25¢ +1) log £, Hiproof 1= 2ot = (#5071,
Nhard := 20H proof - 1 - (1 /€)% loglog £

T:= Hproof : Wproof/ IOgCtm (6)
Let Lhd be the hard language constructed in Theorem 3.3.1, i.e.,
Lhard € NT|METM [T] \ i.O.—NTlMEGUESSRAM [T/ logcha'd (T), nhard/lo]/(nhard/lo)’

where npaq refers to the input length and cpaq is an absolute constant.

We now show that T' > npard - polylog(nhard), which means that the technical condition of
Theorem 3.3.1 is satisfied. In fact, polylog(nnad) < polylog(?), hence it suffices to show that
Wiroof > (n-(1/e)1081086)w() e ¢ > (n-(1/¢)lslost)w(os(1/€)) This is true since £ = N¢ulo8(1/2)
and n, (1/e)lslost < 90(log!/? N)

Like in the proof of Theorem 3.4.2, we describe a nondeterministic RAM MPPP that runs
in T/log®=d(T') time, uses Mparq/10 advice bits, guesses npard/10 nondeterministic bits, and
attempts to solve L' We will show that for every input 2 € {0,1}"d if 2 ¢ LM then
MPCPP(2) rejects; while if z € L' and has an easy witness, then MPPP(z) accepts. However,
to solve ¥-REMOTE-POINT, we need a slightly different definition for “easy witness”.

Let VPCPP be the verifier for the smooth and rectangular PCPP (Theorem 2.5.11) for the
language

L := {Encode(z) : x € L},

where we fix an error-correcting code (Encode, Decode) as in Theorem 2.4.1. Let dcode be the
(relative) distance of the error-correcting code. Suppose a string of length npag is encoded (via

Encode) into a string of length fipard := O (nhard). We set the following parameters:

©(m?loglogT , 2
hinput = <1 - (1 508)>hproof7 Hinput ::2hmpUt = proof/pOIY(2m ,log €)>
ogT
- , 2
Winput = Hog nhard—‘ - hinpuh I/Vinput 1= 2Winput — poly(n, 2™ ,log e)

Again, we assume without loss of generality that 7ihard = Hinput * Winput-
We invoke Theorem 2.5.11 for L to obtain a verifier VPCPP with proof size H proof X Woroof
and input size Hinpyt X Winput, Where I:Iproof = 2hwroof for some ﬁproof =logT + ©(mloglogT) —

Wproof- We can check the technical requirements of Theorem 2.5.11 as follows:

m =0(logn/s) < (logT)"!,
Wproof = (300g/m)log ¢ > (5/m)log T,
Bproof = hproof + @(IOg(l/E) 10g log E) > (25q + 1) logf > (5/m) IOg T,

Winput _ O(m? +logn + loglog ¢) <o(1).
Wproof (log ¢)/m

52

By Theorem 2.5.11, VPCPP has the following parameters:

o soundness error = 1/2,

o proximity parameter = dcode,

o query complexity = ¢ := O(1),

o parity-check complexity = g := O(1),

o total randomness = 7 1= Wproof + ﬁproof + O(loglog T + mlogm) = logT + O(mloglogT),

o row randomness = Tron := Rproof — (5/m)logT = O (log ¢),
o column randomness = reo| 1= Wproof — (5/m) logT = O((log ¢)/m),

o shared randomness = rshared := (10/m)log T 4+ O(loglog T 4+ mlogm) = O((log ¢)/m).

Here, all the ©(-) hides constants that may depend on ¢, ¢, ctm. Moreover, as we choose the
soundness error and the proximity parameters to be absolute constants, the query complexity ¢
is also an absolute constant.

Note that if ¢, is large enough, then we have 2("«) < N < 27l (This is because reo =
qcud/cm - ©(log N).) Therefore, we can solve the Approx,-SATISFYING-PAIRS problem for 27!
inputs and 2"« AND,, o & circuits, by partitioning the inputs and circuits into groups of size
N. The time complexity is still at most 2%"<l /P where P := (r¢)'°81/). Without loss of
generality, we may assume N = 27« in what follows. It still holds that our SATISFYING-PAIRS

PNP preprocessing phase on circuits that outputs a “data structure” of length

algorithm has a
Ips = N€.

We also fix the hardness amplification procedure Amp : {0, 1}Wereot — {0, 1}5/ described in
Theorem 3.3.5 that amplifies hardness § to hardness (1/2 — ¢). Here, ¢ := Wg{gg}g(l/ /9 _
¢0B0g/cm) We set the parameter ¢, such that ¢ < ¢. By Lemma 3.3.7, we may assume that
¢ = ¢ without loss of generality. Let (idx, coeff) be the family of linear sum circuit described in

Theorem 3.3.5, then (idx, coeff) has the following parameters:

advice complexity = a := O(log? Wpeot/(26)?) = O(log?t/e?),
fan-in = A = O(logWyoof/(e6)?) = O(logt/e?),
coefficient sum = U := O(1/e),
locality = [:= log/t.

We say an input = has an easy witness if there is a proof matrix 7w such that:

(completeness) for every seed € {0,1}", VPCPPEN0de(@)om (sead) accepts;

(approximate easiness) for every row m; of 7, there exists an input w; € {0,1}" and an advice
a; € {0,1}* such that the decoding of C(w;) with advice «; is d-close to m; with respect to
f1-norm. (Recall that dec,(z) denotes the decoding of x under advice «.) In particular:

1. for every j € [Wproof], (decq, (C'(w;))); € [0,1];
2. ||decy, (C(w;)) — mil|1 < 0.

Recall that P = (rco|)1°g(l/ ¢). By our hypothesis, there is an algorithm that takes as input
a list of N = 2"« ANDy, o ¢ circuits {C;} and a list of N inputs {x;}, runs in deterministic

o3

T#l8 ;= 2270l | P¢u time, and estimates E; ;[C;(x;)] within an additive error of n := e < U~1%.

This algorithm is allowed to have a PNP preprocessing phase on the circuits {C;} which outputs

a “data structure” of length fpg = N°.

3.5.3 Guessing and Verifying the PCPP

On input z € {O, 1}nhard7 we guess _E[proof strings wy, wa, ..., prroof € {0, 1}” as well as ﬁproof

advice strings a1, ag,...,ap € {0,1}". Let mReal .= dec,, (C(w;)), and 72°! be the Boolean
proo

string that is closest to ﬁfeal. We will think of the matrix 78°°" as the PCPP proof, although

our algorithm MPCPP will operate on wRea!,

Real Bool

Therefore, before we proceed, we need to verify that m and are “close”, so that it does
no harm to operate on 7€ even if the correct PCPP proof should be 78°°. This verification
phase also occurs in previous works proving lower bounds against linear combinations of circuits
[Wil18b, CW19b, CR22, CLW20]. Like in previous work, we only provide an “approximate”

verification algorithm: if the input has an easy witness, then the PCPP proof wRe?!

corresponding
to this easy witness is accepted; on the other hand, we reject every 7€ that is “too far” from
Boolean.

In what follows, denote

(itype[1], itype[2], ..., itype[q]) <= Viype(seed.shared),
(irow[1],irow[2], ..., irow[q]) <= Viow(seed.shared, seed.row), and
(icol[1],icol[2], ..., icol]g]) < Voi(seed.shared, seed.col).

For each seed.shared € {0, 1}"shed and each ¢ € [¢] such that itype[t] = proof, we define the

following functions:

Bool Bool

seed.shared,¢ (Seed .row, seed 'COI) = Tirow][t],icol[s] and
Real __Real
fseed.shared,L (Seed .row, seed ‘COI) = Tirow]t],icol[s]*

We will talk about the £;-norms of the above functions. For example, let d € N be a constant,
then

Bool Real

[Fiesy R lla = E Tirow(t) icolls] — Tirow[dicol[1]

seed.shared,. seed.shared,. seed.row<—{0,1}7row

seed.col«—{0,1}"col

d:| 1/d

Lemma 3.5.4. Let € be a typical circuit class and d > 2 be an even number. Suppose there is
an algorithm that takes as inputs a list of 2"« ANDog o € circuits {C;} and a list of 2" inputs

{x;}, runs in deterministic T2 time, and estimates the following quantity with additive error

n:

Pr [Ci(x;)].
z‘,j<—[2rcoq[()]
Then there is an algorithm that takes (wi,wz, ..., wy f), (a1,a2,...,ap f), and the cir-
proo proo

cuit C as inputs, runs in deterministic O((3A)%4T?18) . (226”‘“"5"arEd + T'log®m™ T/QQTCO') time,
and satisfies the following:

54

(Completeness) If for every i € [Hywof], it holds that (1) for every j € [Wroof], ! ea' € [0,1];
(2) ||mReal — xBeol||y <5, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1} and 1 € [q], || f&& garea, /I < 1+ 20 U%,;
2. E

Real B ld d d+1 2d
[Fproot] i Woroor] |} ;a mc;o 4] < 4.6 + 292U 4 1)24,

Moreover, if the algorithm in the hypothesis requires a PNP preprocessing phase on the circuits
that outputs a “data structure” of length {pg, then the algorithm in the conclusion requires a PNP

2d22dl+T5hared

preprocessing phase on C' that outputs a “data structure” of length (3A) - Ips.-

Proof. Fix seed.shared and ¢, we first estimate

| Real

d Real d
seed. shared,LHd = |:|7Tir§\?V[L],iCO|[L]|

seed.row,seed.col

Recall that
Rea' Z coeffy () - Cigxy (as,5) (Wi)-
ke[A]
Therefore, we can build a Prodg o Sum o € circuit Chorm := Chorm(seed.shared, ¢) as follows.

Circuit Cyom

(Inputs) The input consists of (w, a) with the intended meaning that w = Wirew[,] and @ = Qirow],]-

(Bottom circuits) The bottom circuit is exactly C' (taking input w). Thus, there are ¢ output
gates of € circuits with the i-th one being precisely the i-th output gate of C.

(Intermediate linear sum gates) There are 2" intermediate linear sum gates. For each seed.col,

Sumseed.col(wya) = Z Coefrk(a) : Oidxk(a,icol[b])(w)'

(Output product gates) There are 2"« product gates. For each seed.col, the seed.col-th output
gate is simply

(Cnorm)seed.col (w7 05) = (Sumseed.col (’LU, a))d .

Recall that this circuit Cporm has parameters as follows:

e the number of gates in each layer: oy = £, g m = 27!, Lproq = 27<;

e the fan-in of the top Prod gates d;

e the fan-in A, coefficient sum U, and locality [of the linear sum layer.
We invoke Theorem 3.5.3 on the circuit Chorm and M’ := 2% inputs {(Wirow[,]s Qirow[1]) } seed.row-
We obtain an estimation ESTpom = ESTporm(seed.shared, ¢) where

ESThorm — Hsteal Hg <n- U’

eed.shared,.

If ESThorm > 1417 -U¢?, then we reject the input. Otherwise, we proceed to verify that wRe2!

and 78°° are close. Consider the polynomial P(z) := 2%(1 — 2)%, which intuitively measures

how close z is to Boolean. We will estimate

E P(wRea')} . (3.9)

. 2 .]
14— [Hproof]] [Wproof]

95

Similarly, we estimate (3.9) by building a Prodyg o Sum o € circuit Cyis.
Circuit Cyi

(Inputs and bottom circuits) The inputs and bottom circuits of Cyi are exactly the same as
Cnorm-

(Intermediate linear sum gates) There are 2Wpoor intermediate linear sum gates. Let j €
[Woroof], then the 2j-th linear sum gate computes (7R¢");, and the (2j + 1)-th one computes
1 — (wReal);. That is,

Sumy; (w, a) Z coeffr(a) - Ciguy (o) (w); Sumgjyi(w,a) =1 — Sumgj(w, a).
ke[A]

Implementation of the linear sum layer: Since we did not allow coeffy(«) to depend on 4 (the

output index in [2Wpyroof]), we need to be careful when implementing the linear sum layer.
The fan-in of this layer will be 24 + 1 (instead of A). We identify [24 + 1] with the disjoint
union of [A] x {0,1} and {x} (where x denotes the constant term 1 in Sumg;;1(w,@)). Let

idx" and coeff’ be the idx and coeff functions of the intermediate linear sum gates of Cig:

(Function idxj (v, 7)) We write i = 2j + b where j € [Wproof] and b € {0,1}. If k = (K, V) €
[A] x {0, 1}, then idx), (c, %) returns idx («, j) if b = b’ and returns ZERO if b # b'. If
k = x then idx} (a, i) returns ZERO if b = 0 and returns ONE if b = 1.

(Function coeff} (o)) If k = (', 1) € [A] x {0,1}, then coeff} (o) = (=1)¥ -coeffy (a). If k = %
then coeff} (a) = 1.

The locality of (idx’, coeff’) is still I. The coefficient sum becomes 2U + 1.

(Output product gates) There are Wiyt product gates. For each j € [Wpyroof], the j-th output
gate is
Caite(w, @) = (Sumg; (w, @) - Suma; 1 (w,).

The parameters of the circuit Cy; are as follows:

e the number of gates in each layer: ly = £, lsym = 2Wproof, LProd = Woroof;

e the fan-in of the top Prod gates 2d;

e the fan-in 2A + 1, coefficient sum 2U + 1, and locality [of the linear sum layer.

We invoke Theorem 3.5.3 on the circuit Cyig and the M’ := H, proof iNputs {(w;, a;)}, Elflyont]?

and obtain an estimation EST g where
[ESTair — (3.9)] < n- (2U + 1)*
We then accept if and only if ESTgir < 2¢ -6 + n(2U + 1)%¢

Complexity. Our algorithm calls the algorithm in Theorem 3.5.3 as a subroutine on the
circuits Chorm and Cgig. It takes A(2% 4 27ow /2Teal) . O(T?18) time to process each Chomm.
Similarly, it takes (24 4 1)24(224 + ﬁproof/2TC°') - (Wproof /27! - O(T™#) time to process Cgir. It
follows that our algorithm runs in deterministic time

QTshared Ad(2dl 4 QTrow /9Tl . O(Talg) + (24 + 1)2d(22dl + ﬁproof/Qrcou) . (Wproof/QTCOI) . O(Talg)
= O((sA)QdTalg) . <2dl+7‘shared + 2T_2Tco| + 22dl . Wproof/2Tc°| + f{proof . WPI’OOf/22TCOI>

o6

_ O((3A)2dTalg) . <22dl+7“shared 4T logO(m) T/22rco|))

(Recall that since log(Wproof /2") = (5/m)10g T, rshared > (10/m)log T, we have Wiyroof /27 <
orshared . Also, from r = log T + O(mloglog T') we know that 272"« < T'log@(™) /927l)

Now it suffices to prove the completeness and soundness requirements. Before that, we need
the following fact regarding the polynomial P. Let z € R, dy;,(2) be the distance between z to

the closest Boolean value; namely dpin(z) := min{|z|, |1 — z|}.

Fact 3.5.5. For every z € R, dpin(2)?-27% < P(2) < dpin(2)? - (1 + dpin(2))%. o

Completeness. Suppose that for every i € [ﬁpmof] and j € [Woroof), ﬂfja' € [0,1]. Then for

every ¢ € [g] and seed.shared € {0, 1}7shared || fReal |4 <1, and thus ESThorm < 1 +7-U%

seed.shared,¢ —
Suppose in addition that for every i € [Hproof], || — 7B°°!||; <. Then:

(3.9) < E [duin(mf5™)* - (1 + din(nf5))"]
2V}

,J %,J

<2?.E [dbin(ﬂffa')d]

Z7j
<2d.4.

Therefore, ESTgir < 2¢ -6 + n(2U + 1)?¢ and our algorithm accepts.

Soundness. Suppose our algorithm accepts.

1. For every seed.shared and ¢, we have ESTuom < 1+ 7 - U and thus || Szzg'.shared% g <
1+2n UL
2. We have (3.9) < 2¢.6 4 2n(2U + 1)?? and
E jfee! — nBe9ld] = E [dyn (nFe)]
i [Hproof] WJ [Wproof} v
<2?.(3.9) (Fact 3.5.5)

<4%.§ 429y (2U + 1)%4

Preprocessing. Suppose the algorithm in the hypothesis requires a PNP

preprocessing phase
on the circuits that outputs a “data structure” of length ¢pg. By Theorem 3.5.3, the PNP
preprocessing phase on each Chorm (seed.shared, ¢) outputs a “data structure” of length O(A%2%).
fps and the PNP preprocessing phase on Cgi outputs a “data structure” of length O((24 +
1)2d2dly . (Woroof /27¢") - €pg. Since Chorm and Cyigr only depend on C' (not w; or o), the
preprocessing phase of our algorithm also only depends on C. The total length of these “data

structures” is
O(Ad2d127“shared + (2A 4+ 1)21122!11(meof/QTcol))gDs < (3A)2d22dl+7“shared Ips.]

We substitute d := 2¢ in the above lemma. If z has an easy witness, then there is some
(wy,ws, ..., wﬁpmf) and (aq, ag, . .. ,aﬁpmof) that passes the test; on the other hand, if the test

is passed, then both soundness properties in Lemma 3.5.4 hold:

o7

1. for every seed.shared and ¢, || fR¢3 ||§Z <1+2n-U%,

eed.shared,.
2. iy W) [T — 708920] < 167 6 + 1287074,

Z?J
PNP

Moreover, the output length of the preprocessing phase is at most (3A4)19249+ shared {1y

3.5.4 Estimating the Acceptance Probability

After checking that the PCPP proof is “close to Boolean”, the next step is to use it to speed
up LMrd. We estimate

Pace 1= Pr [VPCPPE”C°de(9”)0”800I (seed) accepts]
seed<—{0,1}"
(Indeed, it suffices to distinguish between the case that pacc > 5/6 and the case that paec < 1/2
as we will explain later.)
We enumerate seed.shared. After fixing seed.shared, each itype[:] is completely fixed, each
irow[¢] only depends on seed.row, and each icol[¢] only depends on seed.col. We now need to

estimate

Pacc(seed.shared) := Pr VPP pEncode(z)or®e! (seed) accepts]|.

seed.row<—{0,1}"row
seed.col«—{0,1}"col

If we also fix seed.row, then we know the ¢ rows of the input matrix Encode(z) and the

B

proof matrix 7 that could influence the PCPP verifier, denoted as rowj ool ro wBool,

Bool
W2 5 . q

.., T0
In particular, letting Z; denote the i-th row of the matrix Encode(z), then for each ¢ € [¢]:

rowB°°' _ Lirow]] if itype[L] = input,
Bool

7Tirow[L]

if itype[¢] = proof.

We also let pci, pea, ..., pey < Vic(seed.shared) be the parity-check functions of the PCPP
verifier, where each pc, : {0, 1}7ow*7el — {0, 1}. In particular, let pc™ (resp. pc) denote the

contribution of seed.row (resp. seed.col) to pc,, i.e.,

pcr® (seed.row) := pc, (seed.row, 0"), and pc= (seed.col) := pe, (07", seed.col).

col

l(seed.col). For simplicity, we omit

Then pc,(seed.row, seed.col) = pcf®¥(seed.row) @ pc
seed.row and seed.col when they are clear from the context.

Let VDec be the decision predicate of the PCPP verifier; note that as seed.shared is fixed,
VDec <~ Vgec(seed.shared) is also fixed. The input of VDec includes the answers to the ¢ queries

and the parity-check bits pcq, ..., pc,. On seed.row and seed.col, the PCPP verifier outputs

VDec <(rOWIBOOI)icoI[1] , (row5°icoira)s - - - » (rowg®icolfg)s Pe1, P2, - - - pcq) :

As every Boolean function over 2¢g bits can be written as a degree-2¢q polynomial over the

o8

reals, we write

VDec(al,aQ,...,aq,pcl,pCQ,...,pcq) = Z GS,S’ (HGL> . (H pCL>a

SClq],5’Clq] LeS Les’

where g ¢ € [-2%4,2%]. Now, define

Pacc(seed.shared, S, S') := E [H(rowfgoo')icdm : H ch].

seed.row<—{0,1}"row
seed.col«—{0,1} "ol tes Ltes’

We have

Pacc(seed.shared) = Z 05 5'Dacc(seed.shared, S, S,
SClq],5"Clq]

thus it suffices to estimate each p,cc(seed.shared, S, S").

Real

Fix S and S’. Since we only have access to a real proof matrix 7 instead of a Boolean

proof matrix, we use the following number as an estimation of p,c.(seed.shared, S, S’), with the

Bool Real

only difference being 7;°°® being replaced by ;

pRe (seed.shared, S, §") = E H(rowReaI coll H;DCL 7
seed.row<—{0,1}"row ,
seed.col¢{0,1}7col €S Les

where
rowReal — jf/‘iF:owl[L] ?f ?type[b] = input,
Trirg\?v[L] if itype[t] = proof.

The following claim bounds the accuracy of the estimation given the ¢;4-distance between the

functions fB° and fRe The proof is deferred to Section 3.5.7.

eed shared N eed shared,¢*

Claim 3.5.6. For every S, S’ C [q],

|pacc(seed-5hared7 S, S) paRffl(seed.shared, S7 Sl)‘ S (1 + (5seed.shared)2qi1 : 5seed.shared'

Here,
5 L | Bool Real
seed.shared +— seed.shared,. seed.shared,.
L:itype[t]=proof
Bool . 2411/ (29)
o 00 _ Real
(recall) = E ceed. rowiE{O yreow Tirow[d]icol[t] — Tirow[d],icol[t] :

vitype[t]=proof geeq cole—{0,1}"col

Now we fix S, S” and estimate pRe! (seed.shared, S, S"). Let dg := |S|,ds := |S'], it is without
loss of generality to assume that S = {1 2,...,dg} and S" = {1,2,...,ds/}. We construct a
Prodgg td,, oSumo® circuit CProd .— CPr eed shared.5,57» @ Well as a list of inputs (Zseed.rows O'seed.row) s

S
such that

R |
Csee?:l col(zseed.rOWa aseed.row) = H(FOW e |co| H pc,. (310)
Les Les’

99

Ocge! cpred
s e dean (O] decess) oI, el T,
ED A [N
(% Qg

. | 10(24) — C——CG.) raO - Opea
| COPY| \ C / COoPY @ COPY
[] [] — — o --- 0O

21 22 Z3 T Zds pa PCdg,

itype = input proof input proof

Figure 3.3: Construction of the circuit C”™9. Note that for convenience, we only drew the
“relevant” parts of this circuit, e.g., C'(z;) when itype[i] = proof and the copying circuit for
z; when itype[i] = input.

Construction of C”¢ and inputs. For each seed.row and each ¢ € S, define

Tirow[) if itype[t] = input,

(Zseed.row)L = .
Wirow[y if itype[t] = proof.

Then we concatenate each (2seed.row). and the (row-)parity-check bits to obtain

L row . row row
Zseed.row -— ((zseed.row)h (Zseed.row)2a ceey (Zseed.row)dsypcl s PCy e e 7pcds,)

It is easy to check that given seed.row (and seed.shared), we can compute Zseed.row €asily. We

also define

Qlseed.row ‘= (airow[l]a Airow[2]s « + + airow[ds]) :

Next, we define the circuit CP™¢ that takes two inputs (z,«) and outputs glseed-coll 1oq]

numbers. Fix seed.col, we want that

Prod
Cseed .col (zseed .rows seed.row)

= H(rowfeal)icol[b}) H pc,

LeS Les’
= H (decairow[L] (C(wirow[b])))icol[b] ’ H jirow[L],icol[L]) H (pCZOW D pCfOI)a
L€ Sproof L€ Sinput =rd

where
(deCay,pu (C(Wirow[i)))icoll) = Z coeffi (Qirow(s]) * Cldxy (aon(,sicolld)) (Wirow[s])
ke[A]

denotes the icol[t]-th bit of the string obtained by decoding C(wjrow(,)) With the advice Qyow(
using the decoder dec, SP°f := {i € S : itype[i] = proof}, S"Put .= {i € S : itype[i] = input}.

This motivates the definition of the circuit C*™¢ (see Figure 3.3 for an illustration and
Figure 3.4 for the detailed definition). The parameters of the circuit C9 are as follows.

e The number of gates: 4y = dg(¢ + Wproof) +dgr, bsym = Woroof * ds + 2dgr, lprog = 27!,

e The fan-in of the top Prod gates dg + dgr < 2q.

e The fan-in A’ := A-dg+2, coefficient sum dg-U + 2, and locality [of the linear sum layer.

60

Circuit CPred

(Inputs) The input z will have the form z = (21, 22, . . ., Zag, pC1,PC2, . . . , PCag,) and the input a will
have the form a = (a1, s, ..., aq4y). The intended meanings are z; = (Zseed.row)i, PC; = pci,
and @; = Qirowi]-

(Bottom circuits) We make dg copies to C, where the i-th copy is applied to the input z;. (The
i-th copy is useful only when itype[i] = proof, but we make all dg copies for convenience.) We
also add Wiyroof - ds + dg gates to copy the input.

Thus, there are ly = dg - €+ dg - Wyroof + ds/ output gates; we identify [¢«] with the disjoint
union of {1} x [dg] x [€], {2} x [ds] X [Wproeof], and {3} X [dg/].

— For each j € [ds] and @ € [¢], the (1, ,7)-th gate is 0(1 i) (2) == C(z;)i.

— For each j € [ds] and i € [Woof], the (2, 7,7)-th gate is Cia ;) (2) = (25)s-

— For each j € [ds/], the (3, j)-th gate is Cs ;(z) := pe;.

(Intermediate linear sum gates) There are fsym := Wyroof - ds + 2dg/ linear sum gates and we
identify [¢sym] with the disjoint union of [Wyeof] X [ds] and [ds/] x {0,1}.
Let i € [Woroof] and j € [dg]. If itype[j] = proof, then the (7, j)-th intermediate gate is

Sumg; jy(z Z coeffy () - Ciaxy, (ay,i)- dg+5 (%)

ke[A]
It is easy to verify that
Sum(i,j) (Zseed.rOWa aseed.row) =S (decaimw[j] (C(wirow[j])))i-
On the other hand, if itype[j] = input, then the (i, j)-th intermediate gate is Sum; j)(z, a) :=
(25)i. (If i > Winput then we simply set Sumg; ;)(z,) = 0 and this intermediate gate would
not be used.) Finally, for each i € [dg/], we have two intermediate gates

Sum(i,o)(z,a) = P&, Sum(i,l)(zva) =1—pe;.

Implementation of the linear sum layer: The linear sum has fan-in A’ := A - dg + 2 and we
identify [A’] with the disjoint union of [A] x [ds] and {+, —}. Let idx" and coeff’ be the idx
and coeff functions of the linear sum layer of C9, then

(Function idx)(v,4)) Suppose i = (i',j) € [Wproof] X [ds]. If itype[j] = proof and k = (K, ;")
where j = j/, then we return idx}, (v, i) = (1, j, idxx (v, i')); if itype[j] = input and k = +,
then idx} (v, i) = (2, 7,4'). Otherwise idx), (i) = ZERO.

On the other hand, suppose i = (4,b) € [ds/] x{0,1}. If (b =0and k = +) or (b=1 and
k = —) then idx,(a,i) = (3,5). If b =1 and k = + then idx} (a, i) = ONE. Otherwise
idx), (o,) = ZERO.

(Function coeff} (o)) If k = + then coeff} (o) = 1; if k = — then coeff} (o) = —1; otherwise,
if k = (K, ') then coeffl () = coeffy(ajr).

The locality of (idx’, coeff’) is still . The coefficient sum becomes dg - U + 2.

(Output product gates) There are 2" product gates. For each seed.col, the seed.col-th output
gate is

Prod _
Ol col() - H Sumicol[i]AdSJri(Zy O‘) ’ H Sumevoof‘dS+2i+pcio|(z,Oé).
i€sS €S’

Figure 3.4: Detailed definition of C'Prod.

61

Given the above construction, it is easy to check that (3.10) holds for every seed.row and

seed.col. We can see that

Real ! Prod
Pacc (seed'Shareda Sv S) = seed row(I—E{O 1}rrow C’seed.col('zseed.rowa aseed.row) :
seed.col(—{OZl}Tcol

Since ds < ¢ and dgr < g, by Theorem 3.5.3, we can estimate pR!(seed.shared, S, S") with

additive error 1 - (qU 4+ 2)%¢ in deterministic O((qA)%4 (224 4 27w /N) - T?318) time.
Analysis. First, the verification step takes

O((3A4)%T?s) . (24ql+rshared + Tlog?m T /22rc0.>

((3A)4Q) (T logO(m) T)/(reo)) log(1/€)

<0
< T(log T)Cm)—culog(1/e)/2

time, which is at most 7'/ log®=4 T if ¢, is a large enough constant.

Our algorithm estimates pR¢!(seed.shared, S, S’). By Claim 3.5.6, the same algorithm esti-
mates pacc(seed.shared, S, S’) within an additive error of n(qU + 2)27 + 6.y 2reqs Where

! — 2q—1
seed.shared - — (1 + 5seed.shared) 1 . 5seed.shared-

Running this algorithm for every possible (S, S"), we obtain an algorithm that runs in deter-
ministic (O(qA))29(224 4 27w /M) - T#% time and estimates pacc(seed.shared) within an additive

error of

< gseed.shared =41 Z(T/ ' (qU + 2)2(1 + 5;eed.shared)
S,S!

< U (4qU + 8)2q + 167 - 5;eed.shared'

Finally, running this algorithm for every seed.shared € {0, 1}"shred | we obtain an algorithm that

runs in deterministic

O(gA)%1(224! 4 97row [N} . 27shared . O(T212)
< O(long €/64q)27’r0w/27'c0| . QTshared . 22rco|/(rcol)cu log(1/¢)
< 27"/ log0.5cu log(1/¢) 0 < T/ logchard (T)

time that estimates pacc within an additive error of at most

[Sseed.shared] <n-(4qU + 8)2q + 167 E [5éeed.shared]'

seed.shared seed.shared

Next, we upper bound the quantity Eseed shared|[O.]. We abstract this task in the

seed.shared
following lemma and defer the proof to Section 3.5.8.

Lemma 3.5.7. Let f : [N] x [¢] = R>¢ be a function and d > 1 be a constant. Suppose that
1. for every s € [N] and i € [q], f(s,i) < a (where o > 1);

62

2. Bsi[f(s,i)Y < 0.
Let f(s) =3 ieq f(s,9). Then

E[(L+ £()" - £(5)] < 48/4(2g2)"".

To see how this lemma corresponds to our scenario: Let d = 2¢ and [N] = {0, 1}"shared, For

Bool _ fReal H .
seed.shared,. seed.shared, . 12>

otherwise define f(seed.shared,t) = 0. Since the verification algorithm did not reject 7R we

seed.shared and ¢, if itype[t] = proof, then define f(seed.shared,:) = ||

have

1. For every seed.shared and ¢,

9g < 2+2n- UM

Bool Real
f(seed'Shared7 L) < Hfsegg.shared,LH2q + Hfse:?i.shared,L

2. Since the PCPP is smooth, the distribution of (irow[t], icol[¢]) for random (seed,:) (condi-
tioned on itype[t] = proof) is the same as the uniform distribution over [Hproof] X [Wproof]-

Therefore

E [f(seed.shared,:)*] = E [|mBool

Bo . . 7_[_.Real) ’2q]
seed.shared,. seed,:itype[t]=proof irowls] icol[] irowlu],icol[]

Bool Real |2
= Efln5! — nf5p2

)’

<1678 + 128U,

It follows from Lemma 3.5.7 that

E [(leed.shared} S q(lﬁq -0 + 128an4q)1/2q(2Q(2 + 277 ' U2q))2q—1

seed.shared

<q(177 - 5)"/%9 . (1009)% < 10077
Therefore, the algorithm estimates pacc within an additive error of at most
n(4qU + 8)* +167-10074 < 1/6,

thus successfully distinguishes between the case that paec > 5/6 and that paec < 1/2.
Finally, since CP™9 only depends on C' (but not the input to MPPP), the preprocessing

phase of our algorithm only needs to know C'. It outputs a “data structure” of length
(3A)4Q24ql+TsharengS + 2T’shared+4q((AdS + 2)2(122ql) [lprod/N1lps < (6A)4QE4Q2rshared£DS’
which is at most 1% - fpg since A = O(log £/e?) = ¢°(1) and 2"shares = 20(logt/m) — po(1),

3.5.5 Wrap Up: Description of MPPP

The machine MPCPP hardwires C' and the data structure of length ¢1%7 . fpg. This data

structure can be computed in PNP, hence the description of MPPP can be computed in PNP.

63

On input x, we consider the smooth and rectangular PCPP for the language
L = {Encode(x) : 2 € LM},
(Recall that MPCPP aims to reject every o ¢ L and accepts every = € L with easy witness.) We

guess (wi, ..., Wi,
WBooI Real

) and (a,...,« ﬁpmof)’ which implicitly defines the PCPP proof matrices
Real

roof

and 7R Then we verify 77¢ using Lemma 3.5.4 and reject immediately if 7R did not

Real Bool)
b)

pass the test. If w passes the test (which means that it is “close” to a Boolean proof 7
we use the algorithm described above to estimate pyec. We accept x if and only if our estimation
is above 2/3.

The correctness of MPCPP

is easy to see:

Claim 3.5.8. For every input x, if © & L then MPPP rejects x; while if x € L and = has an

easy witness then MPCPP accepts x.

Proof. If x ¢ L, then it always holds that pacc < 1/2, so MPCPP rejects. If € L and x has an

easy witness, then there exists a proof m, (wq, ..) and (ay,...,ag) such that
proo

W g
’ H, proof

1. for every j € [Wproof), ﬂfjal € [0,1];

2. for every i € [Woroof); J € [Hproof), |7Re — mifl1 < 4.

Real

Note that [[rReal — gBoolj|; < ||zReal 71|} < § since 73°°! is the closest Boolean string to w3,

i

and thus |7; — 78°°!|; < 26. Since the probability that VPCPP accepts 7 is 1, by Lemma 2.5.8,
Pacc > 1—¢q-20 >5/6, so MPCPP accepts. m

The machine MPPP guesses I:Iproof(n + a) < Npard/10 bits of nondeterminism, and uses
O(sﬂ) + 01%/pg < Nparg/10 bits of advice. Thus

L(MPPP) & NTIMEGUESSrAM[T'/ 108 (T'), Tthard/ 101/ (ry 4 /10)-

3.5.6 The FP"" Algorithm for REMOTE-POINT

Let C : {0,1}™ — {0,1}* be the input circuit. We first construct the hard language Lhd
and the algorithm MPPP. Since MPPP is a nondeterministic RAM algorithm that runs in
T/logd(T) time, uses at most npaq/10 nondeterministic bits and at most npaq/10 advice
bits, it follows that there is an input 2paq € {0,1}™¢ such that MPPP (2p.4) # L' (2pard).

MPCPP s exactly our REMOTE-POINT instance C. We can

Moreover, the advice string fed to
find such an input zp,q by running R(17erd, MPPP () where R is the refuter guaranteed by
Theorem 3.3.1. Thus, we can find zp,.g in deterministic poly(7') time with an NP oracle.

It follows from Claim 3.5.8 that Zpag € L™ but zpharq does not have an easy witness. Thus,

we can use the NP oracle to find the lexicographically first PCPP proof matrix 7 such that

Pr [VPCPPENde(®)om (seed) accepts] = 1.
seed«+{0,1}"

Then, there must exist a row m; that is (1/2—¢)-far from Range(C'). To see this, suppose that for
every i, the i-th row m; is (1/2 —¢)-close to Range(C'). Then there exists some w; € {0,1}" such

64

that §(Amp(m;), C(w;)) < 1/2—e. By Theorem 3.3.5, there is an advice «; such that decy, (C(w;))
satisfies (1) for every j € [Wproof], (decq,(C(w;))); € [0,1]; (2) ||decq, (C(w;)) — mlli < 4. It
follows that 7 is an easy witness for xpaq, a contradiction.

Finally, we use the NP oracle to find the first row 7;, such that Amp(m;) is (1/2 —¢)-far from
Range(C). The overall procedure takes deterministic poly(7") < poly(¢) time with an NP oracle.

3.5.7 Proof of Claim 3.5.6

We need the following technical lemma (see [CW19b, Lemma 28|):

Lemma 3.5.9. Let d > 2 be an integer, fi, fo,..., fa,91,92,---,94 : [N] = R be functions. For
all i € [d], suppose that ||filla < 1, and define € := Z?Zl | fi — gilla- Then

d

(L flaco |-

The above lemma is a consequence of the following generalisation of Holder’s inequality:

-1

E (14e)% e

z+[N]

Fact 3.5.10. Let fi, fo,..., fa : [N] = R be functions, f : [N] — R be their product, i.e.,
fla) =TIL, fi@). Then ||l < TI, || filla-

Proof of Lemma 3.5.9. Let €; := || fi — gi||a, then € = Z,L 1 €i- Define

d
Hyb = E Hfj]I i@

j=1 j=it1
Then, for every 1 <i <d,
i—1
Hyb; —Hyb; | < E Hfj H 9i(a — i(x))
z4[N] !
7=1 Jj=i+1
< H 1f5lla - H lgjlla-Ilfi — gilla (Fact 3.5.10)
J=1 Jj=i+1
d
< H(l + Ej) <&
j=2
<(1+e)% g

It follows that

E
z4—[N]

d d d
Hfl(m) - Hg@(m)] ' = [Hyby — Hyby| < Z IHyb, —Hyb; ;| < (14+&)""-c. O

i=1 i=1 =1

Recall that for S,5" C [q], we define

Pacc(seed.shared, S, S,) = [H(row?oc}l)icol[d : H pc.|,
seed.row<—{0,1}"row)
seed.col«+{0,1}"col L€S 18

65

paRcegl(seed.Shared’ S’ Sl) . E H(rOWFeal)icol[L]) H pc.|,
seed.row<—{0,1}"row /
seed.col<+{0,1}"col LeS S

5 L H Bool fRea ||
seed.shared -— seed.shared,. seed.shared,. 112+
vitype[t]=proof

Claim 3.5.6. For every S, S’ C [q],
|Pacc(seed.shared, S, S7) — 11)5(‘?'5"(seed.shared7 S, 9N < (1+ 5seed‘shared)2q*1 - Oseed.shared -

Proof. Define the following 2(|S| + |S’|) functions f2°°!, ng°°' fReal g?ea', where i € S and

j € S’. Each function takes (seed.row, seed.col) as inputs, and:

Boo Bool Real

fBool . Nicoigi [1= (row;iq; and 5% = gR=" = pe;.

(row;

(Note: for convenience, we omit the input (seed.row,seed.col).) It follows that || f2°°5, < 1

Bool

and HgB°°'||2q < 1; for every j € ', ||gB°° — gReal||5, = 0; and for every i € S,

0 if itype[i] = input;

Bool _ fReal —
Hfz fz ||2q ‘ Bool fRea

seed.shared,: seed.shared,:

if itype[i] = proof.
Therefore, by Lemma 3.5.9,

|Pacc(seed.shared, S, S") — pRe (seed.shared, S, S")|

_ Bool Bool Real Real
N seed.rowE:{O,l}”OW Hf ” H 9; - Hf - H -

seed.col«{0,1}7col L?€S jeS’ i€s jes’

2qg—1
S(l + 5seed.shared) 1 : (5seed.shared-]

3.5.8 Proof of Lemma 3.5.7

Lemma 3.5.7. Let f : [N] x [¢] = R>¢ be a function and d > 1 be a constant. Suppose that
1. for every s € [N] and i € [q], f(s,i) < a (where o > 1);
2. Eqi[f(s, ')d] <0.

Let f(s) =3 icq f(s,7). Then

E[(1+ f(s)" - f(s)] < g6"/*(2q0) "
Proof. By Jensen’s inequality,

E[f(s)] = ¢ E[f (s,)] < g8"/".

w0

It follows that for every k > 1,

E[f(s)"] < E[f(s)] - max{f(s)}*"* < qa"/* - (qa)*~".

S S

66

Finally, we have

d—1 . :d_l d—1 . i+1 1/d d—1
E[(L+f() - fs) =) (.) Elf(s)"] < g0/ (2q)". O

]
=0

3.6 Hard Partial Truth Tables

PNP

Instead of allowing a preprocessing on the circuits, the algorithm for SATISFYING-PAIRS

used to solve PARTIAL-HARD allows a PNP preprocessing on inputs, formally defined as follows.

Definition 3.6.1 (Algorithms for SATISFYING-PAIRS with PNP Preprocessing on Inputs). Let
P be one of €-SATISFYING-PAIRS, #%-SATISFYING-PAIRS, Approxs-¢-SATISFYING-PAIRS, and
Gaps-6-SATISFYING-PAIRS. A t-time algorithm for P with PNP preprocessing of an f-size data
structure on inputs is a pair of algorithms (A;, As) that solves P in two phases:
1. Given the inputs x1, 9, ...,z € {0,1}", the polynomial-time algorithm A; with oracle
access to a SAT oracle computes a string DS € {0, 1}*.
2. Given the circuits C1,Cs,...,Cn : {0,1}" — {0,1} of size s and the string DS, the
algorithm Aj solves P on the instance (C1,...,CnN,z1,...,z)) in time ¢.

Theorem 3.6.2. There are constants e > 0 and co such that the following holds. Let0 < n < 1/2

be a constant, €[s| be a typical and complete circuit class where s = s(n) > n is a size parameter,
and €'[2s] := ORy 0 €[s]. Let £(n) be a good function such that s(n)' 1) < ¢(n) < 2.

Assumption: Suppose that for some constant ¢ > 1, there is an (NM/log®(NM))-time al-
gorithm for Approx.-€"-SATISFYING-PAIRS with N := (¢T177 . polylog(¢) circuits of size

PNP

poly(s(n)) and M := ¢'="-polylog(¥) inputs of length 2n, allowing a preprocessing of

an M¢-size data structure on inputs.

Conclusion: There is an FPNP algorithm for €[s]-PARTIAL-HARD with £(n) input strings.
More precisely, given a list of inputs z1,z9,...,2¢ € {0,1}", we can compute a list of
bits b1, ba, ..., by such that for every € circuit C : {0,1}" — {0,1} of size s, there exists
an i € [€] such that C(z;) # b;.

Proof Sketch of Theorem 5.6.2. The proof is very similar to the proof of Theorem 3.4.2; in fact,
it is (nearly) equivalent to first reducing PARTIAL-HARD to AvOID and then invoking Theo-
rem 3.4.2. Therefore, we only highlight the differences.

It is without loss of generality to assume £ is a power of 2 and ¢ > 2. We set the following

parameters:
m = 5(c+2)/n=0(1),
Wproof = log¥, Woroof 1= 2Wpoof = [
hproof := (c+1)log¥, Hppoof 1= 2Mwoot = petl
Nhard = 100prroof - polylog(¢) - slog s,
T = Hproof - Wproof / log®™ (£),
Rinput = (1 - %)hpmoh Hippue = 2t = H o6 /polylog (),
Winput = [10g Tihard | — Pinputs Winput 1= 2%t = slogs - polylog(¥).

67

Here 7iharg = O(nhard) is the codeword length of a length-np,.g string encoded via Encode where
(Encode, Decode) is a fixed error-correcting code in Theorem 2.4.1; and ¢y is a sufficiently large
constant.

We can check the technical condition npag T2 < T < 2P (hard) | 50 it is valid to invoke
Theorem 3.3.1. Also, (5/m)log T < wproof, 0 it is valid to invoke the 2-query rectangular PCPP
in Theorem 2.5.10. There are other checks for technical conditions that we omit here. The proof
matrix is of size ﬁproof X Woroof, Where ﬁproof — 2hwroot and inroof = logT + ©(mloglogT) —
Wproof = (¢ + 1)logl + O(loglog).

The first difference is the definition of “easy witness”. We say x has an easy witness if there

is a proof matrix 7 (of size H proof X Woroof) for the statement “Encode(z) € L®"” such that:
(completeness) for every seed € {0,1}", VPCPPEnmde(m)O’T(seed) accepts w.p. at least cpep;

(easiness) for every row m; of 7, there exists a size-s € circuit C; : {0,1}"™ — {0, 1} such that
for every i, m;,; = Cj(2).

:{0,1}" —

{0,1}. Let 7 be the ﬁproof X Woroof proof matrix where for each j € [ﬁproof],i € [Whoroof)

Then, our machine MPCPP guesses Hproof size-s € circuits Cp,Cy,...,Ch

proof
mji = Cj(2). We need to estimate

Dacc i= seedf{O 1}r[VPCPPE"C°de(x)°”(seed) accepts).

We reduce the problem of estimating pacc to 2™hered instances of Approx.-€’-SATISFYING-PAIRS,
where € := (Cpcp — Spep) /4. However, now, each instance consists of N := 27~ = 2proos —(5/m) log T
circuits and M := 27el = 2Wproot —(5/m)logT" jpyyytg 15

We enumerate seed.shared. For each seed.shared, we create an Approx.-¢’-SATISFYING-PAIRS
instance Zseed shared COITesponding to seed.shared, which contains an input Inputseeq shared seed.col
for every seed.col and a circuit Cseed.shared,seed.row fOr every seed.row. We elaborate on how this
instance is constructed, as this is different from Theorem 3.4.2.

Each seed.col corresponds to an input Inputseeq shared seed.col Of the following form:

col col
(a1, ... aq,pci®, ..., pcy),

where p + ¢ < 2, for each i € [q],

icol[i] if itype[i] = input;
a; ‘=
Zicol[i] if itypeli] = proof,

col
7

and pcs® represents the contribution of seed.col in the i-th parity-check bit.

The circuit Cseed.shared,seed.row corresponding to seed.row is as follows:

e It receives input (ay,...,aq,pcs%, ... ,pclcf').

15That is, the role of inputs and circuits are swapped as compared to Theorem 3.4.2.

68

e For each j € [g], let

Encode(2)irow[jl,o; if itype[j] = input
ans; =

Cirow[j](@;) if itype[j] = proof

Note that since ¢ is complete, we can compute a € circuit of size poly(Winput) = poly(s)
whose truth table is the irow[j]-th row of Encode(z). That is, we can compute a € circuit

of size poly(s) that on input a;, outputs ans;.
e For each j € [g], let pc;°w be the contribution of seed.row in the j-th parity-check bit.

e It returns
col I‘OW))

VDec(ansy, . .. ,ansq,pc?' © pei™, ... pey” @ pey,
Here, VDec is the decision predicate of VPCPP, and is an OR; of its input bits or their nega-
tions. Since % is typical, C' is a ORy o & circuit. And one can easily verify that for each
seed = (seed.shared, seed.row, seed.col), Cyeed.shared,seed.row (INPUtseed shared seed.col) = 1 if and only
if VPCPPE”C(x)OW(seed) accepts. It follows that we can estimate pscc by solving the instances
Tseed.shared for every seed.shared.

To summarise, our algorithm MPPP works as follows. It first computes Encode(x) and
guesses C1,Co,...,C oot Then, it enumerates seed.shared, produces the instances Zseed.shared,
and feeds them to the algorithm for Approx.-€-SATISFYING-PAIRS to obtain an estimation
Phec(seed.shared). Let pl .. be the average of p, . (seed.shared) over all seed.shared € {0, 1}"shared.

We can still see that MPPP rejects every z ¢ L' and accepts every = with an easy

2[PCPP 3

witness. The machine runs in 7'/log®d T' time, guesses Hproof - 5510gS < Mhard/10

nondeterministic bits (since a size-s circuit can be encoded with at most 5slog s bits), and uses
at most £“T! < np,q/10 advice bits. By Theorem 3.3.1, MPCPP cannot compute L2,

The hard partial truth tables algorithm. Given a list of inputs 21, 22, ..., 2z¢ € {0,1}", our
algorithm for finding a hard partial truth table ((z1,b1), (22,b2),...,(z¢, be)) works as follows.
First, we construct the hard language L' and the algorithm MPCPP. Let a be the advice string
fed to MPCPP and R be the refuter in Theorem 3.3.1, we can use R(1™erd, MPCPP o) to find an

input xparg where MPCPP fails on xparq; in particular, MPCPP(xhard) =0 but @harq € L. This

takes deterministic poly(Hproof) = poly(¢) time with an NP oracle.

PEncode(achard)ow

Then we find the lexicographically first proof matrix 7 such that VPCP

w.p. at least cpep, using the NP oracle. There has to be some j € [Hpoof| such that for every

accepts

size-s € circuit C, there exists ¢ € [Wpyroof] such that C(z;) # m;,; moreover, the first such j can

be found in poly(Hpreof) = poly(¥) time with an NP oracle. We can pick

((21,75,1) (22, 75.2)5 - - s (BWoroots TG Wonoor))

as the partial truth table that is hard for size-s % circuits. O

69

3.7 Average-Case Hard Partial Truth Tables

Theorem 3.7.1. There is a universal constant ¢, > 1 such that the following holds. Let s =
s(n) > n be a circuit size parameter, N := N(n) be a parameter such that 21°8™ 5 < N < 25"
e :=¢e(n) > s~ be the error parameter, and £ := N log(1/2) " Let €[s] be a typical and complete
circuit class, and denote €’ [c,s] := AND,, 0 €[s] (i.e. a €' circuit of size c,s refers to the AND

of at most ¢, € circuits of size s).

Assumption: Let P := (log N)log(l/s). Suppose there is a deterministic algorithm running in
time T®8 := N2/P° that, given as input a list of N €"[cys] circuits {C;} and a list of N
inputs {x;} with input length n - polylog(€), estimates Pr; jnj[Ci(z;) = 1] with additive

error 1 1= .

Conclusion: There is an FPNP algorithm for €[s]-PARTIAL-AVGHARD with £(n) input strings.
More precisely, given a list of inputs wy,ws, ..., wy € {0,1}", we can compute a list of bits
bi,ba, ..., by such that for every € circuit C : {0,1}" — {0,1} of size s,

1

Z-E[re][c(wi) # bi] > 3~

€.
Proof Sketch of Theorem 5.7.1. The proof is similar to that of Theorem 3.5.1, so here we only
highlight the difference. Roughly speaking, the main difference is that we swap the role of inputs
and circuits.

For a circuit C' and a list of inputs w = (w1, ws,...,wy), with slight abuse of notation, we
define C'(w) := C(w1) o C(wg) o - -+ o C(wy).

Analysing Prod o Sum circuits. Let d > 1 be a constant. We use Prod o Sum to denote
the class of multi-output circuits that take inputs y € {0,1}% and «, and has the following

components:

e Let ls,m denote the number of middle “linear sum” gates. For each i € [{syy], the i-th

gate outputs

Sum;(y, a) := Z coeffr () - Yiduy (asi)-
ke[A]

o Let lp,oq denote the number of output gates. The i-th output gate is a product gate of

fan-in d, and is connected to the q1(i), g2(7), . . ., ga(¢)-th linear sum circuits. Its output is
d
Py, a) = [[Sumg, i) (v,).
t=1

Remark 3.7.2. The important measures of a Prod; o Sum circuit are:
e the number of gates in each level (¢sym, prod);
e the fan-in of the top Prod gates (d);
e the fan-in (A), coefficient sum (U), and locality (1) of the linear sum layer.

As an intermediate step, we need the following algorithm.

70

Lemma 3.7.3. Let € be a typical circuit class, M’ > 1 and n € (0,1) be parameters. Suppose
there is a deterministic algorithm running in time T8 = T¥8(N, M) that, given as inputs a list
of M < M ANDy o€ circuits {Ci} and a list of N < N inputs {z;} of length n - polylog(¥),
estimates the following quantity with additive error n:

- P [Ci(x))].
i [M],j<[N]

Then, for any constant by > 0, there is a deterministic algorithm running in time A% - (E% +
lprod/N)- (2% + M'/M)-O(T?2) that, given as inputs a ProdgoSum circuit C¥™¢ with parameters
specified in Remark 3.7.2, a list of £y strings {x;} of length n - polylog(¥), a list of M’ inputs
{a;}, and a list of M' € circuits {C;} from {0,1}7PoW0e) 4o {0, 1}6% | estimates the following
quantity with additive error n - U%:

CPrd(Ci(z), ;).
i [lproal i M/ L " (C5(@),)

Recall here that Cj(z) = Cj(x1) o Cj(x2) 0 --- 0 Cj(zy,).

The proof is similar to that of Theorem 3.5.3 and we only provide a sketch here.
Proof Sketch of Lemma 3.7.5. We identify idxy(a, i) € [€,] with (idx¥(a,4),idx} (o, 1)) € [fe] X
[l¢] (note that ¢, = ¢ ls). Then,

CProd Hsum)])

= H Z coeffk 04])ldxk (aj,qe(i))(xidxi(aj,qt(i)))

t=1ke[A]
=D D D H(Coeffkt (@) * (C)iaxt (00 0) (Tiee, (amt(i))))'
k1€[A] ka€[A] kqe[A] t=1
(3.11)
As we can enumerate ki, ko, ..., kq € [A] in A? time, it suffices to estimate
d
a1 LHI (<oefia(03)+ (ot o, <i>><xidxit<w<i>>))] | 212

Fix k1, ko,...,kq € [A]. Since CP™4 is of locality I, we can see that (3.12) only depends on di
bits of a;;. We partition j € [M’] into 29 groups as follows: For each o € {0,1}%, let 7, be the
set of j € [M'] such that the dl bits of «; (that (3.12) for this j depends on) equals to a. We
will estimate (3.12) by enumerating o € {0, 1}%, estimating it for j < J, (instead of j « [M']),
and then taking the average over all possible «.

Now we fix any o € {0,1}%. We can rephrase the following items as they no longer depend

on &g

coeffy, (o) =: coeff;

71

idx, (0, ¢ (7)) =: idx;, 1 (1);

A, (g qu(6)) = X, ().

It then suffices to estimate

d

/) L
i<—[£p,jﬁ,j<—\7a [tl;[l coeﬂ:t) (C])idxég,t(i) (a:'dxz,t(l))]

d
= H coeffy | - E
=1 i<—[£Pr0d]7j<_u7a

Now for B € [lg]?, let Zg := {i € [lprod] : Vt € [d], idxir (i) = B¢}. We enumerate over 3,

and now it suffices to estimate

d
/\(Cj)idxig’t(i) ("Bidx;i(i))] . (3.13)

t=1

d

A (€, (xidx'z,t(i))] - (3.14)

t=1

i{—Zﬂ,j(—Ja

Each expression of the form E; ; [/\fil(Cj)ﬂt ($idx; t(i))] reduces to the SATISFYING-PAIRS
problem for ANDy o € circuits. More precisely, we split Zg into blocks of size N and 7, into
blocks of size M, and use the assumed algorithm to estimate (3.14). By a similar argument as

in Theorem 3.5.3, the additive error of our algorithm is bounded by 7 - U¢.

Complexity. The subroutine for estimating (3.14) takes O(T#)-[|7.|/M]-[|Zg|/N1] time.

Therefore, the subroutine for estimating (3.13) takes

> OT) [|Tul /M1 - [|Z3l/NT = O(T*8) - [|Tal /M - (£ + Lprod/N)
Bells]d

time. It then follows that the subroutine for estimating (3.12) takes

Yo O(T™) - [|Tal /M- (£ + trroa/N) = O(T*8) - (2% + M'/M) - (£ + tproa/N)
ae{0,1}

time, and finally, estimating (3.11) takes
O(T™8) - 2% + M’ /M) - ({2 + lproq/N) - A
time, which is the total time complexity of our algorithm. O

Set up. We set the parameters as follows.

§ :=(10%) 10,
m :=cpy log(1l/e)/6,
Wproof := (300g/m) log ¢,
Rproof := (25¢ + 1) log ¢, Hiproof 1= 2ot = 25411

Nhard *= 20]:Iproof : pOIY(Sy € log logé)?

Wproof -— QWproof — EO(&/ log(l/e))’

72

T = Hproof . Wproof/ logcm (6)

©(m?loglogT _ 2
hinput = <1 - (loggT s)>hproofa Hinput = 2hmpm = Hproof/pOIY(Qm alOgE)a
- ' 2
Winput *= [1082 nhard~| - hinputa I/Vinput 1= 2Winput — poly(s, 2™ , log E)

a = 0(log?® Wt/ (€0)%) = O(log? £/£?),
A :=0(log Wproof/(€6)2) = O(log{/e?),
U:=0(1/e),

[:=log¥.

Here ¢, and ¢y are sufficiently large constants, ¢ is the query complexity of the smooth and
rectangular PCPP in Theorem 2.5.11, and 7ipardg = ©(nhard) is the length of Enc(x) when the
length of = is npag. Let ﬁproof be the number of rows of the PCPP proof in Theorem 2.5.11, and
let ilproof = log prroof, then prroof =log T + ©(mloglog T') — Wproof. Also, let 7, shared, Tcol, T'row
be the total, shared, column, row randomness in Theorem 2.5.11, respectively.

We use a different definition of “easy witness” as follows. We say x has an easy witness if

there is a proof matrix 7 such that:
(completeness) for every seed € {0,1}", VPCPPENde()om (seed) accepts;

(approzimate easiness) for every row m; of 7, there exists a size-s € circuit C; : {0,1}" — {0,1}
and an advice a; € {0,1} such that the decoding of the string C;(w) with advice o; is
0-close to m; with respect to £1-norm. (Recall that w = (wy,ws,...,wy) is our input and

C(w) denotes the concatenation of C(wy), C(ws), ..., C(wy).) In particular:

1. for every j € [Wproof], (decq, (Ci(w))); € [0,1];
2. ||decq, (Ci(w)) — mi|j1 < 4.

A~

Our machine guesses Hpoof size-s € circuits Cp, Co,...,Cp E {0,1}" — {0,1} as well as
proo
. 7a1:[proof' Let TI',LReaI = decai (CZ(’U))), and 7TZBOO| be the Boolean

. For v € [¢], we define

Hproof advice strings aq, ao, ..
Real

string that is closest to m;

Bool Bool

seed.shared,. (seed.row, Seed'COI) = Tirow[1] icol[1] and
Real ___Real
seed.shared,¢ (Seed'rOW’ Seed'COI) = Tirow]t],icol[s]*

Bool Real

Verifying closeness of 7 and 7

Bool

The next lemma shows that we can verify whether

Real

a Boolean proof 7 and a real proof m are close.

Lemma 3.7.4. Let € be a typical circuit class and d > 2 be an even number. Suppose there
is an algorithm that takes as inputs a list of 2" ANDsy o € circuits {C;} and a list of 27!
inputs {x;} of length n - polylog(¢), runs in deterministic T*# time, and estimates the following

quantity with additive error n:

Pr [Ci(x
B G
Then there is an algorithm that takes the strings wi, we, ..., wy, circuits (C1,Ca,...,Cy f),
proo
and (a1, az,...,ag) as inputs, runs in O((3A)24T2lg) . (22147 shared 4 T 10gO(M) T /927cal)) time
proo

73

deterministically, and satisfies the following:

(Completeness) If for every i € [Hyoof], it holds that (1) for every j € [Wproof], T Rea' €[0,1];
(2) ||wReal — xBool||y <5, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared € {0, 1}"shd and ¢ € [q], || FR . o L||d <142n-U%
2. E

Real Bool|d d d+1 2d
“_[Hproof]J{_[Wproof} |:|7Ti7]e'a - 71'7;’;?0 ’ i| S 4% 5 + 2 * 77(2U + 1) :

Proof Sketch. We first estimate || fR<3 |4 for fixed seed.shared and ¢. Recall that

seed.shared,.

Real Z coeffk OzZ (Ika(aw]))
ke[A]

We build a Prod; o Sum circuit Chorm := Chorm(seed.shared, 1) as follows.

Circuit C\orm

(Inputs) The input consists of (y,a) with the intended meaning that y = (y1,¥2,...,ys) where

Yi = C1irow[L] (wi)7 and a = Qirow[.]-

(Linear sum gates) There are 2" linear sum gates. For each seed.col,

SUMseed. col y, Z Coeffk * Yidxy, (a,icol[e]) -
ke[A]

(Output product gates) There are 2"« product gates. For each seed.col, the seed.col-th output
gate is simply
(Cnorm)seed.col (y7 Oé) = (Sumseed.col (ya a))d °

Recall that this circuit Cyorm has parameters as follows:

e the number of gates in each layer: fg,, = 27!, £p,oq = 27;

e the fan-in of the top Prod gates d;

e the fan-in A, coefficient sum U, and locality ! of the linear sum layer.
We invoke Lemma 3.7.3 on the circuit Chorm, strings w1, wz, . . ., wg, 2" inputs {irow[,] }seed.row
and 2w gize-s ¥ circuits {C’irowm }seed.row- Here £ = 1. We thus obtain an estimation EST porm =
EST orm (seed.shared, 1) where

seed.shared,.

ESTnorm — H Real Hd’ <n- U

If ESThorm > 1+ 1-U?, then we reject the input. Otherwise, we proceed to verify that wRe!

and 78°° are close. Consider the polynomial P(z) := 2%(1 — 2z)?. We will estimate
E p(wﬁja')} . (3.15)

14— [Hproof} 7.7'(7 [Wproof]

Similarly, we estimate (3.15) by building a Prodyg o Sum circuit Cyi.

Circuit Cys

(Inputs) The inputs are exactly the same as Chom-

74

(Linear sum gates) There are 2Wpo0f linear sum gates. Let j € [Wpyoof], then the 2j-th linear
sum gate computes (7R¢");, and the (24 + 1)-th one computes 1 — (7). That is,

Sumoy;(y, o) = Z coeffg (a) Ut () Sumg;iy1(y,) = 1 — Sumy;(y, @).
ke[A]

The implementation of the linear sum layer is the same as in Lemma 3.5.4, and we omit it

here.

(Output product gates) There are Wyoof product gates. For each j € [Wpyroof], the j-th output
gate is
Cairr(y,) = (Suma;(y, @) - Sumay (y, @))”.

The parameters of the circuit Cy; are as follows:

e the number of gates in each layer: lsym = 2Wproof, LProd = Woroof;

e the fan-in of the top Prod gates 2d;

e the fan-in 24 + 1, coefficient sum 2U + 1, and locality ! of the linear sum layer.

We invoke Lemma 3.7.3 on the circuit Cyig, strings wy,ws,...,wy, a list of prroof inputs
{a;}, and a list of H proof Size-s € circuits {C;}. Here 4 = 1. We obtain an estimation EST gig
where

|ESTgirr — (3.15)] < n- (2U + 1)%%.

We accept if and only if EST g < 2¢ -6 + n(2U + 1)24.
The correctness and complexity are analysed in the same way as in Lemma 3.5.4, so we omit

it here. o

Real Bool

Estimating p,.c. Now we verified that 7 is close to 7 using Lemma 3.7.4, with param-

eter d = 2q. After that, the next step is to use it to speed up L"d. We estimate

pacci= Pr VPCPPEnc(@)om™ (see) accepts] .

Actually, it suffices to distinguish between the case that pacc > 5/6 and the case that paec < 1/2.

We still enumerate seed.shared, and we now need to estimate

Pacc(seed.shared) := Pr VP CppEnc(@)ort
seed.row<—{0,1}"row
seed.col+—{0,1}"col

(seed) accepts] .

Let pci,pca, ..., pcq < Voc(seed.shared) be the parity-check bits of the PCPP verifier, and
let pc® (resp. pc®) denote the contribution of seed.row (resp. seed.col) to pc,, then pc, =
pcoY @ pecel.

As in the proof of Theorem 3.5.1, here it suffices to estimate for every S, S’ C [q]

Real ! Real
seed.shared, S, S") = E a . AR
Pace () seed.row<—{0,1}"row [H ¢ H,p L]
seed.col«—{0,1}"col LS Les
where
aReal L rZ'irow[L],icol[L] itype[ﬁ] = input,

Real
irow/[¢],icol[¢]

itype[] = proof.

75

We want to invoke Lemma 3.7.3 to estimate this, so we want to construct a 2"<-output ProdoSum

circuit CProd, 2mow circuits {Cseed.rowt and 27 strings {seed.row} Such that

Csifa%ldcol (Cseed.row (w)) aseed.row)

— Ha?eal . H pe,

LeS Les’
= H Z coeffy, (O‘irow[L]) ’ Cirow[L] (|dxk(a,,ow[L icol[¢])) H $|row[b] icol[¢] * H(LD pCCOI)
regproof \ ke[A] LESinput Les’

(3.16)

where SP°f = {, € S : itype[t] = proof} and S"PUt = {, € S : itype[t] = input}. This motivates
the following definitions.
For i € [{], let z; € {0,1}" "%t be the string such that the first n bits of z; is w;, and the

last Winpyt bit is (the binary expression of)

i if i € [Winput],
1 ifi ¢ [Winput)-

Here we identify [Winput] with {0, 1}%ineut,

For any string v, define C, : {0,1}M°8lYll 5 0,1} as the circuit that on input i < |v],
outputs v;. Since € is complete, C,, is an efficiently computable € circuit of size poly(|v|). Let
PrOjinput : 10 1}t winue — {(), 1}Winewt be the circuit that outputs the last winpyt bits of its input,
and let projpoof : {0, 1} Winpee — (), 1}™ be the circuit that outputs the first n bits of its input.

Now for fixed seed.row, define

oo . Couts) © PrOJinput itype[t] = input

L

CiI’OW[L] © projproof itype[[’] = proof

for © € S, and CY° be the circuit that outputs pcf® for € S’, regardless of its input. Let
Cseedrow = (C7,CY, ..., gS,CfC,Cgc,...,C’S;) where dg := |S| and dg := |9’|, that is,
Cseed.row 18 a circuit with dg + dg/ outputs and each of its outputs is a circuit C* or C7*.

Now we define the Prod o Sum circuit C'Prd.

Circuit CPrd

(Inputs) The input y has the form ¥y = Yseed.row = (Y1,¥2, - - -, y¢) and the input & has the form & =
Qseed.row = (@1, G2, ..., &gg). The intended meanings are y; = Cseed.row(2i), and &; = Qirowi]-
For convenience, we will use the following labels to refer to bits of ¢, assuming the intended
meaning above:
— For j € 87, i € [{], let () := C%(2:) = Cirowpj)(wi);
— For j € S i € [Winputl, let (4:); := C(2:) = C,i (1) = Fivomps),is

~ For j € 5, let (4);1as = C7"(2:) = pe™.

(Linear sum gates) There are fsym := Wpyroof - ds + 2ds linear sum gates and we identify [(sym]
with the disjoint union of [Wpyroof] X S and S’ x {0, 1}.

76

Let i € [Woroof] and j € S. If itype[j] = proof, then the (4, j)-th linear sum gate is

Sum(z 7) ya Z Coeffk Oé] yldxk(aJ,'L))
ke[A]

It is easy to verify that
Sum(i’j) (y, Oé) = (decaimw[j] (Cirow[j] (U})))Z

On the other hand, if itype[j] = input, then the (4, j)-th linear sum gate is Sum; ;)(y, @) :=
(yi)j- (If i > Wippye then we simply set Sumg; j)(y,) = 0 and this gate would not be used.)

Finally, for each 5 € S’, we have two intermediate gates
Sum;0) (Y, @) = (Y1)j+ds, Sum1 (Y, @) =1 = (y1)j+ds-

Implementation of the linear sum layer: The linear sum has fan-in A’ := A - dg + 2 and we
identify [A’] with the disjoint union of [A] x S and {4+, —}. Also, the length of y is £, :=
(- (ds + ds’), and we identify [¢,] with [£] x (S .S’). Let idx" and coeff’ be the idx and coeff

functions of the linear sum layer of CP™¢, then

(Function idxj (v, 7)) Suppose i = (i',j) € [Wyoof] X S. If itype[j] = proof and k = (K, j’)
where j = j’, then we return idxj,(a,i) = (idxw (aj,4’),); if itype[j] = input and i’ €
[(Winput] and k = +, then idx (v, i) = (', j). Otherwise idxj,(a, i) = ZERO.

On the other hand, suppose i = (5,b) € S" x {0,1}. If (b =0 and k= +) or (b =1 and
k = —) then idx} (a,i) = (1,5). If b =1 and k = + then idx},(a,i) = ONE. Otherwise
idx, (c, i) = ZERO.

(Function coeff} (a)) If k = + then coeff} (a) = 1; if K = — then coeff} (o) = —1; otherwise,

if k = (K, ') then coeff} () = coeffy (avjr).

The locality of (idx’, coeff’) is still I. The coefficient sum becomes dg - U + 2.

(Output product gates) There are 2" product gates. For each seed.col, the seed.col-th output

gate is
Clhatea (v, @) = T Sumiicaisi g (9 @) - T Sum(; pess) (3,).
JES JES’
To summarise, the parameters of the circuit CP™¢ are as follows.

e The number of gates in each layer: fs,m = Wyroof - ds + 2dsr, €prod = 27

e The length of input y: £, = £(ds + dg/);

e The fan-in of the top Prod gates: dg + dg < 2q.

e The fan-in A’ := A-dg+2, coefficient sum dg - U +2, and locality [of the linear sum layer.
Given the above construction, it is easy to see that (3.16) holds for every seed.row and

seed.col. We can thus see that

Real ! Prod
Pacc (seed.shared, S7 S) = ceed rowE{O 1}7row C's,eed,col(Cvseed.row (w)7 aseed.row) .
seed.col«—{0,1}"col

Since dg < ¢,dgs < q and ly < dg + dg < 2q, we can estimate pR¢?(seed.shared, S, ") using

acc

7

Lemma 3.7.3 within an additive error of 7 - (qU + 2)?? in deterministic time
(A ds -+ 2 (201 + 27 [N) - (220 4 27 /N) - O(T%)
Analysis. First, the verification step takes

O((3A)4qTalg) . (24ql+rshared _I_ T logo(m) T/227‘c0|>

< O((3A)%) - (T 1ogP™ T) / (reo)+108(1/2)
< T(log T)Cm)—culog(1/e)/2

time, which is at most T'/(4log®=4 T) if ¢, is a large enough constant.

CProd

Then, the algorithm of Lemma 3.7.3 on runs for every seed.shared, S,S’, and in total

takes time

(A-ds + 2)2q . ((gq)2q 4 270l /N) - (22ql + 2w /N O(Talg) . 924 . 9Tshared
< O(long 5/5411) . O(Qrco| /N) . O(QTrOW/N) . O(NQ/ logc“ log(1/e) N) . QTshared
< 2" /loge) ¢ < T/(410g®r T),

when ¢, is sufficiently large. Therefore, the whole algorithm runs in 7'/ log®¢ T' time.
Besides, by the same argument as in the proof of Theorem 3.5.1, which we omit here, the

algorithm estimates pacc within an additive error of at most
n(4qU + 8)%7 + 167 - 10077 < 1/6,
thus successfully distinguishes between the case that paec > 5/6 and that paec < 1/2.

2/PCPP

Description of We summarise the algorithm MPPP. On input z, we consider the

smooth and rectangular PCPP for the language Le"® = {Encode(z) : z € L'}, (Recall that

MPCPP aims to reject every x ¢ L and accepts every x € L with easy witness.) We guess

(C1y- -, CHypy) and (o, ..., o,), Which implicitly defines the PCPP proof matrices mBool

Real Real using Lemma 3.5.4 and reject immediately if 7R did not pass

Bool)

and 7. Then we verify 7

the test. If 7R passes the test (which means that it is “close” to a Boolean proof m , wWe
use the algorithm described above to estimate pacc. We accept x if and only if our estimation is
above 2/3.

The correctness of MPCPP is easy to see (and is exactly the same as Claim 3.5.8):

Claim 3.7.5. For every input x, if © & L then MPPP rejects x; while if x € L and = has an

easy witness then MPCPP accepts x.

MPCPP guesses ﬁproof(5s logs + a) < Mhard/10 bits of nondeterminism (the

The machine
number of size-s € circuits is at most 2°1°8%), and uses £7 < npaq/10 bits of advice. Thus it

computes a language in NTIMEGUESSgram[T'/ log™¢(T"), nthard /10] /(ny..a/10)-

The FPNP algorithm for average-case hard partial truth tables. Let wi,ws,...,wy €
{0,1}™ be the input. We first construct the hard language LM and the algorithm MPCPP.

78

Since MPCPP is a nondeterministic RAM algorithm that runs in 7'/log®=(T) time, uses at
most Nhard/10 nondeterministic bits and at most npaq/10 advice bits, it follows that there is
an input Tpaq € {0,1}™¢ such that MPPP(z,4) # L' (2pag). Moreover, let o be the

MPCPP i e, the circuit C. We can find such an input Zpsg by running

advice string fed to
R(17erd, MPCPP o) where R is the refuter guaranteed by Theorem 3.3.1. Thus, we can find
Thard 10 deterministic poly(T") time with an NP oracle.

It follows from Claim 3.7.5 that Zhaq € L' but zharq does not have an easy witness. Thus,

we can use the NP oracle to find the lexicographically first PCPP proof matrix 7 such that

Pr [VPCPPENcode(®)om (seed) accepts] = 1.
seed<—{0,1}"

Then, there must exist a row m; such that Amp(m;) is (1/2 — ¢)-far from C(w) = C(wy)o---o0
C(wy) for any size-s € circuit C. To see this, suppose that for every i, there exists a size-s
¢ circuit C; such that Amp(m;) is (1/2 — ¢)-close to C;(w). By Theorem 3.3.5, there is an
advice a; such that decy, (C;(w)) satisfies (1) for every j € [Wproof|, (decq, (Ci(w))); € [0,1]; (2)
||decq, (Ci(w)) — milj1 < 6. It follows that 7 is an easy witness for Zpard, a contradiction.

Finally, we use the NP oracle to find the first row m;, such that Amp(m;) is (1/2 —¢)-far from
C(w) for any size-s € circuit C, and output Amp(m;). The overall procedure takes deterministic
poly(T") < poly(¢) time with an NP oracle. O

3.8 Unconditional Algorithms for Range Avoidance

In this section, we apply the frameworks above to obtain unconditional results for ACCO-

REMOTE-POINT and ACCP-PARTIAL-AVGHARD.

3.8.1 An Algorithm for #ACC’-SATISFYING-PAIRS

We first present a non-trivial algorithm for #ACC’-SATISFYING-PAIRS. This algorithm
utilises a quasi-polynomial simulation of SYM o ACC? circuits by SYM o AND circuits.

We need the following algorithm for the batch evaluation of low-degree polynomials via fast
rectangular matrix multiplication. This algorithm has been extensively used in previous works
on the polynomial method and circuit complexity (see, e.g., [Will4, Will8a]). We provide a

proof for completeness.

Theorem 3.8.1. Let x1,x9,...,xy € {0,1}" be N input strings, and p1,p2,...,pn : {0,1}"" —
N be N integer polynomials of degree at most d. Suppose that n**® < N. Then there is a
deterministic algorithm running in O(N?) time that outputs the table of pj(x;) for everyi,j €
[N].

Theorem 3.8.2 (|Cop82]; see also [Will8a, Appendix C|). There is a (deterministic) algorithm
for multiplying an N x N%' matriz and an N°' x N matriz using O(NQ) arithmetic operations.

Proof of Theorem 3.8.1. There are m = Zfzo (") < (en/d)* < N°! monomials of degree at
most d. We number these monomials from 1 to m. Let S; denote the set of indices in the j-th

monomial. That is, the j-th monomial is [], . s, Th-

79

We construct two matrices My € ZNX™ and My € Z™*N. For each i € [N] and j € [m],
M, i, j] is the evaluation of the j-th monomial on input x;. (That is, M;[i,j] = ersj (xi)k.)
For each j € [m] and k € [N], Ma[j, k] is the coefficient of the j-th monomial in pg.

Let M := My - My. It follows that for every i,j € [N], M[i,j] = p;(x;). Since m < N9, we
can compute M in O(N?) time using Theorem 3.8.2. O

Theorem 3.8.3 (From SYM o ACC? to SYM o AND [BT94, AG91, Will8c|). Let m,{ be any
constants, there exists an integer ¢’ such that every SYM oACg [m] circuit of size s can be simulated
by a SYM o AND circuit of 2008) size. Moreover, the AND gates of the final circuit have only
(log s)cl fan-in, the final circuit can be constructed from the original one in 20((og) time, and

the final symmetric function at the output can be computed in 20(1°89)°) time.

Combining Theorem 3.8.3 with Theorem 3.8.1, we can derive the #ACC-SATISFYING-PAIRS

algorithm in non-trivial time as follows.

Theorem 3.1.15. For every constants m, ¥, c, there is a constant ¢ € (0,1) such that the
following holds. Let n := 21°8°N and s := 2'°8°" There is a deterministic algorithm run-
ning in O((N/n)Q) time that given N strings x1,T2,...,xy € {0,1}" and N AC)[m] circuits
C1,Co,...,Cn :{0,1}" — {0,1} of size s, outputs the number of pairs (i,j) € [N] x [N] such
that Ci(z;) = 1.

Proof. Let ¢ be a constant to be determined. We divide C1,Cy, ..., Cy into N/n groups where
each group has size n. Let C;; denote the j-th circuit in the ¢-th group. We also partition the
inputs x1,x2,..., 2N into N/n groups of size n and define z;; similarly. Let X; := x;1 o ;0 0
C O T

For each group i, we can construct g := [2logn] SYM o AC? [m] circuits D1, Dia, ..., Dig :
{0,1}"* — {0,1}, each of size s’ := O(n? - s), such that for any group j, we have:

DD Cinlwyy) =Y 2" Di(X;).
k=0

i'=1j'=1

That is, D;x(X;) computes the k-th bit of the number of satisfying pairs between the i-th group
of circuits and the j-th group of inputs.

Let ¢ be the constant in Theorem 3.8.3 depending on ¢ and m. We can transform each
SYM o ACY[m] circuit D;; into a SYM o AND circuit D;; of size 20085 such that each AND
gate has fan-in at most d := (logs’)®. We can write each Di;(x) as fij(pij(x)), where p;;(x) :
{0, 1}"2 — {0,1,..., 20 S/)Cl} is a polynomial of degree at most d that only outputs integers
upper bounded by 2(log ') on Boolean inputs, and f;; is some function that can be evaluated in
20((log) time. We can construct the polynomials p;; and (the truth tables of) the functions
fij in (N/n)gQO((logsl)C/) time. Let € := 1/(10cc’) (and recall n = 21°8° N and s = 21°8°") this
time bound is at most (N/n)?.

Then, for each k = 1,2,...,g, since (n?)?*? < N/n, we can compute the table of p;(X;)
for every i,7 € [N/n] in O((N/n)?) time by invoking Theorem 3.8.1. In fact, by checking the

80

truth-tables of f;;, we actually get the table for D}, (X;) = D;;(X;). Finally, it follows that:

N N N/nN/n n n N/nN/n g
SN Cila) =YD 30 Curlagy) =D > 0> 2" Da(X;).
i=1 j=1 i=1 j=1i=1j'=1 i=1 j=1 k=0
The total run-time is bounded by 2(N/n)? + gO((N/n)?) = O((N/n)?). O

3.8.2 Remote Point for ACC°

Theorem 3.1.16 (ACC’-REMOTE-POINT € FPNP). There is a constant ¢, > 1 such that for
every constant d,m > 1, there is a constant csyy 1= csie(d, m) > 1, such that the following holds.

Let n < s(n) < 27" be a size parameter, € := £(n) > 2n~ be an error parameter and
0 := L(n) > 296" S be q stretch function, then there is an FPNP algorithm that takes as input
a circuit C = {0,1}" — {0, 1}, where each output bit of C' is computed by an ACY[m] circuit of
size s, and outputs a string y that is (1/2 — €)-far from Range(C).

Proof. Let ¢, be the constant from Theorem 3.5.1, and cg, be a constant to be determined later.
We then set parameters for invoking Theorem 3.5.1.

We set neat := max{21°g6"+2 cutt
length ne,t and size parameter also ngt to get a #Acg Jr1[m]—SATISFYING-PAIRS algorithm for
N circuits and N inputs, where N := N(n) = 2log"/ = nwat £ some constant egy € (0,1). This
algorithm runs in time T' = O((N/ngat)?).

Set cstr = (cu + 2)/esat + 3. Let &' := &/(n) > n~° be the error parameter and ¢ :=

0'(n) = N¢ulos (1/¢) be the stretch, then we can check these parameters satisfy the requirements

n glog #}. Then we can invoke Theorem 3.1.15 with input

of Theorem 3.5.1 as follows.

210gcu n < N < 277,0'99
El(n) — N¢ log (1/€") > s

T < N2/2logcu+2n < NQ/TLC% log€u n < NQ/(IOg N)ci log€u n < NQ/Pcu

(That is, we use the aforementioned algorithm to solve SATISFYING-PAIRS with N circuits of
size s and N inputs of length n by padding nsyz — n dummy bits to each input, and then apply
Theorem 3.5.1). By Theorem 3.5.1, we get an FPNP algorithm for ACC’-REMOTE-POINT with
error €'(n) > n~%, and stretch #(n) = N°192(1/¢) We can check that both £(n) > ¢'(n + 1)

PNP

and £(n) > 2¢’(n+ 1) hold, so we can invoke Lemma 3.3.7 and get a desired F algorithm for

remote point with the original parameters.]

We can easily recover the state-of-the-art almost-everywhere average-case lower bounds
against ACC? [CLW20] by giving the truth table generator as the input.

ENP

Corollary 3.1.18. For every constants d,m > 1, there is an € > 0 and a language L € such

that Ly, cannot be (1/2 + 27")-approzimated by ACY[m] circuits of size 2", for all sufficiently

large n.

Proof Sketch. Let TT,: {0,1}9(1985) 5 {0 112" be the truth table generator of AC[m)] circuits,

where s = 2" for some constant € to be determined later. Each output bit of TT, is computable

81

by an ACY [m] circuit of size s’ = poly(s) for some d' = O(1).
For clarity we define ny = O(slogs) to be the input length of TTs, su(ny) := s and
dy := d' to be the size and depth of TTg, respectively. Let ¢, and csy := cetr(dir, m) be the

PNP algorithm Apag that takes as input a

constants in Theorem 3.1.16. Then there is an F
circuit C' : {0,1}™ — {0,1}* and outputs a string y that is (1/2 — ey)-far from Range(C),
where fy > 2108 st and gy 1= 2n . By choosing ¢ to be a sufficiently small constant, we can
make

Cstr €
on > glog™se and 27 S gy

We then fix the input of the FPNP algorithm Ap,rq above to be TT to obtain an FPNP algorithm
A that takes 12" as input and produces a truth table of length 2" that cannot be (1/2 +27")-

approximated by any size-s circuits. The required hard language is then defined as

L= {x € {0,1)":n e N, tt ¢ A(12") € {0,1)2", tt, = 1}. O

3.8.3 Hard Partial Truth Tables for ACC°

Theorem 3.1.17 (ACCO—PARTIAL—AVGHARD € FPNP). There is a constant ¢, > 1 such that
for every constants d,m > 1, there is a constant csty := cste(d, m) > 1, such that the following
holds.

Let n < s(n) < 2" be a size parameter, € 1= €(n) > 2n~% be an error parameter and
0 :=1{(n) > 2log™'s be o stretch function, then there is an FPNP algorithm that given inputs
x1,...,x0 € {0,1}7, it outputs a string y € {0,1} such that for any s(n)-size ACY[m] circuit C,
y is (1/2 —¢e)-far from C(x1) o--- 0 C(xp).

Proof Sketch. The proof is similar to Theorem 3.1.16, so we only sketch the proof.

Let ¢, be the constant from Theorem 3.7.1, and then we set the values'® of ¢, nsat, N, €sat,
T, ¢'(n) and ¢ (n) in the same way as proof Theorem 3.1.16.

Since parameter constraints of Theorem 3.7.1 are similar to those of Theorem 3.5.1, These
parameter settings can be used to invoke Theorem 3.7.1 and get an FPNP algorithm for O(s(n))-
size AC410(1)[m]-PARTIAL-AVGHARD with stretch £'(n) and error &’(n). We can check that both
l(n) > (n+1)/2 and e(n) > 2¢'(n + 1) hold, so it is valid to invoke Lemma 3.3.8 and get a
desired FPNP algorithm for average-case hard partial truth tables with the original parameters.

Alternatively, we can reduce ACCO-PARTIAL-AVGHARD to ACC’-REMOTE-POINT (see Sec-
tion 3.2) and simply apply Theorem 3.1.16, since the evaluation of ACCY circuits can be imple-
mented in ACCY. O

As a consequence, we show (following the observation in [AS10]) that there is no efficient

mapping reduction from ENP to any language decidable by small-size non-uniform ACCY circuits.

Corollary 3.1.19. Let d,m € N be constants, ACg[m} denote the class of languages computable
by a non-uniform family of polynomial-size ACg[m] circuits. Then, there is a language LM e

ENP that does not have polynomial-time mapping reductions to any language in Acg[m],

611 order to invoke Lemma 3.3.8, we actually use s'(n) = O(s(n)) as size function and d’ := d+ O(1) as depth.
These are rather minor changes, so we can still use the same parameter settings strategy.

82

Proof. Our ENP language L' receives two inputs: a Turing machine R and a string 3. Here,
the lengths of (R) (the encoding of R) and y are [n/2] and n’ := |n/2] respectively, thus
Lhard receives n-bit strings as inputs. The machine R is interpreted as a reduction that runs in
T(n) := n'°8™ time (which we diagonalise against).

We run R on all inputs of the form ((R),z’), where |2'| = n'. Let x1,22,...,2,. be an
enumeration of length-n’ strings, and z; := R((R), z;) be a string of length at most T'(n). Note
that the strings z; may not be of the same length, but the length of each z; is at most T'(n).
By an averaging argument, there is an ¢ < T((n) such that there are at least 27 /T'(n) > 27"
strings z; with length exactly £. Let N be the number of strings z; with length exactly ¢ and
denote these strings to be z;,,2i,,...,2i,. We can check the technical constraints and invoke
Theorem 3.1.17 to get an FPNP algorithm for solving the ACY[m]-PARTIAL-HARD problem on
inputs z;,, Zi,, - . -, 2i . We obtain a sequence of bits y;,, Yi,, - - -, ¥iny € {0, 1} such that for every
size-0°8 ¢ ACY[m] circuit C, there is some j € [N] such that C(z; ;) # Yi;- This can be done in
deterministic 20 time with an NP oracle. Finally, we define LM as follows: suppose z is the
i-th string of length n’ (i.e., x = x;), then 2 € LM if and only if |z;| = £ and y; = 1.

Lh2d runs in deterministic 22 time with an NP oracle. We still need to show that

Clearly,
for every language L € ACg[m], there is no polynomial time reduction from L' to L. Suppose,
for the sake of contradiction, that there is a polynomial-time reduction R from L9 to L. Let n
be a sufficiently large number such that n/2 > (R) and T'(n) = n'°8™ is larger than the running
time of R. Consider running R on inputs of the form ((R),z) where |z| = |n/2|. Let z;, v,
z;, £, and N be defined as above, and C be an AC?l [m] circuit that decides L on input length £.
Since the size of C' is at most poly(¢) < £1°8¢ there is some j < N such that C(z;) # yi;- In
other words,

Ji € N,C(R((R),z;)) # LM((R), z;).

It follows that R is not a correct reduction from LM to L. O

83

Chapter 4

The “Complete” Algorithmic Method

4.1 Overview

In this chapter, we show that circuit lower bounds for ENP and CAPP algorithms with ENP
preprocessing are equivalent. By slightly modifying the proof of Theorem 3.4.2 we can see that
a non-trivial GapUNSAT algorithm for %, even with ENP preprocessing, would imply ENP ¢ €.
(A precise definition can be seen at Definition 4.3.1.) We show that for powerful enough circuit

classes € (e.g., TC?, NC!, or P/poly), the converse is also true:

Theorem 4.1.1 (Informal). Let € € {TCY,NC',P/ 01y }. The following are equivalent:
o ENP cannot be computed by polynomial-size € circuits on almost every input length.
o There is a non-trivial GapUNSAT algorithm for € circuits with ENP preprocessing.

For circuit classes € that are less powerful (i.e., that might not be able to efficiently com-
pute MAJORITY), we show that strong average-case circuit lower bounds against 4 and CAPP

algorithms for € with inverse-circuit-size error are equivalent:

Theorem 4.1.2 (Main Results 2.2, Informal). Let € be a “weak” circuit class under some mild

closure properties. The following are equivalent:

e ENP cannot be (1/2+1/poly(n))-approzvimated by € circuits on almost every input length.

ENP

o There is a non-trivial CAPP algorithm for € circuits with preprocessing and inverse-

circuit-size error.

Actually, we can show equivalences among a lot of notions, including strong average-case
lower bounds for ENP| non-trivial CAPP algorithms with ENP preprocessing, subexponential-
time CAPP algorithms with ENP preprocessing, and ENP-computable PRGs. See Theorem 4.6.1
and Theorem 4.6.3 for details.

One advantage of our equivalence is that it also holds for larger size bounds and the case of

infinitely-often lower bounds:

Theorem 4.1.3 (Informal). Let € be a “weak” circuit class under some mild closure properties.

The following are equivalent:

84

o ENP cannot be (1/2+ 1/2”0<1>)—approximated by € circuits of size on*®.

o There is a CAPP algorithm for € circuits of size on®™ yith, gn—n query time, ENP

preprocessing, and inverse-circuit-size error, that works for infinitely many n.

Remark 4.1.4 (Equivalences between Derandomisation and Lower Bounds).

Equivalences between derandomisation and lower bounds are known in many settings.

e Impagliazzo, Kabanets, and Wigderson [IKW02| showed that NEXP ¢ P ,poly if and only if
there is a non-deterministic subexponential-time algorithm for CAPP with n°(") bits of advice

and error 1/6 that works infinitely often.

e Korten’s result [Kor21] can also be interpreted as an equivalence between derandomisation and
lower bounds: A full derandomisation of the trivial FZPPN® algorithm for AvoID is equivalent
to both ENP ¢ SIZE[2!"] and ENP ¢ SIZE[2"/3n].

e Equivalences between derandomisation and uniform lower bounds are also known. Impagli-
azzo and Wigderson [IWO01]| showed that EXP # BPP is equivalent to an infinitely-often,
subexponential time derandomisation of BPP on average (BPP C i.o.—heurDTIME[2”a(1)]).
Williams [Will6] showed that NEXP # BPP is equivalent to an infinitely-often, subexpo-
nential time nondeterministic derandomisation of BPP on average, with n°(") bits of advice
(BPP C i.0.-heurNTIME[2"""]/,.01)).

In our opinion, compared to the above equivalences, our results have the following features that

make them particularly attractive:

e First, they work in both infinitely-often and almost-everywhere settings; in contrast, [[W01]
and [Will6] only hold for infinitely-often lower bounds.

e Second, they scale better with large circuit size bounds (such as 2”0(1)); no similar equivalences

to [IKW02| for NEXP ¢ SIZE[2""'] or to [TWO1] for EXP ¢ BPTIME[2"""'] are known.

e Third, they are also true for weaker circuit classes such as formulas or ACC® circuits; in
contrast, the arguments in [Kor21| do not seem to yield any characterisation of, e.g., the
lower bound ENP ¢ Formula[2°-17].

e Finally, our equivalences include both subexponential-time derandomisation and non-trivial
derandomisation; none of the equivalences above are known to include non-trivial derandomi-

sation.

An interesting corollary of Theorem 4.1.1 and Theorem 4.1.2 is the following “speed-up”

ENP

result for derandomisation with preprocessing;:

Corollary 4.1.5 (Informal). The following are true:

o If there is a non-trivial GapUNSAT algorithm for TC? circuits with ENP preprocessing, then

ENP

there is a subezponential-time CAPP algorithm for TCO circuits with PreProcessing.

o Let € be a “weak” circuit class under some mild closure properties. If there is a non-trivial
CAPP algorithm for € circuits with ENP preprocessing and inverse-circuit-size error, then

ENP

there is a subexponential-time CAPP algorithm for € circuits with preprocessing and

nverse-circuit-size error.

85

Remark 4.1.6 (Comparison with Other Speed-Ups in Complexity Theory).

Williams [Will3a] showed that if CAPP has a nondeterministic algorithm with non-trivial run-
ning time, then CAPP also has a nondeterministic subexponential time algorithm. One caveat of
this result is that the speed-up algorithm is only infinitely-often correct and requires n® bits of
advice. Therefore, the speed-up algorithm does not imply the non-trivial algorithm. In contrast, in
Corollary 4.1.5, the speed-up algorithms always imply the non-trivial algorithms.

Oliveira and Santhanam [OS17a] showed a similar speed-up result in learning theory: a typical
circuit class is “non-trivially learnable” if and only if it is learnable in subexponential time. Their
result is proved using the connection between natural proofs and learning [RR97, CIKK16], while
our result is a strengthening of the Algorithmic Method.

4.2 Preliminaries

4.2.1 Pseudorandom Generators

Let € be a circuit class, € > 0, and r(n) < n be a good function. A pseudorandom generator
(PRG) with seed length r(n) that e-fools € is a function G : {0,1}" — {0,1}" such that for
every circuit C € €,

P Cx)=1] — P C(G(seed)) =1]| <e.
x(—{Ol,nl}"[() seed<—{ro,1}r[(Glseed) = 1] < ¢

We also say G is an i.0. PRG if the above condition holds for infinitely many lengths n.

In this chapter, we will mostly consider ENP

-computable PRGs, where G is computable
in 290" time with access to an NP oracle. (It is without loss of generality to assume that
r > Q(logn).)

We need the classical construction of PRGs from average-case lower bounds [NW94|. Let

Juntay be the class of k-juntas, i.e., functions that only depend on k input bits. We have:

Theorem 4.2.1 (|[NW94], see also [CR22, Theorem 6.4]). Let m, ¢, a be integers such that a < £,
and let t := O(£> - m'/%/a). Let € be a circuit class closed under negation. There is a function
G : {O,I}QZ x {0,1} — {0,1}™ computable in deterministic poly(m,2') time such that the
following holds.

For any function Y : {0,1}* — {0,1} represented as a length-2° truth table, if Y cannot be
(1/2 4+ ¢/m)-approzimated by €[S] o Junta, circuits (i.e., the top € circuit has size S), then
G(Y,—) is a PRG that e-fools every €S| circuit. That is, for any circuit C € €9,

P Y. =1|— P =1 <e.
P O@) =1 P 0l =1 <

4.2.2 Elementary Properties of Norm and Inner Product

We discuss some properties of norms and the inner product of functions on Boolean cubes,

which will be useful for us. For a function f : {0,1}" — R, we define its £,-norm as

1/p
1=, &, 1)

86

In particular, the £,-norm is defined as the maximum absolute value of f.

[flloo == max {[f(z)]}.

ze{0,1}m

For m > 2 and functions f1, fa,..., fq: {0,1}" — R, define their inner product as:

<f17f27'--7fd> = E

z+{0,1}n

d
117 z‘(m)] :
i=1
We need the following generalisation of Holder’s inequality:

Fact 4.2.2. Let d be an integer. For functions fi, fa,..., fa:{0,1}" — R we have that

d

11+

i=1

d
< [Tl
1 =1

We need the following simple lemma.

Lemma 4.2.3 (a generalisation of [CW19b, Lemma 28|). For any integer d > 2 and functions
fisfoyoooy fa and g1, 92, .., 94 from {0,1}" — R and e, > 0, suppose for all i € [d] we have:

o [|filly < and gl < «,
o ||fi—ugill;<e.

Then |<f17f27"'7fd> - <917927"'agd>| < d.ad—l s

Proof. We have

d
[(froeees fa) = {grs o ga)l <D N1 figivrs - 9a) = (froe oo fint, 9 -5 9a)|
i=1
d
S Z‘(flaafl _givgi-‘rlv"'agd)’
i=1
<d-a%t. ¢ (by Fact 4.2.2). O

4.2.3 Linear Sum of Circuits

Sum o % circuits. Let € be a circuit class. A Sum o % circuit C': {0,1}" — R (|[Will8b]) is a

circuit of the following form:
L
C(z) =) aiCi(),
i=1

where each «; € R and each C; is a € circuit. We say that C has complexity at most s, denoted

as complexity(C) < s, if all of the following holds:

e the total size of all bottom % circuits Cj is at most s;

o 30 lai <5

87

e the bit-complexity of each «; is at most s, i.e., one can write the rational number «; as a

fraction wu;/v; where u;,v; are integers and log(|u;|) + log(|v;|) < s.

The definition of “complexity” in [CR22, CLW20| only required the first two bullets above
(i.e., complexity(C) = max{zle i, Ele |C;|}). However, it is easy to see that the linear
sum circuits produced by the decoders—|CR22, Lemma 3.1] and [CLW20, Lemma 3.8] (which
is Theorem 4.2.9 in this thesis)—also satisfy the third bullet.

If C(z) € [0,1] for every input & € {0,1}", then we say C'is a [0, 1]-Sumo% circuit (|[CLW20]).
Recall that the ¢;-distance between a Sum o % circuit C and a function f is

C - = E C(x) — .
Ic=fli=__E (0@~ @]

We define bing as the Boolean function that is closest to C. That is, for every = € {0,1}",

if C'(xz) < 0.5 then bing(z) = 0, otherwise bing(x) = 1.

Sum o & circuits. Let § € [0,0.5). A Sum o ¥ circuit C' is said to be a S/a;](; o ¢ circuit
(|ICW19b, CR22|), if for every input = € {0,1}", either |L(z) — 1| < ¢ or |L(z)| < 6. We say
C(z)=1if |[L(x) — 1| <6, and C(x) = 0 otherwise.

4.2.4 Algorithms for Linear Sum of Circuits

In the context of the Algorithmic Method, one advantage of Sum o € circuits is that they
preserve algorithms: circuit analysis algorithms for %" often imply circuit analysis algorithms for

Sum o . Below are a few examples that will be useful for us.

PRGs fooling % also fools Sum o €. Suppose that G is a PRG that fools % circuits, we

show that it also fools Sum o € circuits.

Lemma 4.2.4. Let €,0 > 0, € be a circuit class, s(n) be a good function, and G : {0,1}" —
{0,1}™ be a PRG that e-fools € circuits of size s(n). For & := 25 +¢-s(n), G also '-fools

Sumg o € circuits of complexity s(n).

Proof. Let C be a Sum; o % circuit where the underlying (real-valued) Sum o € circuit is

)4
é = Z (o7 Cz
i=1

Let U,, denote the uniform distribution over {0,1}"; we abuse notation and let G,, denote
the distribution of Gy, (y) for a uniformly random y € {0,1}". From the definition of Sums gates,

we have

E[C(Un)] ~E[CU)]| <6 and |E[C(Gy)] ~ E[C(Gn)]| < 0.

88

Using the property of G,,, we have

E

¢
Z (673N CZ(L{n)

=1

=1 .
< <I{1_&X|E[(Un)] —E[Cz(Gn)”) : (Z |O‘z’>
=1
<e-s(n)

Therefore,

[E[C(U)] = E[C(Gn)]| < ’E[C(Un)] ~E[C(Un

)| + [EIC @] - EIC(Gn)

+]E[é@n)] —E[C(G)]

<26 +¢e-s(n)=¢. O

Average-of-Product of Sumo% circuits. Let d > 2 be a constant. The Average-of-Product
problem for d Sum o & circuits [Will8b, CW19b, CR22, CLW20] is the following problem: Given
d Sum o € circuits C, Cy,...,Cq : {0,1}" — R, the task is to estimate E,. o 1}» T, Ci(x)).
It is not hard to reduce this problem to CAPP for AND, o € circuits:

Theorem 4.2.5. Let € be a typical circuit class. Suppose there is an oracle solving CAPP on
AND, o € circuits of size S(n) and n inputs within an additive error of e(n). Then there is an
algorithm that given d Sum o € circuits C1,Ca,...,Cyq of complexity at most S(n), outputs an
estimation of By (o 1yn [Hle C;(z)] within additive error S(n)®-e(n) in deterministic S(n)?+OM)

time with O(S(n)?) oracle calls to the CAPP oracle.

Proof. Lemma 6.2 of [CLW20] proved this theorem for d = 4, but it is easy to see that the proof
generalises to arbitrary d. We provide a full proof here for completeness.

It is without loss of generality to assume that each C; contains exactly S(n) € sub-circuits.
For each i € [d], write C; = Z 1 a; ;C; j, where o j € R and C; j is a € circuit of size at most
S(n). Moreover, for each i € [d], we have that Zj:q) |aj j| < S(n). Then we have

B T e

11]1

T e > H @i j; Ciji (x)

[j1,-2da€[S(n)] i=1

d d
=) (i]_[lai,ji>-%%w[/\cm(x)]. (4.1)

J1,--53a€[S(n)] i=1

E
z<—{0,1}7

d
[[ci@)
i=1

We enumerate ji,...,Jjq € [S(n)] and use the CAPP oracle for AND, o € circuits to estimate
Eype 0,137 [/\?:1 C; j;(z)] within additive error e(n). This gives us an estimation of (4.1) within

89

an additive error of at most

d

H alv]z

=1

e(n) < S(n)?-e(n).

2.

J15Ja€[S(n)]

Clearly, our algorithm runs in deterministic S(n)*t°() time and makes O(S(n)?) calls to the

oracle.]

Verification of Sumo% circuits. We need the following lemma for testing whether a Sumo%
circuit has low £4-distance to its closest Boolean function. The lemma has a similar proof to
[CR22, Lemma 5.3].

Lemma 4.2.6. Let d > 2 be an even number. Suppose we are given a Sum o % circuit C :
{0,1}" — R of complexity S(n) and a parameter § < 0.01/d. Let ¢ = Wdﬂ)%,.
there is an oracle that solves the CAPP problem for ANDog o € with error €. Then there is an

Suppose

algorithm A running in deterministic S0 time and making O(S%) queries to the oracle
such that:

e If one of the following conditions holds, then A always accepts;
— ||C = bin¢||lec < d/3
— ||C = binc|1 < (6/3)% and C(z) € [0,1] for any z € {0,1}"
o if ||[C —binc||g >0, then A always rejects;
e otherwise, A can output anything.

Proof. We define a polynomial P(z) = 24(1 — 2)¢. We also define dpin(2) := min{|z|,|z — 1|}.
Recall from Fact 3.5.5 that dpin(2)?/2% < P(2) < dpin(2)? - (1 4 dpin(2))%.
We need the following properties of P(C(x)):

1. When dpin(2) < 6/3, we have P(z) < (6/3)%- (1 + 6/3)%. Hence if ||C — bin¢|le < §/3,
then

B PC@)l = (6/3)%- (1+6/3)" < (6/3)%- (1 +0.01/d)* < (5/3)7 - 0.

2. If z € [0,1], then P(z) < dpin(2). Hence, if C(x) € [0, 1] holds for every x € {0,1}" and if
|C — binc|l1 < (6/3)%, then we have

o B PC@ <O - bincll < (5/3)"

3. If ||C — bin¢||g > 6, then by definition we have

E o dl > 54,
WEL [dsin(C(@))?] = 8

Since d > 2, we have

e g PC@D) 2 (6/2)" = (9/4) - (5/3)".

90

Given the above properties, we can see that it suffices to compute

L E [PC@) 42)

within error (§/3)?/2 to distinguish between these two cases in the lemma. Clearly, this reduces
to the Average-of-Product of 2d Sum o € circuits of complexity at most S + 1. Hence, by
Theorem 4.2.5, (4.2) can be approximated within additive error (S + 1)2? . ¢ in deterministic
§24+001) time with O(S?%) oracle calls to the CAPP oracle. Since (S + 1)%¢ - ¢ < (§/3)%/2, this
finishes the proof. O

4.2.5 Worst-Case Hardness from PRGs

The following simple fact states that PRGs imply worst-case hardness.

Fact 4.2.7 (|CLLO21, Proposition 9]). Let € be a circuit class and r = r(n) be a good function.
Suppose there is an ENP-computable PRG (i.o. PRG respectively) G : {0,1}" — {0,1}" that
e-fools €, where e < 1 —2""". Then there is a language L € ENP that cannot be computed by €
circuits on almost every input length (infinitely many input lengths respectively).

4.2.6 Hardness Amplification

Hardness amplification with a TC? decoder. We need the following result.

Theorem 4.2.8 ([GR08]). Lete > 2=°V™ for some absolute constant c. There are two algorithms
Amp and Dec such that:

e For some constant d > 1, Amp takes as input the truth table of a function f : {0,1}" —
{0,1} and outputs the truth table of a function Amp(f) : {0,1}%" — {0,1}.

o Dec'™) receives an oracle h, an input © € {0,1}", an advice string o € {0, 1}0(1"5571), as

well as two random strings r1,r2, and outputs a bit b.

e For every function h: {0,1}% — {0,1} that (1/2 +)-approzimates Amp(f),

Pr|3a € {0,1}°02™) 5t va € {0,1}", Pr[Dec" (v, z, 71, 72) = f(z)] > 9/10| > 99/100.
T1 T2

o Amp runs in deterministic 20 time and Dec is a TC? oracle circuit of size poly(n,e~1).

A non-standard XOR lemma. For a function f : {0,1}" — {0,1} and an integer k, we
define the function f®¥ to take k inputs x1,z2,. ..,z € {0,1}" and compute

f@k(xl,l’g, - ,xk) = f(xl) D f(l‘g) DD f(l‘k)

We need the following XOR lemma with a linear sum corrector.

Theorem 4.2.9 ([Lev87|, [CLW20, Lemma 3.8|). Let € be a circuit class that is closed under
negation and projection. Let 6 < 1/2, k € N be a parameter, and

e = (1 =0k 1(1/2 -6).

91

For any function f : {0,1}" — {0,1}, if f cannot be (1 — §)-approximated in £1-distance by
[0,1]-Sum o € circuits of complexity O(w:‘sii)Q), then f&% cannot be (1/2 + ey)-approzimated by

& circuils of size s.

(Theorem 4.2.9 is just a more familiar version of Theorem 3.3.5 stated in the language of

hardness amplification instead of local list decoding.)

4.3 Derandomisation with Preprocessing Implies Circuit Lower

Bounds

ENP

Let € be a circuit class, we define the circuit-analysis problems for € with preprocessing:

Definition 4.3.1. Let Prep be a preprocessing algorithm, Query be a query algorithm, & be a
circuit class, s(n) be a size parameter, and € > 0. We say (Prep, Query) is a CAPP data structure

for €[s(n)] with ENP preprocessing and error ¢, if the following are true:

e Prep(1”) runs in deterministic 29 time with access to an NP oracle, and produces a
string DS of length 200",

e Let C be a € circuit with n inputs and size s(n). Query((C)) runs in deterministic 2" /n®~(1)
time with random access to DS and outputs an estimation of Pr,, (g 1}»[C(z) = 1] within

an additive error of €.

If the requirement for Query(-) is replaced by the following, then we say (Prep, Query) is a
GapUNSAT data structure for €[s(n)] with ENP preprocessing and error 1 — e:

e If C is unsatisfiable, then Query((C)) outputs 0; if Pr,013»[C(z) = 1] > 1 — ¢, then
Query((C')) outputs 1.

If the requirement for Query(-) is replaced by the following, then we say (Prep, Query) is a

CAPP data structure for €’[s(n)] with ENP preprocessing and inverse-circuit-size error:

e Query({C)) outputs an estimation of Pry, (9 1»[C(z) = 1] within an additive error of
1/s(n).

Finally, if the data structure is correct only for infinitely many numbers n, then we say the
data structure is an i.0. CAPP (or i.0. GapUNSAT) data structure.

Theorem 4.3.2. Let € be a circuit class and poly(n) < s(n) < 290" be a good function such
that the following technical conditions hold:

(¢ is complete) For every truth table of length 2%, there is a € circuit of size poly(2F) that
computes this truth table; moreover, the description of such a € circuit can be computed

in deterministic poly(2¥) time from the truth table.
(¢ computes PARITY) The PARITY function can be computed by a € circuit of size poly(n).

There is a constant € € (0,1) such that the following holds. If there is a GapUNSAT data
structure for NC§ o € circuits of size poly(s(n)) with EN? preprocessing, query time 2" /n*™),

and error 1 — ¢, then ENP does not have size-s(n) € circuits on almost every input length.

92

Proof of Theorem 4.5.2. Let ¢ > 1 be a constant such that Prep(1™) always outputs a data
structure of length at most 2°". Suppose that any € circuit of size s(n) can be described in
bit-length ¢ < O(s(n)?). In this proof, we set the following parameters (where K > 1 is a large

enough constant):

m :=10(c+ 1),
Wproof ‘=1, Wproof i= QWproof — 91
Pproof := N, Hiproof 1= 2ot =201,
Winput := log ¢ + Klogn, Winput := 2V = - poly(n),

N = 10Hopo0f - £ = 10 - 20,
T := Hproof - Wproof /POly (1) = 2(C+1)"/poly(n).

Our goal is to find, in DTIME[2CM]NP " a truth table of length Woroof that does not have

size-s(n) € circuits. Let L' be the language constructed in Theorem 3.3.1, i.e.,
Lhard S NTlMETM [T] \ IO—NTlMEGUESSRAM [T/pOly]Og(T), N/lo]/(N/lo)

(Note that T > N'+2(1) 5o the technical conditions for applying Theorem 3.3.1 are satisfied.)
Now we construct a nondeterministic RAM MPPP that attempts to solve LM, Let L :=
{Encode(x) : x € L'} where Encode is the error-correcting code specified in Theorem 2.4.1.
Suppose that the encodings of length-N strings have length N = O(N) and let dcoge > 0 be the
relative Hamming distance of Encode. Let VPCPP be the rectangular PCPP verifier for L"¢
with proximity dcode, perfect completeness, and soundness error 1 —e specified in Theorem 2.5.10,
where € € (0,1) is an absolute constant. The proof oracle 7 is an I:Iproof X Woroof matrix and

the input oracle is an Hinput X Winput matrix, where

}Alproof =log T + ©(mloglogT) — wproof = cn + O(logn) Hproof 1= Ohproot — g poly(n)
hinput = [log N'| — Winput = cn — O(logn) Hinput := Qhinput — 2" /poly(n).

We verify the technical conditions of Theorem 2.5.10 hold:
o Clearly, wproof < logT' and winpy < log N.
® Wproof > (5/m)log T this is because (5/m)logT < m (c+1)n=n/2.
® Nproof > (5/m)log T this is because (5/m)logT < n/2 < cn.

Winput 1 _ CmloglogT . IS o Winput log /+ K logn
® ot = 1 ThoeT this is because Vot - < 0.9.

Rinput CmloglogT s Rinput cn—Klogn Klogn CmloglogT
o Bt L] XEe 08~ this is because 1 — 2 > 1 — .

Pproof — logT' proof cn+O(logn) = (c+1)n = log T
The number of column randomness is 7col = Wproof — (5/m)log T = n/2 + O(logn).

2[PCPP

The speed-up machine assumes that every row of the proof oracle is the truth table

of some circuit in €[s(n)]. It guesses Hyoof size-s(n) € circuits Oy, Ca, .. ., Cy . such that the
proo

i-th row of the proof matrix 7 is the truth table of C;. Now it remains to estimate
Pace := Pr[VPCPPENode(@)oll (seed) accepts].
see

d

We first enumerate seed.shared and seed.row. Suppose VDec takes as inputs g query answers

93

and p parity-check bits, then p + ¢ = 3. (Note that p and ¢ might depend on seed.shared but
not seed.row or seed.col.) Define

(itype[1], ..., itypelq]) := Viype(seed.shared),
(irow[1], ..., irow[q]) := Viow(seed.row, seed.shared), and

(icol[1], . .. ,icol[q]) := Vol (seed.col, seed.shared).

(Note that as we only enumerated seed.shared and seed.row, for each ¢ € [q], itype[t] and irow][¢]

are already fixed, but icol[¢] are functions of seed.col.) We need to estimate

Pacc(seed.row, seed.shared) :== Pr [VPCPPEncode@)oll(seed) accepts]. (4.3)

seed.col

i
seed.row,seed.share

accepts if and only if VPCPPEncode(z)ell (seed) accepts. For every ¢ € [q]:

Now, we create the following circuit C” := 4 that takes seed.col as input and

e Suppose itype[t] = proof. Let D, be the circuit such that D, (seed.col) = Cjrop(icol[c]).
Since icol[t] is a projection over seed.col and % is closed under projections, D, can be

computed by a € circuit of size poly(¥).

e Suppose itype[t] = input. Let D be the € circuit whose truth table is the irow[¢]-th

irow[c]

row of the input matrix Encode(z). Since % is complete, the size of D] is at most

irow|¢]

poly(Winput) < poly(n,¢) and the description of D/ can be computed efficiently. Let

irow|¢]

D, be the circuit such that D, (seed.col) := D/ M(icoI[L]), then D, can also be computed

Irow

by a € circuit of size poly(n,).

We also construct a circuit PC,(seed.col) to compute the «-th parity-check bit. In particular,
as we have already fixed seed.row and seed.shared, the ¢-th parity-check bit is simply the XOR
of a subset of indices in seed.col. Since PARITY can be computed by a & circuit of polynomial
size!, it follows that PC; is also a € circuit of size poly(rco) < poly(n).

Let VDec be the decision predicate of VPCPP. The circuit C’ is simply

C'(seed.col) := VDec(D; (seed.col), . .., D,(seed.col), PCy (seed.col), . .., PCy(seed.col)).

We can see that €’ is an NC3 o € circuit of size poly(s(n)). Therefore, we can use the
GapUNSAT data structure to distinguish between the case that p,cc(seed.row, seed.shared) = 1
and the case that pacc(seed.row, seed.shared) < 1 — ¢, in time 2’“C°'/(rco|)“(1). Since reo > 2(n),
this is also in time 27 /n®(1) " If the overall acceptance probability pacc is at most 1 — ¢, then
at least one of p,cc(seed.row,seed.shared) should be at most 1 — &; if paee = 1, then every
Pacc(seed.row, seed.shared) should be equal to 1. Therefore, we can also distinguish between
Pacc =1 and pacc <1 —¢.

The total running time of MPCPP is thus 2/se¢dl /(D) < T/10g*() T, The number of nonde-
terministic bits that M PP guesses is Hproof - £ < N/10. The number of advice bits that MPCPP

! Actually, we do not need the small ¥ circuit for computing PARITY to be efficiently computable (i.e.,
uniform) here, since we can guess-and-check a € circuit computing PARITY during the preprocessing phase in
DTIME[2C(™)NP,

94

projections

seed.col

itype = input proof proof input

Figure 4.1: The circuit C’. It is easy to see that C’ € NC?l 0 %.

uses is 2" < N/10. Therefore, MPPP decides a language in
NTIMEGUESSram[T/ log“™ T, N/10]/ (n/10)-

It follows from the definition of Lh2rd that MPCPP fails to compute LM on some input
of length N, for every large enough N. We use the PNP refuter in Theorem 3.3.1 to find an
input 2paq where LM (zp.4) # MPPP(24..4). By the construction of MPPP it has to be
the case that zpag € LM but MPPP(24,,4) = 0. In this case, for any valid PCPP proof 7 of
“Encode(xparg) € L, if we treat 7 as an ﬁproof X Woroof matrix, then there has to be some
row of m which is not the truth table of any size-s(n) € circuit. We simply find a valid PCPP
proof 7 and output the row of 7 that does not have size-s(n) % circuits. This can be done in

TIME[20(m)]NP O

Remark 4.3.3. We remark that the hypothesis about GapUNSAT data structure in Theorem 4.3.2
can be replaced by the following: There is a constant € € (0, 1) such that for every constant d > 1,
there is a GapUNSAT data structure for NC§ o € circuits of size poly(s(n)) with ENP preprocessing
and error 1 — e. (For comparison, in Theorem 4.3.2 we assumed a GapUNSAT data structure with
good accuracy, but only for NCg 0 ¢; here we assume a GapUNSAT data structure with potentially
bad accuracy but handles NCSO% for every constant d > 1.) Using a rectangular PCPP with smaller
soundness error and larger query complexity (e.g., by parallel repetition) in the proof, we can still
show that ENP cannot be computed by size-s(n) € circuits on almost every input length.

To show equivalences in Section 4.6, we also need an infinitely-often version of the above

theorem.

Corollary 4.3.4. Let € be a circuit class that is complete and computes PARITY. Let poly(n) <
s(n) <2091 be g good function, then there is a constant € € (0,1) such that the following holds.
If there is an i.0. GapUNSAT data structure for NC3 o € circuits of size poly(s(n)) with ENP

PTEPTOCEssing, query time 2”/n“(1), and error 1 —e, then ENP does not have size-s(n) € circuits.

Proof Sketch. As the proof is almost the same as the proof of Theorem 4.3.2, we will only sketch
the differences here.
We define MPPP in the same way as Theorem 4.3.2. Then, MPPP fails to compute Lhard

2 fPCPP

on all large enough input lengths. Note that the correctness of on input length n

only depends on the correctness of the (i.0.) GapUNSAT data structure on input length e =

95

n/2 4+ O(logn). For every integer 7 such that the i.o. GapUNSAT data structure is correct,
the “easy-witness” assumption fails when n = 2r. — O(log 7). That is, for such integers n,
any valid PCPP proof 7 for zpaq € {0, 1}" contains some row that is not the truth table of any

size-s(n) circuit. O

Remark 4.3.5 (Comparison with [BV14]). Both [BV14] and our Theorem 4.3.2 need to use PCP with
projection queries to reduce the circuit complexity overhead of the Algorithmic Method. To achieve
this, [BV14] constructed PCPs where the query indices are computable by a projection over seed.
To achieve this property, [BV14]| needed to use the PCP in [BS08]. Unfortunately, this PCP requires
polylog(n) queries; even worse, the “projection” property is broken when we use PCP composition
to reduce query complexity to O(1).

However, if we allow the queries to depend arbitrarily on a small portion of seed (namely
seed.shared), but have to be a projection over the rest of the bits, then this is also achievable
using the PCP in [BGHT06]. The [BGH"06] PCP has the advantage of being almost rectangular.
We are also able to compose PCPs now, by simply adding the (very short) randomness of the inner
PCP into seed.shared. Thus, the query complexity can be reduced to O(1). Having such a small
portion (i.e., seed.shared) does not hurt the Algorithmic Method at all.

4.4 Strong Average-Case Circuit Lower Bounds

We strengthen Theorem 4.3.2 to the case of strong average-case lower bounds. We first show
that non-trivial CAPP algorithms with ENP preprocessing implies (weak average-case) lower

bounds against [0, 1]-Sum o % circuits:

Theorem 4.4.1. Let € be a circuit class and poly(n) < s(n) < 209 be a good function that

is monotone, such that the following technical conditions hold:

(¢ is complete) For every truth table of length 2%, there is a € circuit of size O(2'%F) that
computes this truth table; moreover, the description of such a € circuit can be computed

in deterministic poly(2F) time from the truth table.
(¢ computes PARITY) The PARITY function can be computed by a € circuit of size poly(n).

There are absolute constants 6 > 0 and d > 2 such that the following holds. Suppose that for
every constant k > 1, there is a CAPP data structure for ANDg o % circuits of size s(2r)F and r
inputs in 27 /s(2r)* query time with ENP preprocessing and inverse-circuit-size error, then there
is a language in ENP that has (1-distance at least § from [0,1]-Sum o € circuits of complexity

s(n) on almost every input length.

Proof. Let ¢ > 1 be a constant such that Prep(1™) always outputs a data structure of length at
most 2. Let £ < O(s(n)'?) be such that any Sum o ¢ circuit of complexity O(s(n)) can be

described in bit-length £. We set the following parameters (where K is a large enough universal

constant):
m :=10(c + 1),
Wproof ‘=1, Wproof 1= 2Wproof =21
o ._ oh _
hproof =cn, Hproof 1= 2tproot =21,

96

Winput = logl + K -logn, Winput := 2"t =/ - poly(n),
N :=10Hpro0f - £ - poly(n’) = 10 - 2"poly(n)¢,
T := Hproof - Wproof /POly (1) = 2(C+1)”/poly(n).

Let Lhad be the language constructed in Theorem 3.3.1, i.e.,
L € NTIMETwm[T] \ i.0-NTIMEGUESSgam[T'/polylog(T), N/10]/ (n/10)-

Now we construct a nondeterministic RAM MPCPP that attempts to solve L', Let Lenc :=
{Encode(x) : x € L} where Encode is the error-correcting code specified in Theorem 2.4.1.
Suppose that the encodings of length-N strings have length N = O(N). By Theorem 2.5.11,

there are good functions Bproof and hinpyt satisfying:

iLProof = logT + ©(mloglogT) — Wproof = CN + O(logn), f{proof = Qhproof = e . poly(n), and
hinput = Hog NW — Winput = CN — Q(K log n)a Hinput = Moot — 2cn/p01y(n)’

such that LM has a smooth and rectangular PCPP with an Hinpyte X Winpye input matrix and
an Hproof X Woroof Proof matrix, and has the following parameters:

e soundness error = 1/2,

e proximity parameter = dcode (Which is the relative distance of Encode),

e query complexity = ¢ := O(1),

e parity-check complexity = ¢ = O(1),

e total randomness = r :=log T + O(mloglogT) = (¢ + 1)n + O(logn),

e row randomness = 7'row := Rproof — (5/m)log T,

e column randomness = reol 1= Wproof — (5/m)1logT = n/2 4+ O(logn),

e shared randomness = 7rspared := (10/m)log T+ O(loglog T + mlog m).

Of course, we need to check that the technical conditions of Theorem 2.5.11 are satisfied:
Wproof * 11 1OTL(C+1)
» 5logT > 5n(c+1)—O(logn) > 2
® Nproof > (5/m)log T since hproof > Wproof, this follows easily.
. 2 .
o Winput | _ Cm loglogT: because Zneut < logﬁ—i-?L(logn) < 1010gs—|;10(10gn) and s < 90.01n_

® Wproof > (5/m)log T in fact

Wproof — log T Wproof -
hi 2 hi Q(K 1 2 . .
o it —p leégngogT: because st — 1 _ 7cn(+o(‘1’§g"g) <1-— %ﬁ;ﬁi’; if K is a large

hproof
enough constant compared to C.

proof

We remark that ¢ only depends on the soundness error (which is 1/2) and the proximity
parameter (which is dcoge), both of which are absolute constants; hence ¢ is also an absolute
constant. We set § := 0.110‘14/ q, which is also an absolute constant.

By our hypothesis, for r¢o = n/2 + O(logn), there is a CAPP data structure for ANDyg 0 €

K K’ query time with ENP preprocessing

circuits of size s(n)X" and re inputs in 7218 := 27l /5(n)
and additive error e, := s(n) X', where K’ is a large enough constant.

The speed-up machine MPCPP receives an input z € {0, 1}N. If z € LM then there is an
H proof X Woroof PCPP proof IT such that VPCPPE”COde(x)’H(seed) accepts with probability 1. We
say that x has easy witness, if furthermore, every row of this PCPP proof II is the truth table of
a function m; : {0, 1}Weeef — {0,1} that is d-close to a [0, 1]-Sum o € circuit of complexity s(n)

in ¢;-distance. Assuming that x has easy witness, we nondeterministically guess I:Ip,oof Sumo %

97

circuits Cp, Co,...,Ch X each of complexity s(n), hoping that for every i € [flproof], C;is a
proo

[0,1]-Sum o € circuit that (1 — d)-approximates m; in ¢;-distance. Then, for each i € [Hproof),

we define B; := bin¢c, to be the Boolean function closest to C;. Note that B; might be different

from 7;. However, in the case that 2 € L' and z has easy witness, we have
|7 — Billy < [|mi — Cil[1 + |Ci — Byl < 20.

Since both m; and B; are Boolean, the relative Hamming distance between m; and B; is at most
2. Let Il be the ﬁproof X Whoroof matrix where the i-th row is the truth table of B;. Since
VPCPP is smooth, it follows from Lemma 2.5.8 that VPCPP accepts the proof IIg w.p. at least
1 —2¢6 > 0.98. On the other hand, if z ¢ L"9, then VPCPP accepts Il (in fact any proof)

w.p. at most 1/2. From now on, we forget IT and our goal becomes to estimate

Pr [VPCPPEnde@).lI5 (seed) accepts] (4.4)

seed

within an additive error of 0.1.

For every seed = (seed.row, seed.col, seed.shared), define

(itype[1],itype[2], ..., itype[q]) := Viype(seed.shared),
(irow[1],irow[2], ..., irow[q]) := Viow(seed.row, seed.shared), and

(icol[1],icol[2], ... icol[q]) := Vioi(seed.col, seed.shared).

For now, let us think of seed.shared and seed.row as fixed and seed.col as variables. Then, for
each ¢ € [q], itype[¢] and irow[] are also fixed, and icol[¢] is a function of seed.col. Moreover, each
icol[¢] can be computed by a projection over seed.col, and the description of this projection can
be computed in polynomial time given seed.shared.

Let VDec be the decision predicate of VPCPP (which depends on seed.shared), then VDec
takes 2¢ input bits where the first ¢ input bits correspond to the query answers and the last ¢

bits correspond to parity check bits. Our goal is to estimate

Pr[VDec (D1 (seed.col), Da(seed.col), ..., Dag(seed.col)) = 1].

seed

Here, for each ¢ € [2q], D, is a Boolean function over seed.col (which depends on seed.shared and

seed.row) specified as follows.
e If « corresponds to a query and itype[t] = proof, then D, (seed.col) = Bjro,(icol[c]).
e If . corresponds to a query and itype[t] = input, then D, (seed.col) = Encode(z)irowy],icols-

e If . corresponds to a parity check bit, then D,(seed.col) is the appropriate parity function

over seed.col.

Since every Boolean function over 2q bits is equivalent to a degree-2¢q polynomial over the

reals, we can write

VDec(a1, az, ..., a2) = Z QSHab,

SCl2q] LeS

98

where 05 € [—224,2%4]. For each S C [2g], we will estimate

LE [H D, (seed col)] (4.5)
LeS
We define the Sum o & circuits D, as follows. If ¢ corresponds to a query bit such that
itype[t] = proof, then D, (seed.col) = Cirow,) (icol[t]); otherwise D, = D,. We will actually use

seeIEcol [Ll;[g Db(seed.col)] (4.6)

as an estimation of (4.5). Intuitively, we need to estimate the accept probability of VPCPP when
given Ilg as the oracle, but since we do not have direct access to Ilg, we use the ‘“real-valued
proof” encoded by {C;} instead. We note that since VPCPP has projection queries (i.e., icol[t]
is computable by a projection over seed.col), each D, is indeed a Sum o % circuit over seed.col
whose description can be computed efficiently given seed.shared and seed.row. The complexity

of each D, is at most § := max{s(n), poly(Winput)} < poly(s(n)).

Testing each C;. It is not guaranteed that our guessed circuits C; will satisfy the [0, 1]-Sum
promise and will be d-close to B; in £; norm. Hence, we also need to test whether each C;
satisfies these promises. Like in [CLW20| and in Chapter 3, our verification algorithm will be
approzimate: If each C; satisfies the [0, 1]-Sum promise and is d-close to B;, then we will accept
them; on the other hand, if we accept the circuits Cj, then they are “somewhat close” to B;.

More precisely, we perform the following verification:

1. First, we apply Lemma 4.2.6 on each C; with parameter d := 2¢ and ¢’ := 36%/%. If any
C; is rejected by the test, then we reject. This takes H proof * T#8 . O(5%9) time in total.

If C;is a [0, 1]-Sumo¥ circuit and ||C; — B;||1 < 0, then the test accepts; if the test accepts,
then HCZ - Bi”?q < 0.

2. Then, we enumerate seed.shared and seed.row. For each (seed.shared,seed.row) and each
L € [2q] such that ¢ corresponds to a query with itype[t] = proof, we apply Theorem 4.2.5
to estimate Eseed,cd[(f)b(seed.col))%]. Note that since seed.shared and seed.row are fixed,
cach D, is a Sum o € circuit over the input seed.col, hence we can apply Theorem 4.2.5
on D,. This takes 2" "clgg2¢tO1) . 728 time and provides an estimation within additive
error §%4 - €alg- If the estimation exceeds 1 + §%4. €alg then we reject immediately.
Clearly, if every Cj is a [0, 1]-Sumo% circuit, then Eeeed.col[(D, (seed.col))29] < 1 and our test

always accepts. If the test accepts, then for every combination of (seed.shared, seed.row, ¢),
we have]EseedAcd[(Db(seed.col))Qq] <14 2§%. Ealg-

If the Sum o % circuits {C;} pass both tests above, then we proceed to estimate (4.6). We
enumerate seed.shared, seed.row, and S, which determines the circuits D, and the coefficient .

Then we apply Theorem 4.2.5 on the circuits {DL}LG& which allows us to obtain an estimation

99

of (4.6) within additive error §%7 - g,),. Finally, we output the estimation of

05 seed.shared *
seed. shared Z Sseed.share
seed.row | SC[2q]

eed col

HD seed. col)] , (4.7)

within an additive error of 49 - §%4. €alg < 0.001. (Recall that g depends on not only S but also
seed.shared.) Overall, this takes (2" "l + H proof) 224 . g4q . T2l time.

Estimating the acceptance probability. Next, we show that if the tests above are passed,
then (4.7) is a good estimation of (4.4). For ease of notation, let us denote seed.col :=
(seed.shared, seed.row). Fixing seed.col, we can treat D, and D, as functions over seed.col and
talk about their norms (we alert the reader again that D, and D, depend on seed.col). In

particular, we define

f(seed.col,) := || D, — D, |2,
which by definition = E [(D,(seed.col) — D, (seed.col))?¢]"/ (29,

seed.col

Since each D, is Boolean, we have that ||D,||2, < 1. By triangle inequality, ||D,|j2; < 1+
f(seed.col, ¢). Define f(seed.col) := ZLG[Qq] f(seed.col, ¢), then by Lemma 4.2.3,

[(4.7) — (4.4)]
— seed =i Z 05 seed.shared * seed ol H D, Seed CO|)] seed ol H D Seed CO|)] ‘
SC[2q]
<167-_E [(2¢)-(1+ f(seed.col))Qq_1 - f(seed.col)]. (4.8)
seed.col

We can bound (4.8) using Lemma 3.5.7 which we restate here for convenience:

Lemma 3.5.7. Let f : [N] x [¢] = R>¢ be a function and d > 1 be a constant. Suppose that
1. for every s € [N] and i € [q], f(s,i) < a (where o > 1);
2. Eqilf(s,1) < 6.

Let f(s) =3 icq f(s,7). Then

E[(1+ f(s)" ! - £(9)] < 00'*(2q0) "
Since {C;} passes the above tests, by triangle inequality, for every seed.col we have
f(seed.col, 1) < 2+ 25 - g5, < 3.
We also have that

E [f(seed.col,¢)?]

seed.col,.

= E [(D,(seed.col) — D,(seed.col))?]

seed,t

100

IN

E [(Bi(5) — Ci(4))] (4.9)

14— [Hproof] 7j<— [Wproof}
2
< EIBi-Cillyg = (0
“*[Hproof]
Here, (4.9) is because of the smoothness of VPCPP: the distribution over (irow[:],icol[¢]) condi-

tioned on ¢ corresponds to a query to the proof oracle is equal to the uniform distribution over

A~

[hproof] X [Wproof]-
It follows from Lemma 3.5.7 that

(4.8) < 167 - 2q - (2¢)8'(6¢)*~1 < 0.001,

hence we can estimate (4.4) within additive error 0.002. This suffices for distinguishing between
the case that VPCPP accepts IIg with probability at least 0.98 and the case that any PCPP
proof is accepted w.p. at most 1/2.

Clearly, MPCPP runs in at most (27 "el + ﬁproof) -0(8)% . 738 < T/polylog(T) time. Also,
MPCPP needs to guess ﬁpmof many Sum o % circuits of complexity s. Since each such circuit
can be described in ¢ bits, MPCPP only guesses ¢ - H proof < IN/10 many nondeterministic bits.
Also, MPCPP takes the output of Prep(1™) as non-uniform advice, which has length at most

Hproof < N/10. It follows that M PCPP computes a language in
NTIMEGUESSram[T'/polylog(T), N/lO]/(N/lo).

Wrap up. We design the following algorithm that on input 1", runs in deterministic poly(2")
time with an NP oracle, and outputs the truth table of a function f : {0,1}" — {0,1} that is
d-far in ¢;-distance from any [0,1]-Sum o € circuit of complexity s. The algorithm first runs

MPCPP as well as its advice a. Then it

Prep(1™) and computes the description of the machine
computes Tharg := R(1", MPPP) where R is the refuter algorithm specified in Theorem 3.3.1.
It follows that MPCPP(:cha,d) # L' (21.4). The only possibility is that zpaq € L' but does
not have an easy witness. Let II be the PCPP proof for zhaq € LM (which can be computed
in TIME[poly(N)]NP). Then there exists a row i € [ﬁproof] such that, denoting m; as the i-th
row of II, then m; : {0,1}" — {0,1} is a Boolean function that has ¢; distance at least ¢ with
every Sumo @ circuit of size at most s(n). Whether a truth table possesses such hardness can be
decided in TIME[20("]NP "hence we can find such a truth table in TIME[29(INP " This proves

the desired lower bound for ENP. O

As a consequence, non-trivial CAPP algorithms with ENP preprocessing also imply that ENP

is strongly average-case hard against 4 circuits.

Theorem 4.4.2. Let € be a circuit class satisfying the technical conditions in Theorem 4.4.1,
and d > 2 be the absolute constant in Theorem 4.4.1. For every constant € > 0, there exists a
constant €' > 0 such that: If there is a CAPP data structure for ANDg o € circuits of size 2™
ENP ENP

2n—n5

and n inputs in query time with preprocessing and inverse-circuit-size error, then

cannot be (1/2 4+ 27)-approzimated by € circuits of 2" size on almost every input length.

Proof. This follows from Theorem 4.4.1 and Theorem 4.2.9. In fact, it follows from Theorem 4.4.1

that there is a constant ¢/ > 0 and a language L € ENP that has ¢;-distance at least § from

101

[0,1]-Sum o € circuits of complexity 2" on almost every input length, where § > 0 is the
absolute constant in Theorem 4.4.1. Let &' := € /2, k(n) := O(nf'), then by Theorem 4.2.9, the
language L®*(™ ¢ ENP cannot be (1/2 + 2~)-approximated by € circuits of size 2" . O

4.5 Applications

We present two applications of the result that non-trivial circuit-analysis problems imply

circuit lower bounds, even with ENP preprocessing.

4.5.1 Shaving Logs Implies Lower Bounds, Even with Preprocessing

As a direct corollary of Theorem 4.3.2, we tighten the connections between circuit lower
bounds and non-trivial speed-ups for certain problems in fine-grained complexity. Typically,
such a connection states that certain algorithms that are slightly better than brute force implies
breakthrough circuit lower bounds: For certain well-studied problems £ where an O~(n2)—time
algorithm is already known, if we could solve £ in n?/ log®M n time (i.e., “shaving all logs”),
then breakthrough circuit lower bounds follow.

Theorem 4.3.2 implies that we could still obtain the breakthrough lower bounds even if we

10

allow a preprocessing phase of time n'% with an NP oracle before we receive the input of L.

For an optimist, this can be seen as an improved approach to prove such lower bounds: Now,

PNP preprocessing to solve £, and we (still) only need to obtain a

we can rely on the power of
modest improvement over the naive algorithms.
There are many such connections in the literature, but for illustration, we only consider the

following examples:

e LCS (Longest Common Subsequence) over alphabet ¥: Given two sequences a,b € 7V,

find the length of their longest common subsequence.

Abboud and Bringmann [AB18], improving on [AHWW16|, showed that the SAT problem
for formulas of size s and n inputs can be reduced to an instance of LCS with two sequences
of length N := 27/ . g1+0(1/loglog) gyer alphabet [o] in O(N) time.

e Closest-LCS-Pair: Given two sets of N length-D strings A, B, find (or approximate) the

maximum length of the longest common subsequence among all pairs (a,b) € A x B.

Chen, Goldwasser, Lyu, Rothblum, and Rubinstein [CGL*19] showed that for every con-
stant ¢ > 1, the SAT problem for formulas of size s and n inputs can be reduced to an
instance of c-approximate Closest-LCS-Pair with N := 2%/2 and D := 2rolylog(n)

Proof Sketch in [CGLT19]. We use Barrington’s theorem [Bar89| to transform the formula
into a width-5 branching program of size poly(s). Then we reduce its SAT problem to the fol-
lowing problem (called BP-Satisfying-Pair in [CGL"19]): Given a size-poly(s) width-5 branch-
ing program P on n Boolean inputs, and a set of N := 2""/2 strings A, B C {0,1}", determine
if there is a pair (a, b) € Ax B such that P(a,b) = 1. The next step is to invoke [CGL" 19, The-
orem 5.6] to reduce BP-Satisfying-Pair to a problem called e-Gap-Max-TropSim, whose input

102

consists of two sets of N tensors of size D := 20(log” nloglogn) Finally, this problem reduces
to O(1)-approximate Closest-LCS-Pair over N length-D strings. O

e Z-OV (Hopcroft’s Problem): Given N points ¢, %2, ...,7" € Z”, find an orthogonal pair,

i.e., two vectors ¥ and ¥ such that

Chen [Chel8] showed that the SAT problem on THRoTHR circuits of size s and n inputs can
be reduced to poly(s) Z-OV instances on N := 22 vectors of dimension D := poly(s).

Proof Sketch in [Chel8]. Given a THR o THR circuit of size s, we use [Chel8, Theorem 1.6]
to transform it into an ORo THR o MAJ circuit of size poly(s), then use [HP10] to transform it
into an ORo ETHR o MAJ circuit of size poly(s). Here, ETHR denotes “exact threshold gates”,
which outputs 1 if a certain linear combination of its input is exactly equal to its threshold
parameter, and outputs 0 otherwise; the transformation can be performed in deterministic
poly(s) time. Finally, we reduce the satisfiability of each bottom ETHR o MAJ circuit to
7-0OV. O

The naive algorithms for LCS, Closest-LCS-Pair, and Z-OV run in O(N?), O(N2D?), and
O(N2D) time respectively. The above reductions show that a modest improvement of these
quadratic-time algorithms (i.e., “shaving all logs”) would imply new SAT algorithms for frontier
circuit classes, e.g., NC! or THR o THR. By the Algorithmic Method [Will3a, CW19b], these
SAT algorithms imply long-standing circuit lower bounds for these classes.

PNP

To state our corollary, we need the following definition of solving a problem with pre-

processing.

Definition 4.5.1. We say that a problem £ can be solved in T'(n) time with PNP preprocessing
if there are two algorithms (Prep, Query) such that the following holds:

e Prep receives an input 1", runs in time poly(n) with access to an NP oracle, and outputs

a string DS of length poly(n).

e Query receives an input x of £, has random access to DS, runs in time 7'(n), and correctly
decides whether x € L.

Now we present the following corollary of Theorem 4.3.2, which states that even if we allow
a PNP preprocessing phase (which runs in arbitrary polynomial time in N but does not see the

input), such a modest improvement would still imply breakthrough circuit lower bounds:
Corollary 4.5.2. The following are true:

e Suppose LCS of length-N strings over any O(1)-size alphabet can be solved in N2/ logM N

PNP

time, even with preprocessing, then ENP ¢ NC!.

e Suppose there is a constant ¢ > 1 such that for any D = 2Po(0glogN) *Closest-LCS-Pair of
N length-D strings can be c-approrimated in N2/log°’(1) N time, even with PNP prepro-
cessing, then ENP ¢ NC!.

103

e Suppose for any D = polylog(N), Z-OV for N points in ZP can be solved in N2/ logw(l) N
time, even with PNP preprocessing, then EN® ¢ THR o THR.

Remark 4.5.3. Since NC! satisfies all technical conditions in Theorem 4.3.2 (NC1 is complete, com-
putes PARITY efficiently, and is closed under adding NC° circuits at the top), the first two items of
Corollary 4.5.2 are straightforward. For THR o THR:

e Since THR o THR contains CNF (i.e., AND o OR), it is clearly complete.
e There is a polynomial-size THR o THR circuit that computes PARITY [Mur71,PS94].

e Finally, for d = O(1), the SAT problem (thus, the GapUNSAT problem) for NC} o THR o THR
reduces to poly(n?) instances of the SAT problem for THR o THR.

More precisely, since THRoTHR is closed under negation, the SAT problem for NCSOTH RoTHR
reduces to the SAT problem for 2°(?) instances of AND; o THR o THR. Using the fact that
THR C ORoETHR [HP10], we reduce the problem to the SAT problem for AND;0ORoETHRo
THR. Enumerating the set of d bottom ETHR o THR circuits that are satisfied, we reduce the
problem to poly(n)? < poly(n) instances of the SAT problem for AND 0 ETHR o THR circuits.
Since AND o ETHR C ETHR and ETHR o THR = ETHR 0 ETHR C THR o THR [HP10], every
AND, o ETHR o THR circuit is equivalent to a THR o THR circuit. Finally, notice that every

transformation mentioned above can be implemented in deterministic polynomial time.

4.5.2 The Complexity of Adleman’s Argument

Theorem 4.3.2 has an interesting application to the complexity of the following problem,
denoted as ADLEMAN. Adleman [AdI78] showed that BPP C P/,.1y; in particular, for every
n,s € N, there exists a non-uniform algorithm? of time complexity poly(n, s) that solves CAPP

for n-input size-s circuits. What is the complexity of finding such a non-uniform algorithm?

Definition 4.5.4. Let n < s1(n) < s2(n), ADLEMAN, 4, is the following (unary) total search
problem: Given 17, 151 and 1%2(" the goal is to output the description of a non-uniform
algorithm A of size at most s2(n) that solves CAPP for n-input size-sj(n) circuits. Namely, for
every size-s1(n) circuit C' : {0,1}" — {0,1}, A(C) outputs a rational number that is 1/6-close
to Prye 1o 132[C(z) = 1].

Note that we are also interested in the case when sy(n) is super-polynomial in n and we want
to find a non-uniform algorithm for CAPP in poly(s2(n)) time. Hence in the above definition,
besides 1™, we also provide 151(™ and 152(") as inputs of ADLEMANy, g, .

Adleman’s argument [Adl78| shows that ADLEMANy, s, is a total search problem as long as
sa(n) > s1(n)¢ for some absolute constant c. In fact, one can also show that ADLEMAN, g, is
in APEPP (i.e., ADLEMAN, 5, reduces to AvoID):

2Non-uniform circuits and non-uniform algorithms are equivalent computational models. However, to avoid
confusion, in this subsection we use “non-uniform algorithms” to refer to non-uniform algorithms solving CAPP
and use “circuits” to refer to inputs of CAPP.

3A subtlety is that it is unclear whether ADLEMAN is in TFX.P, i.e., whether it is possible to verify in PNP
that a non-uniform algorithm A indeed solves CAPP. The class APEPP, as defined in [KKMP21|, consists of
all total functions that are polynomial-time reducible to AvoID (there is no requirement that the total function
itself should be in TFX,P). Hence it makes sense to say that ADLEMAN is in APEPP or even APEPP-complete
without knowing whether ADLEMAN is in TFX2P.

104

Proposition 4.5.5. Let so(n) > s1(n)7. Then there is a polynomial-time reduction from
ADLEMANy, 4, to AVOID.

Proof. Let PRG be the following problem: Given 1%V, output a sequence (1, s, ...,z ys) such

that for every N-input circuit C' of size NV,

Pr [C(z;)=1—- P C(y) =1]| £ 1/6.
(P Ca)=1- Pr [0()=1] <1/
Korten [Kor21| showed that PRG reduces to AvoID. It is easy to see that ADLEMANy, , reduces
to PRG: Let (z1,...,%,,(n)s) be a valid output of PRG on input 151(")_ one can construct a

non-uniform algorithm A that given a size-si(n) circuit C as an input, outputs the fraction of
indices i € [s1(n)%] such that C(z;) = 1. This algorithm is a valid output of ADLEMAN, s,. [

An interesting corollary of Theorem 4.3.2 is that ADLEMAN is, in fact, APEPP-complete
under PNP reductions! Moreover, this is true even in a restricted parameter setting, where

s51(n) = 20" and so(n) = 200-9" for some constant § > 0.

Theorem 4.5.6. Let § > 0 be a constant, s1(n) = 2°" and sy(n) = 20797 then ADLEMAN;, 4,
is APEPP-complete under PNP reductions.

Proof Sketch. Let € > 0, e-HARD be the following problem: Given 1V where N = 27, output
the truth table of a Boolean function f : {0,1}"™ — {0,1} that has circuit complexity at least
2", Korten [Kor21] showed that for every constant ¢ > 0, e-HARD is APEPP-hard under PNP

reductions. Therefore, it suffices to design a PNP

reduction from e-HARD to ADLEMANgsn o(1-5)n-
This is essentially circuit lower bounds from circuit-analysis algorithms!

Let € € (0,0.01) be a constant such that, via Theorem 4.3.2, a GapUNSAT data structure
for size-20" circuits implies a circuit lower bound of size s(n) := 2°™. Let A be a solution to
ADLEMANQ(;n’Quﬂs)n. Then A is a non-uniform algorithm that runs in 209" time and solves
CAPP on circuits C' : {0,1}* — {0,1} of size s(n) := 2°". We follow the same proof of

Theorem 4.3.2 with % being the class of (general) circuits; the only difference is that A/PCPP

uses A to estimate the accept probability of the PCPP verifier. The running time of MPCPP

MPCPP remain unchanged; MPCPP takes

and the number of nondeterministic bits guessed by
the description of A as advice, so its advice complexity is at most 2" (i.e., ¢ = 1 in the proof of
Theorem 4.3.2).

Our PNP reduction from e-HARD to ADLEMANysn 51-6)n WOrks as follows. We first compute
the description of MPCPP from the description of A in polynomial time. Then we feed MPCPP to
the PNP refuter in Theorem 3.3.1 to obtain an input 2parq such that L' (2p.q) # MPPP (24204).
It has to be the case that Zhaq € L', but any PCPP proof for Zharg (treated as a matrix)
contains a row whose circuit complexity is at least 2. We can find such a row in deterministic

poly(2™) time with an NP oracle, and this gives us a solution for e-HARD. O

105

4.6 Equivalences between Circuit Lower Bounds and Derandomi-

sation with Preprocessing

We show that circuit lower bounds for ENP

are actually equivalent to derandomisation with
ENP preprocessing,.

Our first theorem shows that if 4 is a “strong enough” circuit class, then the worst-case
lower bound ENP ¢ € is equivalent to non-trivial derandomisation of € circuits with ENP
preprocessing. For simplicity, we only consider a few typical circuit classes (TCY, NC!, and

P/poly), but it is clear from the argument that we only rely on a few closure properties of €.
Theorem 4.6.1. Let € € {TC% NC!, P/poly}. The following are equivalent:

1. For every constant k > 1, there is a language L € ENP that cannot be (1/2 + 1/nF)-
approzimated by i.0.-€[n"].

2. For every constant k > 1, there is a language L € ENP such that L & i.0.-€'[n¥].

3. For every constant k > 1, there is a GapUNSAT algorithm for € [n*] with ENP preprocessing,

error 1 —0.01, and 2"/nw(1) query time.

4. For every constant § > 0 and every good function s = s(n), there is a CAPP algorithm for
€s] circuits with TIME[exp(s®)|N? preprocessing, exp(s®) query time, and inverse-circuit-

size error.

5. For every constant k > 1, there is an ENP-computable PRG with seed length n — 1 that
(1/3)-fools €' [n*] circuits.

6. For every constant k > 1, there is an ENP-computable PRG with seed length n'/* that
(1/nF)-fools €[n*] circuits.

Proof. (4) = (3) and (6) = (5) are trivial.

(3) = (2) follows from Theorem 4.3.2, Remark 4.3.3, and the fact that & is “typical”. In
particular, ¢ is complete (any Boolean function can be computed by & circuits of large enough
size), PARITY has polynomial-size € circuits, and % is closed under composition of an NC°
circuit at the top.

(2) = (1) follows from the locally list-decodable code of [GRO8] with TC® decoders.
In particular, let € := 1/n*+1 and (Amp, Dec) be the locally list-decodable code specified in
Theorem 4.2.8. Let f : {0,1}" — {0,1} be a hard function in ENP \ i.0.-&[nO®)], and tt; €
{0,1}2" be its truth table. Let tt; := Amp(ttf), then for some constant d > 1, tt; is the truth
table of a function f’: {0,1}%" — {0,1} which is computable in ENP.

We claim that f’ cannot be (1/2 + 1/n*+1)-approximated by € circuits of size n**1 (thus
cannot be (1/2+1/(dn)*)-approximated by € circuits of (dn)*). Suppose for contradiction that
there is a circuit C' € ¢[n*+1] that (1/2 4 1/n*T1)-approximates f’. Fix a good 7y, then there
is a string o € {0,1}°0°8=™") such that for every z € {0,1}",

lir[DecC(a,x,rl,rg) = f(x)] > 9/10.

106

By Adleman’s argument [Adl78] over 72, and recall that Dec(7) is a TC® oracle circuit, it follows

O(k)

that f can be computed by a & circuit of size n~'*). This contradicts the worst-case hardness

of f.
(1) = (6) follows from the Nisan-Wigderson generator (Theorem 4.2.1). In particular,

we set the following parameters:

0:=n'* m=n,a:=logn,t =0 -m"/a) := O(£*) < n'/*.

Let f:{0,1}* — {0,1} be a function in ENP that cannot be (1/2 + 1/n**+1)-approximated
by € circuits of size n* - poly(2%) < poly(n). Then it cannot be (1/2 + 1/n**1)-approximated
by € o Junta, circuits where the top € circuit has size n*. By Theorem 4.2.1, there is a function
G : {0,1}2" x {0,1}* — {0,1}™ computable in poly(m,2!) < 2°®) time, such that G(tt(f),U)
(1/n*)-fools every €[n¥] circuit. Since f € ENP| the generator G(tt(f),-) is computable in ENP.

(6) = (4): Let G : {0,1}55/2 — {0,1}* be the ENP-computable PRG that (1/s)-fools
¢'[2s| circuits with s inputs. (Given a %[s] circuit C' with n inputs, we can pad some dummy
inputs to C' so that C becomes a € circuit of size 2s with s inputs; C' only depends on the first
n inputs.)

In the ENP preprocessing phase, we compute the whole PRG (i.e., G(z) for every z €
{0, 1}56/2). Given a circuit C' € €[s] as a CAPP query, we simply compute

Pr [C(G(z)) =1],
2{0,1}s°/2

which estimates the accept probability of C' within additive error 1/s. The query algorithm runs
in poly(s) - exp(s°/2) < exp(s?) time.

(5) = (2) follows from Fact 4.2.7. In particular, suppose there is an ENP-computable
PRG G : {0,1}"' — {0,1}" that (1/3)-fools €[n*] circuits. Since 1/3 < 2(*=D=" = 1/2 it
follows from Fact 4.2.7 that ENP cannot be computed by &[n*] circuits on almost every input
length. O

Our equivalence also holds in the high-end regime (e.g., for subexponential-size circuit lower

bounds) and in the infinitely-often setting:
Theorem 4.6.2. Let € € {TCY,NC',P/p o1y }. The following are equivalent:
1. There is a constant € > 0 and a language L € ENP such that L & €[2™7].

2. There is a constant ¢ > 0 and a language L € ENP such that L cannot be (1/2 + 1/27)-
approzimated by €[2"].

3. There is a constant € > 0 and an i.0. GapUNSAT algorithm for €[2""] with ENP prepro-

cessing, error 1 —0.01, and 2”/n‘”(1) query time.

4. There is a constant k > 1 such that for every good function s = s(n), there is an
i.o. CAPP algorithm for €[s] with TIME[QIng SINP - pyreprocessing, glog" s query time, and

nverse-circuit-size error.

107

5. There is a constant ¢ > 1 and an ENP-computable i.0. PRG with seed length log®n that

(1/n)-fools € circuits of size n.

Proof Sketch. (3) = (1) follows from Corollary 4.3.4.
(1) = (2) fi

) follows from Theorem 4.2.8.
= (5) follows from Theorem 4.2.1.

)

)

)

—_— — ~— —

=
=

4) follows by simply applying the i.0. PRG to fool the input circuit.

(
(
(
(3

(
(5
(4 is trivial. O

For weaker circuit classes, we also get an equivalence by considering strong average-case lower
bounds: hard functions that cannot be (1/2+ 1/poly(n))-approximated by %, non-trivial CAPP
data structures for € with inverse-circuit-size error, and PRGs fooling € with very small error
are all equivalent. Note that the following equivalence only holds in the low-end regime (i.e., for
polynomial size but not for subexponential size) and only holds for infinitely-often lower bounds.
The reason is that we need to use a win-win argument in [CR22,CLLO21]: if a certain NC'-hard
problem (called DCMD in [CR22|) can be approximated by & circuits, we proceed in one way;
if not, we proceed in another way. The reader is referred to the discussion in [CLW20, Section
2.2.2| for more details on the limitation of this win-win argument.

Below we list the properties of the weak circuit class € that we need:
(¢ is typical) % is closed under negation and projection.

(¢ is complete) For every truth table of length 2%, there is a € circuit of size poly(2¥) that
computes this truth table; moreover, the description of such a % circuit can be computed

in deterministic poly(2¥) time from the truth table.
(¢ computes PARITY) The PARITY function can be computed by a % circuit of size poly(n).

(% is closed under bottom juntas) For every constant d > 1, every % o Juntay circuit can

be computed by a polynomially-larger 4 circuit.

(% is closed under top NC° circuits) For every constant d > 1, every NCJ o & circuit can

be computed by a polynomially-larger 4 circuit.

Theorem 4.6.3. Let € be a circuit class that satisfies the properties above. If € C NC', then

the following are equivalent:

1. For every constant k > 1, there is a language L € ENP that cannot be (1/2+ 1/nk)—
approzimated by € [n¥].

2. For every constant k > 1, there is a language L € EN? such that L ¢ MAJ o €'[n*].

3. There is 6 > 1/poly(n) such that for every constant k > 1, there is a language L € ENP
such that L ¢ Sumy o € n*].

4. For every constant k > 1, there is a language L € ENP such that L ¢ %1/3 o €[n].

5. For every constant k > 1, there is a language L € ENP such that L has ¢1-distance at least
§ from any [0,1]-Sum o %" circuit of complexity n*, where § > 0 is the absolute constant in
Theorem 4.4.1.

108

6. For every constant k > 1, there is an infinitely-often CAPP algorithm for € [n*] with ENP

preprocessing, 2"/n°"(1) query time, and tnverse-circuit-size error.

7. For every constant § > 0 and every good function s = s(n), there is an infinitely-often
CAPP algorithm for €[s] circuits with TIME[exp(s°)]NP preprocessing, exp(s®) query time,

and inverse-circuit-size error.

8. For every constant k > 1, there is an ENP-computable i.0. PRG with seed length n— 1 that
(1/n*)-fools €[n*] circuits.

9. For every constant k > 1, there is an ENP-computable i.0. PRG with seed length n'/* that
(1/n%)-fools € [n¥] circuits.

Proof. (9) = (8), (7) = (6), and (4) = (3) are trivial. (2) = (4) follows from the
fact that (Jyey Sumy g 0 €[n¥] € Upey MAJ 0 [n").

(5) = (3) is because every language in Sumg o € is also close to a [0,1]-Sum o € circuit
of similar complexity. In particular, let f: {0,1}" — {0,1} be computed by a Sfu\a(; o € circuit
C(z) = Zle a;C;i(z) of complexity s. Consider the circuit C’'(x) := (C(x) + §)/(1 + 20), then
C’" is a [0, 1]-Sum o € circuit of complexity poly(s), and

10~ flh= E (€@~ @]
C(z) - f(z)+6
= x(—{I%,l}” [1+ 26 H +20 < 40.

Hence, if L € ENP has £;-distance at least ¢ from any [0, 1]-Sum o % circuit of complexity n*,
then L & Sumgq o €n*1].

(9) = (7): The proof is exactly the same as (6) == (4) in Theorem 4.6.1. That is, we
apply the PRG to solve CAPP.

(8) = (3): From Lemma 4.2.4, a PRG fooling ¢ is also a PRG fooling Sum o %. Then,
from Fact 4.2.7, a PRG fooling Sum o @ implies a lower bound for it. Details follow.

For any fixed constant k, let Gy, : {0,1}"~ — {0,1}" be an ENP-computable i.0. PRG that
(1/nk+1)-fools €' [n*1] circuits. Then, by Lemma 4.2.4, G is also an i.o. PRG that &’-fools
SFnlm o € circuits of complexity n*, where &' := 2 - (1/n) 4+ n*/nFt!1 < 3/n. By Fact 4.2.7,
there is a language in ENP that is not computable in Sum; Jn © €[n"].

(6) = (5) follows from Theorem 4.4.1 and the hypotheses that € is typical, complete,
computes PARITY, and is closed under top NC° circuits.

(3) = (1) follows from the proof of (2) == (6) in [CLLO21, Theorem 1|; for com-
pleteness we provide a sketch here. If a certain problem called DCMD, which is in P, cannot
be (1/2 + 1/n*)-approximated by %[n*] for every constant k, then (1) follows directly. Oth-
erwise, by [CR22, Lemma 3.1], NC! C S/L]E'n(; 0%. Let L be a language in ENP that does not
have Sumj o € [n°W)] circuits, then L does not have NC! circuits of size n®*). By standard
hardness amplification (with NC! decoders) such as Theorem 4.2.8, it follows that L cannot be
(1/2 + 1/n*)-approximated by NC! circuits of size n°®*). Since ¥ C NC!, (1) is true.

(1) = (2) follows from the discriminator lemma [HMP*93]. For any function f € MAJo¥%
where the top MAJ gate has fan-in s, f can be (1/2+1/0(s)) approximated by . This implies

109

the contrapositive of (1) = (2).
(1) = (9) follows from the Nisan-Wigderson generator [NW94]. We use the following

parameters in Theorem 4.2.1:
C:=n'"3% mi=n,a:= 4kt = O(£*- ml/a/a) < nl/k.

We use a hard truth table of length 2¢ that is not (1/2 + 1/n**1)-approximated by % o Junta,
circuits, where the top € circuits have size n*. As any % o Junta, can be computed by a

polynomially larger %, the same proof applies. O

We also present a characterisation of ENP lower bounds against weak circuit classes that
holds both in the high-end regime and almost everywhere. Note that it is unclear whether this

equivalence extends to lower bounds against Sum o € circuits.

Theorem 4.6.4. Let € be a circuit class satisfying the above properties. Moreover, suppose the

property that € is closed under bottom juntas is strengthened to:

(¢ is closed under bottom juntas) Every € o Juntayyg, circuit can be computed by a poly-

nomially large € circuit.
Then the following are equivalent:

1. There is a constant € > 0 and a language L € ENP such that L cannot be (1/2 + 1/27)-

approzimated by €27 circuits on almost every input length.

2. There is a constant € > 0 and a language L € ENP such that L cannot be approzimated by
[0,1]-Sum o F[2™] circuits within {1-distance § on almost every input length, where § > 0

is the absolute constant in Theorem 4.4.1.

3. There is a constant € > 0 and a CAPP algorithm for €2 with ENP preprocessing, 27~

query time, and inverse-circuit-size error.

4. There is a constant ¢ > 1 such that for every good function s(n), there is a CAPP algorithm

for €[s] circuits with ENP preprocessing, 2'°8°% query time, and inverse-circuit-size error.

5. There is a constant ¢ > 0 and an ENP-computable PRG with seed length n—1 that (1/2")-

fools € circuits of size 2™ .

6. There is a constant ¢ > 1 and an ENP-computable PRG with seed length log®n that (1/n)-

fools € circuits of size n.

Proof. (4) = (3) is trivial.
(6) = (5)
(6) = (4)
(5) = (3)

circuits of size 2"

(5) can be proved by padding the circuit with dummy inputs.
: The proof is the same as (6) = (4) in Theorem 4.6.1.
: Let G : {0,1}"~! — {0,1}" be an ENP-computable PRG that (1/2"")-fools ¢

5

. Let k := n/2, it can be shown using a hybrid argument that

G/(81, S92,... ,Sk) = G(Sl)G(Sg) “ee G(Sk)

110

is a PRG that (k/2"")-fools ¥ circuits of size 2"° and nk inputs. The desired CAPP algorithm

1+¢/2) " and uses its NP oracle to compute the

works as follows: Prep(1V) calculates n := N/(
entire range of G({0,1}"~!). Then, given a % circuit C : {0, 1}V — {0,1} of size N/t < on®
it uses G’ to derandomise C in gN-—n</2 oNe/4 < gN-—N</6 time, within additive error k/2"€ <
2-N° That is, (3) holds for ¢’ := ¢/6.

(3) = (2) follows from Theorem 4.4.1 and the hypothesis that € is typical, complete,
computes PARITY, and is closed under top NC° circuits.

(2) = (1) follows from the XOR lemma in [CLW20]. In particular, suppose that L € ENP
cannot be approximated by [0, 1]-Sum o €’[2"°] circuits within ¢;-distance 1/3 on almost every

input length. Let 0 :=1/3, k := O(n°/?), and

ep = (1—0)F1(1/2 - §) < 27"

By Theorem 4.2.9, L%* cannot be (1/2 + e;)-approximated by € circuits of size 97°’? " Since
L € ENP we also have L& ¢ ENP. Note that L#* is a function on ¢ := kn = O(n'*%/2) input
bits. Therefore, for ¢’ := 0.49¢/(14¢), L®* cannot be (1/2+ 1/2é8/)—approximated by € circuits
of size 2£El.

(1) = (6): Let L € ENP be a language that cannot be (1/2 4 1/2"")-approximated by
€'[2™] circuits on almost every input length. Let ¢ > 2 be a large enough constant such that
% o Junta, circuits, where the top % circuit has size n, can be simulated by % circuits of size

n¢. We apply the Nisan-Wigderson generator [NW94| with the following parameters:

0:=10g"*n,m :=n,a :=logn,t:= O -m"*/a) = O(*) < log>/* n.

From (1) we have that there exists a function f : {0,1}* — {0,1} in ENP that cannot
be (1/2 +1/2°) = (1/2 4 1/n°)-approximated by % circuits of size n°. Then f cannot be
(1/2 + 1/n®)-approximated by €’[n] o Junta, circuits. By Theorem 4.2.1, there is a function
G : {0,1}2" x {0,1} — {0,1}™ computable in poly(m,2') < 2°0) time, such that G(tt(f), —)
is a PRG that (1/n°"!)-fools every €'[n] circuit. Since f € ENP. the generator G(tt(f),-) is
computable in ENP, O

111

Chapter 5

Constructions of Rectangular PCPs of

Proximity

5.1 Construction of Smooth and Rectangular PCPP

Recall that a PCPP verifier is smooth if every bit of the proof is equally likely to be queried,
i.e., the distribution of a random query position over a random seed is uniformly random. We
do not impose any smoothness requirement on the input oracle.

In this section, we construct a smooth and rectangular PCP of proximity. Our construction
follows closely from previous ones: Based on [BGH'06], [BHPT24] constructed a smooth and
rectangular PCP, and a careful inspection of their techniques reveals that a smooth and rect-
angular PCP of prozimity can be constructed in a similar way. Still, we present an (almost)
self-contained proof of the construction here. As this section is quite technical, we give a brief

overview of the construction.
OVERVIEW OF SECTION 5.1

e Instead of constructing a smooth PCPP verifier directly, we will construct a rectangular PCPP
verifier with rectangular neighbour listing (RNL) property, following [BHPT24]. We present the
definition of the RNL property in Section 5.1.1.

e In Section 5.1.2, we show that the PCPP verifier in [BGH"06] is a robust and rectangular PCPP
verifier with RNL property. Previously, a robust and rectangular PCP with RNL property was
constructed in [BHPT24]|; we show that one can construct a PCPP with the same properties.

e The query complexity of the PCPP verifier in Section 5.1.2 is somewhat large and we need to
reduce it by PCPP composition. In Section 5.1.3, we prove such a composition theorem: we can
compose a robust and rectangular PCPP verifier for a language L (the outer PCPP verifier) and a
PCPP verifier for a variant of the circuit-evaluation problem (the inner PCPP verifier) to obtain
a rectangular PCPP verifier for I whose query complexity is at most the query complexity of the
inner PCPP verifier. Moreover, the composed PCPP verifier has the RNL property if the outer
PCPP verifier has the RNL property. A minor technicality is that this rectangular PCPP verifier
will also take some ROP parity-check bits (see Definition 2.5.4).

e In Section 5.1.4, we show how to smoothen a PCPP with RNL property. That is, given a PCPP
with RNL property, we construct another PCPP with similar parameters that is smooth.

112

e The soundness error of the PCPP we constructed is only a large constant (i.e., close to 1). In
Section 5.1.5, we show that the soundness error can be reduced to an arbitrarily small constant

with an O(1) blow-up to the query complexity.

e We wrap all these components up and set the parameters in Section 5.1.6.

We remark that PCPP composition (Section 5.1.3) does not seem to preserve smoothness (if
the inner PCPP is not known to be smooth) and the soundness error reduction (Section 5.1.5)
does not seem to preserve the RNL property, hence we choose to apply our machinery in the

above specific order, i.e.:

. Jr . .
The PCPP in [BGH'06] with RNL, Composition PCPP with RNL,
large soundness error, —— large soundness error,
and large query complexity Section 5.1.3 and O(1) query complexity

Section 5.1.4 | Smoothening

Smooth PCPP with . Smooth PCPP with
Section 5.1.5
small soundness error large soundness error

and O(1) query complexity Soundness error reduction | g O(1) query complexity

In this section, NTIME[T'(n)] always refers to NTIMErm[T'(n)], i.e., we only consider the
Turing machine model. Recall that a function f: N — N is good if given the input n in binary,
we can compute f(n) (also in binary) in time poly(logn,log f(n)).

5.1.1 Rectangular Neighbour Listing

Definition 5.1.1. Let V be a rectangular PCPP verifier for some language L with randomness
complexity r and query complexity q. A configuration is defined as a pair (seed, k) € {0,1}" x [q].
It is said to be a proof (resp. input) configuration if the verifier with randomness seed will query
the proof (resp. input) oracle on the k-th query. Two configurations (seed;, k1) and (seeds, k2) are
said to be neighbours if the verifier will access the same bit of the same oracle with randomness

seed; on the ki-th query, or with randomness seeds on the ko-th query.

We define the notion of rectangular neighbour listing [BHPT24]|. A minor difference between
our definition and the one from [BHPT24]| is that we require a procedure Aghareq that only sees
the shared randomness and outputs ¢ (the length of the neighbour list), self (the index of the
configuration in the neighbour list), and k; (the query indices of every neighbor). In [BHPT24],
both Ay (which only sees row-part randomness) and Ao (which only sees column-part ran-

domness) output these data, and it is required that the outputs of Ao and Ao are consistent.

Definition 5.1.2 (Rectangular Neighbour Listing). Let L be a language and V' be a rectangular
PCPP verifier for L with row randomness complexity o, column randomness complexity 7o,
and shared randomness complexity rsphared. We say V' has tgyL(n)-time rectangular neighbour
listing property if there are three tgn (n)-time algorithms Aghared, Arow, and Aco such that the

following conditions hold:

1. The shared randomness seed.shared € {0, 1}"shr¢ consists of seed.shared.row € {0, 1}7shared/?

and seed.shared.col € {0,1}"snr4/2 ic., seed.shared = (seed.shared.row, seed.shared.col).

113

2. Let (seed, k) = (seed.row, seed.col, seed.shared, k) be a configuration, where seed.shared =
(seed.shared.row, seed.shared.col). The algorithms Agpared, Arow, and Ao list all the neigh-

bours of (seed, k) in a “rectangular and synchronised” fashion:

e Given seed.shared and k, Aghared Will output an ordered list NListshared(seed, k) := {k;}
and a number self(seed, k). Let {(seed, k) denote the length of NListghared(seed, k).

e Given the row-part randomness (seed.row, seed.shared, k) as input, Ao, will output
an ordered list NList,ow (seed, k) := {(seed;.row, seed;.shared.row) };cy(seed k)] -

e Given the column-part randomness (seed.col, seed.shared, k) as input, A, will output
an ordered list NListeol(seed, k) := {(seed;.col, seed;.shared.col) }ic(¢(seed, k)] -

e The “zipped” list of NListghared (seed, k), NList,ow(seed, k), and NListco)(seed, k)

NList(seed, k) := { (seed;.row, seed;.col, seed;.shared.row, seed;.shared.col, k;) }
1€[l(seed,k)]

is a list of all the neighbours of (seed, k). Moreover, the self(seed, k)-th entry of
NList(seed, k) is the configuration (seed, k) itself.
e For every pair of neighbours (seedy, k1) and (seeds, k2), the two ordered lists NList(seed1, k1)

and NList(seeds, ko) are exactly the same.

3. Moreover, we say that the RNL can be computed by projections, if for every fixed seed.shared,
NList,ow can be computed by a projection over seed.row, NList,, can be computed by a
projection over seed.col, and the descriptions of these two projections can be computed

efficiently given seed.shared.

5.1.2 A Rectangular PCPP with RNL Property

We start by reviewing the PCPP for NTIME[T'(n)] constructed in [BGH'05, BGHT06]. We
verify that it is a rectangular PCPP with the rectangular neighbour listing property as in
[BHPT24|. We summarise its properties into the following theorem:

Theorem 5.1.3. For all constants 6 > 0, there is a constant p € (0,1) such that the follow-
ing holds. Let m = m(n), T(n), Wproof(N), Winput(n) be good functions such that 1 < m <
(log T(n))%, n < T(n) < 2PV wo0e(n) < log T(n), and winpue(n) < logn. Then there are

good functions hproof(n) and hinput(n) satisfying
hproof (1) = log T'(n) + ©(mloglog T'(n)) — Wpreof (1), and
Pinput (1) = [log n] — Winput(n)-

such that the following holds.
Suppose that hproof, Weroof > (4/m)log T'(n), and that for some absolute constant C > 1,

winput(n) hinput(n) <1_ CmloglogT(n)
Wproof (n) 7 hproof (n) o log T(n)

Let Wyroof(n) = 2Wproof (12) Hproof(n) = Qrproot (1) Winput(n) = 2winput (M) - gnd Hinput(n) =
2hinput(") - Then NTIME[T (n)] has a rectangular neighbour listable, robust, and rectangular PCP

114

Soundness error 1—0p

Proximity parameter)

Robustness parameter P
Row randomness hproof — (4/m) log T'(n)
Column randomness Wproof — (4/m)log T (n

)
Shared randomness | (7/m)log T (n) + O(loglog T'(n) + mlogm)

Query complexity L/m
Decision complexity T'(n) polylog(T'(n))

RNL time complexity poly(log T'(n), m™)

Table 5.1: Parameters of the PCPP constructed in Theorem 5.1.3.

of prozimity with an Hproof (1) X Woreof (1) proof matriz and an Hinput(n) X Winput(n) input ma-
trix, whose other parameters are specified in Table 5.1. The query indices of this PCPP can be
computed by projections (in the sense of Definition 2.5.6) and the RNL can also be computed by

projections (in the sense of Definition 5.1.2).

We note that the query complexity of the PCPP in Theorem 5.1.3 is ¢ ~ T/™. Correspond-
ingly, the total amount of randomness it uses is roughly Aproof +Wproof — (1/m) log T' ~ log(|I1| /q)
where |IT| denotes the proof length. Looking ahead, in Section 5.1.3, we will compose this PCPP
with another “inner” PCPP [Mie09] to reduce the query complexity to a constant.

We need an efficient construction of small-biased sets. In particular, let A > 0, m € N, and
F be a finite field of characteristic 2, we need a A-biased set Sy C F™. Besides being A-biased,
S should possess an additional property: for every element ¢ € Sy, the first coordinate of g is
non-zero. It is claimed in [BHPT24] that (under suitable conditions) for any (A/4)-biased set
Sy /4, if we remove every element y € Sy /4 with y; = 0, then the remaining set is still A-biased.

For completeness, we provide a proof for this claim at the end of this subsection.

Lemma 5.1.4. Let A < 0.1, ¢, m be integers such that ¢ > log %, and let F = GF(29). There is
a deterministic polynomial-time algorithm that on input (1,19, 1“/)‘1), outputs a A-biased set
Sy C (F\ {0}) x F™=1 of size O((gm/)\)?).

Let L € NTIME[T'(n)], we describe the PCPP verifier for L. The PCPP verifier receives two

oracles: the input oracle Ilijnpye (consisting of the input in verbatim) and the proof oracle Hyroof-

Set up. Let a be a universal constant as defined in the proof of [BGH05, Theorem 6.4], ¢ be
the universal constant in [BGH" 06, Lemma 8.11]. We set the following parameters:

t:=logT(n), h:=[(t+3)/m], f:=h+alogyt, X\:=min{l/(ct),1/(m*™)}.

We work with the field F := GF(2f). We treat F as a vector space of dimension f over
GF(2) and let eq,...,es be its basis. Each element v € F can then be written as v = Ezle eib;
for b; € GF(2), and we denote the binary representation of v as bin(v) = (biba...bys). Let H be

the vector space spanned by e1,es,...,e,. We also define two bijections

bingm : H™ — {0,1}"™ and bingm : F™ — {0,1}/™.

115

The bijection bingm is the usual one: it maps (biey + --- 4 brey,bprier + -+ + basey, ...,
bim—1)f+1€1+ -+ bnfes) to (biba...bpy). We also treat binary strings as numbers where the
leftmost bit is the least significant one and the rightmost bit is the most significant one. That
is, the string (b1ba ... by, f) is treated as ZZZJZ b;2i~ 1,

We postpone the definition of the bijection bingm as it is a bit technical. Roughly speaking,
the reason is that we want to map the input to a matrix of dimension Hinput X Winput. More
specifically, the input string occupies positions [2¢7! + 1,2!%! 4+ n], and we want to map this
portion into a subset of H" which corresponds to a rectangle of dimensions Hinput X Winput-

We use the following injection Iy : [n] — H™ to project the input to H™:
I (i) = binpp, (21 4 4). (5.1)

That is, the i-th input bit will be embedded into the position I (i) € H™. Define the set
I :={I;(k) : k < |Iinput|}, then the input will be stored on the index set I.

Remark 5.1.5. The definition of I; (5.1) is derived from [BGH™05| as follows.

1. First, we reduce L to the Generalised de Bruijn Graph Coloring problem ([BGHT05, Definition
4.3]). The i-th bit of Iinpye is mapped to the (2¢+1 + i)-th node of the first layer.

2. Then, we reduce the above coloring problem to the Multivariate Algebraic Constraint Satis-
faction Problem ([BGH'05, Definition 6.4]). In this step, for every i, the i-th node in (the
first layer of) the de Bruijn graph is mapped to the vector bing (i) € H™.

Combining the above two steps, it follows that the i-th bit of ITinpy: is mapped to I;(4).

The PCPP proof will have length |F|™ - ¢ for some ¢ = polylog(T); we treat it as an oracle
Mproof : ™ — {0, 1}5.1 Without loss of generality we may assume ¢ is a power of 2. The i-th
bit of the proof (viewed as a string of length [F|™ - £) is equal to the k-th bit of Ieof [bing (5)],
where j := [i/¢] and k := i mod /.

Lines. A line £ over F™ is a set of the form {Z + ¢y : ¢t € F}. Here & € F™ is called the
intercept of £ and § € F™ is called the direction of £L. The PCPP verifier will make queries

along the following two types of lines over F™:

e A first-axis parallel line is a line where ¥ = (1, 0,0, ...,0) and & € F™. To sample a uniform
first-axis parallel line, it suffices to choose & from {0} x F™~! uniformly at random using

(m — 1)log(|F|) bits of randomness.

e Fix a A-biased set Sy C F™ constructed in Lemma 5.1.4. A pseudorandom line is a
line where & € F™ and y € S). Each line has |F| different representations (since the
intercepts & + ti represent the same line for all ¢ € F). Therefore, we specify a canonical

representation for each line.

To sample a pseudorandom line in the canonical way, we first choose ¢ from S uniformly

at random, and then sample # from {0} x F~! uniformly at random. (Note that the first

! Actually, in [BGH*05], each entry Iyeof(Z) is an error-corrected version of a vector in FPe¥1°e(T) The use
of error-correcting codes ensures that the PCPP verifier is robust.

116

coordinate of ¥ is always non-zero, therefore every pseudorandom line intersects {0} x
F™=1.) This uses log(|Sx|) + (m — 1) log(|F|) bits of randomness.

Query pattern. To verify rectangularity (and RNL), it suffices to describe the query pattern
of the verifier, i.e., the entries of ILinpyt and Ipe0f that are queried for a given randomness.
Let seed be the randomness of the verifier, which has length log(|Sx| - [F|™!). We partition
seed into
seed := (R2, R3,...,Rm, Ry),

where each R; (2 < ¢ < m) has length log |F| and corresponds to an element in F, and R, has
length log |S)| and corresponds to an element in S). Then seed determines a first-axis parallel
line £y and a canonical pseudorandom line £ as follows. The intercepts of both Ly and £ are
Z = (0, R2, R3, ..., Ry); the direction of Ly is (1,0,0,...,0) and the direction of £; is the Ry-th
element of S).

Let shift : F™ — F™ denote the cyclic shift one step to the left; i.e.,

shift(ay,ag,...,am) = (az,as3,...,am,a1).

For a line £, shift(£) denotes the set {shift(z) : x € L}.
The query pattern of the PCPP verifier is easy to describe:
e For every point & on Ly, shift(Ly), and L, it makes a query to Ipoof[Z].

1/ =

e For every ¥ € £1 N1, it also makes a query to Iinput[Z; * (Z)].
Remark 5.1.6. This query pattern is derived from [BGH'06] (see also [BHPT24, Section CJ]). In
particular:

e RoBUST LOW-DEGREE TEST makes queries to Iroof[£1];

e ROBUST IDENTITY TEST makes queries to o0f[Lol;

e ROBUST EDGE-CONSISTENCY TEST makes queries to Ipoof[Lo] and Iprof [shift(Lo)];

e ROBUST ZERO PROPAGATION TEST makes queries to Ilroof[Lo] and Iyoof[shift(Lo)];

e ROBUST PROXIMITY TEST makes queries to Ilyoof[£1] and Ilinput [It_l(ﬁl NnI).

As ROBUST PROXIMITY TEST was not needed in and hence not described by [BHPT24| (since
they were constructing a PCP instead of a PCPP), we describe its details here. This test queries
IT on every point in £; and unbundles the answers to obtain the values of Ay (a certain proof
polynomial in [BGH"05, Definition 6.3]) on £y. Then it queries Ijypue on every point k € £ N T
and checks whether inpue[k] = flrace(Ao[lt(K)]) holds, where fL.,.. is a certain function defined in
[BGH™05, Definition 6.3].

Rectangularity of the PCPP Verifier

Given the query pattern of the verifier described above, we are ready to show that the
verifier is rectangular. The verifier makes 3|F| queries to Ilpoof; let us call them (@i, ..., dR|),
(@R 415 - - - Aopr|), and (dojp|+1, - - - > A3jw|), Which are on Lo, shift(Lo), and Ly respectively. The
following lemma shows that for each 1 < j < m, the j-th coordinate of each query only depends
on Rj, Rji1, and R,,.

Lemma 5.1.7. Fiz the random string seed = (Ra, R3, ..., Ry, Ry), and for convenience define

Ri = Rpyp1 = 0°8IFl. Denote each @; = (@i1,...,aim) € F™. Then for every j € [m],

117

(a1j,a24,...,a3| ;) only depends on R;, Rji1, and R,.

Moreover, for any fixed Ry, (a1, a2, . .. ,a3|]F|7j) is a projection over (R;, Rjy1).

Proof. Let hi, hg, ..., hjp be an enumeration of all the elements in F. Then

(a1,4,a2,4,- -, agp;) = (Bj + hiy1j, Bj + hayij, - - -, By + hypiyy,
Rjt1+ hyaj, Rjv1 + haya g, -, Rjv1 + hypjye,,
R; + hyszj, Rj + hoys j, ..., Rj + h|ﬂ<‘|y3’j) (5.2)

where 71,72, y3 € F"™ is defined to be 41 = (1,0,0,...,0),%2 = (0,0,...,0,1) and y3 is Ry-th
vector in S).

It is easy to see that (5.2) only depends on R;, R;i1, and R,. Moreover, each coordinate
a;; is the sum of R; or Rj; 1 with an element of the form hyy; ;. Note that addition over
F = GF(27) is equivalent to bitwise XOR over {0, 1}/, it follows that (5.2) is indeed a projection
over (Rj, Rj11). O

Definition of bingm. Now we define bingm : H™ — {0,1}"™. Roughly speaking, the goal of
this definition is to “shape” the input oracle as a rectangle of size Hinput X Winput-

We treat every element in H as a binary string of length h. For a vector @ = (a1, ag,...,an) €
H™ the natural encoding of @ is the concatenation of aj,as,...,a,; (from the lowest bits to
the highest bits), where each a; is treated as an element in {0,1}". We denote this encoding as
bin® € {0,1}™". Let k := [(wproof — log¥) - (h/f)], we define bingm (@) to be the concatenation
of (from the lowest bits to the highest bits):

bin°[1, winput), bin®[k + 1,k + hinput|, bin®[Winput + 1, k], and bin®[k + hinpue + 1, Am]. (5.3)

Some intuitions behind the definition of bing= are as follows. As we will show later, Vg
can compute the lowest k bits of bin°® and V,ow can compute the rest hm — k bits. To make the
input matrix size Hinput X Winput, among the lowest [logn] bits, there needs to be Winpyt bits
computed by Vo and [logn| — winput = hinput bits computed by Viow. In our definition of bingm,
we simply put the lowest winpye bits computed by Vo and the lowest hinpye bits computed by
Viow as the lower [logn] bits of bingm (@), and put the rest bits as the higher bits of bingm (a).

We define ¢i := [Winput/I], c2 := [k/h], ¢3 := [(k + hinput)/R]. Then the winpu-th bit of
bin® is in a,, the k-th bit of bin® is in a,, and the (k + hinpyt)-th bit of bin® is in a.,.

k bits
o' — [[=] [eed] o]
col row
Winput bits Ainput bits
bingm (6) = ay | acl—llacl aczlacz+1| |acs—1|a03 Qcy acl+1| |a02|GC3|acs+1| | Am |
col row col row

Figure 5.1: The bit-string bingm (a1, as,...,a,). In this figure, the leftmost bits are the
least significant ones.

118

Note that

Winput < wproof(l - G(m log f)/f) <k, and
k+ hinput < (wproof - log Z) : (h/f) + hproof . (h/f) < hm. (54)

Here, (5.4) is because Wproof + Aproof = 108 [Iproof| = fm—+1logl. Since winput < k and &+ hinpur <
hm, (5.3) is well-defined.

Partition of the random seed. We partition seed into:

seed.col = (R3, R4, ..., Rey—1),
seed.row = (R¢,42, Rey43, - s Rm—1), and
seed.shared = (Ra, Re,, Reyt1, R, Ry).

seed.shared

seed

9 3 co—1 ¢ coa+1 co+2 m—1 m Yy

seed.col seed.row

Figure 5.2: The partition of the random seed.

By Lemma 5.1.7, knowing R;, Rj1, and Ry allows us to calculate (a1,a2;;---,asg|;)-
Therefore, V¢ is able to calculate the 1,2,... co-th coordinates of each query; Viow is able to
calculate the ¢, c2 4+ 1,...,m-th coordinates of each query. (We remark that for rectangularity,
it suffices to add R.,, Rc,+1, and R, into seed.shared, but for the RNL property that we discuss
later, it will be crucial that Ry and R, are also in seed.shared.)

In this partition, we have |seed.col| = (c2 — 3)f > Wproof — 4t/m and |seed.row| = (m — ca —
2)f > hproof — 4t/m. For technical convenience, we move some random bits into seed.shared so

that |seed.col| = wproof — 4t/m and |seed.row| = hproof — 4t/m; this means that

|seed.shared| = (m — 1) f 4 |Ry| — (wproof + Aproof) + 8t/m
< (m—1)f +O0(og(fm/\) — (logl +mf) + 8/m
< 8t/m+ O(logt + mlogm) — f
< 7t/m+ O(logt + mlogm).

The predicates Viype, Viow, and Ve, . Recall that we treat II,o0f as an oracle whose entries
are length-/ strings and we make 3|F| queries to Ilro0f. This means that we actually make 3|F|¢
queries to the bit-string corresponding to Ipoof. We also make |F| queries to Iinpyt.

It is easy to describe Viype: the first 3|F|¢ queries are to the proof oracle and the last |F|
queries are to the input oracle.

Now comnsider the i-th query where 1 < i < 3|F|/; these are queries made to Ilpoor. Let
Jj=|(GE—1)/¢] and j" := (i — 1) mod ¢, then the i-th query probes the j'-th bit of Ilyoof[d;],

119

where d; € F™ is defined above. We want to specify Viow and Vo such that the index of the
i-th query is
irow[i] - Woroof + icol[i] = bingm (a@;) - £ + j'.

Wproof — (CQ - 1)f — log ¢ bits cof + log ¢ — Wproof bits

] a1 as o Q/CQ o Am—1 Am,

Whproof bits hproof bits

Figure 5.3: The binary representation of the address bingm (@) - £ + j'. In this figure, the
leftmost bits are the least significant ones. The lowest wproof bits are outputted by Ve,
while the rest bits are outputted by Viow.

Recall that Vo can compute a;1,a;2,...,a;¢ using Lemma 5.1.7. Then, it outputs icol[s]
as the concatenation of j', a;1,...,a;c,—1 and the lowest wproof — (c2 — 1) f —log £ bits of aj7c2.2
Similarly, Viow can compute aj.c,, Gj.co41,- - -, @jm. 1t outputs irow[i] as the concatenation of the
highest co f 4-10g £ —wproof bits of aj ¢, , and aj o1, @j.coq2s - - -5 Q. It follows from Lemma 5.1.7
that the first 3|F|¢ entries of Vo and Vo are projections over seed.row and seed.col, computable
in polynomial time given seed.shared.

Finally, we consider the (i + 3|F|¢)-th query where 1 < ¢ < |F|; these are queries made
to Iinput- In particular, recall that the canonical pseudorandom line £; consists of vectors
Ao|F|+1> Ao|F|+25 - - - » A3jw|- If dop|4; € I then we query the 1;1(62‘F|+i)—th bit of Iinput, otherwise
we do nothing.

For notational convenience, we denote @* := @yjp|4; and bin* := bingm (a*). Now our goal is
to specify Viow and Vo such that the index of the (i + 3|F|¢)-th query is

irow [Z + 3|F;4 Winput -+ icol [z + 3|}F\E] = [7Y(@") = bin* — 21,

If either Viow or Vo outputs L, or bin* — 21 & [0, n), then we do not make this query.

Winput bits Rinput bits

ay te ey —1|Qcy| Ay | e +1 te ez —1 | Qeg| ey | Aey+1 te Gy | Geg| Acg+1 te Am

col | | | row | | col row
Winput — (€1 — l)h/b(

its cah — k bits Rinput + k — (c3 — 1)h bits

Figure 5.4: The bit-string bingm (@). Again, the leftmost bits are the least significant ones.

Recall that Vo can compute aj, a3, ..., ay,.

o If any of these elements are not in H, it outputs L.

e If any of the elements a7 4, ..., ay, are non-zero, then bin* —2*! is not in the range [0, n),
and it outputs L.
e Otherwise, the concatenation of af, a3, ..., a}, _;, and the lowest (winput — (c1 — 1)h) bits

2Note that ¢y = [(Wproof — log £)/ f, which means the “dividing point” between wproof and Aproof is in ac, .

120

of a}, is equal to (bin* mod Winpyt). In this case, it outputs
icol [z + 31F|4 — bin* mod Winput.
Also recall that View can compute az,,ay, 1, .-, ap,-

o [f any of these elements are not in H, it outputs L.

o If any of the elements a’, 1, a’, s, ..., af,_; is non-zero, or aj, # 2:1=(m=LA then bin
is not of the form 21 + 4 (0 < i < n), and it outputs 1.*

e Otherwise, the concatenation of the lowest (c2h — k) bits of af,, and af, ., a}, o, ...,

and the lowest (Rinput + & — (c3 — 1)h) bits of af,, is equal to | (bin* — 2771) /Winpue).

In this case, it outputs

*
ac:g—l’

irow [@ + 3;]F\4 = [(bin* — 2°°1) /Winpue .

RNL of the PCPP Verifier

Neighbours of (seed,i). Recall that hq,ha,..., hjp| is an enumeration of elements in F. Let
seed = (Ro, R3,...,Ry), i € [3¢-|F|], j := [(i —1)/¢] + 1, and j" := (i — 1) mod ¢. Then, the
i-th query on seed probes the j'-th bit of I,o0f[d@;], where @; = (aj1, a2, ..,ajm). We define

the canonical neighbour (seed;,i1) of (seed, i) as follows:

seed1 = (R% = CL]‘Q,R:% =53, ,R}n = Ajm, Rz,l, = 0) (5.5)

ipi=(1—1) L+ j1+1 (5.6)

where j; € [1, |F|] such that hj, = a;1, and j; = j'. It is easy to see that the canonical neighbours
are the representative elements of the equivalence class induced by the neighbourhood relation.
Denote S as the set of canonical neighbours, then (seed,i) € S if and only if ¢ € [1,¢|F|] and
R, =0.

To list all the neighbours of (seed, i), it suffices to find its canonical neighbour (seeds, 1)
and list all the neighbours of (seedy,i;). Let seedy = (R3,R3,..., Rz, R3), ix € [3C - [F]],
Jo:=|(i2—1)/€] +1, j} := (i2 — 1) mod ¢. Suppose that (seeds,i2) is a neighbour of (seed, 1),
then they represent the queries to the same bit of the same entry of Il o0r. This means that

J1 = j%, and one of the following conditions holds:

jo € [1,|F|] and (hj,,R3, R3,...,R2) = (hj,, RS, ..., R.,_1, R} (5.7)

jo € [[F| + 1,2|F|] and (R3,R3,...,R2 hjy_p) = (hj,, Ry, ..., R 1, Ry (5.8)
jo € 2[F] + 1,3|F]] and (h-y1,R3+h-ya,...,R% +h-ym) = (hj, RS, ..., RL)

where h = hj, o], (Y1, Y2, - - s Ym) = SA[Rf/]. (5.9)

We will list the neighbours of (seed;,i;) in the following order: the |S)| configurations
satisfying (5.7) in the lexicographic order of RZ (note that this includes (seedj, 1)), the |S)|

3Note that the (¢4 1)-st bit of binzm (@*) is indeed located in a},, since hm — (t+1) < (t+3)+m— (t+1) =
m + 2 < h when ¢t is large enough. Another minor detail is that if ¢; = m, then the test that af, = 2¢H1-(m=Dh
should be performed by Vo instead of Vigw.

121

configurations satisfying (5.8) in the lexicographic order of RZ, and then the |S)| configurations

satisfying (5.9) in the lexicographic order of R2.*

Rectangular neighbour listing of S. Now we need to verify that the aforementioned listing
of the neighbours satisfies the rectangular neighbour listing property (Definition 5.1.2). To start
with, we consider the case when (seed, i) = (seedy, 1), i.e., (seed,i) € S. Recall that

seed;.col = (R}, R, .. RC2 1),
seed;.row = (Ri2+2,R62+3, ..., RL),
seed .shared = (Ry, R}, R}, 1, R}, R,).

c2)

Let low(+) and high(-) denote the lower and higher halves of a Boolean string, respectively. We
partition seed.shared = (R}, R},

where seed.shared.col := (R}, R,,,,

c2+1= Rl Ry) into two parts (seed.shared.row, seed.shared.col),
low(R;)) and seed.shared.row := (R, ,, R}, high(R})).
Given (seedq,i1), the algorithms Aghared, Acol, and Ay output NList(seed,i1) as follows:

1. First, consider the |S)| neighbours (seeds,i2) satisfying (5.7), including (seedy, ;) itself.
We can see that i9 = 71, seeds.row = seed;.row, seeds.col = seed;.col, and seeds.shared =
(R27 Rl

e R L1, R R ,), where R2 enumerates over all |Sy| possibilities in lexicographic

order. Clearly, io only depends on i1, seeds.col (seeds.row respectively) only depends on

seed.col and can be computed by a projection over seed.col (seedy.row respectively).

2. Consider the |S)| neighbours (seeds,iz) satisfying (5.8). We will enumerate all R? in

lexicographic order and output:

R;=R;,....,R:_{ =R, _,),
R3 = hj,, R, = R}, | ,low(R})),
R02+2 R02+1"' Rm 1 — R%n,—2)7

R’ =R, R} =R, | high(R))).

c2)

seeds.col =
seedy.shared.col =

seedy.row =

e e N

seedsy.shared.row = 1>

Let jo := [(ia —1)/¢] + 1 and jb := (ia — 1) mod ¢, we can see that j5 = ji and hj, = R},
hence i2 can be computed from seed.shared and i; efficiently. Finally, it is easy to verify
that seeds.row and seeds.shared.row only depend on seed;.row and seed;.shared, and that
seeds.row can be computed by a projection over seed;.row. The same holds for the column

randomness.

3. Finally, consider the |S\| neighbours (seeds,i2) satisfying (5.9). We enumerate RZ in
lexicographic order. Let (y1,92,...,Ym) = S [RZ] Denote h :=y; ' - hj,, and let jo be the
unique number in [2|F| + 1, 3|F[] such that h = hj,_or|, we output:

= (2= 1) L++1,
seeds.col = (R§ =Ry —h-ys3,...,R2,_{ =R, _| —h ye,_1),

“Recall that for every (yi,ve,...,Ym) = S,\[Ri], y1 # 0. Thus for every Ri, there is exactly one jo €
[2|F| + 1, 3|F|] that satisfies (5.9), namely the j2 such that hj, om = y; = - hjy .

122

seeds.shared.col = (R = Ry — h - y2, R2, = R}, — h - ye,, low(R?)),
seedy.row = (R?ZH = Ré2+2 — R Yegt2,s -y Rfrhl = Rinfl —h-Ym-1),
seedy.shared.row = (Rz2+1 = Ri2+1 —hYeys1, RE, = RL — h -y, high(Rz)).
Since j2 and j] only depends on i1, i3 also only depends on 41 (and not on seed). Since addi-
tion over F is just bitwise XOR and (h, y1, . .., ym) can be computed from (seed;.shared, i1),
we have that seedy.col (seeds.row respectively) can be computed by a projection over

seed;.col (seed;.row respectively) computable from (seed;.shared, ;).

It is clear that the “zipped” list of NList,e, and NListey is the list of neighbours of (seed;,i1).
Since (seedy, 1) appears at the head of the list, Agpared simply outputs self = 1.

We also point out the exact dependence of Agshared, Arow, and Aco on seed.shared, as this will
be useful later. Instead of the full (seed.shared,i1), Ashared Only needs to look at (RL ,i1), Arow

ms

R£2+1’ RL .i1), and Ao only needs to look at (R3, RL ,i1).

c2)

only needs to look at (RZ,,
Rectangular neighbour listing for S. For the general case when (seed,i) ¢ S, we first
find its canonical neighbour (seedi,i1) in a rectangular fashion. Let (seed;,i1) be the canonical

neighbour of (seed,), it suffices to show that:

e (R! ,i1) can be computed from (seed.shared,), so that we can feed it into the above Agpared-

If j € [1,|F|], then R} = R,, and i1 only depends on aji = h;. If j € [|F| + 1, 2|F|], then

R. = h;_r and i1 only depends on a;j; = Ra. If j € [2|F| + 1, 3|F|], then RL = Ry +ym
1

mo

and i1 only depends on aj; = h; + y;. It follows that (R
(R2, Ry, Ry, 1), hence from (seed.shared,).

i1) can be computed from

e (seed;.row, R} R§2+1,R}n) = (R}

. Ls---, Ry, can be computed from (seed.shared, seed.row),

so that we can feed it into the above A,on. Moreover, seed;.row can be computed by a

projection over seed.row given seed.shared.

If j € [1,|F|], then R} = R; for every co < i < m; if j € [|F| + 1,2|F|], then R} = R;41
for every c; < i < m and R}, = h;_g; if j € [2|F| 4+ 1,3|F[], then R} = R; + y; for

every co < i < m. In all of the three cases above, (R. ..., R.) can be computed

c2) *
from (Re,, ..., Rm, Ry), hence from (seed.shared, seed.row); moreover the computation of

seed;.row is indeed a projection over seed.row.

e (seed;.col, R}, R})) = (R},...,R.)) can be computed from (seed.shared, seed.col), so that
we can feed it into the above A.y. Moreover, seed;.col can be computed by a projection
over seed.col given seed.shared.

If j € [1,|F|], then R} = R; for every 2 < i < cy; if j € [[F| + 1,2|F|], then R} = R;4; for
every 2 < i < ¢g; if j € [2]F| + 1,3|F|], then R} = R; + y; for every 2 < i < cy. In all
of the three cases above, (R}, ..., R}:Q) can be computed from (Ry,..., R¢,+1, Ry), hence
from (seed, shared, seed.col); moreover the computation of seed;.col is indeed a projection

over seed.col.

Then, we can feed seed; into the procedures for rectangular neighbour listing of S and obtain

rectangular neighbour listing of S.

123

Finally, Aghared(seed.shared) needs to compute self, i.e., the position of (seed,i) in the list.
The list contains three parts: neighbours specified by (5.7), (5.8), and (5.9). The part that
(seed, i) belongs to only depends on |(j7 —1)/|F|] + 1 € {1,2,3}. The exact position of (seed, 1)

in the corresponding part depends on the lexicographic order of R,.

Complexity of Aghareds Arow, and Ae. Recall that log|F| = f = (logT(n) + 3)/m +
O(loglog T(n)), |Sx| = O((mf/A\)?) = poly(m™,logT(n)). It is then easy to check that the
running times of Aghared, Arow, and Ao are poly(mo(m), filogT(n)) = poly(m™,logT(n)).

Robust Soundness

The PCPP described above only guarantees an expected version of robust soundness: the
expected fraction of bits that we need to flip in order to make the verifier accept is at least
p, where the expectation is over the choice of seed. (See [BGH'06, Lemma 8.11].) Here we
use a Markov bound to turn this into a standard robust soundness property, but only with
soundness error very close to 1. Since the robust soundness error reduction (Section 5.1.5)
preserves smoothness but does not seem to preserve RNL, we do not apply it here.

Let dproof (seed) (resp. dinput(seed)) be the fraction of bits of Iyoof (resp. Ilinput) read by the
verifier that we need to flip to make the verifier accept given the randomness seed. Let & (seed)
be the fraction of bits (of both Ilreef and Ilinpye) read by the verifier that we need to flip to make
the verifier accept given the randomness seed. By [BGHT06, Lemma 8.11|,” there is a constant
po € (0,1) such that for every constant 6 € (0, 1), if ITjnpye is 0-far from being in L, then for any
proof oracle Ilpoof, either Egeed[dproof (seed)] > po or Eseed [dinput (seed)] > /3.

Recall that the verifier makes |F| queries to Ilinpye and 3¢ - |F| queries to Hproof. We repeat
each query to the input oracle for 9(pg/d)¢ times. If ITjnpyt is 0-far from being in L, the fraction

of bits read by the verifier that we need to flip on expectation to make the verifier accept is

_ min{py - 3¢ [F, (6/3) - 9(po/0)C-|F[} _ 3lpo _ po
30-[F| + 9(po /) - |F| = 301 9(p0/0)f = 1+ 3p0/d

E {5 (seed)}

seed

Let p:= By a Markov bound,

PO
2+6p0/d "

Pr {5(seed) < p] <1-—p.

seed

Thus, the PCPP verifier has robust soundness error 1 — p with robustness parameter p and

proximity parameter §.

Proof of Lemma 5.1.4

Finally, we prove Lemma 5.1.4. For completeness, we define A\-biased sets:

Definition 5.1.8. For two strings z,y € {0,1}", denote their inner product as IP(z,y) :=
(—1)2i=1 %ivi

"Recall that we assume m < (logT(n))%! and set A\ = min{1/(ct), 1/m?*™}, so that m™ < T(n)l/m2 and
A < min{1/(ct), 1/m™}, which satisfies the technical requirement of [BGH" 06, Lemma 8.11].

124

Let A > 0. Aset S C{0,1}" is a A-biased set if for every string y € {0,1}", if y is not the
all-zero string, then

> 1P(x,y)

€S

Note that when F = GF(29), the definition of A-biased subsets of F™ in [BSVWO03, Section
2| coincides with the above definition (of A-biased subsets of {0, 1}™9).

We use the explicit construction of a A-biased subset Sy C F™ of size O((gm/)\)?) in
[AGHP92|. Recall that we also need the first coordinate of every element in Sy to be nonzero.
Therefore, we first construct a (\/4)-biased set Sy, C F™ using [AGHP92|, and then remove
every element y € Sy /4 with y1 = 0 to obtain the A-biased set Sy. In what follows, we prove

< AlS]

that this remaining set is indeed a A-biased set.

Lemma 5.1.4. Let A < 0.1, ¢, m be integers such that ¢ > log %, and let F = GF(29). There is
a deterministic polynomial-time algorithm that on input (1,19, 1(1//\]), outputs a A-biased set

Sy C (F\ {0}) x F™L of size O((gm/)\)?).

Proof. We first use [AGHP92] to construct a A/4-biased set Sy /4 C F™ of size O((gm/))?). Let
So :={y € Sy/a : y1 =0} and Sy := Sy/4 \ So, we will show that Sy is a A\-biased set.

First, we show that [Sp| < (A/2)[Sy/4l, i.e., we only removed a small fraction of elements.
Let Y := {0,1}9 x {0(™=14} be the set of length-(mq) strings that is zero on all but the first g
input bits; each y €) corresponds to a linear test IP(-,y) that only depends on the first q input
bits. Abusing notation, we also use) to denote the uniform distribution over). For every
T € Sy/4, if ¥ € Sp then IP(x,y) = 1 for every y € Y; otherwise the expectation of IP(z,y) over
a random y < Y is zero. It follows that

Sol/ |yl =, B [P

On the other hand, if y = 0™4 then IP(x,y) = 1 for every possible z, while if y # 0™ then

the expectation of IP(z,y) over a random x < Sy 4 is between —\/4 and A\/4. Therefore

E [IP(x,y)] < % + A4 < A/2.

=Sy 1,y<Y
Now we show that S) is a A-biased set. Fix any binary string y € {0,1}"?\ {0™4}, we have

ZIP(xjy) < Z IP(z,y)| + ZIP(%?J)

.'L'ES)\ CEGSA/4 €Sy
< (A4l + S0l
< (BA/4)[S) /4l

On the other hand, we have [Sy| > (1 — A/2)[S) /4| > 0.95|S) /4|. Therefore

3\
4-0.95

<\ O

E [IP(a:,yn\ <

S

125

5.1.3 RNL-Preserving Composition Theorem

The PCPP verifier in Section 5.1.2 requires roughly T(n)l/ M query complexity. In this
subsection, we compose it with an efficient inner PCPP to reduce its query complexity to O(1)
while preserving the RNL property. We assume familiarity with the composition theorem of
PCPs: a good reference for the basic composition theorem is [BGHT06, Section 2.4], and a
composition theorem that preserves RNL is proved in [BHPT24, Section 7|.

Let CIRCUIT-EVAL™ denote the circuit value problem where the input alphabet of the circuit
is {0,1, L}. Note that the input alphabet of the decision circuit of the PCPP constructed in
Section 5.1.2is {0,1, L} instead of {0, 1}. Therefore, we should use a PCPP for CIRCUIT-EVAL®
instead of CIRCUIT-EVAL for the inner PCPP.

The main result of this subsection is the following composition theorem.

Theorem 5.1.9. Let n < T'(n) < 2PV Suppose that NTIME[T(n)] has a robust and rectan-
gular PCPP verifier Vo't and CIRCUIT-EVAL' has a (not necessarily rectangular) PCPP veri-
fier V" with parameters specified in Table 5.2. Moreover, assume that ¢" = O(1), p°'t > §'",
r =270 vt < logWokte < 1280 + r8ied: Hovoor - Woisor < 27717, and Hoe, Wotee

are powers of 2. Then NTIME[T(n)] has a rectangular PCPP wverifier V<°™P with parameters

specified in Table 5.2. Moreover:

e If the query indices of VUt are computable by projections, then the query indices of V<°MP

are computable by projections as well.

o [f VOU' has t, (n)-time rectangular neighbour listing property, then VP has tryy(n)-
time rectangular neighbour listing property, where trni(n) = poly (2% (n), €™, d™). Pur-
thermore, if the RNL for V°' can be computed by projections, then the RNL for V<mMP

can be computed by projections as well.

The composed PCPP verifier. Assume that we have a robust and rectangular PCPP verifier
Vout for I € NTIME[T(n)] and a PCPP verifier V" for CIRcUIT-EVAL®. We now describe the
composed PCPP verifier V<°"P for L. In a nutshell, we reduce the verification of the outer
PCPP VoUt to CIRCUIT-EVAL', where the circuit represents the decision predicate of VoUt and
the input consists of the input of L and the proofs for the outer PCPP. As in [BHPT24|, we
need to carefully arrange the proof matrix to maintain rectangularity.

Assume that H?n“';‘ut, H‘;E;Of, and seed® are the input matrix, the proof matrix, and the
random seed of V°U respectively. The input matrix of V<°™P is exactly the input matrix of
Veut denoted as Iijpput. The proof of V™P is the concatenation of 11U - and IT"_ - (seed®") for

proo proof

every seed®® € {0,1}"™", where each Hi;roof(seedc’”t) is a PCPP proof for “Vi" accepts seed®.”
(In fact, to make the query indices of V<°™P computable by projections, we need to arrange the
inner PCPP proofs before the outer PCPP proof.) The random seed is seed := seed®* o seed™.

The verifier V°™P works as follows:

5This is without loss of generality, because < o g™, and in our case ¢" will be a constant. We could
always add O(logq™) = O(1) dummy bits to the inner verifier’s randomness and pad the inner verifier’s proof

oracle to length 2"

126

y Verifier | veur |y yeemp

Soundness error 1—eout | 1-¢n 1 —eout.gn
Proximity parameter gout on gout
Robustness parameter pout - -

Row randomness rout - rout
Column randomness rout - rout

Q out n out n
Shared randomness T chared T Tsharedt+ r
: : out out roUt 4 out
Proof matrix height H3 o - HYloor +2 /W groof
B B out out
Proof matrix width Woroof - Woroof
Query complexity q°ut q" q"
Parity check complexity - - q"
Decision complexity devt dam dm
out in out out rOUtpin
Proof length 14 l Hooor - Woroot 12

Table 5.2: The parameters of the PCPPs in the composition theorem. Here r°ut := yQut 4 yout 4

row col

rot .. Note that the input length of the inner PCPP is d°'t = d°“*(n), e.g., 7™ in the table

shared* .
actually refers to r'™"(d°“*(n)).

1. Obtain the decision circuit Dec®® and the list of query indices I°' <~ V°U(seed®"") of
Vout.

2. Use the inner PCPP to verify the following CIRCUIT-EVAL™® instance (C, Hmput(seeth)):

the (explicit) circuit C : {0,1, L} x {0,1}™" — {0,1, L} and the (implicit) input

N (seed®t) € {0,1, L}2™ () x {0,1}7

input are defined as follows:

C(u,v) := Dec®*(u, Decode(v)),
(seed®®) := ((Tinput © e ¢) | fout, Encode(seed®t)),

proof

Iin

input

where (Encode, Decode) is a linear-time encodable and decodable error-correcting code
such that Encode : {0,1}"" — {0,1}"™ is linear over GF(2).” Specifically:

(a) The decision circuit Dec®™ of V<°™P is the same as the decision circuit Dec™ of V'".

(b) The queries are sampled using V™" (seed™) for the CIRCUIT-EVAL instance defined
I;roof

“redirect” them to the input oracle and the proof of the composed PCPP to obtain
Icomp_S

above with the proof IT"__(seed®'t), i.e., we sample the queries I'™ < Vi"(seed’") and

Rectangularity of V<°™P. We now verify the rectangularity of the composed PCPP verifier.

Recall that: the proof Hgt’;of € {0, 1} of Voul is arranged as an Hg:’cfof X W;’rlétof matrix, where

the i-th row and the j-th column TI®% . j] := TI® [(i — 1) - W2 . + j]; the inner proofs

proof proof proof
out

in__(seed®") are of length ¢ for every seed®* € {0,1}"".

proof

"We apply an error-correcting code on the randomness because we want Dec®™® to have robust soundness.
Let (II', Encode(seed®")) be the input of Dec®™, if given seed®, II' is far from being accepted by Dec®™, then
(I', Encode(seed®")) is also far from being accepted by Dec®. This is not true if we do not encode seed**.

®In fact, there are three kinds of queries: the queries to (Ilinput © II3uer)| 7o, Enc(seed®), and I, (seed™).
The queries of the first and the third kinds will be redirected as queries, and the second kind will be treated as
a parity-check bit, since Enc is a linear function over GF(2). More details can be found in the verification of the
rectangularity later.

127

Let Win . := min{I¥ou f/Qnglt,éi”} and HIn .= ¢n/Win Note that both Wg’r‘oof and

proof proo proof proof

in out rout : comp comp
Hloof are powers of 2 and Wiieot = 2'«l. We arrange the proof matrix Hproof of V as

follows: First, the proof matrix contains a proof of the inner PCPP Hi;roof(seed"”t) for each

seed®“t € {0, l}ein, sorted in lexicographic order of seed®*. Each such inner proof is a rectangle
of size WiN o x HI" . Then we append the HOY . x WOUt . proof matrix of the outer PCPP.

proo proo proo proo

Clearly, the proof matrix height of the composed PCPP verifier is

in orout out out __ oroUutyyin out out
-2 /Wproof + Hproof =2 /Wproof + proof *

in

proof
H[I)r;oof { 1_Iipr:'oof (0) Hipnroof(]-) 1_Iipnroof (2) Hi;?roof (3)
Hi;roof (4) Hianroof (5) Hip:'oof (6) 1_[i;roof (7)
Hi;roof(S) Hipnroof(g) Hi;roof(lo) Hipnroof(ll)
HE ot E=
out
W;?rl:)of

Figure 5.5: The layout of the proof matrix II1«°™P of the composed PCPP.

Recall that the seed of the composed PCPP verifier is seed := (seed®“t, seed™). Assume that
the partition of random bits of V°U is seed®™t = (seed®“t.row, seed®"*.col, seed®"*.shared). We

partition the random bits as follows:

dout

seed.shared := (seed®"*.shared, seed™).

seed.row := seed®"t.row.

seed.col :=seed®“t.col.

Now we describe the type predicate Viype and rectangular verifiers View T and Vcco?mp of the
composed PCPP.

The type predicate and the row/column verifier firstly obtain seed” in seed.shared and com-
pute the queries I'™ < Vi"(seed™) of the inner PCPP for CIRCUIT-EVAL®. There can be three

cases for each query in I':

1. Tt probes the i-th cell of Hiﬁput(seedout) and i < ¢°"%(n), i.e., it queries (Iinput ngfgof)hout.

e The type predicate invokes the type predicate of V°U to compute the type of the

dout

query, since it has seed®"*.shared and the index of the query in hand.

e The row/column verifier of the composed PCPP runs the row/column verifier of the

outer PCPP to obtain the row/column index of the query in (Iinpyt, [T o). If it is

proof

128

a query to the input matrix, then the row/column index of the composed verifier is

equal to the row/column index of the outer verifier. If it is a query to the (%, i25")-

th entry to the proof matrix II°Ut, then it is the (%t 4 27"+ /Jpout _ jouty ¢} epgry

Lrow proof? Leol

to II°MP. Clearly, after knowing seed.shared, Vigw'© (resp. Vo ™") can compute the

row index (resp. column index) of the query to II°°™P given seed.row (resp. seed.col).

rOUtfpin Jy/out out ‘out rout fpin Jy/out
e Furthermore, since 2 /Wireot = Horoor > irow and 2 /Wroof 18 & power

of 2, it follows that the new row index (4%t + 2"+ /Ty Wior) is a projection over

out)

ioay). The new column index is equal to the old column index.

the old row index (i
Hence, if the query indices of V°'* are computable by projections, then so are the

new row/column indices in this case.

2. It probes the i-th cell of Hmput(seed"“t) and i > ¢°“t(n), i.e., it queries Enc(seed®""). Instead
of making a query, we fix this input of Dec®®™ to be Enc(seed®*)[i — ¢°“t(n)]. This bit

will be considered as a parity-check bit.

3. It probes the i-th cell of
always outputs proof. Recall that IT"

proof

block in the proof matrix. Let Npoof 1= WO/

proof

proof(seed°“t) This is a query to the proof, so the type predicate

outy : in
(seed®t) is placed in some W3, ¢ X Hproof size

proof, i.e., there are Nproor blocks of

inner PCPP proofs in a row of the proof matrix. Then we probe the cell at the 4;on-th row

and i.o-th column, where

irow = LseedOUt/ roofJ Hproof + Li/Wi?oofJ and

icol = (seed®® mod Nproof) - W”,‘oof + (i mod proof)

It is easy to see that the column (resp. row) index of the query depends on seed™ and the

dout

lowest log Nproof bits (resp. the highest ro't —log Noroof bits) of see . Note that since

log Nproof > 10g(or%E:)f (W, Or%Zf/QTcol)) > |seed®“*.col|,

108 Nproof < 10g Wiraor < |seed®.col| 4 |seed®* .shared]|,

(e]

we can arrange

dout dout dout dout

see = see .col o see .shared o see .row

such that the lowest log Nproof bits (resp. the highest r°“* —log Nproof bits) can be computed

dout dout dout

by a projection over seed®*.col (resp. seed®*.row) given seed°*.shared.

Parity-check complexity. How does the decision predicate of V°"P depend on its ran-
domness? Note that Dec®™ is equal to Dec™ except that in Item 2 above, we fix a certain
input bit of Dec®™P to be a certain bit in Encode(seed®t). Since Encode is a GF(2)-linear error
correcting code (Theorem 2.4.1), each bit of Encode(seed®") is the XOR of a subset of indices
in seed®“®. (This is the reason that we need parity-check bits in ROP.) Also, Dec™ only depends
on seed.shared, therefore Dec®®™ only depends on seed.shared and the ¢'" parity-check bits over

seed.row and seed.col.

129

Rectangular neighbour listing of V<°™P. Now we verify that the composed PCPP verifier
VmMP has the rectangular neighbour listing property with tgni(n) := poly(t3&, (n), £, d").
Moreover, we show that if the RNL for V°Ut can be computed by projections, then the RNL for
VmP can be computed by projections as well.

Let (seed, k) be a configuration of V<°"P where

seed = (seed.row := seed®"*.row, seed.col := seed®"*.col, seed.shared := (seed®“*.shared, seed))

comp
proof

the randomness seed. By the discussion above, we know that the k-th query of the composed

and k € [¢°°™P]. Assume that the verifier probes the proof matrix II on the k-th query given

PCPP verifier can be one of the following two cases: a query to Hgt‘;of| Tows fOT Tour = VUt (seed®"t),

or a query to Hg‘roof(seed°“t).
Assume that the rectangular neighbour listing algorithm for V°Ut partitions seed®*.shared

into (seed®"*.shared.row, seed®"*.shared.col). We now partition seed.shared as follows:

seed.shared.row := (seed®®.shared.row, low(seed™)),

seed.shared.col := (seed®®.shared.col, high(seed™)).

The algorithms Aghared, Arow, and Aco for the RNL of V™P work as follows.

Case 1. Given the configuration (seed, k), the verifier V°°™P probes the i-th bit of II®%t |,

proof
where the index ¢ depends on the seed”. In other words, the composed PCPP verifier

probes the answer of the i-th query made by the outer PCPP verifier when it is “simulating”

the outer verifier using the inner PCPP verifier. A neighbour (seed’ = (seed®"t, seed'™), k')

out | ,
prOOf Iout

where the index i’ depends on seed". Furthermore, the i-th query index in Iy, ; must be

of (seed, k) must be a query of the same type, i.e., it is a query to the #’-th bit of II

the same as the #-th query index in I/

out- 10 such case, Agpared generate the following list:

1. We first run the inner PCPP verifier using seed” to obtain the index i defined above.

2. Then, we use A%t . to obtain the list NList Let ¢ := |NList3" for each

shared shared* shared >

J €[], the j-th element ¢; in this list indicates that the j-th neighbour of (seed, k) is
the i;-th query made by V°"* on some (seed®"")’.

3. For every i;, we enumerate (seed'™, k') € {0, 13" % [¢"] in lexicographic order. Tf the
K'-th query of V" given seed™ as the seed probes exactly the ij-th bit of (Iinpyut ©
o e)lr,.» then we append &’ into NListshared-

proof

Similarly, A,ow also performs the above three steps, but each time, instead of appending

k' into NListghared, it appends
(seed$"".row, seed$"".shared.row, low(seed’™))

into NList,oy, where (seed;?“t.row,seed?”t.shared.row) is the corresponding row-part ran-

tout

row- The behaviour of Ay is similar. It is easy to see that for fixed

domness in NLis

out

(seed®"®.shared, seed™), NList,o,, and NListco can be computed by a projection over NListo

and NListy respectively.

130

Finally, the index of (seed, k) in NList (i.e., self) can be computed as follows: Whenever
we are considering the self®"*-th element in NList°"* (where self®"" is the self computed by
the RNL of V°U) and we encounter seed™ = seed™ and k' = k, the current element in

NList is self. Clearly, this can be computed from self°"* and seed.shared.

Case 2. Given the configuration (seed, k), the verifier V<°™P probes the i-th bit of II"__-(seed®"t).

proof
out

Recall that for every seed®* € {0,1}", L"roof(seed"“t) is arranged in a block of size
H'i)’;oof X W'i;r‘oof in the proof matrix. The neighbours of (seed, k) need to query the same
block, therefore the neighbours must have the same random seed for the outer PCPP

verifier. Hence, the RNL algorithms work as follows:

1. We first compute the list £ := {(seedij”, kj) € {0, 1}7"(@ () x [¢e°mP]} sorted in
lexicographic order such that the inner PCPP will query the i-th bit of the inner proof
on the kj-th query given seedijn as randomness. This can be done in poly(¢™, d")-time

by enumerating all possible (seedij”, k;) and running the inner PCPP verifier.

2. We define the final list of neighbours as
L= {(seedj = (seed®", seed!’, kj)) : (seed) k) € Ei”}.

It is easy to check that the list satisfies the promises of the rectangular neighbour
listing property. To compute self, we only need to find the position of (seedi”7 k) in
L™ which can be computed from seed.shared. Moreover, the row (column) part of £

can be computed by projections over seed.row (seed.col) given seed.shared.

Other properties. The soundness error and proximity parameter can be found in [BGH'06,

Section 2.4|. Also, V°™P inherits the query complexity and decision complexity of Vi". We

can see that the proof matrix of the composed PCPP verifier has width W;:Z:Ef = ;?rlétof and
height HEMP = Wt o 4 2r™ (04 (@) /jyreut (recall that £ = 2'"). By the definitions

of the random seeds, we can see that: The row and column randomness complexity of V/<°™MP
is the same as the row and column randomness complexity of VUt respectively; the shared
randomness complexity of V™ is the sum of the shared randomness complexity of VUt and
the randomness complexity of V.
Remark 5.1.10. The composed PCPP verifier V°°™ will use the inner PCPP verifier V" to simulate
the outer PCPP verifier V°!*. This means that the total number of queries and parity-check functions
is at most the query complexity of the inner PCPP verifier. Moreover, the decision predicate of 1V <°™P
(after fixing the random seed) is the decision predicate of V", where the input bits of the decision
circuit of V<°™P are the parity-check bits and the answers to the queries. For instance, if the decision
predicate of V" given seed™ is an OR of the answers or their negations, then the decision predicate
of V™ given seed = (seed™, seed®™) is also the same OR of its input bits (i.e. the answers to the

queries and the parity-check bits).

5.1.4 Smoothening a PCPP with RNL

By slightly generalising the technique of [BHPT24|, we can smoothen a rectangular PCPP
with the rectangular neighbour listing property.

131

’ Verifier ‘ yold ‘ J/new

Soundness error s S+
Proximity parameter 0 0
Row randomness Trow Trow
Column randomness T'col Tcol
Shared randomness T'shared T'shared
Proof matrix height Horoof q - 2Trow T Tshared/2
Proof matrix width Woroof QTcol H7shared /2
Query complexity q poly(q/p)
Parity check complexity D P
Decision complexity d poly(d, q/u, trnr(n))

Table 5.3: The parameters of the “smoothened” PCPP V"V,

Theorem 5.1.11. Suppose that L has a rectangular PCPP verifier VO with ROP and tgyi (n)-
time RNL property whose parameters are specified in Table 5.5. Then for every p € (0,1), L
has a smooth and rectangular PCPP verifier V" with ROP and the parameters specified in
Table 5.3. Moreover, if the RNL for Vo9 can be computed by projections, then the query indices

of V"W can be computed by projections as well.

Proof. Let 199 : {0,1}¢ — {0, 1} be the proof oracle of V°!9. Assume that V°!(seed, i) outputs
the index of the i-th query of V°! given the randomness seed € {0,1}". The “smoothened”
verifier V" expects the proof II"®" : {0,1}?" x [q] — {0,1} to be

1" (seed, i) := I1°[V°!(seed, 7)].

Concretely, V" works as follows: First, it checks that II"®" is (close to being) defined as above,
i.e., there is a proof matrix II°¢ such that II"®¥(seed, i) and II°4[V°!d(seed,)] are sufficiently
close. Then, it runs V°'9 using II"®" as the proof oracle, i.e., the verifier randomly chooses
a seed € {0,1}", queries TI"*"(seed, 1), II"*"(seed, 2), ..., II"*"(seed, q), and decides whether to
accept using the decision predicate of Vo9, In fact, as in [BHPT24, Section 4.1], the first step
can be combined into the second step: we only need to check the consistency of II"*" on the fly

during the simulation of V°!d.

The verifier V™. For a € (0,1), we say a graph G = (V, E) is an a-sampler if for every
SCV,

RaA| T o

‘ > oz} < «,

where I'(v) is the set of neighbours of v in G. By [Golllc|, there is a poly(n)-time algorithm that

given n and a € (0,1), constructs a (4/a*)-regular graph on n vertices that is an a-sampler.
Let o := pu/(10q), A := (4/a*) + 1, then there is an explicit construction of (A — 1)-regular

a-sampler. Our new PCPP verifier works as follows:

e Let seed € {0,1}" be the random bits and i € [g] be the index of a query. If V°(seed, 1)
makes a query to the input oracle, it firstly makes the same query to the input oracle,
and then probes I1"*"(seed,) for A times. The last A queries to 11" (seed, i) are for the

smoothness property.

132

e Now we assume that V°9(seed,i) makes a query to the proof oracle. Let NList :=
NList(seed, i) be the ordered list of neighbours of (seed,i) from the rectangular neigh-
bour listing property, m := |NList|, and self € [m] be the index of (seed,i) in the list.
Let GNUst be an explicit (A — 1)-regular a-sampler with m nodes from [Golllc|]. Let
42,73, -.,Ja € [m] be the neighbours of self in GNYt, and j; := self. The verifier probes

"™ (NList[j1]), II"*(NList[j2]), . . . , II"®"(NList[ja]),

and rejects if the answers are not the same. Otherwise, the verifier treats this consistent

answer as the answer to the i-th query of Vo9 and simulates V°'9.

Rectangularity. Recall that the proof oracle is II"®" : {0,1}2" x [q] — {0,1}, where r = oy +
Tcol + Tshared 18 the randomness complexity. By the rectangular neighbour listing property of yold,
we know that the shared randomness can be partitioned into (seed.shared.row, seed.shared.col) €
{0, 1}Tshared/2 x {0, 1}7’shared/2_ We define Whew .— 27‘co|+rshared/27 HM™Y = ¢ - 2TFOW+T5hared/27 and the

H"™W x W"W proof matrix

I"Vu,v] = II"*¥(seed,1i);
where u := (seed.row,seed.shared.row, i) € {0, 1}7row+7sharea/2Hl08 0
v := (seed.col,seed.shared.col) € {0, 1}7coitshared/2
seed := (seed.row,seed.col, seed.shared := (seed.shared.row, seed.shared.col)).

Now it suffices to construct the type predicate Viged and the row and column verifiers V,i&" and

Va™. Recall that the new verifier V"V simulates Vold as follows: If V°4 makes a query to the
proof oracle, it makes A queries to the proof oracle using the RNL property; otherwise, it makes

the same query to the input oracle and A queries to the same bit of the proof oracle.

e The type predicate Vijod (given the shared randomness) calls the type predicate Vt%je of
the old PCPP verifier, obtains the list of types of the queries, replaces each “proof” by A

continuous “proof” and replaces each “input” by an “input” and A continuous “proof”.

e For a query of V4 to the proof oracle, the row verifier V;"e" (resp. the column verifier

mew) calls the row verifier V,99 (resp. the column verifier Vo) of the old PCPP. By the
rectangular neighbour listing property, it can list the “row-part” (resp. the “column-part”)
of the neighbour list NList and also knows the index self in the list. It then constructs
the sampler, finds the A selected neighbours of self (including itself), and outputs the

“row-parts” (resp. the “column-parts”) of them.

This also means that if the RNL for V°!4 can be computed by projections, then the query
indices of V" can be computed by projections as well. This is because the row (column)
parts of the query indices can be computed by projections over NListyoy (NListeo), which

(by our hypothesis on V°4) can be computed by projections over seed.row (seed.col).

e For a query of Vo to the input oracle, the row verifier V"€ (resp. the column verifier

mew) calls the row verifier V.29 (resp. the column verifier Vo) of the old PCPP to obtain
the query to the input oracle rectangularly. It is easy to see that the remaining A queries

to the proof oracle can be done rectangularly.

133

Smoothness. We need to show that for uniformly random seed < {0,1}" and i < [g - A],
each bit of the proof oracle II"" is equally likely to be probed given randomness seed on the
i-th query. Let iy := |(i—1)/A]+1 and iy := (i—1) mod A+1. Let G = (V, E) be the “union”
of all GNUst that is:

o V:={0,1}¥ x[q].

e Let (seed, i), (seed’,) be two configurations given which V° will probe the proof oracle.
Then ((seed, 7,), (seed’, 7)) € E if and only if the configurations (seed, ;) and (seed’,) are

GNUist where NList is the neighbourhood

neighbours, and there is an edge between them in
containing these two configurations. We also add a self-loop on every node (seed,i;) on

which V°' probes the proof oracle.

e For each (seed, ;) such that V°d(seed, 1) probes the input oracle, we add A self-loops on
the node (seed,i;) € V.

Assume that seed € {0,1}" and ¢ € [¢ - A] are uniformly chosen. The query pattern of V"V
to the proof oracle is as follows: It firstly selects a node (seed,i;) € 1% uniformly, and then
chooses a uniform neighbour of it. It is easy to see that each bit of the proof oracle is probed

with probability
A 1

2"-q-A:27"-q'

Soundness. The soundness of V°! follows from [BHPT24, Appendix A.1] (which is for PCP
instead of PCPP); for completeness, we present a self-contained proof here. Assume that x is
S-far from being in L and II"" : {0,1}?" x [¢] is a proof, we need to show that the verifier accepts
with probability at most s + u. Let T1° : {0,1}* — {0, 1} be defined as follows:

4[] .= Majority {Hnew(seed, i) : Vol(seed, i) = j } ’
(seed,i)€{0,1}7 x[q]

By the soundness of V°!, we know that V°!4 will accept (x,TI°¥) with probability at most s.

Let idx’(seed) € [f] be the i-th query of V°' given randomness seed. An index j € [f] is said

to be B-consistent if for at least § fraction of (seed,4) such that idx’(seed) = j, II"*%(seed, i) =
I1°'[j]. We define the following events over the random variable seed:

e H is the event that for every i € [g], idx'(seed) is (1 — 2a)-consistent (recall that a :=
1/(10q) is the parameter of the sampler).

e M is the event that for every i € [q], TI"®¥(seed, i) = I1°9(idx’(seed)).

e A is the event that V" accepts (z,II"*") on the randomness seed.

e C; is the event that the A queries made by V" corresponding to the i-th query of Vo
returns the same answer (i.e. the “consistency check” passes on the simulation of the i-th
query of Vold).,

Claim 5.1.12. Pr[A A H] < qa.
Claim 5.1.13. Pr[M A H] < 2qa.

Claim 5.1.14. Pr[A A H| < 2qa + s.

134

From the claims above, we can see that

r = r [AANH]+ Pr [AAH]
seed«+{0,1}" seed«{0,1}" seed«+{0,1}"
<s+qa+ 2qa
<s+ pu.

Proof of Claim 5.1.12. Let (seed, i) be a configuration, NList := NList(seed, i) be the list of all its
neighbours, GNYst = (V, E) be the explicit sampler graph corresponding to the neighbourhood
NList (i.e. V contains the configurations in NList), and self be the node corresponding to (seed, 7).

We say that a configuration (seed,) is an error configuration if

1S [T(self) N S| N
V] [T (self)| ’

where S := {(seed’,i’) € V | TI"®(seed’, ') # II"®"(seed, i)}. Since GNL'st is an a-sampler, there
are at most « fraction of error configurations in each neighbourhood. Suppose H happens, then
there is some i such that idx‘(seed) is not (1 — 2a)-consistent, which means that |S|/|V] > 2a.
Suppose in addition that C; happens (i.e., the “consistency check” on the i-th query passes),
then I'(self) NS = @, which means that (seed,) is an error configuration.

Let Err be the set of error configurations. Then

[ANH| <

< Pr
seed<—{0,1}"

_seed<—{rO,1}r[i € [q] (seed,i) rr T

<q- Pr [(seed,i) € Err A H|
seed<—{0,1}"
i+[q]

P CiA---NC,NH
seed<—{rO,1}T [! 1]

<qg-a. o

Proof of Claim 5.1.13. For every j € [q], we denote by H; the event that idx (seed) is (1 — 2a)-
consistent (and thus H = A ;¢ H;). Let H* be the event that idx’(seed) is (1 — 2c)-consistent
over the random variable (seed, i) € {0,1}" x [¢]. We can see that:

P MAH] <q- P 1" (seed, i) # I1°M (idx’(seed)) A H;
Seed“‘{o’l}rﬁ] =4 (seed,i)e{f),l}rx[q] <See ’Z) 7& (I X (See)) jé}]] J

< [][H"ew(seed,i) # 119 (idx? (seed)) A Hl}
q

<gq- Pr
(seed,i)«+—{0,1}" x

¢- Pr [H”e‘”(seed, i) 2 T (idx (seed)) A H} . (5.10)
(seed,i)«{0,1}" x[q]

Let N be the set of all neighbourhoods that contain a configuration (seed,i) € H* (i.e. idx'(seed)

is (1 — 2a)-consistent). By the definition of H* and the neighbours of configurations, we can see

that for each h € N, all the configurations in h are also in H*. Thus, the uniform distribution

over H* is identical to the following distribution: we first sample a neighbourhood h € N (with

probability proportional to the size of h), then uniformly sample a configuration (seed,i) € h.

135

Thus, we have:

: P 1" (seed. i) - T1° (idx’ (seed)) | H*
=1 (seed,i)e{lg)’l}rx[q}{ (see >Z) # (l X (see)) ‘ }

. new . old/: y 1
=q hiEN [(Seecliir){_h [H (seed, 1) # 1% (idx (seed))H
<q- E [20] (5.11)

<2qa,

where N is some distribution over N, and (5.11) holds by the definition of (1 — 2«)-consistency.

o
Proof of Claim 5.1.14. We can see that:
Pr [AANH]< Pr [MAH]+ Pr [AANHAM]
seed<—{0,1}" seed<—{0,1}" seed<—{0,1}"
<2qa+ Pr [VO'd accepts (z, I1°) A H A M]
seed<—{0,1}"
<2 Pr [V accepts (a,11°9)]
ssqe seed<—{rO,1}T aceepts (l’)
<2qa + s.
Note that the first inequality follows from the definition of V"% and II°!. o

Other Properties. The query complexity, parity-check complexity, and decision complexity
can be easily checked by definition. O

5.1.5 Soundness Error Reduction

Recall that the above PCPPs we considered only satisfy robust soundness with a very large
soundness error 1 — . In this subsection, we reduce the soundness error to an arbitrarily
small value using expander walks. Take a constant-degree expander graph G = (V, E) where
V = {0,137, Use r(n) + O(1) random bits to sample a random walk of length O(1) over G.
Then, for every vertex v € {0,1}"(™ in the random walk, run the old PCPP verifier with v as
randomness, reject if the old PCPP verifier rejects. If every invocation of the old PCPP verifier
accepts, then our new PCPP verifier also accepts.

However, we need to be careful when implementing this approach: To preserve the rectan-
gularity of the verifier, we take the tensor product of three expanders (one for row randomness,
one for column randomness, and one for shared randomness). To ensure that Vo, and Vg, are

(still) projections, we use the following family of 1-local expanders:

Lemma 5.1.15 ([VW18]). For every A € (0,1), there is some d = poly(\~1) such that the
following holds. For every n, there is an expander graph G, = (V,, E,) with second largest
eigenvalue at most A\, where V,, := {0,1}". Moreover, there are d explicit projections (i.e., NC(l)
circuits) Cp,Ca,...,Cq: {0,1}" — {0,1}"™ such that for every x € V,,, the d neighbours of x are
Ci(z),Ca(x),...,Cq4(x).

136

’ Verifier ‘ yold ‘ J/new

Soundness error 1—¢ 1
Proximity parameter 0 0
Row randomness Trow Trow
Column randomness T'col Tcol
Shared randomness T'shared Tshared + O(£log(1/€))
Proof matrix height Hproof Hproof
Proof matrix width Woroof Woroof
Query complexity q O(q¥)
Parity check complexity D O(p?)
Decision complexity d O(dl 4 poly(Tshareds Trow, T'col))

Table 5.4: The parameters of the soundness error reduction (where ¢ := (1/¢2)log(1/u) and
O(-) hides absolute constants).

Lemma 5.1.16 (Expander Walk, [AB09, Theorem 21.12|). Let G = (V, E) be a d-regular graph
with second largest eigenvalue X. For every S C V' such that |S| < 8- |V| for some B € (0,1),
let (X1, Xa,...,Xy) be a random walk in G with random starting point, then

Prlvi € [, X; € 5] < (1 - A5 + A)H.

Lemma 5.1.17 (Expander Chernoff Bound, [Vadl2, Theorem 4.22|). Let G = (V,E) be a
d-regular graph with second largest eigenvalue A\, B C V be a set of size |B| = B|V|]. Let
X1, Xa, ..., Xy be random wvariables denoting a length-f random walk from a random starting
point. For every i € [¢], we define B; = 1 if X; € B and B; = 0 otherwise. Then:

1 V4
Pr ZZBi—B

i=1

> 2>\] < 2exp(—Q(A\%0)).

Theorem 5.1.18. Suppose that L has a rectangular PCPP verifier VO (resp. a rectangular
PCPP wverifier Vo4 with ROP), where the parameters are specified in Table 5.4. For every
p € (0,1), letting £ := (1/2)log(1/u), then L has a rectangular PCPP verifier V"V (resp. a
rectangular PCPP verifier with ROP), whose parameters are specified in Table 5.4. Moreover:

o If VO has robust soundness error (instead of plain soundness error) 1 — e with robustness

parameter p, then V9 has robustness soundness error y with robustness parameter ep/3.

o If the query indices of V' can be computed by projections, then the query indices of V"W

can be computed by projections as well.

o If VO is smooth, then V™ is also smooth.

Proof. Let A :=¢/3 and r := 7row+7col +7Tshared- For d = poly(1/X), we construct the following d-
regular expander graphs with second largest eigenvalue A by Lemma 5.1.15: Gyow = (Viows Erow)
with ‘/;ow = {07 1}7'r0w’ Gcol = (VcohEcoI) with ‘/col = {07 1}TC°|7 and Gshared = (V;haredaEshared)
with Vipared := {0, 1}"shred. Let G = (V, E) be the tensor product of these expanders:

V i= Viow X Veol X Vohared = {0, 1}T'°"" X {0, 1}Tc°' X {O, 1}T5h3'ed;

137

E = {((’U,, v, U)), (U,, UI7 'U/)) : (ua ’U/) S Er0W7 (U7 U/> c EC0|7 ('UJ, 'UJ,) S Eshared}~
Note that G is a d3-regular graph with second largest eigenvalue A (see [AB09, Lemma 21.17]).

The Construction of V", The new verifier has the same proof matrix, row randomness,
and column randomness as the old verifier V°'9. The shared random seed of the new verifier
V"W consists of the shared random seed seed.shared of V°' and seed.walk, which is used to

sample a random walk in G of length ¢ := O(A~2log(u1)). Concretely:

e The random seed seed.walk will be used to sample o1,09,...,034-1) € [d]. We can see
that
seed.walk| = O(£ - logd) = O(A "2 log(p 1) log(A™1)).

o Let u; := seed.row, v; := seed.col, and wy := seed.shared. We use o1,09,...,00_1 to
specify a length-¢ random walk (u1,us,...,ur) in Grw. In particular, let Cq,Co,...,Cy
be the projections in Lemma 5.1.15 for Gyow. For every j € {1,2,...,¢ — 1}, we define
ujr1 := Cy,(uz). Similarly, we can use the remaining 2(¢ — 1) bits to specify a random
walk (v1,v2,...,v7) in Geo and a random walk (w1, ws, ..., wy) in Gehared-

The verifier V°'94 will run the verifier V" for ¢ times with the seeds:

(u1,v1,w1), (u2, v2,wa), ..., (u,ve, we),

and will accept the proof if V°' accepts given all these ¢ seeds. Since seed.walk is in the shared
randomness of V" and G is obtained from the tensor product of Giow, Geol, and Gshared, it is
easy to see that V"V is still a rectangular PCPP verifier. The query complexity (and parity-
check complexity when V°!4 has ROP) increases by an £ = O(e¢~2log(p~!)) multiplicative factor.
Finally, it follows from Lemma 5.1.15 that each u; (resp. v;) can be computed by a projection
over seed.row (resp. seed.col), hence the query indices of V" can be computed by projections

if the query indices of V°'4 can.

Smoothness. Let idx € [Hproof - Wproof] be an index in the proof. Denote as V"(seed,)
(resp. V°(seed,)) the index in the proof probed by V"% (resp. V') for the i-th query.

Pr [V (seed o seed.walk, i) = idx]
seed,seed.walk,i€[gf]

= E Pr [V (seed o seed.walk, (j — 1)¢ + i) = idx]| . (5.12)

J€E[f] | seed,seed.walk,i€[q]
Fix j € [¢]. By the definition of V", we know that V"V (seed o seed.walk, (j — 1)¢ + i) works as
follows: Let (u,v,w) := (seed.row, seed.col, seed.shared), and o1, 09, ..., 03¢ be defined as above;
V"W will choose the j-th node in the random walk on G seeded by seed.walk starting from
(u1 := u,v1 := v, w; := w) as the seed for V°, and probe the proof according to the i-th query

of V°ld. Since the expander graph is regular, each seed € {0,1}" is equally likely to be selected

138

from a random walk with a random starting point. Hence

Pr [V (seed o seed.walk, (j — 1)¢ + i) = idx]

seed,seed.walk,i€[q]

= Pr |VM(seed,i) = idx]

seed,i€[q]

1
Hproof . Wproof

This means that (5.12) = m, i.e., every bit in the proof is equally likely to be probed.
Soundness. Assume that = € {0,1}" is §-far from being in L and let II be an arbitrary proof.
We say a node (u,v,w) in the expander graph G = (V, E) is bad if V° accepts (z,I) with the
random seed seed.row := u, seed.col := v, and seed.shared := w. Let B be the set of all bad
nodes, then |B| < (1 —¢)-|V]. Note that the new verifier accepts (x,II) if and only if a length-¢
random walk on G from a random starting point only accesses bad nodes. By Lemma 5.1.16,

we can see that

Pr [V accepts (z,1I)] < (1 = A\)V1—e+)\)571 < (1 - %)e_l < exp <—€(£5_ 1)> < u,

when £ > 10 - In(p™1).

Robust Soundness. Assume that the original PCPP verifier V°!¢ has robust soundness error
1 — ¢ with robustness parameter p, we show that V" has robust soundness error u. Let
x € {0,1}" be d-far from L and II be an arbitrary proof. We say a node (u, v, w) in the expander
graph G = (V,E) is bad if given the randomness seed = (seed.row,seed.col,seed.shared) =
(u,v,w), the fraction of bits read by the old PCPP verifier that we need to change to make 174
accept (x,1II) is at most p.

Let B be the set of bad nodes and X1, X3, ..., Xy be the random variables denoting a random
walk from a random starting point (equivalently, denoting the randomness V" used to simulate
Veld), It follows from the robustness soundness of V¢ that |B| < (1 —¢)-|V|. Let B; = 1 when
X; € B and 0 otherwise. By Lemma 5.1.17, we can see that

l
1 2
Pr f;Bi >1—e+2\| <2exp(—Q(A\20) <

when £ = O(A"2log(p™1)). As a result, with probability as least 1 — j, the fraction of bits read
by V"W that we need to change to make V" accepts (x,II) is at least

(1—=(1—e+2X)p>ep/3.

This satisfies the requirement of robust soundness p with robustness parameter £p/3. O

139

Soundness error s
Proximity parameter o
Row randomness Trow = Rproof — (5/m)log T'(n)
Column randomness Tcol = Wproof — (5/m)log T'(n)
Shared randomness Tshared := (10/m)logT'(n) + O(loglog T'(n) + mlogm)
Query complexity q
Parity check complexity q
Decision complexity poly (T (n)'/™)

Table 5.5: Parameters of the PCPP constructed in Theorem 2.5.11.

5.1.6 Final Construction

Theorem 5.1.19 (|[Mie09]|). Let L be a pair language in NTIME[T'(n)] for some non-decreasing
function T : Z+ — Z*. For all constants 5,8 > 0, L has a PCPP verifier with randomness com-
plezity log T'(n) + O(loglogT'(n)), soundness error s, proximity parameter 0, query complezity
O(1), and decision complexity polylog(T(n)).

Theorem 2.5.11 (Smooth and Rectangular PCPP). For all constants 6 € (0,1) and s € (0,1),
there is a constant ¢ > 1 such that the following holds. Let m = m(n), T(n), Weroof (1), Winput (1)
be good functions such that 1 < m(n) < (log T(n))%!, n < T(n) < 2PV w00e(n) <logT(n),

and Winput(n) < logn. Then there are good functions hprof(n) and hinput(n) satisfying
hproof (1) 1= log T'(n) + ©(mloglog T'(n)) — wpreof (1), and
hinput(n) = ’—log n~| - winput(”)a

such that the following holds.
Suppose that Wproof s hproof > (5/m)log T'(n), and that for some absolute constant C' > 1,

winput(n) hinput(n) <1_ Cm? loglog T'(n)
Wproof (n) ’ hproof <n> o log T(TL)

Let Wroof (n) 1= 2Wereot () Hoe(n) = 2hwoor(™) W17 (n) i= 29t and Hippue(n) =
2hineut (") Then NTIME[T (n)] has a smooth and rectangular PCP of prozimity with an Hinpyut (n) X
Winput(n) input matriz and an Hyroof (1) X Wroof () proof matriz, with query indices computable

by projections, and whose other parameters are specified in Table 2.2.

Proof. The high-level roadmap of the proof is as follows.

1. From Theorem 5.1.3, we obtain a robust and rectangular PCPP verifier V°U with RNL
property for tryL = poly(log T'(n), m™) and query complexity T'(n)'/™ - polylog(T(n)).

2. Let V™ be the PCPP verifier for CIRCUIT-EVALY with constant query complexity in
Theorem 5.1.19. We compose VO and V" by Theorem 5.1.9 to obtain a rectangular
PCPP verifier V°™P with RNL property.

3. We smoothen V™ by Theorem 5.1.11 to obtain a smooth and rectangular PCPP V/smth

with constant query complexity, whose soundness error is some constant s*™h € (0,1).

140

4. By Theorem 5.1.18, we reduce the soundness error to s while still maintaining the query

complexity to be a (larger) constant.

Robust and Rectangular PCPP. Let 6 € (0,1) and s € (0,1) be some constants; ¢ be a
large constant to be determined later that only depends on § and s; C be a large constant; m =

m(n), T(n), Winput(n), Rinput(1), Wproof (1), and Aproof(n) be defined as above. Let wgfotof(n) =

Wproof (1) — O(loglog T'(n) +mlog m) where the concrete value will be determined later. We will
set Rproof (1) = hom (n) + O(loglog T'(n) + mlog m) for some good function A% -(n) (which is

proof proof

actually the proof height parameter of the outer PCPP). We check the technical conditions of

Theorem 5.1.3 holds; in particular, we need to ensure that

Claim 5.1.20. For some constant C' that could be made large enough (depending on C'),

Winput Rinput < C'mloglog T'(n)

wout ’hout — logT(n)

proof proof

ut

Proof. Since Wproof > (5/m)log T'(n), and Wpreof — Whroer < 1 (loglog T'(n) 4+ mlogm) for some

constant g, it follows that

Winput _ Winput <1 N a1 (loglog T'(n) + mlogm))
wg;‘gof ™ Wproof Wproof — cv1(loglog T'(n) + mlogm)

B Cm?loglogT(n) N O(m) - (loglog T'(n) + mlogm)

- log T'(n) log T'(n)
!
<1 C'mloglog T'(n)
- log T'(n)
The same argument works for ZL”UQ“. o

proof

We also note that woe ¢, hog ¢ > (4/m) log T'(n). Hence, we can use Theorem 5.1.3 to obtain
a robust and rectangular PCPP verifier V°U for L with RNL property and other parameters as
follows:
e Proximity parameter §°Ut :=§.
e Robust soundness error s°' := 1 — p°“* with robustness parameter p°“t, where p°'*t € (0, 1)
is some constant depending on §.
o Proof matrix size H3% c(n) x WU (n), where HQW . = 2"beor WUt = 2"er . The proof

height parameter h;;‘;of, which is given by Theorem 5.1.3, satisfies

hgf;of =logT(n)+ O(mloglogT(n)) — wg;‘;‘of(n).

e Row randomness complexity rig, = ho ¢ — (4/m)log T'(n).

e Column randomness complexity rof = wig ¢ — (4/m)log T'(n).

e Shared randomness complexity r3% , = (7/m)log T'(n) + O(loglog T'(n) + mlog m).
e Query complexity ¢°t(n) = T'(n)"/™ - polylog(T'(n)).
e Decision complexity d°'t(n) = T'(n)Y/™ - polylog(T(n)).

out

e RNL time complexity Ry, (n) = poly(log T'(n), m™).
Finally, the RNL for V°" can be computed by projections.

141

Reducing the Query Complexity. By Theorem 5.1.19, we can construct a PCPP verifier
Vin for CIRCUIT-EVAL® with input length d°'t(n) and other parameters specified as follows.
e Randomness complexity r'"(n) = log d°"*(n)+O(log log d®**(n)) = L log T(n)+O(loglog T'(n)).

e Soundness error s := p°t/2.

Proximity parameter 6" := p°!t/2.
e Query complexity ¢" = O(1) is a constant depends on s and 6™, which further means
that it only depends on 4.
e Decision complexity d™(d°“*(n)) = polylog(T'(n)).
Without loss of generality, we assume that the proof length £"(n) = 2" (n),
We now construct V™ by composing V°U and V" by Theorem 5.1.9. We first check the

requirements of the composition theorem.

in

° qin — 0(1)7 pout > Sin — pout/2’ gin — or'"

o log Wiicer = 1ol + (4/m)log T(n) = &y

o log Widee = &l + (4/m)log T(n) < rg + rzred:

e Finally, since ro"4r'" =yl +700f +rg g+ = o c+wp ¢ +0(loglog T'(n) +mlog m),
it follows that HSUL . JWout, < 9r*"+r",

Hence, we can obtain a rectangular PCPP V<™P with ROP that has the RNL property. The
parameters of the composed PCPP are as follows.
e Soundness error s©MP := 1 — (1 — s°!) . (1 — s'") < 1 that only depends on 4.

e Proximity parameter §°MP := §out = §.
P—pout — pout —— (4/m)logT(n).

. com
e Row randomness complexity 7row P oroof

o Column randomness complexity reg™® = rogf = wdi ¢ — (4/m)log T'(n).

e Shared randomness complexity rime, = 1t + 7" = (7/m)log T(n) + O(loglog T'(n) +

mlogm)+(1/m)logT(n)+ O(loglogT(n)) = (8/m)log T (n)+ O(loglog T'(n) +mlogm).
e Proof matrix height HO™P = Fout 4 or®+r" /yjrout

proof — " proof proof
: : comp __ out
e Proof matrix width Wproof = Wproof'

e Query complexity ¢®™ = ¢" = O(1) that only depends on 4.

e ROP parity check complexity p°™P = ¢" = O(1).

e Decision complexity d°™P(n) = d"(d°"t(n)) = polylog(T'(n)).

e RNL time complexity tpy,"(n) = poly (t34t (n), £", d") = poly(T(n)l/m), where poly(-)
hides some absolute constant on the exponent. Note that t&\, (n) = poly(log T'(n), m™) <
poly(T(n)*/™), since m < (logT'(n))%!.

Since the RNL for V°!t can be computed by projections, the RNL for V<°™P can also be computed

by projections.

Smoothening via RNL. Now we apply Theorem 5.1.11 to obtain a smooth and rectangular
PCPP VMt with p := (1 — s°™P) /2 and other parameters as follows.

e Soundness error sMth := s©°MP 4 ;< 1 that only depends on 4.
smth .— §eomp — §.

Proximity parameter §

Row randomness complexity r$mth .= proitP = horeot — (4/m) log T'(n).

Column randomness complexity 755 := rio™ = wi - — (4/m) log T (n).

Shared randomness complexity rSmth , = 757P = (8 /m) log T'(n)+O(log log T'(n)+mlog m).
Proof matrix width WSTth = 27ci™ +75iea/2 = 2%mrect - poly (log T'(n), m™). Note that here we

proof

142

set woi ¢ carefully so that T Tt /2 = witoor + O(loglog T'(n) +mlogm) = wproof-

This means that the proof matrix width is exactly 2%ereof,

e Proof matrix height HSMh — geomp . gron” +7iice/2 — 2/ throt - poly(log T'(n), m™). Since

proof
q°™P = O(1), we can add O(1) dummy queries to the composed PCPP V™P 5o that
q*°™P becomes a power of two. We then set

smth
proof

Nproof = log H
= hiproof + O(loglog T'(n) + mlogm)
= logT'(n) + ©(mloglogT(n)) + O(loglog T'(n) + mlogm)
- (wproof(n) - O(log log T(n) + mlog m))

= logT(n) + O(mloglog T'(n)) — Wpreof (12)-

e Query complexity ¢°™*" = poly(¢®™P/u) = O(1) that only depends on 4.
e ROP parity check complexity p*™th = pmP = O(1).
e Decision complexity d*™"(n) = poly(d<°™P(n), g™/, tani" (n)) = poly (T'(n)'/™), where
poly(-) hides some absolute constant on the exponent.
Since the RNL for V™ can be computed by projections, the query indices of V™" can be

computed by projections as well.

Reducing the Soundness Error. Finally, we reduce the soundness error of VS™h to be s by
Theorem 5.1.18, to obtain a smooth and rectangular PCPP with parameters specified as follows.

e Soundness error s.

e Proximity parameter 6.

¢ Row randomness complexity Aot ¢ — (4/m)log T'(n) > hproof — (5/m) log T'(n).

e Column randomness complexity wit ¢ — (4/m)log T'(n) > Wproof — (5/m)log T'(n).

e Shared randomness complexity (8/m)logT(n) + O(loglog T'(n) + mlogm).

e Proof matrix height 2"vrecf and proof matrix width 2Wereof

e Query complexity ¢ = poly(¢°™*") = O(1) that depends on § and s.

e ROP parity check complexity poly(p*™") = O(1) that depends on § and s.

e Decision complexity poly(d*™"(n)) = poly(T(n)"/™).
We can move some bits from the row and column randomness to the shared randomness, so that
the row and column randomness complexity become exactly hproof — (5/m)log T'(n) and wproof —
(5/m)log T'(n), respectively, and the shared randomness complexity becomes (10/m)log T'(n) +

Vsmth

O(loglog T'(n) +mlogm). Finally, since the query indices of can be computed by projec-

tions, the query indices of our final PCPP can also be computed by projections. This completes

the construction. O

5.2 Construction of Rectangular PCPPs with Low Query Com-
plexity

Recall that in our framework for solving Range Avoidance and finding hard partial truth

tables, the query complexity of the PCPPs will affect the circuit class for which we need to con-

143

struct satisfying-pair algorithms. Hence, we want (rectangular) PCPPs with query complexity
as small as possible. In this section, we construct a rectangular (but not necessarily smooth)
PCPP with query complexity 3 and perfect completeness. Furthermore, if we are willing to
sacrifice perfect completeness, we can construct a 2-query PCPP with a constant gap between

the completeness and soundness parameters.

5.2.1 A 3-Query PCPP

Theorem 5.2.1 ([CW19b|, Lemma 24). For every constant 6 > 0, there is a constant s € (0,1)
and a PCP of proximity for CIRCUIT-EVAL with prozimity §, soundness error s, randommness
complezity O(logn), query complexity ¢ = 3, and decision complezity polylog(n). Moreover, the

decision predicate is an OR of the 3 answers to the queries or their negations.

We need the following standard composition theorem for PCP of Proximity from [BGHT06]
to construct 3-query PCPPs for any pair language in NTIME[T (n)].

Theorem 5.2.2 ([BGH06]). Let r°Ut, v d°Ut d" ¢" : N — N and £°%, &M, poUt, §in, 6°Ut : N —
[0,1]. Suppose that:

e Language L has a robust PCPP verifier VO'* with randomness complexity r°'*(n), decision
complezity d®*(n), robust soundness error 1 — e°"(n), robustness parameter p°®*(n), and

proximity parameter 6°“t(n).

e CIRCUIT-EVAL has a PCPP verifier V" with randomness complexity " (n), query complea-
ity qi”(n), decision complexity di”(n), soundness error 1 — ai“(n), and proximity parameter
§"(n).

e §"(d°t(n)) < p°Ut(n) for every n.

Then L has a PCPP Verifier V<°™ with randomness complezity m°"*(n) + r"(d°“*(n)), query
complexity ¢ (d°*(n)), decision complexity d™(d°"*(n)), soundness error 1 —e°%t(n)-e"(d°“*(n)),
and prozimity parameter 6°“*(n). Moreover, the decision predicate of V<™P is the same as the

decision predicate of V'™ up to projections on the inputs.

Theorem 5.2.3. Let L be a pair language in NTIME[T (n)] for some non-decreasing function
T :7Z% — Z*t. For every constant §, there is a constant s € (0,1) and a PCP of prozimity for L
with randomness complezity log T'(n) + O(loglog T'(n)), decision complezity poly(loglogT(n)),
soundness error s, proximity parameter §, and query complexity ¢ = 3. Moreover, the decision

predicate is an OR of the 3 answers to the queries or their negations.

Proof. Let L be a pair language in NTIME[T'(n)] and 6 > 0. We will compose the following two
PCPP verifiers using Theorem 5.2.2:

e By Theorem 5.2.1, for every §™ > 0, there is a constant s" € (0,1) and a PCPP verifier yin
for CIRCUIT-EVAL with randomness complexity ™ = O(logn), soundness error s™, prox-

imity parameter §'", query complexity ¢" = 3, and decision complexity d" = polylog(n).

144

e By Theorem 5.1.19, for all constants §°Ut, s°Ut > (, there is a constant ¢°'* and a PCPP
Veu for L with randomness complexity r°"* = log T'(n) + O(loglog T'(n)), soundness er-
ror s°t, proximity parameter d°Ut, query complexity ¢°'t, and decision complexity d°'t =
polylog(T'(n)). Since ¢°'* = O(1), V°" is trivially a robust PCPP with robustness param-
eter p°Ut = 1/¢°.

Fix §°Ut = §, s°t = 0.5, 6" = 1/(2¢°%), and s = 1 —0.5- (1 — s™M). It is clear that §"(d°“¢(n)) <
p°"'(n). By Theorem 5.2.2, we can obtain a PCPP verifier V<™ for L with the following
parameters:

e Randomness complexity 7°Ut 4 7" (d°'*(n)) = log T'(n) + O(loglog T'(n)).

e Decision complexity d"(d°“*(n)) = poly(loglog T'(n)).

e Soundness error 1 — (1 — s°'t(n)) - (1 — s™(d°“*(n))) = s.

Proximity parameter §°*(n) = 4.

e Query complexity ¢""(d°“*(n)) = 3.

This satisfies our requirements. O

5.2.2 A 3-Query Rectangular PCPP

Now we construct a 3-query rectangular PCPP by composing the PCPP constructions in

Theorem 5.1.3 and Theorem 5.2.3 using the composition theorem (see Theorem 5.1.9).

Theorem 5.2.4 (3-Query Rectangular PCPP). For every constant 6 € (0,1), there is a constant
s € (0,1) such that the following holds. Let m = m(n), T(n), Wproof(1), Winput(n) be good
functions such that 1 < m < (logT(n))*!, n < T(n) < 2PW0) 4w o0e(n) < logT(n), and

Winput (1) < logn. Then there are good functions hprof(n) and hinput(n) satisfying
hproof (1) = logT'(n) + ©(mloglog T'(n)) — Wpreof (1), and
hinput(n) = ﬂOg TL-| - winput(n)-

such that the following holds.
Suppose that Wproof s hproof = (5/m)log T'(n), and that for some absolute constant C' > 1,

Winput(1) Ninput (1) < _ Gmloglog T(n)
Wproof (n) ’ hproof (n) o log T(Tl)

Let Wyroof(n) := 2Wproof (1) Hyroof(n) = Qtproot (1) Winput(n) := QwWinput () g d Hinput(n) =
2hineut (") Then NTIME[T'(n)] has a rectangular PCP of proxzimity with an Hproof (1) X Wireof (1)
proof matriz and an Hinput(n) X Winput(n) input matriz, whose other parameters are specified in
Table 5.6.

Moreover, the total number of queries and parity-check bits is at most 3; and for every
seed.shared, the decision predicate VDec < Vyec(seed.shared) of the rectangular PCPP verifier
is an OR of its 3 input bits or their negations, where each input is either a query answer or a
parity-check bit. Also, the query indices of this PCPP can be computed by projections (in the
sense of Definition 2.5.6).

145

Soundness error s

Proximity parameter o
Row randomness hproof — (5/m) log T'(n)
Column randomness Wproof — (5/m)log T (n)

Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlog m)
Query complexity
Parity check complexity

Decision complexity poly(loglogT'(n))

3

Table 5.6: Parameters of the PCPP constructed in Theorem 5.2.4.

Proof. Let L € NTIME[T'(n)] and 6 > 0 be a constant; m(n), T'(n), Weroof (1), Aproof (1), Winput (1),
hinput(n), and C be defined as above. In one sentence, we compose the robust and rectangu-
lar PCPP verifier (Theorem 5.1.3) with the 3-query PCPP verifier (Theorem 5.2.3) using the

rectangularity-preserving composition theorem (Theorem 5.1.9).

Outer PCPP. Let wpy (1) := Wproof(n). By Theorem 5.1.3, we can construct a robust and
rectangular PCPP verifier V°U for L with parameters as follows:
e Robust soundness error s°'* € (0,1) with robustness parameter p°Ut := 1 — s°t,

e Proximity parameter §°“t := 4.

o Proof matrix size H3¢ ¢(n) x W c(n), where Hol = 9throor Wotoe = 2%rof and A3 ¢ =
log T'(n) + ©(mloglog T'(n)) — Wproof ().
¢ Row randomness complexity rigy = ho e — (4/m)log T'(n).

e Column randomness complexity 725" = wWproof — (4/m)log T'(n).

e Shared randomness complexity r3% , = (7/m)log T'(n) 4+ O(loglog T'(n) + mlog m).
e Query complexity ¢°t(n) = T'(n)"/™ - polylog(T'(n)).
e Decision complexity d°'t(n) = T'(n)Y/™ - polylog(T'(n)).

Moreover, the query indices of V°!'* are computable by projections.

Inner PCPP. Let 6" := p°t/2. By Theorem 5.2.3, there is a constant s" € (0,1) and a
PCPP verifier V" for CIRCUIT-EVAL™ on input length d°“t(n) with randomness complexity r" =
log d°t(n)+O(log log d°“*(n)) = (1/m)log T'(n)+O(loglog T'(n)), soundness error s", proximity
parameter §", query complexity ¢ = 3, and decision complexity d™ = poly(loglog d°®"t(n)).

T,In

Without loss of generality, we assume that the proof length is £ = 2
Composition. We now compose V°U with the inner PCPP V'™ by Theorem 5.1.9. We first
check that the technical conditions are satisfied.

° qin =3 = 0(1)’ pout > 5in’ gin — 2ri".

e Since ro4t = wout (4/m)logT(n) and 7"t > (7/m)logT(n), we have that r°4t <

col proof shared col
wggc}of < T(?cljlt + Tgl'lljatred'
e Since roUt 4 pin = pout 4 pout 4 pout 4 pin — Moot T Wieot + O(loglog T'(n) + mlogm),
we have that HSU .. Wout < r*" ",

By Theorem 5.1.9, we can obtain a rectangular PCPP V°™P with ROP, whose parameters are

as follows:

e Soundness error s©°™P =1 — (1 —s™"). (1 — s°%) < 1.

146

Proximity parameter §<°MP = §out = §.

e Query complexity and ROP parity checking complexity ¢®°™P = ¢\" = 3.

o Proof matrix width Wyreor = Wgere = 2.
e Proof matrix height Hproor = H, Sruc}of 4 Qro T W;?rl:)tof' Note that

Fjout | T(n) loge(m) T(n)/WOUt

proof — proof
hence

out hout _+O(loglog T(n)+mlogm
Hproof = HUE ¢ + 2"roct (loglog T'(n) gm)

< out . (1 + poly(log T(n)7mm))

proof

< T(n) 10g®™) T(n) /W3S

proof *

Without loss of generality, we assume that Hyoof is a power of two. We then define
hproof := 108 Hproor = log T'(n) + ©(mloglog T'(n)) — weroof-

e Decision complexity d"(d°“*(n)) = poly(loglog T'(n)).

Now we determine the randomness complexity of the composed PCPP verifier. Note that

Tshared = Tgvared + 7"
= (7/m)logT(n) + O(loglog T'(n) + mlogm) + (1/m)log T (n) + O(loglog T'(n))
= (8/m)log T'(n) + O(loglog T'(n) + mlogm),
Trow = Toay = Rproof — (4/m)log T'(n) — ©(mloglog T(n)) > hpreof — (5/m)log T'(n),
).

Teol = Toof = Wproof — (4/m)log T (n

Since we can always move some portion of seed.row or seed.col into seed.shared, we can sim-
ply assume that row = Rproof — (5/m)10gT(n), Tcol = Wproof — (5/m)log T'(n), and rehared =
(10/m)logT'(n) + O(loglog T'(n) + mlogm).

By Remark 5.1.10 and the fact that the decision predicate of V" is an OR of the answers
or their negations (see Theorem 5.2.3), we know that the total number of queries and parity-
check bits of V°™P is at most 3, and that for every seed.shared, the decision predicate VDec <
V™ (seed.shared) of V<°™P is an OR of its input bits (i.e., query answers and parity-check bits)

or their negations. Moreover, the query indices of V<°™P are computable by projections.]

5.2.3 A 2-Query Rectangular PCPP with Imperfect Completeness

Following the construction in [CW19b, Appendix A|, we can also construct a 2-query rect-
angular PCPP with a constant gap between the completeness and soundness parameters, using
the following classical gadget due to [GJST76].

Lemma 5.2.5. Let x1,x9,23 € {0,1} be Boolean variables. If x1 V xo V x3, then there is a
y € {0,1} such that at least 7 of the following 10 constraints are satisfied:

T1,T2,x3,T1 V T2,T1 V T3, T2 V T3,Y, 21 VY, T2 VY, T3 V 7. (5.13)

147

Otherwise, at most 6 of the constraints in (5.13) are satisfied for any y € {0,1}. Moreover,

every x1, 29, x3,y € {0,1} satisfies at most 7 of the above 10 constraints.

Theorem 5.2.6 (2-Query Rectangular PCPP). For every constant § € (0,1), there are constants
0 < s < c <1 such that the following holds. Let m = m(n), T(n), Wproof (1), Winput(n) be good
functions such that 1 < m < (logT(n))*!, n < T(n) < 2000 4 o0¢(n) < logT(n), and

Winput (1) < logn. Then there are good functions hproof(n) and hinput(n) satisfying
hproof (1) = log T'(n) + O(mloglog T'(n)) — Wpreof (1), and
hinput(n) = HOg n-‘ - winput(”)v

such that the following holds.
Suppose that Wproof s hproof > (5/m)log T'(n), and that for some absolute constant C' > 1,

Wproof (n) ’ hproof (n) o log T(n)

Let Wyroof(n) = QWproof (1) Hproof(n) = Qproot (1) Winput(n) == 2Winput (1) g Hinput(n) =
Qhinput () - Then, NTIME[T'(n)] has a rectangular PCP of prozimity with an Hproof(1) X Woreof (1)
proof matriz and an Hinput(n) X Winput(n) input matriz, whose other parameters are specified in
Table 5.7.

Moreover, given the randomness seed € {0,1}", the total number of queries and parity-check
bits is at most 2, and the decision predicate VDec < Vyec(seed.shared) of the rectangular PCPP
verifier is an OR of the 2 input bits (including queries and parity-check bits) or their negations

for every seed.shared. Also, the query indices of this PCPP can be computed by projections.

Completeness error 1—c
Soundness error s
Proximity parameter)
Row randomness hproof — (5/m) log T'(n)
Column randomness Wproof — (5/m)log T'(n)

Shared randomness (10/m)log T'(n) + O(loglog T'(n) + mlogm)
Query complexity 9
Parity check complexity

Decision complexity poly(loglog T'(n))

Table 5.7: Parameters of the PCPP constructed in Theorem 5.2.6.

Proof. Let § € (0,1) be arbitrary. By Theorem 5.2.4, there is a rectangular PCPP verifier /34
with perfect completeness and parameters:

e Soundness error 39 € (0, 1).

Proximity parameter §.
e Query complexity and parity-check complexity 3.
3
Proof matrix size HSrqoof X Wsrqoof, where Ws:(‘)of = 2wp?°°f, HSf‘o o
3
and hp?oof = log T'(n) + ©(mloglog T(n)) — wproof(n).”

39 _
proof — Wproof 5

3q
f = 2h‘prc»cn‘7 w

9Note that the final matrix height is horoot < p3d

—= proof

+ O(loglog T'(n)), hence the technical requirement

148

Shared randomness complexity rshared = (10/m)log T (n) + O(loglog T'(n) + mlogm).
e Row randomness complexity rrow = hifo of — (5/m)logT(n).

e Column randomness complexity reo| = wgfoof — (5/m)logT(n).

e Decision complexity poly(loglogT'(n)).
Let 39 := 7w + Tcol + Tshared b€ the length of total randomness. Moreover, we know that the
total number of queries and parity-check bits is at most 3, and that the decision circuit of V' is
an OR of its input bits (i.e. the answers to the queries and parity-check bits) or their negations
after fixing the random seed. We will now combine V39 and the gadget in Lemma 5.2.5 to
construct a 2-query PCPP.

Suppose, for the simplicity of presentation, that the PCPP verifier V' always probes 2 bits
of the input and proof oracles, and has 1 parity-check bit. (The other cases can be considered
similarly and we omit the details.) Then the decision predicate VDec <~ Ve (seed.shared) for

every fixed seed.shared € {0, 1}"shred is a function of the form
VDec(ansy, ansy, pci(seed)) := (ansy @ by) V (ansy @ ba) V (pey(seed) @ bs).

where by, bo, b3 € {0,1}. The new PCPP verifier V' is defined as follows.
e The proof of the new PCPP verifier V is the concatenation of the proof for V39 and an
y : {0, 1}’”3q — {0,1} of length 2" used as the additional variable y in Lemma 5.2.5.

e The randomness of V is the concatenation of the randomness seed for V39 and a j € [10].

Queries and parity-check bits. Assume that (seed,j) € {0, 1}’"3q x [10] is given as the
randomness. The verifier V first generates the indices i1, 2 of the queries to the input and proof
oracles (denoted by a single oracle II for simplicity) and the parity-check function pe;. Instead of
making all these queries and doing the parity-check, we identify ans; @ b1, ansg @ by, pci(seed) @
b3, y(seed) with x1, xe, z3,y in the gadget given by Lemma 5.2.5, respectively, and query the j-th
gadget. (For instance, if j = 5, the corresponding constraint is T7 V T3, so that we will query the
i1-th of II and compute the parity-check pcy; if 7 = 8, the constraint is 1 V ¥, so that we will
query the 41-th bit of IT and the entry y(seed).) The decision predicate will accept if and only if
either the j-th constraint is satisfied when identifying ansy @ by, ansy @ be, pcy (seed) @ bs, y(seed)

with x1, 9, x3,y, respectively.

Completeness. For every input « € L, by the completeness of V39, there is a proof oracle
3q
11

broof such that V39 accepts given the oracle o Hi?oof with probability 1, which means that for

every seed € {0, 1}T3q, the answers ansy, ansg to the queries and the parity-check bits pcy(seed)

satisfies
VDec(ansy, ansg, pcy(seed)) = (ansy @ by) V (ansy @ ba) V (pey(seed) @ bs) = 1.

By Lemma 5.2.5, there is an yseed such that at least 7 of the 10 constraints in the gadgets are

satisfied. This means that given the proof oracle Hzﬁoof 0 Yseed, the verifier will accept with

probability at least 1 — ¢ where ¢ := 3/10.

Rinput (1) /128 < 1 — C"loglog T'(n)/log T'(n) for large C’ holds, given the assumption that hinpet(n)/hpoet <

proof —

1—C'loglog T(n)/log T(n) for large C, hpwor > (5/m)log T(n), and m < (log T'(n))®!, as shown in Claim 5.1.20.

149

Soundness. Assume that x € {0,1}" that is é-far from being in L, and Iyre0r = II 39

proof

any proof, where Hzfoof is a proof for V34 and y : {0, 1}’“3sq — {0,1}. By the soundness of V39,
we know that for at least 1 — s39 fraction of seed € {0,1}",

oy is

VDec(ansy, ansy, pci(seed)) = (ans; @ by) V (ansy @ ba) V (pei(seed) @ b3) = 0.

By Lemma 5.2.5, we can see that for these seed, the accept probability of V' is at most 6/10,
whereas in other cases the accept probability of V' is at most 7/10. Thus the accept probability
of V is at most s := (7/10) - s34 4 (6/10) - (1 — s%9) < c.

Rectangularity. Since we only need to introduce O(1) bits of randomness representing j <

[10], we can put it into the shared randomness. We only need to show that the new proof
3q

I

proof © Y can be arranged as a matrix so that the queries can be done rectangularly.
Note that 734 = p3d

oroof T proof + O(loglog T' + mlogm). Let hproof 1= r3a _ 3 oroof T 1
and Hproof := 2hwroof - The final proof matrix will be the concatenation of two matrices of size
27 /w rc,of) x W3 oroof €ach. The first matrix contains the original H proof x W34 oroof Proof of V/3a
(that is, only the first H_ q oof Tows of this matrix will be queried; note that H> proof < (27"3q /W, roof))
The second matrix Contalns the truth table of y : {0,1}™* — {0,1}. Recall that there are two

kinds of queries to the proof oracle.

1. If the query is to the proof oracle Hproof of V39 or to the input oracle, we can use the row

and column verifier of 139 to generate the queries rectangularly.

2. Otherwise, the query is to the proof y(seed) for the randomness seed € {0,1}" of V34,
Then the column (resp. row) index of this query only depends on the lowest wproof bits
(resp. the highest r — wproof bits) of the random seed of V. Recall that the random seed

of V' is the concatenation of seed and a j € [10]. If we arrange the randomness as
seed.col o seed.shared o j o seed.row,

then the lowest wproof bits (resp. the highest r — wproof bits) of the random seed only

depends on the (seed.col, seed.shared) (resp. (seed.shared, j, seed.row)), since

T'col = Wproof — (5/m) log T(n) < Wproof
/

Tcol + Tshared = Wproof + (5 m) log T(n) + O(log logn + mlog m) > Wproof «

As a result, the queries can be done rectangularly. Clearly, in both cases, the query indices can

be computed by a projection. O

150

Chapter 6

Polynomial-Time Pseudodeterministic

Constructions

6.1 Introduction

How hard is it to construct an n-bit prime'? This is a fundamental problem in number theory
and in complexity theory. Under reasonable assumptions, the problem is solvable in deterministic
polynomial time. In more detail, Cramér’s conjecture [Cra36| in number theory asserts that
the largest prime gap in any consecutive sequence of n-bit numbers is O(n?). Assuming this
conjecture, we can solve the prime construction problem efficiently by testing the first O(n?)
integers greater than 2"~ ! for primality and outputting the first one, where the primality tests
are done efficiently using the algorithm of Agrawal, Kayal, and Saxena [AKS04]. An independent
source of evidence for the efficiency of prime construction is the complexity-theoretic conjecture
that DTIME(29() requires Boolean circuits of exponential size on almost all input lengths.
Under this conjecture, we can use the Impagliazzo-Wigderson pseudorandom generator [IW97|
to derandomise the simple randomised algorithm that outputs a random n-bit number, using the
facts that primality testing is in polynomial time and that an £2(1/n) fraction of n-bit numbers
are prime.

However, we seem very far from either settling Cramér’s conjecture or proving strong com-
plexity lower bounds. The best upper bound we can prove on the gap between consecutive
n-bit primes is 2(0-525+o(1))n [BHPO1]|, and no super-linear circuit lower bounds are known for
DTIME(29() [LY22]. Indeed, the best unconditional result we have so far is that deterministic
prime construction can be done in time 2(0-5+e(1)n |[LO8T|, which is very far from the polynomial-
time bound we seek. The Polymath 4 project (see [TCH12]) sought to improve this upper bound
using number-theoretic techniques but did not achieve an unconditional improvement.

In contrast to the situation with deterministic prime construction, it is easy to generate an
n-bit prime randomly, as mentioned above: simply generate a random n-bit number, test it for
primality in polynomial time, and output it if it is a prime. This algorithm has success probability
Q(1/n) by the Prime Number Theorem, and the success probability can be amplified to be
exponentially close to 1 by repeating the process poly(n) times independently, and outputting

the first of these poly(n) numbers that is verified to be prime, assuming that there is at least

1Recall that a positive integer ¢ is an n-bit prime if ¢ is a prime number and 27! < ¢ < 2" — 1.

151

one.

Gat and Goldwasser [GG11| asked whether it is possible to generate primes efficiently by a
randomised process, such that the output is essentially independent of the randomness of the
algorithm. In other words, is there a polynomial-time randomised algorithm, which on input
1™ constructs a canonical prime of length n with high probability? They call such an algorithm
a pseudodeterministic algorithm, since the output of the algorithm is (almost) deterministic
even though the algorithm might use random bits in its operation. Note that the randomised
algorithm for prime generation we described in the previous paragraph is very far from being
pseudodeterministic, as different runs of the algorithm are unlikely to produce the same prime.
It is easy to see that a pseudodeterministic construction serves as an intermediate notion between
a randomised construction (which is trivial for primes) and a deterministic construction (where
little progress has been made so far).

[GG11] initiated a general theory of pseudodeterminism for search problems, motivated by
applications in cryptography and distributed computing. Since then, there have been a num-
ber of papers on pseudodeterminism, in various contexts, such as query complexity [GGR13,
GIPS21, CDM23|, streaming algorithms |[GGMW20, BKKS23|, parallel computation |GG17,
GG21], learning algorithms [OS18], Kolmogorov complexity [O1i19,LOS21], space-bounded com-
putation |GL19]|, proof systems [GGH18, GGH19|, number theory and computational algebra
[Grol5,0S17b|, approximation algorithms [DPV18|, and many other settings (see, e.g., [BB18,
Gol25,DPV21,DPWV22, WDP 22 CPW23|).

Despite all this progress, the main problem about pseudodeterminism posed in [GG11] has
remained open: Is there a pseudodeterministic polynomial-time algorithm for prime construc-
tion? They describe this problem as “the most intriguing” and “perhaps the most compelling
challenge for finding a unique output”.

Unlike in the case of deterministic construction, number-theoretic techniques have so far not
proven useful for the pseudodeterministic construction problem for primes. Using complexity-
theoretic techniques, Oliveira and Santhanam [OS17b| (see also [LOS21]) showed that for any

e > 0, there is an algorithm that runs in time 2"° and succeeds on infinitely many input lengths.

6.1.1 Our Results

We design a significantly faster algorithm and provide an affirmative answer to the question
posed by Gat and Goldwasser in the infinitely-often regime. Our main result can be stated in

full generality as follows.

Theorem 6.1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let

Q C {0,1}* be a language with the following properties:

(Density.) there is a constant p > 1 such that for every n € N>y, Qn := Q N {0,1}" satisfies
|Qn| >n""-2"; and

(Easiness.) there is a deterministic polynomial-time algorithm Ag that decides whether an
input x € {0,1}* belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {ﬂﬂn}neNZl of n-bit

strings in @ such that the following conditions hold:

152

1. On every input length n € N>1, Prp[B(1") ¢ {x,, L}] <27".
2. On infinitely many input lengths n € N>1, Prg[B(1") = z,] > 1 —27".

Interestingly, our construction is “non-black-box”; in the sense that changing the code of the
algorithm Ag deciding property @ affects the canonical output of the corresponding algorithm
B. We will revisit this point when we discuss our techniques (see the remark at the end of
Section 6.1.3).

Letting @ be the set of prime numbers and noticing that @ is both dense (by the Prime
Number Theorem) and easy (by the AKS primality test [AKS04]), we immediately obtain the

following corollary of Theorem 6.1.1.

Corollary 6.1.2 (Infinitely-Often Polynomial-Time Pseudodeterministic Construction of Primes).
There is a randomised polynomial-time algorithm B such that, for infinitely many values of n,

B(1™) outputs a canonical n-bit prime p, with high probability.

Corollary 6.1.2 improves upon the subexponential-time infinitely-often pseudodeterministic
construction of primes from |[OS17b| mentioned above. Note that the result for prime construc-
tion is a corollary of a far more general result about properties that are dense and easy. This is
evidence of the surprising power of complexity theory when applied to a problem which seems
to be about number theory (but where number-theoretic techniques have not so far been effec-
tive). The famous efficient primality testing algorithm of [AKS04] similarly applied complexity-
theoretic derandomisation ideas to solve a longstanding open problem in computational number
theory, though their argument does require more information about primes.

For a string w € {0,1}* and t: N — N, we let rK’(w) denote the length of the smallest
randomised program that runs for at most ¢(Jw|) steps and outputs w with probability at least
2/3. (We refer to [LO22| for a formal definition and for an introduction to probabilistic no-
tions of time-bounded Kolmogorov complexity.) By encoding the (constant-size) randomised
polynomial-time algorithm B and each good input length n using O(1) + logn bits in total, the

following result holds.

Corollary 6.1.3 (Infinitely Many Primes with Efficient Succinct Descriptions). There is a
constant ¢ > 1 such that, for t(n) = n¢, the following holds. For every m > 1, there is n > m
and an n-bit prime p, such that rK'(p,) < log(n) + O(1).

In other words, there are infinitely many primes that admit very short efficient descriptions.
The bound in Corollary 6.1.3 improves upon the sub-polynomial bound on erOly(pn) from
[LOS21|.

In the next subsection, we describe at a high level the ideas in the proof of Theorem 6.1.1

and how they relate to previous work.

6.1.2 Proof Ideas

The proof of Theorem 6.1.1 relies on uniform hardness-randomness trade-offs [[W01, TV07].
For concreteness, assume that Q = {Qn}nen.,, with each @, C {0,1}" consisting of the set of
n-bit prime numbers. Let Ag be a deterministic polynomial-time algorithm that decides @ (e.g.,

A is the AKS primality test algorithm [AKS04]). Before we present our algorithm and the main

153

ideas underlying our result, it is instructive to discuss the approach of [OS17b]|, which provides
a subexponential-time pseudodeterministic construction that succeeds on infinitely many input

lengths.

Subexponential-time constructions of [OS17b]. We first recall how uniform hardness-
randomness trade-offs work. Given a presumed hard language L, a uniform hardness-randomness
trade-off for L states that either L is easy for probabilistic polynomial-time algorithms, or else
we can build a pseudorandom set G,, C {0,1}" computable in subexponential time (thus also has
subexponential size), which fools probabilistic polynomial-time algorithms on inputs of length
n (for infinitely many n). In particular, Trevisan and Vadhan |TV07| give a uniform hardness-
randomness trade-off for a PSPACE-complete language Lty they construct, which has certain
special properties tailored to uniform hardness-randomness trade-offs.”

The subexponential-time construction in [OS17b| uses a win-win argument to derive an
unconditional pseudodeterministic algorithm from the uniform hardness-randomness trade-off
of [TV07|. There are two cases: either Lty € BPP, or it is not. If the former is the case, then
PSPACE C BPP by the PSPACE-completeness of Lty. Now, since we can in polynomial space test
all n-bit numbers using Ag until we find the lexicographic first prime number, we can also do it in
randomised polynomial time, i.e., there is a randomised algorithm B(1™) that runs in polynomial
time and outputs the lexicographically first n-bit prime with high probability. Thus, in this
case, the lexicographically first n-bit prime is the “canonical” output of the pseudodeterministic
algorithm, and the algorithm works on every input length n.

Suppose, on the other hand, that Lty ¢ BPP. Using the uniform hardness-randomness
trade-off of [TVO07|, we have that for each € > 0, there is a pseudorandom set G = {Gy},
where each G,, C {0,1}" is of size at most 2", such that for infinitely many n, G, fools the
algorithm Ag on inputs of length n. Since Ag accepts an €2(1/n) fraction of strings of length
n by the Prime Number Theorem, we have that the fraction of strings in G,, that are prime
is Q(1/n) (by choosing the error parameter of the uniform hardness-randomness trade-off to
be small enough). In particular, there must exist an element of G,, that is prime. Since G,, is
computable in subexponential time, we can define a subexponential time deterministic algorithm
that enumerates elements of (G,, and tests each one for primality until it finds and outputs one
that is prime. This algorithm is deterministic, but it runs in subexponential time, and is only
guaranteed to be correct for infinitely many n.

Thus, in either case, we have a pseudodeterministic algorithm for constructing primes that
runs in subexponential time and works infinitely often. Note that we do not know a priori which
of the two cases above holds, and therefore the argument is somewhat non-constructive. By
exploiting further properties of the uniform hardness-randomness trade-off, [OS17b| managed to

give an explicit construction algorithm that runs in subexponential time infinitely often.

Win-win arguments. The above argument gives a subexponential-time construction, but
the win-win structure of the argument seems incapable of giving an optimal polynomial-time

construction. Indeed, this is the case for many win-win arguments used in complexity theory:

2For the pseudorandomness experts, these special properties are downward self-reducibility and random self-
reducibility.

154

e A win-win argument based on the Karp-Lipton theorem [KL80| gives that YoEXP re-
quires super-polynomial size Boolean circuits [Kan82], but seems incapable of giving truly

exponential (2°2")) Boolean circuit lower bounds.”

e A win-win argument based on uniform hardness-randomness trade-offs gives that either
E C BPP or BPP can be simulated infinitely often in deterministic subexponential time
on average [[WO01], but it remains unknown if such a trade-off holds at the “high end”, i.e.,
whether it is the case that either E is in probabilistic subexponential-time or else BPP can

be simulated infinitely often in deterministic polynomial time on average.

e A win-win argument based on the Easy Witness Lemma gives that if NEXP C SIZE(poly),
then NEXP = MA [IKWO02], but it is unknown if any interesting uniform collapse follows

from the simulation of NEXP by subexponential-size Boolean circuits.

In each of these cases, the win-win argument seems to have inherent limitations that prevent us
from getting optimal lower bounds or trade-offs. Indeed, a paper by Miltersen, Vinodchandran,
and Watanabe [MVWO99| studies the “fractional exponential” lower bounds that seem to be
the best provable using win-win arguments in the context of Boolean circuit lower bounds for
exponential-time classes.”

Thus, in order to obtain a polynomial-time pseudodeterministic algorithm for primality, it
seems that we need to go beyond win-win arguments. One natural idea is to apply uniform
hardness-randomness trade-offs recursively. However, this seems hard to do with the uniform
hardness-randomness trade-off of [TVO07|. Their trade-off applies only to the special language
Ltvy. If we argue based on the hardness or other properties of L1y, then in the case where
Lty € BPP, we get a pseudodeterministic polynomial-time algorithm for constructing primes,
but in the case where Lty ¢ BPP, we get a subexponential-time constructible pseudorandom

set, and it is unclear how to apply the uniform hardness-randomness trade-off to the algorithm

for constructing this set.

Recursive application of uniform hardness-randomness trade-offs. One of our main
ideas is to exploit very recent work on uniform hardness-randomness trade-offs [CT21a| which
applies to generic computations, as long as they satisfy certain mild properties. These trade-offs
yield hitting sets rather than pseudorandom sets based on hardness — a hitting set H C {0, 1}M
is a set that has non-empty intersection with every Qs C {0,1}M that is dense (i.e., accepts
at least a 1/poly(M) fraction of strings) and is efficiently computable. It turns out that for
our application to pseudodeterministic algorithms, uniform hardness-randomness trade-offs that
yield hitting sets are sufficient.

Specifically, Chen and Tell [CT21a] show that for any multi-output function f: {1"} —
{0,1}" computed by uniform Boolean circuits of size ' = T'(n) and depth d = d(n), either there

3Partially inspired by our results, subsequent works [CHR24,Li24] proved near-maximum circuit lower bounds
for the classes ¥2E and SoE.

“For example, a function f : N — N is sub-half-exponential if f(f(n)°)¢ < O(2") for every constant c. (The
exact definition of sub-half-exponential functions may be different in different papers.) Functions such as n
and 2'°¢" " are sub-half-exponential, while 2°™ and 27" are not. It is known that S2EXP cannot be computed
by f(n)-size circuits for every sub-half-exponential f, but it remains open to show that 32EXP requires circuit
complexity 2" for any constant € > 0.

155

is a hitting set H C {0,1}™ computable in time poly(T), or f(1") can be computed with high
probability in time (d+n)-poly(M) (which could be much less than T"). Note that this trade-off
is applicable to any multi-output function f given bounds on its uniform circuit complexity.

Our key idea is that this more generic uniform hardness-randomness trade-off can be applied
recursively. Indeed, we apply it to multi-output functions which capture the very task we are
trying to solve, i.e., constructing a prime! In our base case, we use the function f which does a
brute-force search over n-bit numbers and outputs the lexicographically first one that is prime.
This function can be computed by uniform Boolean circuits of size 20 and depth poly(n),
and hence we can apply the Chen-Tell trade-off to it. We set M = n® for some large enough
constant § > 1 in the trade-off. If we have that f(1"™) is computable with high probability in
time (d + n) - poly(M), then we are done, since this gives us a pseudodeterministic algorithm
for primes at length n. If not, we have that there is a hitting set H C {0, 1}”6 computable in
time 20 In particular, by iterating over the elements of H and outputting the first one that is
prime, we gain over the naive brute-force search algorithm, since we are now outputting a prime
of length n? in time 29", Now this new algorithm can be captured by a multi-output function
with output length n® to which we apply the Chen-Tell trade-off again. In each recursive step,
either we obtain a pseudodeterministic polynomial-time construction of primes, or we obtain a
significantly faster deterministic construction of primes (of a larger input length). Intuitively,
analyzing this process after O(logn) steps of recursion, we can hope to show that at least
one of the steps leads to a polynomial-time pseudodeterministic algorithm at the input length
considered at that step.

This doesn’t quite work as stated because the Chen—Tell trade-off uses the Nisan—Wigderson
generator [NW94], which is not known to have optimal parameters for all levels of hardness.’
Our recursive process explores essentially all possible levels of hardness for the uniform hardness-
randomness trade-off, since each recursive step corresponds to a different level of hardness. Using
the original Chen—Tell trade-off gives a quasi-polynomial-time pseudodeterministic construction,
but in order to get a polynomial-time pseudodeterministic construction, we need to work harder.

Another crucial idea for us is to optimise the Chen—Tell trade-off by using the Shaltiel-Umans
generator [SUO5| rather than the Nisan-Wigderson generator. This idea comes with its own
implementation challenges, since the Shaltiel-Umans generator is not known to possess a crucial
learnability property required for the uniform hardness-randomness trade-off. We sidestep this
issue using a further win-win analysis, together with some other tricks; see Section 6.1.3 for
details. This enables us to achieve an optimal polynomial-time pseudodeterministic construction
on infinitely many input lengths, and thereby establish Theorem 6.1.1.° We note that the
subexponential-time construction of [OS17b| also only works for infinitely many input lengths,
and it is still open even to get a subexponential-time construction that works on all input lengths.

The intuitive description here does not address several subtleties that arise in the proof, such
as maintaining the right uniformity and depth conditions when recursively applying the uniform

hardness-randomness trade-off. We refer to Section 6.1.3 for a more detailed discussion of such

SInformally speaking, given a “hard truth table” of length T', we want to construct a hitting set H C {0, 1}

in poly(T') time; however, the Nisan—-Wigderson generator requires 90 (log® T/log M) im6 to construct.

5While we do not explore this direction in the current work, we believe that our improvement on the Chen-Tell
trade-off can be used to improve the trade-off from [CRT22, Theorem 5.2 and Theorem 5.3], thus getting a better
uniform hardness vs randomness connection in the low-end regime.

156

matters.

6.1.3 Technical Overview

As explained above, we consider a chain of t = O(log n) recursively defined (candidate) HSGs
Ho, H1, ..., H; operating over different input lengths. These HSGs are obtained from the recent
construction by Chen and Tell [CT21al, which we informally describe next. Recall that we use

Qs to denote the easy and dense property over inputs of length M.

The Chen—Tell [CT21a] targeted HSG (“ideal version”). Let ¢ > 1 be a large enough
constant, and let f: {1"} — {0,1}" be a family of unary functions computed by (uniform)
Boolean circuits of size T'= T'(n) and depth d = d(n). Then, for every logT < M < T there is
aset H C {0,1}™ computable in

time T := T° and depth d := d - log(T) + M°®

such that, if Qs € {0,1}M avoids H, (i.e., Qs is dense but Qs NH = @), then we can compute
f(1™) with high probability in time (d + n) - M¢.

In other words, if f admits low-depth circuits, we can construct a candidate HSG H over
length-M inputs such that breaking the generator H allows us to compute f(1™) in poly(n,d, M)
time. For d, M < T, this can be much faster than the original time T" required to compute f.

The statement above differs from the results in [CT21a] (stated for unary functions) in two
important ways. First, the claimed upper bound on T (the running time of the HSG) is not
obtained by [CT21a] for all choices of M. Secondly, we have not formally specified the uniformity
of the family of circuits computing f. While these are crucial points in [CT21a] and when proving
our result, for simplicity, we will assume for now that this upper bound can be achieved and

omit the discussion on uniformity.

Bootstrapping the win-win argument. We now review the idea discussed in Section 6.1.2,
using notations that will be more convenient for the remainder of this technical overview. Fix
an arbitrary n € N>1, and consider the corresponding property @, C {0,1}" decided by Ag(x)
on inputs of length n. Our initial Hy is trivial and set to {0,1}"™. (Intuitively, this corresponds
to the first case of the [OS17b] argument sketched above where Lty € BPP.) Consider now a
“brute-force” algorithm BF(1™) that computes the first # € Hp such that Ag(z) = 1. We let
f(1™) := BF(1") in the Chen-Tell HSG. Note that f(1") can be uniformly computed in time
T = 29" and depth d = poly(n), since Ag(z) runs in polynomial time and all elements of Hy
can be tested in parallel. We set M(n) := n®, where B > 1 is a large enough constant. Let
H; C {0,1}M be the candidate HSG provided by Chen-Tell. Note that H; can be computed in
time 7' = 20 and depth d= poly(n).

Next, we consider a win-win argument based on whether () avoids Hy. If this is the case,
then Chen—Tell guarantees that we can compute f(1") = BF(1") € @,, with high probability in
time (d+n)- M€ = poly(n). In other words, we can pseudodeterministically produce a string in

@ in polynomial time. On the other hand, if H N Qs # &, we now have a set Hy of strings of

157

length M = nf that contains a string in Qs and that can be deterministically computed in time
20(n) That is, we are back to the former case, except that we can compute H; (a set containing

(M) Crucially, in contrast to the ap-

at least one M-bit prime) in time much faster than 2°
proach of [OS17b], the Chen—Tell HSG does not limit us to the use of the special language Ly,

effectively allowing us to reapply the same argument (with a speedup) over a larger input length.

In the next subsection, we discuss the “bootstrapping” and its parameters in more detail, and
explain how it yields a polynomial-time pseudodeterministic construction, assuming we have the

ideal version of [CT21a] described above.

Infinitely-Often Pseudodeterministic Polynomial-Time Constructions

Let ny € N be an “initial” input length, and ¢t = O(logng) be a parameter. For each 1 <i <,
we define the ¢-th input length to be n; := nf_l, for a large enough constant 5 > 1. Our goal
is to design a pseudodeterministic algorithm for finding elements in @) that will be correct on at

least one of the input lengths ng,n1,...,n:. On each input length n; we will have:
1. the property @, that we want to hit;
2. a candidate hitting set generator H; C {0, 1}"; and

3. the brute-force algorithm BF; : {1} — {0, 1}", which iterates through all elements in H;
and outputs the first element that is in Qp,.

Note that BF; is completely defined by H;. Suppose that H; can be computed (determin-
istically) in time 7T; and depth d;, then BF; can also be computed (deterministically) in time
T! :=T; - poly(n;) and depth d} := d; - poly(n;). As discussed above, initially, Hy := {0,1}"0 is
the trivial hitting set generator, Tp := 2°(") and dg := poly(ng).

For each 0 < i < ¢, we let f(1™) := BF;, M := n;;1, and invoke the Chen-Tell HSG to
obtain the HSG H;;1 C {0,1}™+!. Recall that Chen-Tell guarantees the following: Suppose
that Qar = Qn,,, avoids the HSG H;;1, then one can use Q,,,, to compute f(1") with high
probability in time poly(d}, n;, M) < poly(d;, n;), by our choice of parameters. Recall that if H;
indeed hits @y, then f(1™) implements the brute-force algorithm and outputs the first element
in H; N Qn, (i.e., a canonical element in @,,). To reiterate, Chen-Tell gives us the following

win-win condition:

o cither QQp,,, avoids H;y1, in which case we obtain a probabilistic algorithm that outputs

a canonical element in @, (thus a pseudodeterministic algorithm) in poly(d;, n;) time;

e or Hiyq hits @, ,, in which case we obtain a hitting set H;yq that hits Q. ,, thereby

making progress on input length n; 1.

The HSG H;; 1 can be computed in time Tj1; := (77)¢ and depth d;y1 = d} - log T} + n§, ;.
Crucially, although Ty is exponential in ng, it is possible to show by picking a large enough
B > 1 that the sequence {n;};en grows faster than the sequence {T;};en, and eventually when
i =t = O(lognyg), it will be the case that T} < poly(n;) and we can apply the brute-force

algorithm to find the first element in H; that is in @), in time polynomial in n;.

158

A more precise treatment of the growth of the two sequences {n;} and {T;} is as follows.

There is some absolute constant o > 1 such that T < 29™0 and
Tiy1 < T} (for each 0 <1i < t).

We set 8 := 2a (recall that each n;y1 = n?). It follows from induction that for each 0 < i <,

ol __ oattlng _ B _ Bt (ZO‘)H_I
T <1y =2 and n;y1=n; =ng; =ny .

7

Since .
log T; a’ng ng

logn: — (2a)tlogng ~ 2tlogng’
it follows that when ¢ ~ log(ng/logng), T3 will be comparable to n; (rather than 2"). Similarly,
one can show that d; < poly(n;) for every i < ¢.

Informal description of the algorithm and correctness. To wrap up, we arrive at the
following pseudodeterministic algorithm that is correct on at least one of the input lengths
ng, N, ..., On input length n;, if ¢ = ¢, then we use poly(7;) < poly(n;) time to find the
first string in H; that is also in @y, (i.e., simulate BF;); otherwise, use @, , as a distinguisher
for the Chen—Tell hitting set H; and print the output of BF; in poly(n;,d;) < poly(n;) time. To

see that our algorithm succeeds on at least one n;, consider the following two cases:

1. Suppose that H; indeed hits @,,. Then, clearly, our algorithm succeeds on input length

T¢.

2. On the other hand, suppose that H; does not hit @),,. Since our trivial HSG Hg hits @,
there exists an index 0 <14 < ¢ such that H; hits @, but Q,,,, avoids H;1.

Since Qp,,, avoids H;;1, Chen—Tell guarantees that we can speed up the computation of
BF; using Qn,,, as an oracle. Since H; hits Q,,, the output of BF; is indeed a canonical

element in @),. It follows that our algorithm succeeds on input length n;.

This completes the sketch of the algorithm and its correctness. We note that while this ex-
position explains how the second bullet of Theorem 6.1.1 is achieved, it does not address the
behavior of the algorithm on other input lengths (i.e., the first bullet in the same statement).

For simplicity, we omit this here and refer to the formal presentation in Section 6.3.7

While the aforementioned construction conveys the gist of our approach, there are two im-
portant issues with our presentation. Firstly, as explained before, the results of [CT21a] do not
achieve the ideal parameters of the HSG stated above. Secondly, we have only vaguely discussed
the circuit uniformity of the function f(1™). The uniformity of f is critical for the reconstruction
procedure of [CT21a] to run in time comparable to the circuit depth of f. On the other hand,
since our HSGs and functions f (corresponding to the algorithm BF) are recursively defined, the
circuit uniformity of the [CT21a] generator itself becomes another critical complexity measure

in the proof.

7 Alternatively, the guarantee from the first bullet of Theorem 6.1.1 can always be achieved via a general
argument. We refer to [OS17b, Proposition 2] for the details.

159

In the next subsection, we discuss the Chen—Tell generator in more detail and explain how

to obtain an improved generator construction satisfying our requirements.

Improving the Chen—Tell Targeted Hitting Set Generator

The uniform hardness-to-randomness framework of Chen—Tell builds on two important in-

gredients:®
1. A layered-polynomial representation of a shallow uniform circuit.

2. A hitting set generator with a uniform learning reconstruction algorithm.

Layered-polynomial representation. We now discuss the first ingredient. Let f: {0,1}" —
{0,1}™ be a logspace-uniform circuit family of size T'(n) and depth d(n).” Let M: N — N be
the parameter for output length. Building on the doubly efficient interactive proof system
by [GKR15| (and its subsequent simplification by [Goll17]), for any z € {0,1}", [CT21a] showed
that there is a sequence of polynomials {Pf };c(4) for d’ = d - polylog(T') with the following nice

properties:

e (Arithmetic setting.) Let F be a finite field of size M€ for a large universal constant

¢ > 1, and let m be of order ll(i’gg]\:;. All the P? map F™ to F and have total degree at most
M.

e (Base case.) There is an algorithm Base such that, given the input z € {0,1}" and

w € F™, computes Pf (W) in poly(M) time.

¢ (Downward self-reducibility.) There is an oracle algorithm DSR that, given input
i€{2,...,d'} and W € F™, together with the oracle access to P? {(-), computes P? () in
poly(M) time.

e (Faithful representation.) There is an oracle algorithm OUT that, given input ¢ € [n]

and oracle access to Pj, outputs f(z); in poly(M) time.

Intuitively, these polynomials form an encoded version of the computation of f in the sense
that they admit both downward self-reducibility and random self-reducibility: every P7 has low
degree and hence admits error correction properties; downward self-reducibility follows from the
definition.

We note that the proof of this result depends in a crucial way on the logspace-uniformity
of the circuit family computing f. (This allows one to arithmetise a formula of bounded size
that computes the direct connection language of the circuit, while also controlling the circuit

uniformity of the resulting polynomials.)

8Below we will focus on the high-level picture of the Chen-Tell framework without diving into too many
details. Our presentation is also somewhat different from the original presentation in [CT21a].

9ntuitively, a circuit family is logspace-uniform if each circuit in the family can be printed by a fixed machine
that runs in space that is of logarithmic order in the size of the circuits. See Section 6.2.3 for the precise definition
of logspace-uniform circuits.

160

Hitting set generators with a uniform learning reconstruction algorithm. The second
ingredient of [CT21a] is the Nisan-Wigderson generator combined with Reed—Muller codes [NW94,
STVO01]|. The most important property of this generator is that it supports a uniform learning

reconstruction algorithm. In more detail, for a polynomial P: F™ — F, the generator NW® takes

s=0 (11?51\;) bits as seed, such that there is a uniform oracle algorithm R (for “reconstruction”)
where the following holds. Given oracle access to both P and an oracle D: {0,1}* — {0,1}
that distinguishes NWF (U,) from the uniform distribution, R>” runs in poly(M) time and with
high probability outputs a polynomial-size D-oracle circuit that computes P.

Now, the hitting set H(z) is defined as

He(z) = | NWA.
i€[d’]

The uniform reconstruction algorithm. One key observation here is that if a distinguisher
D: {0,1}™ — {0,1} avoids Hy(z), meaning that D accepts a large fraction of inputs from
{0,1}™ but rejects all strings in H(2), then clearly D also distinguishes all NW'7 (Uy) from
the uniform distribution. Following [IWO01], [CT21a| then shows that there is a uniform oracle
algorithm R; that takes input z € {0,1}" and any “avoider” D of Hf(z) as oracle, and outputs
f(z) with high probability. In more detail, Ry works as follows:

1. It is given input z € {0,1}" and oracle access to an avoider D: {0,1} — {0,1} of Hy(z).

2. For every i € {2,...,d'}:

(a) The goal of the i-th step is to construct a poly(M)-size D-oracle circuit C; that

computes P7.

(b) It runs the learning reconstruction algorithm R:+P to obtain a poly (M)-size D-oracle
circuit. To answer queries to P7?, we first run the algorithm DSR to convert them into
queries to P? ;. Next, when ¢ = 2, we answer these queries by calling Base directly,

and when ¢ > 2, we answer these queries by evaluating our D-oracle circuit C;_;.
3. For every i € [n], output ouTCs (7).

Issue with the original Chen—Tell construction: Super-logarithmic seed length of

NW. The main issue with the construction above is that NW7 has seed length O(ll‘;gj\;) In

particular, this means that when log M < o(logT'), the hitting set Hf(z) has super-polynomial

size, and therefore cannot be computed in poly(7) time as in the “ideal version” of [CT21a]

stated above.!Y

Hence, to improve the computation time of Hf(z) to poly(T'), we need an
HSG with seed length O(logT') for all possible values of M, together with a uniform learning
reconstruction, when it is instantiated with polynomials. Jumping ahead, we will replace NW
with the Shaltiel-Umans Hitting Set Generator [SU05|, obtaining an optimised version of the

Chen—Tell generator with better parameters. However, the original generator from [SU05| does

%Tndeed, if we rely on the original Chen—Tell construction to implement the bootstrapping method described
above, we would only obtain a quasi-polynomial-time pseudodeterministic construction, instead of a polynomial-
time one.

161

not provide a uniform learning reconstruction procedure. By using the classical construction
of a cryptographic pseudorandom generator from a one-way permutation and another idea, we
manage to modify their construction to allow a uniform learning reconstruction. See the next

subsection for more details.

Controlling the circuit uniformity of the optimised Chen—Tell generator. As stressed
above, in order to construct a layered-polynomial representation for f with the aforementioned
parameters, it is crucial that f admits a logspace-uniform circuit family. Since we will rely
on multiple applications of the generator, and each new function BF on which the result is
invoked contains as a subroutine the code of the previous generator, we must upper bound the
circuit uniformity of our optimised Chen—Tell generator. This turns out to require a delicate
manipulation of all circuits involved in the proof and of the Turing machines that produce
them, including the components of the Shaltiel-Umans generator. For this reason, whenever
we talk about a Boolean circuit in the actual proof, we also bound the description length
and space complexity of its corresponding machine. Additionally, as we manipulate a super-
constant number of circuits (and their corresponding machines) in our construction, we will also
consider the complexity of producing the code of a machine Ms encoding a circuit Cy from the
code of a machine M; encoding a circuit C; (see, e.g., the “Moreover” part in the statement of
Theorem 6.3.1). The details are quite tedious, but they are necessary for verifying the correctness
and running time of our algorithm. In order to provide some intuition for it, we notice that as

we move from the HSG H; to H; 1, we also increase the corresponding input length parameter
B

from n; to nj;1 = n;. While there is an increase in the uniformity complexity, it remains
bounded relative to the new input length. (Think of a truncated geometric series whose value is
dominated by the complexity over the current input length.) We omit the details in this proof

overview.

Non-black-box behavior. We note that the recursive application of the Chen—Tell genera-
tor is responsible for the fully non-black-box behavior of our pseudodeterministic construction.
Indeed, since we invoke the Chen—Tell generator on each function BF (which contains the code
of the algorithm Ag deciding property () as a subroutine), the collection of strings in the hitting
set generator depends on the layered-polynomial representation that is obtained from the code
of BF. As a consequence, our construction has the unusual feature that the canonical outputs
of the algorithm B in Theorem 6.1.1 are affected by the code of Ag. In other words, by using
a different primality test algorithm (or by making changes to the code implementing the AKS

routine), one might get a different n-bit prime!

The parameters of our hitting set generator appear in Section 6.3. The proof of the result is
given in Section 6.5.
Modified Shaltiel-Umans Generator with Uniform Learning Reconstruction

As explained above, in order to complete the proof of Theorem 6.1.1 we need to design a
variant of the Shaltiel-Umans generator [SU05| with a wuniform learning reconstruction proce-

dure.

162

The Shaltiel-Umans generator takes as input a low-degree polynomial P : F}* — F;, (in our
case, p will be a power of 2) and produces a set of binary strings (which is supposed to be a
hitting set). The construction of this generator also relies on “generator matrices”. A matrix
A € F™™ is a generator matriz if it satisfies {A". T}1§i<pm = Fp'\ {0}. Roughly put, the
matrix A can be thought of as performing multiplication with a generator of the multiplicative
group of Fm.

Recall that a generator has a uniform learning reconstruction algorithm if the following holds.
Given an algorithm D that avoids the output of the generator constructed using P, as well as P
itself, we can uniformly and efficiently generate (with high probability) a D-oracle circuit that
computes the polynomial P. (In other words, we can query P while producing the circuit, but
the circuit itself does not have access to P.)

However, the reconstruction procedure provided by the original Shaltiel-Umans generator
only guarantees the following: If the generator is constructed using P and some generator matrix
A, then using an algorithm D that avoids the output of the generator, and given the matriz A
and oracle access to P, one can obtain a (D-oracle) circuit C' : [p™ — 1] — F}' such that
C(i) = P(A?-1).'" (For the precise statement, see Theorem 6.4.9.) That is, this reconstruction

is not a uniform learning algorithm in the following sense:

1. It needs to know the matrix A (which can be viewed as non-uniform advice).

2. Given oracle access to P, it only learns a circuit that computes the mapping i — P(A°- T),

instead of a circuit that computes P(Z) on a given ¥ € F)".

We now describe how to modify the Shaltiel-Umans generator to make its reconstruction a
uniform learning algorithm.

For the first issue, our idea is that, instead of using a generator matrix that is obtained by
brute-force search as in the original construction (we note that the reconstruction cannot afford
to perform the brute-force search due to its time constraints), we will use a generator matrix that
is from a small set of matrices that can be constructed efficiently. More specifically, using results
about finding primitive roots of finite fields (e.g., [Sho92|), we show that one can efficiently and
deterministically construct a set S of matrices that contains at least one generator matrix. The
advantage is that the reconstruction algorithm can still afford to compute this set S. Note that
although we don’t know which matrix in S is a valid generator matrix (as verifying whether a
matrix is a generator matrix requires too much time), we can try all the matrices from S, and
one of them will be the correct one. This allows us to obtain a list of candidate circuits, one of
which computes P (provided that we can also handle the second issue, which will be discussed
next). Then, by selecting from the list a circuit that is sufficiently close to P (note that given
oracle access to P, we can easily test whether a circuit is close to P by sampling) and by using
the self-correction property of low-degree polynomials, we can obtain a circuit that computes P
exactly.

With the above idea, we may now assume that in the reconstruction we know the generator
matrix A used by the Shaltiel-Umans generator. Next, we describe how to handle the second

issue. Recall that the reconstruction algorithm of the Shaltiel-Umans generator gives a circuit

1n fact, the circuit only computes P(A" - %) for some ¥ output by the reconstruction algorithm. We assume
¥ = 1 here for simplicity.

163

C such that C(i) = P(A*-1), for i € [p™ — 1], and we want instead a circuit that given & € o
computes P(Z). Now suppose given & € Fy' \ {6}, we can also efficiently compute the value
i € [p™ — 1] such that A?- I = Z. Then we would be able to combine this with C' to get a circuit
E that computes P, i.e., if Z = 0 then E outputs P(0) (where the value P(0) can be hardcoded);
otherwise, F computes i for & as described above and then outputs C(i). However, the task of
finding such 7 given A and ¥ is essentially the discrete logarithm problem, for which no efficient
algorithm is known!

A classical result in cryptography is that one can construct a pseudorandom generator based
on the hardness of the discrete logarithm problem (see, e.g., [BM84, Yao82|). More generally,
given a permutation f whose inverse admits random self-reducibility'?, one can construct a
generator G based on f so that if there is a distinguisher D that breaks G, then it can be used to
invert f via a uniform reduction. Our idea is to consider the bijection f : [p" —1] — F;”\{ﬁ} such
that for each i € [p™ — 1], f(i) = A’ -1 (where the random self-reducibility of f~! follows easily
from that of the discrete logarithm problem), and try to construct a pseudorandom generator
G based on f. We then combine the output of G with that of the Shaltiel-Umans generator
constructed with the polynomial P and the generator matrix A. Now if there is an algorithm D
that avoids this combined generator, which means D simultaneously avoids both the Shaltiel-

Umans generator and the generator GG, then D can be used to obtain
e a circuit C such that C(i) = P(A"- 1) for every i € [p™ — 1], and
o a circuit C’ that inverts f, i.e., C"(Z) outputs i such that A’-1 = & for every & € F*\ {0}.

Then it is easy to combine C' and C’ to obtain a circuit that computes P.

A careful implementation of these ideas allows us to obtain a variant of the Shaltiel-Umans
generator with uniform learning reconstruction, as needed in our optimised Chen—Tell generator.
We refer to Theorem 6.4.1 in Section 6.4 for more details.

This completes the sketch of the proof of Theorem 6.1.1.

Further remarks about the proof. We note that in our proof the gap between two good
input lengths on which the algorithm outputs a canonical prime can be exponentially large. It
would be interesting to develop techniques to reduce this gap.

Additionally, the proof assumes the existence of a deterministic polynomial-time algorithm
that decides the dense property. In contrast, the subexponential time algorithm from [OS17b]
also works with a dense property that is decidable by a randomised polynomial-time algorithm.
This is caused by the non-black-box nature of our approach via the Chen-Tell generator, which
employs the code of the algorithm A deciding the property as part of the description of the
generator. Consequently, as alluded to above, changing the code of A could result in a different
canonical output on a given input length. If A is randomised, fixing the randomness of A is
similar to the consideration of a different algorithm that decides the property, and it is not

immediately clear how to maintain the pseudodeterministic behaviour in this case.

12Roughly speaking, a function has random self-reducibility if computing the function on a given instance can
be efficiently reduced to computing the function for uniformly random instances.

164

6.2 Preliminaries

For a positive integer k, we use [k] to denote the set {1,2,...,}. We use N to denote all
non-negative integers and N>q to denote all positive integers.

For z,y € {0,1}*, we use z o y to denote their concatenation.'® For a function f: {0,1}* —
{0,1} we use tt(f) to denote the 2¢-length truth-table of f (i.e., tt(f) = f(wyi)o f(wz)o...0
f(wye), where w1, ..., wq is the enumeration of all strings from {0, 1} in the lexicographical
order).

Unless explicitly stated otherwise, we assume that all circuits are comprised of Boolean NAND
gates of fan-in two. In several places, we will need the following notion, which strengthens the
standard notion of a time-computable function by requiring the function to be computable in
logarithmic space. The depth of a circuit is defined to be the maximum length (measured by

the number of edges) of any input-to-output path.

Definition 6.2.1 (Logspace-Computable Functions). We say that a function 7: N — N is
logspace-computable if there exists an algorithm that gets input 1", runs in space O(log(7'(n))),
and outputs T'(n).

For convenience, we consider circuit families indexed by a tuple of parameters. Specifically,
a circuit family with k& input parameters 7= (€1,0a,...,¢;) € NF is defined as {C7} jepn> Where

each CZ is a circuit.

6.2.1 Finite Fields

Throughout this chapter, we will only consider finite fields of the form GF(22’3A) for some
A € N since they enjoy simple representations that will be useful for us. We say p = 2" is a nice
power of 2, if r = 2 - 3* for some \ € N.

Let £ € N and n = 2- 3%, In the following, we use F to denote Fon for convenience. We will
always represent Fon as Fa[x]/(x” 4+ x™/2 4+1).!* That is, we identify an element of Fgn with an
[Fy[x] polynomial with degree less than n. To avoid confusion, given a polynomial P(x) € Fa[x]
with degree less than n, we will use (P(x))r to denote the unique element in F identified with
P(x).

Let £ be the natural bijection between {0,1}" and F = GF(2"): for every a € {0,1}",
k™ (a) = (Zie[n] a; - xifl>F. We always use (™ to encode elements from F by Boolean strings.
That is, whenever we say that an algorithm takes an input from [, we mean it takes a string
x € {0,1}" and interprets it as an element of F via (™. Similarly, whenever we say that an
algorithm outputs an element from F, we mean it outputs a string {0, 1}" encoding that element
via k(™. For simplicity, sometimes we use (a)g to denote (™ (a). Also, when we say the i-th
element in F, we mean the element in F encoded by the i-th lexicographically smallest Boolean
string in {0, 1}".

13We sometimes also use C; o Cy to denote the composition of two circuits, but the meaning of the symbol o
will always be clear from the context.

14y23° L 3 L1 eT, [x] is irreducible, see [VL99, Theorem 1.1.28§].

165

6.2.2 Bounded-Space Turing Machines

Our argument is robust to specific details about the computational model, but in order to
estimate the relevant bounds, we must fix a model. We use the standard model of space-bounded
computation (see [Gol08, Section 5| or [AB09, Section 4]). A deterministic space-bounded Turing
machine has three tapes: an input tape (that is read-only), a work tape (that is read/write),
and an output tape (that is write-only and uni-directional). We assume that the machine’s
alphabet is ¥ := {0,1}. The space complexity of the machine is the number of cells used on the
work tape. For concreteness, we assume that the work tape contains initially only OJ (“blank”)
symbols, and that the machine writes symbols from X in the tape.

Throughout this chapter, we will describe a space-bounded Turing machine by fixing a uni-
versal Turing machine U that has an additional read-only program tape such that TM(z) is
defined to be the output of U with the program tape initialised as TM.'> Abusing the notation,
we often use TM to denote both the Turing machine and a binary string description of the
Turing machine. Without loss of generality, we also assume our description is paddable meaning
that for every TM € {0,1}* and k € N, TM and TM o 0* represent the same machine. To avoid
certain technicalities, we will always assume that the space bound of a Turing machine TM is

greater than its description size.

Configurations of space-bounded machines. On a fixed input =z € {0,1}", a space-s
Turing machine TM has 2% possible configurations, where s’ = §'(s,n) = s + O(log s) + logn.
Each configuration can be described by s’ bits. Here, s measures the space used by the universal
Turing machine U that simulates TM on input x. In more detail, it can be described by the
content of U’s work tape, U’s current state, and the location of U’s heads, including the head on
the input/program tape. (Note that a configuration does not include the content of the output
tape, which does not affect the next step of the machine.)

We will need the following fact for determining the relationship between configurations of a
Turing machine. Recall that a sequence {D,, },,>1 of size-T'(n) computational devices is logspace-
uniform if there is a machine M (1™) that runs in space O(logT'(n)) and outputs D,, (or equiv-

alently, decides the direct connection language of D,,).

Fact 6.2.2. Given a description of Turing machine TM € {0,1}*, a space bound s € N, an input
z € {0,1}", and two configurations ,~" € {0,1}*, there is an algorithm Any that determines
whether +' is the next configuration obtained by running TM for one step on input x. Moreover,
Anyt can be computed by a logspace-uniform O(m?)-size O(log m)-depth formula and by an O(m)-
space algorithm, where m is the total number of input bits. (Here, we assume that if v is the

accepting state or the rejecting state, then the next configuration of 7 is always ~ itself.)

6.2.3 Circuits Generated by Bounded-Space Turing Machines

In this chapter, we often use the following two representations of a circuit (recall that through-

out this chapter, all circuits consist entirely of fan-in two NAND gates).

15The advantage of fixing a universal Turing machine is that now our Turing machine always has a constant
number of states, which is helpful when bounding the number of configurations of a Turing machine of super-
constant size.

166

e (Adjacency relation tensor.) A circuit C of size T is given as a tensor T € {0, 1}7*T>T
such that for every tuple (u,v,w) € [T]3, Tc(u,v,w) = 1 if and only if the gates in C
indexed by v and by w feed into the gate in C indexed by u.

e (Layered adjacency relation tensor.) A circuit C' of width 7" and depth d is given as
a list of d tensors Tg) € {0,1}1T*T where i € [d], such that for every layer i € [d] and
tuple (u,v,w) € [T]3, Tg) (u,v,w) =1 if and only if the gates in the (¢ — 1)-th layer of C
indexed by v and by w feed into the gate in the i-th layer of C' indexed by wu.

Here, the input gates are on the 0-th layer, and the output gates are on the d-th layer.

Without loss of generality, we can assume all layers have exactly T' gates.

In both cases above, when evaluating C' in a context, we will also specify two integers n;, and
Nout to denote the number of input/output gates; see the definition of Circuit[T, s, nin, nout] (TM)
given below for details.

While we will mostly use the (unlayered) adjacency relation tensor representation, the layered
variant will be very convenient in Section 6.5.1.

We define next a more general notion of a space-uniform circuit family with input parameters.
This will be useful in some situations where we need to compute explicit space bounds for

uniformity and index circuits by a tuple of parameters.

Definition 6.2.3 (a-Space-Uniform Circuits). Let k¥ € N and a,7: N* — N. We say that a
circuit family with k input parameters {CZ} Fenk of size T = T(Z) is a-space-uniform if there

exists an algorithm A such that:

1. Decides the adjacency relation. The algorithm gets £ € N* and (u, v, w) € {0, 1}310s(T)
as input and accepts if and only if the gates in C} indexed by v and by w feed into the
gate in Cj indexed by u. (That is, the algorithm computes the adjacency relation tensor
of C})

2. Runs in «a(¢) space. For input parameters /e N+ , the algorithm runs in space a(Z).

We say {CZ} Nk is logspace-uniform if it is plog T-space-uniform for some constant p.

Circuit determined by a Turing machine through the adjacency relation tensor.
We will also consider the circuit determined by a Turing machine in the non-asymptotic setting.
More specifically, given a Turing machine TM € {0,1}*, parameters T, s, nin, Nout € N, we
use Circuit[T', s, nin, Nout)(TM) to denote the circuit whose adjacency relation is determined by
running TM with space bound s over all triples (u,v,w) € {0,1}?1°87 with v > v > w. The
first n;, out of T" gates are the input gates, and the last nout out of T' gates are the output gates.
If TM fails to halt on some triples using s bits of space, or the resulting circuit is invalid (i.e.,
inputs are not source, or outputs are not sink), we let Circuit[T) s, nin, nout](TM) = L.

Given two circuits Cq: {0,1}" — {0,1}"2 and Cy: {0,1}" — {0,1}"™, one can compose
them into a single circuit Cy 0 Cq: {0,1}™ — {0,1}™ in a natural way (i.e., by identifying the
outputs of Cy with the inputs of C). Suppose C is a circuit of size 77 and depth d;, and Co
is a circuit of size To and depth dsy, then Cy o C; has size T1 + T5 and depth di + do. Also, if

167

C1,Cy are given by two Turing machines TM; and TMsy, we can easily generate another Turing
machine TM3 that specifies Cs o C'y. Formally, we will pick a universal machine such that we

have the following simple fact on the description length of TMs, whose proof we omit.

Fact 6.2.4 (Turing Machine Description of Circuit Composition). There is a universal constant
ccomp € N such that the following holds. Given the descriptions of Turing machines TMy and
TMs, parameters

0y = (T4, s1,m1,m9), 0y = (Ty, 82,n9,n3) € N,

and letting
C| = Circuit[ﬁ](TMl), Cy = Circuit[@](TMg), and Zg = (T1 + 1,2 (51 + 52) + Ccomp, 11, M3),

there is a polynomial-time algorithm Acomp that given TMl,TMQ,El,Zg as input, outputs the

description of a Turing machine TM3 such that'°

(CQ o Cl) = CIFCUIt[Z&g](TMg) and |TM3| <2 (‘TMl‘ + |TM2| -+ logng) + Ccomp-

6.2.4 Pseudorandom Generators and Hitting Set Generators

Definition 6.2.5 (Avoiding and Distinguishing). Let m,t € N, D: {0,1}" — {0,1}, and
Z = (2i)iepy be alist of strings from {0,1}". Let ¢ € (0,1). We say that D e-distinguishes Z, if

Pr [D(r)=1]— Pr[D(z)=1]| > e.

re{0,1}m i [t]

We say that D e-avoids Z, if Pr, (0 13»[D(r) = 1] > € and D(2;) = 0 for every i € [t].

6.3 Pseudodeterministic Constructions for Dense Properties

In this section, we prove our main result, restated below for convenience.

Theorem 6.1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let

Q C{0,1}* be a language with the following properties:

(Density.) there is a constant p > 1 such that for every n € N>y, Qn := Q N {0,1}" satisfies
|Qn| >n""-2"; and

(Easiness.) there is a deterministic polynomial-time algorithm Ag that decides whether an
input x € {0,1}* belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {xn}neN21 of n-bit

strings in Q such that the following conditions hold:
1. On every input length n € N>y, Prg[B(1") ¢ {z,, L}] <27".

2. On infinitely many input lengths n € N>, Prg[B(1") = x,) > 1 —27".

16We note that if either C1 = L or Cy = L, then there is no guarantee on Acomp’s behavior.

168

We will need the following theorem, which is obtained by combining [SU05] and [CT21al.
The proof is presented in Section 6.5.

Theorem 6.3.1 (Improved Chen-Tell Hitting Set Generator). There exists a universal ¢ € N>,
a deterministic algorithm H, and a probabilistic oracle algorithm R such that the following
holds. Let k,p € N. Let T,d, M,n € N all be sufficiently large such that n < T, d < T, and
c-logT < M < TY(P) . Denote 7= (n,T,d, M, K, p) as the input parameters.

For a Turing machine TM with description size |TM| = k - log T, we let

Ctwm := Circuit[T, k - log T, n, n](TM).

Assume the circuit Cry # L and Ctm has depth at most d.

(Generator.) The generator H%t (we write H? to denote that H takes { as input parameters)
takes the description of a Turing machine TM € {0, l}ﬁlogT as wnput, and outputs a list
of M-bit strings. We assume that the list has exactly T¢")/2 entries.

Let T :=T¢F and d == c - (dlog T + K2 log? T) 4+ M€. There is a Turing machine TMy
with description length clogf such that for

- N\ 1/2
Ch := Circuit [T, c-klogT n, (T)

it holds that (1) Cy(1™) = H?(TM) and (2) Cy has depth d. Moreover, there is a
polynomial-time'” algorithm A that on inputs 7 and TM € {0,1}#18T " outputs the de-
scription of TMy.

(Reconstruction.) The reconstruction algorithm R takes the description of a Turing machine
TM € {0,1}%1°8T as input, receives an oracle D: {0,1}M — {0,1}, and satisfies the
following:

(Soundness.) For every oracle D: {0,1}M — {0,1}, (RCt)g) (TM) runs in time (d +n) -
M and with probability at least 1 —2=M its output is either Ctm(1") or L.

(Completeness.) If D (1/MP?)-avoids H?(TI\/I), then (RCt)? (TM) outputs Crm(1™) with
probability at least 1 —2~M .

We are now ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. We start with some notations.

Notation. Let ng € N be sufficiently large. We define n(()o) = ng, and for every ¢ € N>,

Now, fix £ € N. For simplicity of notation, in the following we will use n;, H;,t to denote
ny), ng), t® which will be defined later.

17Tn this chapter, whenever we say an algorithm A that generates Turing machines or other succinct descriptions
runs in polynomial time, we mean the running time is polynomial in the total number of input bits. In this case,
the time bound is polynomial in the description length of ¢ and TM, i.e., poly(xlogT).

169

Construction of hitting sets. For some parameter ¢ that we set later, we will define a
sequence of input lengths n1,...,ns, with the hope that we can construct a string in) pseudo-
deterministically on at least one of the input lengths.

Let f € N>; be a sufficiently large constant to be chosen later. For every i € [t], we set
ni = (ni—1)?. For each i € {0,...,t}, we will construct a hitting set H; C {0,1}", which is
computable by a logspace-uniform T;-size d;-depth circuit. As the base case, we set Hg as the
whole set {0, 1}". We note that there is a logspace-uniform Tp-size do-depth circuit that outputs
all elements in Hg, where Ty = 22" and dy = 2nyg.

Let £ € N be a large enough constant to be specified later. Let ¢ be the universal constant

from Theorem 6.3.1.

Informal description. We will first give a somewhat informal description of the construction
of the H;, in particular, we will omit details about the uniformity of the circuits (whose analysis
is rather tedious). We hope this can help the reader gain some intuition first. Later, we will
carefully analyse the uniformity of the circuits for H;.

For each i € [t], we construct H; as follows:

1. We define BF;_; as the circuit implementing the following algorithm: Enumerate every
element in H;_; C {0,1}"™~!, and output the first element that is in @, ,; if no such

element exists, then BF;_;(n) outputs L;

Using the assumed polynomial-time algorithm Ag for deciding membership in @, BF;_;

can be implemented by a T]_;-size d}_;-depth circuit, where
Tj_1 =Ti—1 -poly(ni—1) and dj_; = d;—1 + poly(n;—1).

2. We then set H; as the hitting set from Theorem 6.3.1 constructed with the Turing ma-
chine describing the circuit BF;_; and output length n;.'® By Theorem 6.3.1, H; can be

implemented by a T;-size d;-depth circuit, where
T; = poly(T}_;) and d; = O(d;_; -log T}, + log® T/_) + poly(n;).
(Here we are being informal, see below for a more precise description.)

Formal construction. Next, we carefully detail the construction. Let p € N>; be a large
enough constant. First, we define a Turing machine TMy, of description size p that describes a

Tp-size dp-depth circuit Cl, for Hp on input 1" in plog Ty space. Formally

CirCUit[To, - log Ty, no, /1o - no](TMHO) = CHO.

Let 7 € N be a large enough constant such that the running time of Ag on n-bit inputs is
bounded by n7/3.

We will make sure all H; have exactly +/T; elements. (This is satisfied for i = 0 since
Ty = 22m0.)

18We do not discuss how to construct the Turing machine here; the details can be found in the formal con-
struction below.

170

Now, for each i € [t], we will define a Turing machine TMy, such that
Circuit[T;, i - log T;, i, /T - ;] (TMy;) = Ch;,

where Cy, has depth at most d;. We will also ensure the invariant that |TMy,| < p - logT;. By
our choice of p, the above is satisfied when ¢ = 0. The machine TMy; is defined in two steps:
In the first step, we define a machine TMgg, | describing the circuit BF;_1, and in the second
step, we plug TMgf, , into Theorem 6.3.1 to obtain the machine TMy;.
A Turing machine TMgf, , for BF;_;. We first define a Turing machine TMgf, , such that
TMgE,_, (1™-1) outputs a circuit for the algorithm BF;_;. Recall that BF;_; works as follows:
Enumerate every element in H;_; C {0,1}"~1 and output the first element that is in @y, ,; if
no such element exists, then BF;_;(n) outputs L;

Using the assumed polynomial-time algorithm Ag for deciding membership in @, we first

construct a Turing machine TMiest With description size p such that

Ctest = Circuit [Tz‘—l (ni—1)™? - log Ty, \/Ti—1 - ni—lani—l] (TMtest)

has depth (n;_1)7/?, takes a list of (T;_1)'/? strings from {0,1}"-1, and outputs the lexico-
graphically first one in @, , (if no such string exists, outputs L instead).

Applying Fact 6.2.4 to compose Ch, , and Ciest, we obtain the desired Turing machine
TMgF,_, that constructs a circuit Cgp
we have that TMgf, , takes

computing BF;_;. Noting that u is sufficiently large,

1—1

2 (]TMu,_, | + g+ logni—1 +log T;—1) < 3 -log Ty
bits to describe and uses
2-(p-logTi—1 4+ pu-log Ty 4+ log Ti 1) + pn < 5y - log T;y
space. We now set 7/_; =T;_1 -n]_; and d,_; = d;—1 +n]_,, and we have
Circuit[T}_y, 5p - log Ty—1,mi—1,ni—1] (TMgr,_,) = CBF,_,,

where Cgf, , has depth at most d;_;.

The Turing machine TMy, for H;. Recall that H; is defined as the hitting set H" of The-
orem 6.3.1 constructed with the circuit BF;_; and output length n; in the informal argument.

We now formally define H; as the hitting set
ni*lyT{717d2717ni’l€»p (TMBF'L*l)'

To apply Theorem 6.3.1, we first need to ensure that

5p-log Ty < klogT)_y,

171

which is satisfied by setting x > bu. We also need to ensure that
nioy ST}y, diy <T),, and c-logT{ ; <n; < (T}_;)"/(P). (6.1)
By Theorem 6.3.1, we know that

TMy, = A

K M;—1 ’Ti/ d!

1—1

Nng,K,p (TMBFFl)

—1»
describes a Tj-size, d;-depth circuit Cl, such that Cy,(1™~1) computes H;. Moreover, TMy,
takes ¢k -logT]_; < pu-logT; space and c - logT; bits to describe, where

T; = (T})" and dj =c- (dj_;logT] | + K* - log® Tj 1) +n§

2 (

Formally, we have
Ch, = Circuit[T;, 1 - log T;, i, /T; - ni](TMy,)

as desired. Our invariant on |TMy,| is satisfied by setting p > c.

Analysis of T; and d; and justification of (6.1). We set ¢ to be the first integer such that

Mgl > Ttl/(c’)).
In the following, we first show that ¢ < log nyg.
We first analyse the growth of T; and 7. For every i < t, by our choice of ¢, we have that
n; < nip1 < Til/(Cp) < T; and hence T} = T; - n] < T[‘H. Then, from T;4+; = (T})“", we have
Tit1 < TZ-C'(TH)"’i and consequently logT; 11 < c-(7+1)-k-logT;. Letting A\=c-(7+1) -k, we
have
logT; < N logTy = A 2n0

for every ¢ < t.
Recall that n; = n?_l, we have logn; = 8° - logng. For T; < n; to hold, we only need to

ensure the following:

M 2ng < B log ng

> 2ng/logng < (B/N)".
Now we will set 3 > 100\. Let ¢ < logng be the first integer satisfying the above. We
claim that ¢ < ¢. Since otherwise ¢ < ¢, and we would have n; > Ty (which certainly implies
ngyq > Tt—l/ (cp)) by our choice of ¢. This contradicts our choice of t. Therefore, we have established

that ¢ <lognyg.

Now we turn to analyse d; for i < t. Note that dy = 2ng, and for i > 1, we have
di = O((di—y +nj_y) -log T{_; +1og” T}_,) + nf.

We will show that for every 7 < t, d; < 2ng. Clearly, this holds for 7 = 0.
Since logT! ; < logT;—1 + O(logni—1) < X1 - 2ny + O(logni—1) < ni_1 (recall here that

172

nj_1 = (no)ﬁii1 and # = 100)\), we have
di < O((ni—1 +n]_1) -ni1 +n7) +nf.

We can set (3 large enough so that d; < (n;_1)? + ng < 2-nf. From definition, we also have
d; < 2n§ + n7 for every i < t.

Now we are ready to justify that the conditions from (6.1) are satisfied for i € [t]. By our
choice of t and the definition of 7}, we have n;_y < T;—1 < T/ ;. To see d;,_, < T/ holds,
recall that T} | = T;_1 -n]_;, and we have d,_, <2n{ ; +n]_; <T;_y-n]_; =T/ ; by setting
7 > c. We also have that clogT/_; = c(log Tj—1 +7logn;—1) = ¢(\"-2ng + 7logni_1) < n; since
ng < (ni)l/ﬁ and \¢ < log,,, n;. Finally, by our choice of ¢, we have n; < Tilf/ﬁ(:p) < (Ti'fl)l/(c'o).

Informal argument of the correctness. We first give a somewhat informal argument below,
and then give the precise argument later.
We will argue that for every ¢ € N, there exists an ¢ € {0,1,... ,t(ﬁ)} that our polynomial-

time pseudodeterministic algorithm for constructing an element from () works on input length

)

Let ¢ > 0 be the largest integer such that H; C {0,1}" is a hitting set of Q,,. (Note that
such 7 exists, since Hy = {0,1}"0 is a hitting set of Qn,.) If i« = ¢, then we can simply run BF,

to obtain an element in @, deterministically. Note that this takes time poly(7};) = poly(n.),

since by our choice of t, T} < nfﬂ °,

Otherwise, we have i < ¢. In this case, we know that @Qy,,, avoids the hitting set H; ;1 (here
we use the fact that @, , accepts more than an n;fl fraction of strings from {0, 1}"+1). By
the reconstruction part of Theorem 6.3.1, there is a poly(n;+1) - d; randomised time algorithm
that simulates BF; with probability at least 1 —2™+*. Since H; is a hitting set for @, this gives
us a pseudodeterministic algorithm with poly(n;4+1) time that finds a canonical element in Q.

Since n; 41 = poly(n;), our pseudodeterministic algorithm runs in polynomial time.

Formal description of the algorithm B. First, note that by our choice of ¢ and S, it holds

that n((fﬂ) > nig). On an input length n € N>1, our algorithm B is defined as follows:

1. Given input 1" for n € N>.

2. Compute the largest £/ € N such that née) < n, then compute the largest ¢ such that

ny) < n. Output L and abort immediately if ny) # n. From now on we use n;,T;,d;,
& 7@ 40
9 7 biad')

etc. to denote n; , ete.

3. For every j € {0,1,...,i}, compute T}, T}, d;, d;, TMy,, TMgg;. There are two cases:

e Case I: njy1 < Til/(Cp): In this case, we have that ¢ < t. Run

(Rct)Q”i+1 /

ny, 1) df i 1,60 (

and set z, to be its output.

173

e Case II: n;41 > Til/(Cp): In this case, we have that ¢ < i. Compute ¢ first (recall that
t is the first integer such that ny 1 > T, tl/ (cp)). Output L and abort immediately if
i > t. Otherwise, construct Cgf, from TMgg, and set z, = Cgf, (1").

4. Output z, if Ag(z,) =1 and L otherwise.

From our choice of parameters and Theorem 6.3.1, the algorithm B runs in poly(n) time.

Analysis of the algorithm B. Finally we show that the algorithm B satisfies our require-

ments. We call an input length n € N> valid if there exist £ € N and i € {0, ... ,t(z)} such that
(0)

n=mn,",

first element in Q,,.

and we call n invalid otherwise.!? For every n € N1, let y,, be the lexicographically

For every invalid n € N>, we simply set z,, = y,. For every valid n € N>, we set x,, as

follows:

Cgr, (1), if Cgr,(1™) € Qn,,

Yn if otherwise.

Tp —

We first observe that for all invalid n € N>y, it holds that B(1") = L with probability 1.
Now we are ready to show that for every n € N>i, Prg[B(1") ¢ {z,, L}] < 27". Clearly, we
only need to consider valid n.

Fix a valid n € N>;. From the soundness of the reconstruction part of Theorem 6.3.1, it
follows that z, € {Cgf,(1™), L} with probability at least 1 — 27" (if ¢ = ¢, then 2, = Cgf,(1")
with probability 1). If Cgf,(1") € Q,, then z, = Cgf,(1™) and z, € {z,, L} with high
probability; otherwise we have z, = L. In both cases, the soundness of B holds.

Next, we show that for infinitely many n € N>j, we have Prg[B(1") = x,] > 1 — 27"
Following the informal argument, for every £ € N, let ¢ > 0 be the largest integer such that
H; C {0, 1}”1@) is a hitting set of Q (. Letting n = ngz), we will show that B(1™) outputs z,
with probability at least 1 — 27", whlich would finish the proof.

If i = t, since H; is a hitting set for @y, it follows that z, = Cgf,(1") € @y, and we have
B(1™) = z,, with probability 1. If i < t, we know that @y, , (1/nf)-avoids the hitting set
H;+1. By the completeness of the reconstruction part of Theorem 6.3.1, we have that z, =
(RCt)g:é,?;d;mH%p (TMgE,) equals Cgf, (1) with probability at least 1 —2~"™. Moreover, in this
case, since H; is a hitting set of @,, we know 2z, € @, and z, = x,, which completes the

proof. O

Let B be the algorithm given by Theorem 6.1.1. We note that, by using 1 bit of advice to
encode if a given input length n satisfies Prg[B(1") = x,] > 1 — 27", we can obtain an efficient
algorithm that outputs a canonical answer with high probability (i.e., satisfies the promise of a
pseudodeterministic algorithm) on all input lengths and is correct on infinitely many of them.

We state the result below as it might be useful in future work.

9By our choice of parameters, such pair (£,4) is unique for a valid n.

174

Corollary 6.3.2 (Pseudodeterministic Polynomial-Time Construction with 1 Bit of Advice that
Succeeds Infinitely Often). Let @ be a dense and easy language. There exist a polynomial-time

probabilistic algorithm A and a sequence of advice bits {c; € {0,1}}ien,, such that

e foralln € N>1, A(1", ay,) outputs a canonical z,, € {0, 1}" with probability at least 1—27",

and

e for infinitely many n € N>1, z, € QN {0,1}™.

6.4 Modified Shaltiel-Umans Generator with Uniform Learning

Reconstruction

In order to prove Theorem 6.3.1, we will need the following result.

Theorem 6.4.1 (A HSG with Uniform Learning Reconstruction). There ezist an algorithm H
and a probabilistic oracle algorithm R such that the following holds. Let p be a nice power
of 2, m be a power of 3, A, M € N with p > A2m™M?®, and let := (p,m, M,A) be the input

parameters.

o The generator Hy takes as input a polynomial P: " — T, with total degree at most A,
specified as a list of p™ evaluations of P on all points from ¥} in the lexicographic order,
and outputs a set of strings in {0, l}M. Moreover, Hy can be implemented by a logspace-

uniform circuit of size poly(p™) and depth poly(logp, m, M).

o The reconstruction algorithm R?’P, where D: {0,1} — {0,1} is any function that
(1/M)-avoids Hi{ P), runs in time poly(p, m) and outputs, with probability at least 1—1/p™,

a D-oracle circuit that computes P.

The rest of this section is dedicated to the proof of Theorem 6.4.1.

6.4.1 Technical Tools
Error-Correcting Codes

Theorem 6.4.2 (List-Decoding Reed—Solomon Codes [Sud97|). Let b, a, and d be integers such
that a > v/2d - b. Given b distinct pairs (x;,y;) in a field F, there are at most 2-b/a polynomials
g of degree d such that g(z;) = y; for at least a pairs. Furthermore, a list of all such polynomials

can be computed in time poly (b, log |F|).

In particular, if a = a - b for some 0 < a < 1, provided that a > /2d/b, there are at most
O(1/a) degree-d polynomials that agree with an a-fraction of the b pairs.

Generator Matrices

Definition 6.4.3 (Generator Matrices). Let p be a power of 2 and m € N. We say that A €
FImXm s a generator matriz for B if A is invertible, AP"~1 = I, and {A"- T} 1<ijcpm = Fj*\ {0}

for any nonzero v € IF;”.QO

20Tn fact, it is not hard to see that the third condition implies the first two. We include those two conditions
in this definition as they will be useful later.

175

Theorem 6.4.4 ([Sho92|). Let n € N. Given any irreducible polynomial f of degree n over Fy,
one can deterministically construct in time poly(n) a set S, that contains at least one primitive

root of the multiplicative group of Fa[x]/(f).

We need the following lemma to deterministically construct generator matrices. Note that it
is unclear how to deterministically construct a single generator matrix. Instead, we reduce the
task of constructing such matrices to the task of constructing primitive roots of F,,». Then, we
invoke Theorem 6.4.4 to construct a set of matrices that contains at least one generator matrix.

It turns out that this set of matrices suffices for our purposes.

Lemma 6.4.5. Let p be a nice power of 2 and m be a power of 3. One can deterministically
construct in time poly(logp, m) a set of matrices in]F;”X’” that contains at least one generator

matriz for F'.

Proof Sketch. Roughly speaking, every primitive root of IF,» corresponds to a generator matrix
for F}*, so the lemma is implied by Theorem 6.4.4.
First, if we let p = 223" and m = 3P, where o, 8 € N, then the fields F, and Fpm have

explicit representations

Fo[x]
(X2.3a+B+X3a+ﬁ+1)

Faly]
(¥ +y*" +1)

Fpm = and F, =

Note that Fym can be viewed as a linear space over I, of dimension m (i.e., ") by identifying
x%" with y. The (field) addition operation over F,m coincides with the (linear space) addition
operation over . For every element g € Fpm, multiplication by g corresponds to a linear
transformation over F}', i.e., there is a matrix Ay computable in polynomial time given g such
that for every a € Fym, ga (as the product of two elements in the field Fym) is equal to Ay - a (as
a matrix-vector product over the vector space IF;”). It is easy to see that if ¢ is a primitive root
of the multiplication group Fpm, then Ay is a generator matrix for Fj'. The lemma now follows

from Theorem 6.4.4. OJ

Random Self-Reducibility for Discrete Logarithm

Lemma 6.4.6. There is a probabilistic polynomial-time oracle algorithm DLCorr™) such that
the following holds. Let p be a power of 2, m € N, € > 0, A be a generator matriz for F', and
let g be any probabilistic procedure that satisfies

Pr_ |g(¥) outputs i € [p™ — 1] such that A"- T = #| > «.
7=Fp\{0}, ¢

Then for every i € F"\ {0}, DLCorr9(p,m, 11V/21, A, @) outputs ¢ € [p™ —1] such that A*- T=a
with probability at least 2/3.

Proof Sketch. The algorithm is an adaptation of the worst-case to average-case reduction for
the discrete logarithm problem. Given u € F}' \ {0}, we pick a random j € [p™ — 1] and set
¥:= A -ii. Let i := g(¥). Since ¥ is uniformly distributed, with probability at least ¢ we have

A" .1 = §. We check if this is the case in polynomial time (note that we can compute A’ in

176

polynomial time by repeated squaring). Suppose this is indeed the case, then A?- I=0=A7-4.
Recall that A is invertible. If ¢ > j, we output £ :=14¢ — j. If i = j, we have & = 1. In this case,
we output £ := p™ — 1. Finally, if j > ¢, we output £ :=t — (j — 7).

By sampling O(1/¢) many values of j, with probability at least 2/3, there is at least one
invocation i := g(%) such that A?-1 = @ indeed holds. Therefore, the success probability of our
algorithm is at least 2/3. O

Pseudorandom Generators from One-Way Permutations

Theorem 6.4.7 ([BM84,Ya082,GL89|). There exist a deterministic oracle algorithm CryptoG(™)
and a probabilistic oracle algorithm Invert™) such that the following holds. Let s, M € N be the
input parameters, and let f:{0,1}* — {0,1}* be a permutation.

1. CryptonM outputs a set of 225 M-bit strings. Moreover, Crypton;M can be implemented
by a logspace-uniform f-oracle circuit of size poly(2%, M) and depth poly(s, M).

2. Invertg_& takes © € {0,1}* as input and runs in poly(s, M) time. For any function

D:{0,1}M — {0,1} that e-distinguishes CryptoGi,cM from {0,13M | we have

e

P I /D =1 >
r nvert, 'y (z) = f7(z)| = poly (M)

z<—{0,1}

Proof Sketch. The generator CryptoG(*) follows from the well-known construction of pseudoran-
dom generators from one-way permutations using the Goldreich-Levin Theorem [GL89]. More

specifically,

CrypoGly = | (@) (F@).) (FF@)r), - (FY D (@)r)),

xz,re{0,1}s

where (-) denotes the inner product mod 2 function and f () denotes the composition of f with
itself ¢ times.

The “inverting” algorithm Invert(™) and its correctness rely on standard techniques in pseu-
dorandomness such as the hybrid argument, Yao’s theorem on the equivalence between pseudo-
randomness and unpredictability [Yao82|, and the Goldreich-Levin decoding algorithm [GL8&9].
(See e.g., [AB09, Section 9.3].)

Finally, to see that CryptoGi u can be implemented by a logspace-uniform f-oracle circuit
of size poly (2%, M) and depth poly(M), we first note that there is a Turing machine that given
s,M € N and z,r € {0,1}*, computes the M-bit string

(,7), (f(@),r) (F(F @)y, (P @),r)

in poly(s, M) time using f as an oracle. Then by the fact that any time-t Turing machine
can be simulated by a logspace-uniform circuit of size O(¢?), computing a single M-bit string
in Crypton; u can be done using a logspace-uniform f-oracle circuit of size poly(s, M). The
desired conclusion follows from the observation that we can compute these 22¢ M-bit strings in

parallel. O

177

Self-Correction for Polynomials

Theorem 6.4.8 (A Self-Corrector for Polynomials, cf. [GS92,Sud95]). There is a probabilistic
oracle algorithm PCorr(™) such that the following holds. Let p be a power of 2, m, A € N such
that A < p/3. Let g: " — Fp be such that there exists a polynomial P of total degree at most
A for which

Pr [g(@) # P(@)] < 1/4.

7. 'm
T Fy

Then for all & € T}, PCorr?(p,m, A, Z) runs in time poly(A,logp,m) and outputs P(T) with

probability at least 2/3.

6.4.2 The Shaltiel-Umans Generator

We state a version of the hitting set generator constructed by Shaltiel and Umans [SU05|

that will be convenient for our purposes.

Theorem 6.4.9 (Implicit in [SU05|). There exist a deterministic algorithm HSU and a proba-
bilistic oracle algorithm RSUC) such that the following holds. Let p be a power of 2, m, M, A € N
with p > A2m"M?, 0 := (p,m, M,A) be the input parameters, and let

o P:F)' — F) be a polynomial with total degree at most A, given as a list of p™ evaluations

of P on all points from F" in lexicographic order, and
o A be a generator matriz for F)'.
Then

1. The generator HSUA{ P, A) outputs a set of strings in {0, 1YM. Moreover, HSU; can be
implemented by a logspace-uniform circuit of size poly(p™) and depth poly(logp, m).

2. The reconstruction algorithm RSU?’P(A), where D: {0,1}M — {0,1} is any function that
(1/M)-avoids HSUAP, A), runs in poly(p,m) time and outputs, with probability at least
1—1/p*™, a vector ¥ € Fj*\ {0} and a D-oracle circuit C : [p™ — 1] — F,, such that

C(i) = P(A"- %) for every i € [p™ — 1].

The statement of Theorem 6.4.9 and the HSG result of [SU05| differ in two aspects:

e First, we use a polynomial instead of a Boolean function to construct the HSG, which fits

more naturally into the framework of Chen-Tell [CT21a] (see also Section 6.5).

e Second, we explicitly calculated a circuit depth upper bound for computing the HSG,
which is not stated in [SU05].

Nevertheless, Theorem 6.4.9 easily follows from the arguments in [SU05]. For completeness, we

review the construction of [SU05| and present a proof sketch of Theorem 6.4.9 in this subsection.

178

The generator. We first construct m candidate “p-ary PRGs” G,(,(_’Q,,y,G,(i;,y,--- ,Géﬁﬁ:yl) :

Fy — Fi)\/l ; note that the inputs and outputs of these “p-ary PRGs” are elements in F,. In
particular:
G (7) = (P(Apj'lf), P(AP27), . .. ,P(Apj'M;E)>.

Then we convert each p-ary PRG into a (usual binary) PRG by invoking [SU05, Lemma 5.6].
More precisely, for each 0 < j < m, we interpret Gé{;ry as a PRG that takes a binary seed of
length m log p and outputs M elements in {0, 1}°8? using the canonical bijection £(1°8?) between
F, and {0,1}!°¢?. Then, for Ggg,y : {0,1}mlosr — ({0, 1}1°8P)M | given seeds z € {0, 1}m1eP
and r € {0,1}1°8P, we define

GO(2,r) = (G (@)1, 7). Gy (£)2,7), - (G (@)ar,7))

Here, (-) denotes the inner product mod 2 function. In other words, we combine G},J_Zry with the
Hadamard code to obtain a Boolean PRG GU): {0, 1}mlogptlogr _, 10 1}M,
Finally, our HSG will be the union of all PRGs GU). That is, our algorithm HSU{(P, A)
enumerates every 0 < j < m, z € {0,1}™1°8? 1 € {0,1}°¢?, and prints the string G (z, 7).
To see that HSU; can be computed by a logspace-uniform low-depth circuit, we argue that
given appropriate indexes j and ¢, the i-th bit of G(j)(x,r) can be computed by a logspace-

uniform low-depth circuit. The bit we want to compute is
GO (,1); = (Gifhy (@)is7) = (P(A”13), 1),

where 7' is the vector in F)" encoded by z. By repeated squaring, we can output a (logspace-
uniform) circuit of size and depth poly(log p, m) that computes AP, Multiplying AP with z,
indexing (i.e., finding the (AP Z)-th entry of P), and computing Boolean inner product have
logspace-uniform circuits of size poly(M,p™) = poly(p") and depth poly(m,logp,log M) =

m+1 strings of length M and each output bit can

poly(log p, m). Since we need to output m - p
be computed by a logspace-uniform circuit of size poly(p™) and depth poly(logp, m), the com-

plexity upper bounds for computing HSU; follows.

Now we consider the reconstruction algorithm. Suppose there is an adversary D : {0, 1}M —
{0, 1} that (1/M)-avoids HSUZ{(P, A). It follows that D (1/M)-distinguishes every binary PRG
G,

From distinguishers to next-element predictors. For each 0 < j < m, we use D to build
a “next-element predictor” DU for G;J_&,y. Since D (1/M)-distinguishes G9) it can be used to
build a next-bit predictor Déjit) such that

) () ()) = W IS 2
ie[M},xe{o,l}rlr?ﬂgp,re{o,l}logp[Db't<G (@), G (x’r)’*) GY @,)i 2 1/2 4 1/M7.

Therefore, with probability > 1/2M? over i + [M] and x < {0,1}™!°8P the probability over
r + {0,1}1°8P that ‘Dt(){t) predicts the i-th bit of GU)(x,r) given its first 4 — 1 bits correctly is at
least 1/2 + 1/2M?. In this case, using the list-decoding algorithm for Hadamard code [GL89],

179

we can find a list of O(M*) elements that contains G](Jj_gry(a:)i. (In fact, the trivial list-decoding
algorithm suffices here, since it runs in time poly(p).) We call this procedure the next-element

predictor DWW it takes as input
Up—1 = P(A_(M_l)pjf),uM,z = P(A_(M_Q)pjf), ce U = P(A_pjf),

where 7 < ' is a random vector. It randomly selects i < [M], invokes Dg,? and the list-
decoding algorithm for the Hadamard code, and outputs a list of O(M*) elements. With prob-
ability Q(1/M?) over Z < Fp' and the internal randomness of Dt(jt) , this list will contain P(Z).

We repeat DU) for O(mlog p) times and fix its internal randomness, so that in what follows
we can assume D) is deterministic. With probability at least 1—1/(10p?™), for every 0 < j < m,
DY) will be correct in the following sense: For some p := 1/©(M?*mlogp), DY) outputs p—2
elements, and

Pr |P(2) € DY (ups_1,upr—a, . .. ,ul)] > p.
T

Learn Next Curve. We will use the following notation from [SU05]. Let r := O(mlogp) be
a parameter denoting the number of reference points, and v := (m + 1)r — 1 denotes the degree
of curves.?! A curve is a polynomial C' : F, — ;" with degree v. (That is, each coordinate of C
is a univariate polynomial of degree v over F).) Recall that A € ;"™ is the generator matrix.
We use AC' to denote the curve where for each t € F),, AC(t) = A- C(t) (note that AC is still
a degree-v polynomial). We also use P(C) to denote the function such that for every ¢t € [,
P(C)(t) = P(C(t)); the evaluation table of P(C) is the length-p vector where for every ¢t € [F),
the t-th entry of the vector is P(C(t)).

Now, we recall the implementation of an important subroutine called LEARN NEXT CURVE
as defined in [SU05, Section 5.5]. LEARN NEXT CURVE takes as input a next curve C' : F, — F}7,
a set of reference points R C F), of size r, a stride 0 < j < m, as well as input evaluations; the input
evaluations consist of two parts, namely the evaluation tables of P(A_ipj C) forevery 1 <i< M
and the values of P(C(t)) for every t € R. The intended output evaluations consist of the
evaluation table of P(C).

In particular, LEARN NEXT CURVE starts by obtaining a set of p~2 values

S 1= DU (P(A=M=0 (1)), P(A=M=2P C(w)), ..., P(AT C(1)))

for each t € F,. Then it calls the algorithm from Theorem 6.4.2 on the pairs {(, €) }teF, ces;
to obtain the list of all polynomials @ such that Q(t) € S; for many coordinates ¢. (This takes
poly(pp~—2,logp) < poly(p,m) time.) If this list contains a unique polynomial @ such that
Q(t) = P(C(t)) for every t € R, then we output this polynomial; otherwise, we output L. It is
clear that LEARN NEXT CURVE runs in poly(p,m) time.

We say LEARN NEXT CURVE succeeds (on next curve, reference points, and stride), if when-
ever the input evaluations are the intended values, the output evaluations are also the intended

values. Let
eLnc = O(vp~ ' /p)*/% + (8p™%) (v deg(P)/p)"

21The parameter v is set in the proof of [SU05, Lemma 5.14].

180

It is proven in [SU05, Lemma 5.12] that, assuming p > 32deg(P)v/p?, if the next curve and
reference points are chosen uniformly at random, LEARN NEXT CURVE succeeds with probability
1 — ernc. Since deg(P) = A, p~! = O(M?mlogp), v = O(m?logp), and p > A2m"M?, it is
indeed the case that p > 32deg(P)v/p*. Also note that

cine < O(p*/32deg(P))"/2 + (8p7) (o /32)" < (1/2 " < 1/(10p™™).

A first attempt for the reconstruction algorithm would be as follows. Let i € [p™ — 1], and
suppose that we want to compute P(A'T). We write i in p-ary as i = Z;n;()l i;p? (where each
i; € {0,1,...,p—1}). Recall that for each next curve C' and stride j, given the evaluation tables
of P(A~*’ () for every 1 < k < M, we can learn the evaluation table of P(C) in one invocation
of LEARN NEXT CURVE. Therefore, we proceed in m rounds, where for each 0 < [< m, the

[-th round performs the following computation:

o Let i/ := Zé;%) z]p7 Suppose that at the beginning of the I-th round, we already know
the evaluation tables of P(Akpl”/C) for each 1 < k < M. (For | = 0, these values can
be hardcoded as advice; for [> 1, they should be obtained from the previous round.) We
invoke LEARN NEXT CURVE M (p — 1) times with stride [to obtain the evaluation tables
of P(Akpl+i'C) for each 1 < k < M - p. The [-th round ends here; note that we have
obtained the evaluation tables required in the (I + 1)-th round (namely P(AkP"" +ip'+i')
for every 1 <k < M).

However, there is one issue with this approach: to learn a curve C, we also need to provide
LEARN NEXT CURVE with the evaluations of some reference points on C. To resolve this issue,
[SUO05] introduced an interleaved learning procedure that involves two curves C and Cs. These
two curves possess nice intersection properties: for certain choices of k and I, A¥C; and A'Ch
intersect on at least r points. This enables us to, for example, learn the evaluation table
of P(A'Cy) whenever we know the evaluation table of P(A¥Cy), by using the evaluations of
P(AFCy) at reference points R, where R is the intersection of A¥Cy and A'Cy.

Interleaved learning. In what follows, we use [C7 N Cq] to denote the set {t € F, : C1(t) =
Cs(t)}. We say two curves C; and Cy are good if they satisfy the following properties:

o« Ci(1) #0;

e forall 1 <i<p™andall 0<j<m, [AFP CLNACy and [AIC) N AiCy] are of size > 7

e forall 1 <4 < p™ and all 0 < j < m, LEARN NEXT CURVE succeeds given next curve
AP 01, reference points [A'TP'Cy N A'Cy], and stride j; and

e forall 1 <4 < p™ and all 0 < j < m, LEARN NEXT CURVE succeeds given next curve
A'Cy, reference points [A'C N A'Cy), and stride j.

By [SU05, Lemma 5.14|, there is a poly(v, p)-time randomised algorithm that, with proba-
bility 1 — 2mp™ - epnc > 1 — 1/(10p*™), outputs two curves C; and Cy that are good.
The basic step in the reconstruction algorithm is called interleaved learning in [SUO5].

This step has the following guarantee: For a stride j, given the correct evaluation tables of

181

P(A"* C1) and P(A* Cy) for every 1 < k < M, we can compute the correct evaluation
tables of P(ACy) and P(A'Cy). In particular, interleaved learning consists of the following two
steps:

e first, we invoke LEARN NEXT CURVE with next curve A’CY, reference points [Ai_pj Co N
A'CY], and stride j;

e then, we invoke LEARN NEXT CURVE with next curve A*Cy, reference points [A‘C1NA'Cy),
and stride j.

Note that we assume that all invocations of LEARN NEXT CURVE succeed, as this happens with
high probability (1 — 1/(10p*™)).

The reconstruction algorithm. Recall that our reconstruction algorithm needs to output
two elements: a vector 7 € F' \ {0} and a D-oracle circuit C' : [p™ — 1] — F, such that
C(i) = P(A"- %) for every i € [p™ — 1].

We first compute the curves C; and Cy that are good with probability 1 — 1/(10p*™). Our
reconstruction algorithm will be correct provided that C} and Cy are good (and that we fixed
good internal randomness of our next-element predictors D(j)); this happens with probability
>1—1/(10p*™) — 1/(10p®*™) > 1 — 1/p*™. The vector we output will be @ := Cy(1) (which is
non-zero if C; and Cy are good). It remains to output a circuit C' such that for every i € [p™ —1],
C(i) = P(A"- 7).

Given an integer ¢, our circuit C' first writes ¢ in p-ary as ¢ = Z?:Bl z]pJ . Then, it proceeds

in m rounds, where for each 0 < [< m, the [-th round performs the following:

o Let i/ := Z;;B z]p7 Suppose that at the beginning of the I-th round, we already know
the evaluation tables of P(AF'+¥Cy) and P(AF'+Cy) for each 1 < k < M. We per-
form interleaved learning M (p — 1) times with stride [to obtain the evaluation tables of
P(AM'+ 1) and P(AFP'+'Cy) for each 1 < k < M-p. The I-th round ends here; note that
we have obtained the evaluation tables required to perform the (I + 1)-th round (namely,
P(ARP Hup 4 0y and (AR P 0h) for every 1< k < M).

Finally, after the (m — 1)-th round, we have obtained the evaluation table of P(A'C}), and we
can simply output P(A‘Cy(1)) = P(A'W) as the answer.

Note that the interleaved learning procedure needs to invoke the next-element predictor,
therefore our circuit C' will be a D-oracle circuit. Also, at the beginning of the first (0-th) round,
we need the evaluation tables of P(A*Cy) and P(A*Cy) for each 0 < k < M. Our reconstruction
algorithm can simply query the polynomial P to obtain these values and hardcode them into
our circuit C. It is clear that our reconstruction algorithm runs in poly(p, m) time and succeeds
with probability > 1 — 1/p?™.

6.4.3 Modified Shaltiel-Umans Generator: Proof of Theorem 6.4.1
In this subsection, we prove Theorem 6.4.1, which is restated below.

Theorem 6.4.1 (A HSG with Uniform Learning Reconstruction). There ezist an algorithm H
and a probabilistic oracle algorithm R(™) such that the following holds. Let p be a nice power

182

of 2, m be a power of 3, A,M € N with p > A’>m"M?, and let 7= (p,m, M, A) be the input

parameters.

o The generator H; takes as input a polynomial P: F)' — F), with total degree at most A,
specified as a list of p™ evaluations of P on all points from ¥} in the lexicographic order,
and outputs a set of strings in {0,1}M. Moreover, H; can be implemented by a logspace-

uniform circuit of size poly(p™) and depth poly(logp, m,M).

o The reconstruction algorithm R?’P, where D: {0,1} — {0,1} is any function that
(1/M)-avoids H{P), runs in time poly(p, m) and outputs, with probability at least 1—1/p™,

a D-oracle circuit that computes P.

Proof. One difference between our generator and the Shaltiel-Umans generator (Theorem 6.4.9)
is that the reconstruction procedure in the latter only learns a circuit Cy that computes the
mapping i — P(A" - ¥) (for some ¥ output by the reconstruction procedure), where A is the
generator matrix used in the Shaltiel-Umans construction, instead of a circuit that computes
P itself. Let us assume for simplicity that the circuit Cy computes i — P(A?-1). Note that if
given ¥ € F' \ {6} (which is the input on which we intend to evaluate P), we could efficiently
compute the value i € [p™ — 1] such that A’ -1 = Z, then we would be able to combine this
with the circuit Cjy to compute P (roughly speaking, by first computing ¢ and then outputting

Co(7)). However, there are two issues with this approach:

1. First, we do not know the generator matrix A, since we need our reconstruction algorithm

to be uniform and hence cannot hardcode A.

2. Second, the task of finding such i given ¥ and A is essentially the discrete logarithm

problem, for which no efficient algorithm is known.

To handle the first issue, we will construct our generator using the Shaltiel-Umans con-
struction based on a generator matrix from a small set S given by Lemma 6.4.5. Then, in the
reconstruction, we will try all the matrices from .S, which can be generated efficiently, to obtain
a list of candidate circuits. We then select from the list a circuit that is sufficiently close to P
and use a self-corrector to compute P everywhere. For the second issue, we first observe that the
mapping f: i — A’-1 is a permutation. Treating f as a “cryptographic one-way permutation”
and invoking Theorem 6.4.7, we can construct a “cryptographic pseudorandom generator”, which
has a uniform reconstruction algorithm. We can then combine the output of this “cryptographic
pseudorandom generator” with that of the Shaltiel-Umans generator so that if there is an algo-
rithm D that avoids this combined generator, then D can also be used to invert f efficiently!

Details follow.
The construction of H. For a matrix A € F'*™, let fa: [p™ — 1] U {0} — F}* be such that

o" iti=0

fa(@)=9 = _ .
AT if1<i<pm

183

We will also view f as a function mapping s bits to s bits, where s := m - log p. Also note that
if A is a generator matrix for ", then f4 is a permutation.

Let HSU be the generator from Theorem 6.4.9 and CryptoG(f) be the generator from The-
orem 6.4.7. Also, let S C F;"*™ be the set of matrices constructed using Lemma 6.4.5. We
define

HAP) = | (Hsu AP, AU cryptoG;”fM> .
AeS

The complexity of H. We argue that H; can be implemented by a logspace-uniform circuit
of size poly(p™) and depth poly(logp, m, M).

First note that given A, f4 can be computed in poly(log p,m) time. Then again by the fact
that every time-t Turing machine can be simulated by a logspace-uniform circuit of size O(t2),
fa can be computed by a logspace-uniform circuit of size poly(log p, m). This means given A,
Crypton;’}w7 which by Theorem 6.4.7 has a logspace-uniform f4-oracle circuit of size poly(2°, M)
and depth poly(s, M), can be implemented by a logspace-uniform circuit of size poly(p™) and
depth poly(logp, m, M), where we have used that s = m - logp and M < pl/9. Also, by
Theorem 6.4.9, HSU7has a logspace-uniform circuit of size poly(p™) and depth poly(log p, m, M).
To compute H{P), we just need to compute HSU/{P, A) and Crypton;“}w for all A € S in
parallel, where S can also be computed in time poly(log p,m) and hence has logspace-uniform
circuit of size poly(logp, m). This yields a logspace-uniform circuit of size poly(p™) and depth
poly(log p, m, M) computing H;.

The reconstruction. Given oracle access to the polynomial P and a function D that (1/M)-
avoids Hz{ P), we want to output a D-circuit that computes P. We do this in two stages. In the
first stage, we obtain a list of candidate circuits, one for each A € S, that (with high probability)
contains at least one circuit that computes P. In the second stage, we will select, from the list
of candidate circuits, one that is sufficiently close to P and combine it with a self-corrector to
obtain a circuit that computes P on all inputs.

We now describe the first stage. Let A* be the lexicographically first matrix in S that is a

generator matrix for)", and consider the two sets
HSU,(P, A*) and CryptoGiA* ,

which are subsets of HZ{ P). Since D avoids H, it also avoids both HSUA P, A*) and Cryptonﬁ\}.

Assume for a moment that we are given the matrix A*. We will construct a circuit C s+ as
follows. Let RSU(™) and Invert(~) be the oracle algorithms from Theorem 6.4.9 and Theorem 6.4.7
respectively. We first run RSU?’P(A*) to obtain a D-oracle circuit C’y, and some @ € F" \ {0}.
By the property of RSUC) (Item 2 of Theorem 6.4.9) and the fact that D avoids HSU[(P, A¥),
we get that, with probability at least 1 — 1/p®™, for every i € [p™ — 1],

Cly (i) = P((A%)" - ©). (6.2)

Similarly, by the property of Invert(~) (Item 2 of Theorem 6.4.7) and the fact that D avoids

184

Crypton:f}\}, we get that
1
P Invert/2 P (z) = f71] P ——
ac<—{01;1}5 vert, (@) = Jar (@)] 2 poly(M)

By combining

— fax,D
g = Invert&M

with the algorithm DLCorr(™) from Lemma 6.4.6, we get that for every ¥ € /', with probability

at least 2/3 over the internal randomness of DLCorr?,
DLCorr? (p,m, 1p°ly(M),A*,:1_:’) = fg*l(f).

By using standard error reduction techniques (to reduce the error from 2/3 to 1/(10p*™)) and
by fixing the internal randomness (that hopefully works correctly for all p™ inputs), we can
obtain, in time poly(p,m) and with probability at least 1 — 1/(10p™), a D-oracle circuit C';.
such that for every 7 € F},

O (%) = [(D). (6.3)
That is, given ¥ € F)" \ {0}, C"4.(Z) outputs i € [p™ — 1] such that (A*)" -1 = #. This is almost

what we need except that we want the circuit to output 4 such that (A*)" . ¥ = #. We further

construct such a circuit C’). as follow. Given ¥ € F}', we first compute

ji=C0% (") and k:=C%. (D).

That is, 7 = (A*)7 - T and & = (A*)¥ - 1. We then output 7 depending on the values of j and k.
On the one hand, if j < k, we let ¢ := k — j. Then

(A*) . = (AT . (A . T=A . T=2
On the other hand, if k£ < j, we let i := p™ — 1 — (j — k) , which yields
(AT g = (AP (A T =T (A T =2

Now we have a circuit Cf. that given & € F7'\ {0}, outputs i € [p™ —1] such that (A*)"-7 = &
and a circuit C,. that given i € [p™ — 1], computes P((A*)*- 7). We then construct the circuit

-,

P(0)

. ifz=0
Car (33) = / " (= e m 0
Cly-(CL(7)) it & € T\ {0},

Note that we can hardwire the value of P(G) Also notice that if both Equations 6.2 and 6.3 are
true (which happens with probability at least 1 —1/(9p™)), we will get that for all & € F}",
Ca- (%) = P(Z).

However, we don’t know the matrix A*. Instead, we will run the above procedure for each
A € S to obtain a list C := {Ca}aes of candidate circuits C'4. Then, with probability at least

185

1—1/(9p™), C contains at least one circuit (in particular, C4+) that computes the polynomial
P.
Given the list of candidate circuits C, we now describe the second stage. First of all, given

a circuit Cy € C, we want to check if C4 is sufficiently close to P.

Claim 6.4.10. There is a randomised algorithm IsClose that, given a circuit B: F)' — Fp,

d € (0,1], and oracle access to the polynomial P, runs in time poly(|B|) - log(1/6) such that
o if Prz[B(Z) = P(Z)] = 1, the algorithm accepts with probability 1, and
e if Prz[B(Z) = P(Z)] < 3/4, the algorithm rejects with probability at least 1 — 6.

Proof of Claim 6.4.10. The algorithm picks 3log(1/0) points uniformly at random from F}’
and checks if B and P agree on all those points. If so, the algorithm accepts; otherwise, it
rejects. Note that if Prz[B(Z) = P(Z)] < 3/4, then the probability that it accepts is at most
(3/4)310501/9) < 5. o

For each C4 € C, we run IsClose”’ (C4,6 := 1/(4/C|p™)) and pick the first one that the
algorithm accepts. By the fact that C contains at least one circuit that computes P and by the
property of the algorithm IsClose (Claim 6.4.10), with probability at least 1 — 1/(4p™), we will

obtain some D-oracle circuit Cejose Such that
Pr [Caose(d) = P(F)] > 3/4. (6.4)
TP
Conditioned on Equation 6.4, by combining Ccese With the self-corrector PCorr™) from The-
orem 6.4.8, we get that for every ¥ € F)7, PCorrCeose(p, m, A, Z) = P(&) with probability at
least 2/3 (over the internal randomness of PCorr®os). Again, by using standard error reduction
techniques and by picking a randomness uniformly at random, we can obtain in time poly(p, m),
with probability at least 1 — 1/(4p™), a D-oracle circuit C' that computes P.
By a union bound, the above procedure gives, with probability at least 1 —1/p™, a D-oracle

circuit that computes the polynomial P.

Finally, it is easy to verify that the running time is poly(p, m). O

6.5 Improved Chen—Tell Targeted Hitting Set Generator

In this section, we prove Theorem 6.3.1, showing how to build a reconstructive hitting set
generator from any uniform low-depth circuit.
6.5.1 Layered-Polynomial Representation

The first step is to “arithmetise” our low-depth circuit into a layered-polynomial representa-
tion. Roughly speaking, given a (uniform) circuit C' of depth d and size T, we will produce a
table of size d’ x T" where d’ ~ d and T" = poly(T), such that the following key properties hold:

(Low-degree.) Each row is the “truth table” of a low-degree polynomial (thus admits self-

correction properties).

186

(Faithful representation.) Given oracle access to the d’-th row, we can compute the output
of C'(1™) quickly.

ownward self-reducibility.) For eac < i < d, given oracle access to the (i — 1)-
D d self-reducibility.) F h2<i<d, gi 1 to the (¢ — 1)-th
polynomial, we can quickly compute the output of the i-th polynomial on a given input.

Moreover, the entries of the first row (corresponding to ¢ = 1) can be computed quickly.

Later, we will use these properties of the layered-polynomial representation to compile them into
a reconstructive HSG.

We now formally describe our layered-polynomial representation, which can be proved by
modifying the construction in [CT21a]. In the following, letting p be a power of 2, and f: Ff; —
F,, we use tt(f) to denote the length-(p’-logp) Boolean string that consists of p’ blocks, where

the i-th block corresponds to the Boolean encoding of the i-th element in [F),.

Theorem 6.5.1 (Layered-Polynomial Representation). There exist universal constants ¢,c, 8 >
1 such that the following holds. Let k € N and let T,d,n,h,p € N all be sufficiently large such
that (1) d <T andn < T, and (2) h,p are both nice powers of 2 andlogT < h <p < h?>" <T.
(Recall that p is a nice power of 2 if p = 92:3* for some A € N.)

Let 0 := (k,T,d,n, h,p) be the input parameters, and let F :=F,. For a Turing machine TM
with description size |TM| =k -log T, let

Ctwm := Circuit[T, k - log T, n, n](TM).

Assuming Ctm # 1L and Ctm has depth at most d, there are d' := CIi'JOgQ T-(d+k%logT) poly-
PK’TM) @] such that the following hold (below we write Pf’TM as P; for simplicity):
i€[d’

nomials (A

1. (Arithmetic setting.) Let H C I be the first h elements of F, and let m be the smallest
power of 3 such that k™ > TP*. Each polynomial is from F3™ to F and has total degree at
most A = ¢ - h -log3(T).

2. (Faithful representation.) Fiz an injective function id: [n] — H™ in an arbitrary but
canonical way.”> For every i € [n], (Ctm(1™)), = Py (id(i), 0%™).

3. (Complexity of the polynomials.) Let Typol, := T* and dpoly := c-(dlog T+ £ log? T).
There is a Turing machine TMpely of description length logThe, such that for

Choly := Circuit|Tpoly log Tpoly, log d', [F|*™ - log [F|] (TMpoly),

it holds that (1) for every i € [d'] Cpoly(i) = tt(F;) and (2) Cpoly has depth dpoly -

Moreover, there is a polynomial-time algorithm A?f)ly that takes TM € {0, 1}”‘logT as input,
and outputs the description of TMyeyy .

4. (Downward self-reducibility.) There is a max(n, h)-h¢ -time algorithm Base that takes
inputs £, TM € {0,1}#18 T qnd @ € T3 outputs Py (7).

2ZFor simplicity, we will ignore the complexity of computing id and its inverse since it is negligible.

187

Also, there is an h€ -time oracle algorithm DSR that takes inputs E_: T™ € {0,1}"18T,
i€{2,....d}, and @ € F*™, and oracle access to a polynomial P F3m F, such that

when it is given P;_1 as the oracle, it outputs P;(0).

Proof. Recall that we use 7 to denote the input parameters (k,T,d,n, h,p). We will follow the
proof of [CT21a, Proposition 4.7], which in turn follows [Gol17] (see also [Gol18]). In the follow-
ing, we will simply use C to denote the (low-depth) circuit Ctp = Circuit[T, k - log T, n, n](TM)
for notational convenience, but we stress that C' depends on both 7 and TM (and so does the

later circuits constructed from C).

Construction of a Highly Uniform Circuit D

We first construct a circuit D that has better uniformity and preserves the functional-
ity of C, ie, D(1") = C(1"). Given input 1", D first computes a description of C' =
Circuit[T, k - log T, n,n](TM) (represented as a T'x T x T tensor) and then computes the Eval
function ((C),n,d) — C(1"). Let s := k-logT and s := O(s + log(3logT)) be such that each
configuration of TM on 3log T-bit inputs can be described by s bits.

The circuit D is constructed by composing the following three sub-circuits. Let u € N be a
sufficiently large universal constant. We will describe and analyse their complexities (or state
the complexity bounds proved in [CT21a, Goll17]).

1. (Computing the adjacency matrices for configurations.) The first circuit DM
takes n bits as input (which are supposed to be 1), outputs a list of 7% matrices from
{0, I}QS,XQS/, such that the (u,v,w)-th matrix®® M®v%) satisfies the following condition:
for every v,~ € {0,1}*, M@v®) [y 4] = 1 if and only if Ape(TM, s, (u, v, w),~,v') (i.e.,
~' is the configuration obtained by running TM for one step on configuration v and input
(u, v, w) with space bound s). Recall we assumed that if « is the accepting or the rejecting

configuration, then its next configuration is -y itself.

Complexity of D). DM can be implemented by a projection (i.e., depth dpay = 2 and
size Ty = T3 - 22“”/).2/1 Moreover, from Fact 6.2.2, given 7 and TM, in polynomial time

we can compute a Turing machine TM) € {0, 1}(stm)loeT guch that
Circuit| Ty, 8 pay, n, T2 - 228’} (TMp)) = DY,

where spa) = p- s

2. (Computing the adjacency relation tensor of C' via matrix multiplication.) The

second circuit D@ takes a list of T matrices from {0, 1}23 X2® as input, and outputs a

tensor from {0, 1}7>T*T followed by the encoding of a pair (n,d).
In more detail, given the output of DM (1), for every (u,v,w) € [T]?, it determines
whether TM(u,v,w) = 1 by computing (M®¥%))2* which can be done by repeated

squaring s’ times. This gives the adjacent relation tensor of C.

23We use (u,v,w) € [T]? to denote the integer (v — 1)T? 4 (v —)T +w € [T?].
24Note that we can implement projections and restrictions of input bits to 0 and 1 using two layers of NAND
gates.

188

2

Complexity of D?). D® can be implemented by a circuit of depth djye = - (s')? and

size Tz = T2 - 245" Moreover, from [CT21a,Goll17] (note that D) does not depend on
TM), given Z in polynomial time we can compute a Turing machine TM) € {0, 1jplogT
such that

Circuit[TD<2),sD(2),T3 92 T3 4 |(n, d)|] (TMp)) = D®,
where sp@) = p- 5.

3. (Computing Eval.) The final circuit D®) takes ((C), n, d) as input, and outputs Eval((C), n, d).
Complexity of D®). D®) can be implemented by a circuit of depth dp@) = p-d-logT
and size Ty = T*. Moreover, from [CT21a, Goll7| (note that D®) does not depend on
TM), given 7 in polynomial-time we can compute a Turing machine TM) € {0, 1}#108T
such that
Circuit[Tph@), spe, T + | (n, d)|,n] (TMp@) = DO,

where spe) = p- s

Formally, we have

D=D®oD? s pl)

Let 8 € N be a sufficiently large constant such that g > 100u. The following claim summa-

rizes the required properties of D for us.

Claim 6.5.2. The following properties about the circuit D are true.
1. The depth of D is dp = f - (k? -1og? T +d -log T) and the width of D is T, = 5%,

2. The layered adjacency relation function ®: [dp] x {0,1}31°6(Tp) — (0,1} of D can be
decided by a formula of depth O(loglogT) and size O(log3T). Moreover, there is an
algorithm Ag: that, given 7 and TM as input, outputs the formula above in O(klogT)

space.

3. There is a Turing machine TMp € {0,1}°%18 T sych that
Circuit[Tp, sp,n,n](TMp) = D,

where Tp = T}, - (dp + 1) and sp = BrlogT. Moreover, given 7 and TM as wput, the

description of TMp can be computed in polynomial time.

Proof of Claim 6.5.2. By construction, the size of D is bounded by poly(T')-20() < TO®) (recall
that s’ = O(s + log(3logT)) and s = klogT), and its depth is bounded by O(s? + d - log T).
The first bullet then follows directly from the fact that § is sufficiently large.

Recall that the D) part of D has depth dpay = 2. To see the complexity of computing
®'(i, —, —, —) for i > 2, we note that the layers corresponding to D and D®) do not depend on

TM. Hence the complexity of computing their layered adjacent relation function follows directly

?Note that Circuit generates the unlayered version of D of size T}, - (dp + 1), Without loss of generality we
can assume the first 7" gates are on the first layer, the next T gates are on the second layer, and so on.

189

from [CT21a, Claim 4.7.1].°° Also, the complexity of computing ®'(i, —, —, —) for i € {1,2}
follows directly from Fact 6.2.2. To see the moreover part, again, the case for i > 2 follows
from [CT21a, Claim 4.7.1], and the case for i € {1,2} follows from Fact 6.2.2.%7

Finally, to obtain the algorithm that computes TMp, we simply apply the composition
Acomp (from Fact 6.2.4) twice to compose the circuits DM D@ DO in order and add some
dummy gates to the circuit. The space bound and the description size bound can also be verified

easily. o

Arithmetisation of D

The construction of the polynomials and their corresponding algorithms can then be done
in the same way as in [CT21a|. We only state the necessary changes to establish our theorem.

Note that |F|™ = p™ < poly(h*™) < TOB®) < TOK) (B is a universal constant), from our
assumption that p < h27 and our choice of m.

First, we need an arithmetisation of each @ := ®'(i,—, —, —).
Claim 6.5.3. Fori € [dp] there exists a polynomial ®;: F3™ — F that satisfies the following:

1. For every (W, @,0) = 21, ..., z3m € H>" we have that ®;(,d 17) =1 zf gate W in the ith
layer of D is fed by gates @i and ¥ in the (i— 1) layer of D, and ®;(%,,) = 0 otherwise.

2. The degree 0f<i)' is at most O(h- log® T). Moreover, there exists an algorithm that on input

—

7, TM, i, 8, @, 7, computes ®; (W, 1, V) in poly(h) time.

3. For a universal constant ¢y > 1, there exists a circuit Cg of size Ty = T" and depth
c1k-log T that on input i € [dp) outputs t1(®;) € FF™™ (represented as a Boolean string).
Moreover, there is a polynomial-time algorithm Ag that takes 7 and TM € {0, l}nlogT as
input, and outputs the description of a Turing machine TMg € {0, 1}01“1°gT such that

Cy, = Circuit[Ty, ¢1 - klog T, log(dp + 1), IF>™ log F[](TMy).
Proof Sketch of Claim 6.5.5. We first define ®; and then establish each item separately.

Construction of CTD Let Fy be the O(loglog T)-depth O(log® T)-size formula computing
®': [dp] x {0,1}%1°8T> — {0, 1} from Claim 6.5.2. For every i € [dp], let F; be the restriction
of Fg by fixing the first input to be . Then, we arithmetise F; by replacing every NAND gate
in F; by an arithmetic gate NAND : F2 — F computing NAND(u,v) := 1 — uv. Denote the new
formula (which is now an arithmetic formula) by Ey

For each j, let mj: H — {0,1} be the mapping that maps z € H to the j-th bit of the
encoding of z. Note that since H consists of the smallest h elements in F, we know that
m(z) = (m1(2), ..., Mogn(2)) is a bijection between H and {0, 1}°8" %

26We note that although [CT21a, Goll7] only claims a polylog(T') bound on the formula size, the formula is
indeed very simple and its size and depth can be easily bounded by O(log® T) and O(loglogT), respectively;
see [Goll7, Page 8-9] for details.

2"Strictly speaking, we need to combine the formulas for two cases to obtain a single formula for ®. The
overhead of doing so is negligible, thus we omit this discussion here.

Z8More specifically, by our specific encoding of H as strings from {0, 1}'°8IFl| 7(z) is simply the first log h bits
of the encoding of z, hence it can be computed by a projection.

190

For each j € [logh], let ;: F — F be the unique degree-(h — 1) extension of 7; to [F, that
can be computed via standard interpolation via logspace-uniform circuits of O(log(h-log [F|)) =
O(log T') depth and polylog(T') size [HAB02, HV06] (see [CT21a, Claim 4.7.2] for the details).
We also let 7(2) = (71(2), ..., Togn(2)). Then, we set

(I%‘(Zl, ce 7Z3m) = Fl(fr(zl), fr(ZQ), . ,ﬁ(23m))

We also use F, s, to denote the arithmetic formula on the right side above that computes the
formula <i>z

From the construction above, the first two items of the claim can be proved identically
as |[CT21a, Claim 4.7.2]. It remains to establish the third item.

Construction of Cz. We hardwire the description of Fg/ into Cg. The circuit Cy takes
i € [dp] as input, performs the above computation to obtain a description of the arithmetic
formula F, b, and then outputs the truth table of F, b, by evaluating it on all vectors in F3™,

In more detail, computing the description of F(i,i from the description of Fg and 7 can be
done in O(logT') depth and polylog(T) size. C§ then evaluates Fy on all vectors from F™,
which can be done in poly(|F|™) size and O(log(|F|™)) depth. The third bullet (except for the
moreover part) then follows by setting ¢; to be sufficiently large and recalling that |F|™ < TOBr),

Establishing the uniformity. Finally, we establish the moreover part of the third bullet.
Let pg € N be a sufficiently large universal constant that depends on the space complexity of
the algorithm Ag from Claim 6.5.2.

Our algorithm A g works as follows:

1. We first construct a Turing machine Tl\/I[l] with £ and TM hardwired. TM[l] corresponds
to a circuit Cy) that takes ¢ € [dp] as input and outputs ¢ together with the description
of Fgr.? Cpyy has depth dj;) = O(1) and size T};) = polylog(T'). Let s = pg - klogT, we
have

C[l] = Circuit [Tm, sm,log dp,logdp + ‘Fq;/” (TM[l])

and TM[;; has description size at most [TM| + pg, -log T = (k + pg) - log T
Here, we crucially use the fact that the algorithm Ags from Claim 6.5.2 runs in O(klogT)

space (and pg is sufficiently large).

2. Then we construct a Turing machine TMpy that corresponds to a circuit Cy) that takes
i € [dp] together with the description of Fg as input and outputs tt(®;). By the discussion
above, from 7 we can compute a Turing machine TMpy € {0,1}#e" 18T guch that for

Tjg) = poly([F|™) < T#e", djg) = O(log(|F|™)) < pgr -1og T, sy = pgrlog T, we have
0[2] = CirCUit[T[z], 3[2],10g dD + ’F@/‘, ‘F’gm] (TM[Q]) s

and Cg) has depth d[y.

2Precisely, TMy) simulates Ag on input 7 and TM to construct a projection that maps i to (i, Fgr).

191

3. Finally, A; composes C[y) and Cg) by applying Fact 6.2.4 and outputs the obtained Turing

machine as TMg. Setting c; sufficiently large completes the proof. o

Then we define the following polynomials, according to [CT21a, Definition 4.6].

Input polynomial. Let ag: H™ — {0,1} represent the string 10" ~", and let a¢: F™ — F
be the “arithmetisation” of «g, defined by

b (W) = > 5:(10) - ap(2).

zeH™ x {0}

Here, m’ < m is the minimal integer such that > n, and dz is Kronecker’s delta function

(i~e'7 65(717) = ng[m] HCLEH\{Zj} %).

Layer polynomials. For each i € [dp], let a;: H™ — {0, 1} represent the values of the gates
at the ' layer of D in the computation of D(1") (with zeroes in locations that do not index
valid gates). Recall that we consider circuits consisting of NAND gates, where for a,b € {0,1}
we have NAND(a,b) =1 —a-b. We define &;: F™ — F as

Gi(w) = Y (i, i, 5) - (1 — i1 (i) - Gi1 (D)) (6.5)

@,0e Hm

Note that &; is the “arithmetisation” of «; in the sense that for every @ € H™, o, (W) = &; ().
Sumcheck polynomials. For each i € [dp], let &;o: F>™ — F be the polynomial

Gi0(W, 01, ..., 00m) = D, (48, 01,y Omt,.2m) - (L= Gi—1(01,.m) - @i1(Ome1,..2m)) - (6.6)

For every j € [2m], let &; j: F3™J — F be the polynomial

dm-(lﬁ, Oy ey O'Qm,j) =

Z (W, 01, s Ot om) - (1 — Qi1(01,..m) - i1 (Ot 2m)) s (6.7)

O2m—j+1y02mEH
where o) . g4r = Ok, Okt1, ..., Ok4r. 1t is easy to check that &; oy = &;.

We are now ready to define the sequence (P;);cia] = <P1Z:TM)' @ We set d' := (2m + 1) -
igld
dp + 1 and

(Picla = (G, G105 - -, @1 2m, G2,05 - -+, G2.2m, - -+ Qdp 05 - - -5 Qi 2m) -

For those ¢&; ; (and ¢yg) that take less than 3m variables, we add some dummy variables at the
end to make all polynomials take exactly 3m variables.

From the definitions of m and dp, we have m < 3- Bk -logT + 1 and dp = 3 - (x> log? T +
d-logT). Hence, we have d’ = (2m + 1) -dp 4+ 1 < ck -1og> T - (d + k*log T) as desired.*’

30We can add identical polynomials at the end to make d’ exactly cx -log? T - (d + x?log T) as in the theorem
statement.

192

Below we verify the desired properties of the sequence (F);c|a-

Arithmetic setting, faithful representation, and downward self-reducibility. First,
the degree bounds of all these polynomials follow directly from their definitions and from the
degree bound on ®; (from Claim 6.5.3). The faithful representation property also follows directly
from the definition of a4, and &g, 2m = Gq,. Finally, the downward self-reducibility of the
polynomials follows from the complexity of computing b, (from Claim 6.5.3) and the definitions

of these polynomials, similarly to the proof of [CT21a, Proposition 4.7].

Complexity of the Polynomials

Now we verify the complexity of computing these polynomials. The argument below is

straightforward but tedious. We first give a high-level overview.

High-level overview of the construction. To construct the circuit Cpoyy that maps i’ € [d']

to tt(F;), we will construct three sub-circuits Cl,, Cit.6, and Cypign such that:

1. C, maps i € [d] to (tt(as—1),i,7). Here, if i > 2, then i € {1,...,dp} and j €
{0,1,...,2m} satisfies that Py = &;; and tt(a;_1) € {0,1}"" denotes the values of the
gates at the i-th layer of D. If ¢/ = 1, then we consider ¢ = j = 0 and C, outputs
(tt(ap),0,0).

2. Cyi g maps (tt(ai-1),4,7) to (tt(ai_l),i,j,tt(@i)).

3. Carith maps (tt(ey_1), 4,7, t6(9;)) to tt(dy ;) € FF™.

Chroly is then simply Cyjith © Cyy_4 © Co. To compute the Turing machine TM;), that corre-
sponds to Cpely, we construct the Turing machines TMq, TM_, and TMyitn corresponding to

the three circuit above, and compose them using Fact 6.2.4.

Construction of C, and TM,. First, we construct a circuit C,, that takes as input ¢’ € [d’]
and outputs (tt(a;—1),i,7). To construct C,, we first compute ¢ and j from i’ using basic
arithmetic, and then truncate D up to its i-th layer. It is easy to see that given the Turing
machine TMp that specifies the circuit D, in polynomial-time we can construct a Turing machine
TM,, € {0,1}T™bl+# guch that (in what follows, we write |(i, j)| = log(dp + 1) + log(2m + 1)
for convenience):

Circuit[Ty, s, log(d'), K™ + |{i, j)|]|(TMy) = C4,

where T, = p - Tp, sq = 2sp. Moreover, C,, has depth at most d, =2 - dp.

Construction of C, s and TM. 5. Let ¢; be the universal constant from Claim 6.5.3.
Next we construct a circuit Cy,_g that on input (tt(a;-1),4,7), outputs (tt(a;—1), i, j, t6(D;)).
It is straightforward to obtain this circuit from the circuit Cy constructed in Claim 6.5.3. In
other words, given ¢ and TMg € {0,1}9%18T a5 input (where TMy is the Turing machine

that generates Cj as defined in Claim 6.5.3), we can compute a Turing machine TM,, 5 €

193

{0, 1}%e1rloe T guch that
Circuit[Tyy g, Spp-g, B + (1,)], B™ + |(i,)| + |F[*™ log [F|}(TMyy_g) = Cyy s
where Ty, g = T?", sy 4 = 2c161logT. Moreover, Cy, g has depth dy, g = 2c1k1ogT.
Construction of Cyitpn and TMyn. We construct a circuit Cyitp that maps
(tt (1), 4, 5, tE (D))

to tt(dy ;) € FIFF™, (Recall that throughout this proof we view &; ; as a 3m-variable polynomial
by adding dummy variables at the end.) Suppose that ¢ > 1 (the base case i = j = 0 can be
handled similarly). If j = 0, Cyith computes tt(d; o) using Equation 6.6, otherwise (j > 1)
Clarith computes tt(d; ;) using Equation 6.7. (Note that both Equation 6.6 and Equation 6.7
only depend on the values of &;_1 over H™, which is exactly tt(«;_1) due to our arithmetisation.)
Since arithmetic operations over F (including iterated addition, multiplication, and inverse) are
in logspace-uniform NC!' [HAB02, HV06],?! it follows that Cyitn is of Thrith := poly(|F|™) size
and dayith := O(mlog |F|) depth. Moreover, Cyyith does not depend on TM, and we can compute
a Turing machine TM®™ from ¢ in time polylog(T) such that

Circuit[Tarith, Sarith, 1™ + |(3,)| + [F|*™ log |F|, [F|*™ log [F|}(TM®™") = Cyyin,

where Syith = i - SrlogT.
Composing TMg, TM¢, 4, and TMitn by applying Fact 6.2.4 twice gives the desired Turing

machine TM;), that computes the desired circuit Cpoly .

Complexity of Cpoy and TMy,)y. Finally, we verify that TMy), and Cpoy satisfy our require-
ments. First, from the discussions above, we can bound the size of Cpoly by To + Ty g + Tarith <
Tholy = 2¢m18 T hy picking a sufficiently large c¢. Note that mlog |F| = log(p™) < O(klogT).
The depth of Cpely can be bounded by dpoly = do + diy_g + darith < ¢ (k? -1og®T +d -logT) as
desired.

From Fact 6.2.4, we have that
| TMpoly| < 100 - (]Tl\/la] + |[TMeeg| + [TMarit| + log(][ﬁ'|3m)) <c-klogT = logTpely
by setting c sufficiently large. The space complexity of TM,), can be bounded by
100 - (S + Sgyg + Sarith) < ¢+ klogT = log Tholy

as well. This completes the proof. O

311t is in fact in logtime-uniform TC®, but here we only need it to be in logspace-uniform NC*.

194

6.5.2 Improved Chen—Tell Generator: Proof of Theorem 6.3.1

Now we are ready to prove Theorem 6.3.1 by plugging every polynomial from Theorem 6.5.1

into our modified Shaltiel-Umans generator (Theorem 6.4.1).

Proof of Theorem 6.5.1. We first observe that we can assume p = 1 without loss of generality.
To see how the general case follows from the case that p = 1, letting M’ = MP, we can simply
define Hth’T7 A, M sp 85 the set of strings obtained by truncating every string from H%tm dM 1 1O
their first M bits. The reconstruction algorithm R%t,T,d, M,p €L then be obtained by slightly
modifying R& 7 ;v -
Let
b = (n,T,d, M, k1)

be the input parameters from the theorem statement, and ¢ be a sufficiently large universal
constant. From the assumption, we have n < T,d < T, and ¢-logT < M < T'/¢. Let

Ctm = Circuit[T, k - log T, n, n](TM).

The layered-polynomial representation. Let co, ¢, 8 be the universal constants from The-
orem 6.5.1. Let h be the smallest nice power of 2 such that h > M, p := h*", m be the smallest
power of 3 such that h™ > TP8% and F = F,. Note that p is also a nice power of 2 and h < M3,

We will invoke Theorem 6.5.1 with input parameters

—

£p0|y = (K'a T7 d7 n, h7p)

Note that from their definitions and our assumption M > clogT, we have logT < h < p <
h2T < M® < T (assuming c > 81 is large enough), meaning that the requirements on the input
parameters of Theorem 6.5.1 are satisfied.

We first apply Theorem 6.5.1 with input parameters £_;,o|y and Turing machine TM to obtain
d' = cok -1og? T - (d + k?log T) polynomials (Pi)igja) = (PZ'ZTMLe[d/]'
Hitting set H. Let H'®¢ and R denote the H and R algorithms from Theorem 6.4.1,
respectively.®? Let A = ¢ohlog®(T),

ZI’ayer = (p7 3m7 M; A)

be the input parameters when applying Theorem 6.4.1. We can verify that p > AZ(3m)"M?,
i.e., the requirement on the input parameters of Theorem 6.4.1 is satisfied.
We then define H%t (TM) as the union of ngi’yer(Pi) for every i € [d']. Next, we analyse the
ct layer

complexity of computing H%t (TM). First, from Theorem 6.5.1, letting Tpoy = T°°" and dpoly =
ct
co- (dlog T + k% log? T), there is a polynomial-time algorithm AZf’Iy that takes TM € {0, 1}%lsT

32The superscript layer highlights the fact that they are applied to each layer of the polynomial representation
of the circuit.

195

as input, and outputs a description of Turing machine TMyqy, € {0, 1}198 Tooly such that for
Choly = Circuit[Tholy, 10g Tpoly; log &', |F[*™ - log [F|] (TMpoly)

it holds that (1) for every i € [d'] Cpoly (i) = tt(P;) and (2) Cpoly has depth dpoly-

Second, from Theorem 6.4.1, there is a logspace-uniform circuit family with input parameters
aayer7 size poly(p™), and depth poly(log p, m, M) such that for every i € [d'], it outputs HZ;:(R)
when taking tt(P;) as input. Note that poly(p™) < T9¥%) and poly(log p, m, M) < poly(M).
Applying Fact 6.2.4 to compose the machines above and enumerating over all i € [d'],*® we

obtain the desired circuit Cy (note that c is sufficiently large).

Reconstruction R, For every i € {2,...,d'}, the reconstruction algorithm R attempts to
construct a poly(p, m,log(Md'))-size D-oracle circuit F; that computes P;. A formal description

of R is as follows:

o We start with the circuit By (%) = Base(f, TM, Z) that computes the polynomial P;.
e Forevery i € {2,...,d'}:

1. We first construct a procedure]5z computing P; using the D-oracle circuit E£ , for

P,_; and the downward self-reducibility for P;. In particular, on input & € F3™, let
P,(%) := DSR1(2, TM, i, 7).

2. Run (R'aye')e?’Pi which outputs a D-oracle circuit ElD in poly(p, m, M) time.

layer

3. Let t := ¢1 - m - logp for a sufficiently large constant ¢; > 1. Take ¢ i.i.d. samples
T1,..., & from F3™. Check that for every j € [t], EZD(fJ) = é(fj) If any condition
does not hold, the algorithm outputs L and aborts immediately.

4. Let E; be a D-oracle circuit constructed as follows:

(a) Draw t = ©(mlogp) i.i.d. samples of random strings ri,...,r; used by PCorr.

(Recall PCorr is the self-corrector for low-degree polynomials in Theorem 6.4.8.)

(b) Set E;(Z) = MAJyep PCorri(p, 3m, A, & ry) for all & € F™,
e For every j € [n], output EX(id(j), 0°™).

For ease of notation, for every i € {2,...,d'}, we use 7 to denote the randomness used
when running the algorithm above with ¢ = ¢/, and we use 7<; to denote 71, ..., 7. Also, if E; is
not constructed by the algorithm (meaning that the algorithm aborts before constructing E;),
we set F; = L.

From Theorem 6.4.8, Theorem 6.4.1, and Theorem 6.5.1, the running time of the algorithm

above can be bounded by

poly(p, m, h,log(Md')) - (d' +n) < poly(M) - (d' +n) < poly(M) - (d+ n).

33Enumerating all 4 € [d'] only adds a O(logd’) additive overhead in depth and a O(d’) multiplicative blowup
in size, which are negligible.

196

The last inequality follows from the fact that M > logT and hence d' = cok - log? T - (d +
k?log T) < poly(M)-d. Now we establish the soundness and completeness of the reconstruction.

We show the following claim.

Claim 6.5.4. Fiz D: {0,1}M — {0,1}. For everyi € {2,...,d'}, for every fired 7<;—1, if EP,
computes P;_1 or i = 2% then with probability at least 1 — 1/p™ over 7; the following holds:

e (Soundness.) If E; # L, then EP computes P;.

e (Completeness.) If D (1/M)-avoids H2* (P;), then EP computes P;.

layer

Before establishing the claim, we show that it implies the completeness and soundness of
the reconstruction. To see the soundness, note that by induction over all i € {2,...,d'}, with
probability at least 1 —d’/p™ > 9/10, it holds that if Ey # L, then Ey computes Py, meaning
the reconstruction outputs the correct output Ctm(1™). To see the completeness, note that an
oracle D: {0,1}™ — {0,1} that (1/M)-avoids H?(TM) also (1/M)-avoids ngfyer(Pi) for every

layer

i € [d']. Hence, by induction over i € {2,...,d'}, with probability at least 1 — d’/p™ > 9/10, it
holds that E; computes P; for every i € {2,...,d'}. Thus the reconstruction will output Ctm(1™).
The success probability 9/10 can be amplified to 1 -2~ by running the reconstruction algorithm
O(M) times independently and outputting the answer that occurs most frequently.

Finally, we prove the claim.

Proof of Claim 6.5.4. We first establish the soundness. From the assumption that E£ | com-
putes P;_1 or ¢ = 2 and the downward self-reducibility property of Theorem 6.5.1, it follows
that]3Z computes P;. Therefore, F; # | means that EZ has passed the test in Step 3, meaning
that with probability at least 1 — p~%™ over the randomness in Step 3, it holds that E; agrees
P; on at least 3/4 fraction of inputs from F3™. This then means that with probability at least
1 — p=3™ over the randomness in Step 4(a), we have EiD computes P;.

The completeness follows immediately from Theorem 6.4.1. (Here EP already computes P;
with probability at least 1 — 1/p™.) o

This completes the proof of Theorem 6.3.1. O

34Note that T<i—1 determines E;_1.

197

Chapter 7

Near-Maximum Circuit Lower Bounds
and New Algorithms for Range

Avoidance

7.1 Introduction

Proving lower bounds against non-uniform computation (i.e., circuit lower bounds) is one
of the most important challenges in theoretical computer science. From Shannon’s counting
argument [Sha49, FMO05]|, we know that almost all n-bit Boolean functions have near-mazimum
(2" /n) circuit complexity.! Therefore, the task of proving circuit lower bounds is simply to

pinpoint one such hard function. More formally, one fundamental question is:

What is the smallest complexity class that contains a language of exponential (29(™)

circuit complexity?

Compared with super-polynomial lower bounds, exponential lower bounds are interesting in
their own right for the following reasons. First, an exponential lower bound would make Shan-
non’s argument fully constructive. Second, exponential lower bounds have more applications
than super-polynomial lower bounds: For example, if one can show that E has no 20(1)_gize
circuits, then we would obtain polynomial-time derandomisation of BPP [NW94,TW97|, while
super-polynomial lower bounds such as EXP ¢ P /o1, only imply subexponential time deran-
domisation of BPP.?

Unfortunately, despite its importance, our knowledge about exponential lower bounds is quite

limited. Kannan [Kan82| showed that there is a function in ¥3E NII3E that requires maximum

! All n-input Boolean functions can be computed by a circuit of size (1 + % + O(£))2" /n [Lup58, FMO5],
while most Boolean functions require circuits of size (1 + 10% — O(1))2"/n [FMO05]. Hence, we say an n-bit
Boolean function has near-mazimum circuit complexity if its circuit complexity is at least 2" /n.

2E = DTIME[29™)] denotes single-exponential time and EXP = DTIME[2”O(1)] denotes ezponential time;
classes such as EN? and EXPMP are defined analogously. Exponential time and single-exponential time are basically
interchangeable in the context of super-polynomial lower bounds (by a padding argument); the exponential lower
bounds proven in this chapter will be stated for single-exponential time classes since this makes our results
stronger. Below, ¥3E and IIsE denote the exponential-time versions of 3P = NPNPNP and IIsP = coNPNPNP7
respectively.

198

circuit complexity; the complexity of the hard function was later improved to AsE = E*2P by
Miltersen, Vinodchandran, and Watanabe [MVW99], via a simple binary search argument. This
is essentially all we know regarding exponential circuit lower bounds.?

We remark that Kannan [Kan82, Theorem 4| claimed that ¥9E N IIsE requires exponential
circuit complexity, but [MVW99] pointed out a gap in Kannan’s proof, and suggested that
exponential lower bounds for YoE N II3E were “reopened and considered an open problem.”
Recently, Vyas and Williams [VW23| emphasised our lack of knowledge regarding the circuit
complexity of XoEXP, even with respect to relativising proof techniques. In particular, the
following question has been open for at least 20 years (indeed, if we count from [Kan82], it

would be at least 40 years):

Open Problem 7.1.1. Can we prove that SoEXP ¢ SIZE[2°"] for some absolute constant e > 0,

or at least show a relativisation barrier for proving such a lower bound?

The half-exponential barrier. There is a richer literature regarding super-polynomial lower
bounds than exponential lower bounds. Kannan [Kan82] proved that the class ¥3E N IIoE
does not have polynomial-size circuits. Subsequent works proved super-polynomial circuit lower
bounds for exponential-time complexity classes such as ZPEXPNP [KW98, BCG196], SoEXP
[CCHOO05, Cai07], PEXP [Vin05, Aar06], and MAEXP [BFT98, San09].

Unfortunately, all these works fail to prove exponential lower bounds. All of their proofs go
through certain Karp—Lipton collapses [KL80]; such a proof strategy runs into a so-called “half-
exponential barrier”, preventing us from getting exponential lower bounds. See Section 7.1.4 for

a detailed discussion.

7.1.1 Our Results
New near-maximum circuit lower bounds

In this work, we overcome the half-exponential barrier mentioned above and resolve Open
Problem 7.1.1 by showing that both ¥sE and (X2E N IIsE)/; require near-maximum (2"/n)

circuit complexity. Moreover, our proof indeed relativises:

Theorem 7.1.2. 33E ¢ SIZE[2"/n] and (X2E N1I2E) /1 ¢ SIZE[2™/n]. Moreover, they hold in

every relativised world.

Up to one bit of advice, we finally provide a proof of Kannan’s original claim in [Kan82,
Theorem 4|. Moreover, with some more work, we extend our lower bounds to the smaller
complexity class SoE/1 (see Definition 7.2.1 for a formal definition), again with a relativising

proof:

Theorem 7.1.3. SoE/1 ¢ SIZE[2"/n]. Moreover, this holds in every relativised world.

3We also mention that Hirahara, Lu, and Ren [HLR23] recently proved that for every constant ¢ > 0,
BPEMCSP /2¢n requires near-maximum circuit complexity, where MCSP is the Minimum Circuit Size Problem
[KCO00]. However, the hard function they constructed requires subexponentially (2°™) many advice bits to de-
scribe.

199

The symmetric time class SsE. S3E can be seen as a “randomised” version of ENP since
it is sandwiched between ENP and ZPENP: it is easy to show that ENP C S,E [RS98], and it
is also known that SoE C ZPENP [Cai07]. We also note that under plausible derandomisation

ENP requires 29" -size SAT-oracle circuits), all three classes simply collapse

assumptions (e.g.,
to ENP [KvMO2].
Hence, our results also imply a near-maximum circuit lower bound for the class ZPENP /1 C

(X2E NTI3E) /1. This vastly improves the previous lower bound for AsE = E*2P.

Corollary 7.1.4. ZPENP /| ¢ SIZE[2"/n]. Moreover, this holds in every relativised world.

New algorithms for the range avoidance problem

Actually, our circuit lower bounds are implied by our new algorithms for solving the range

avoidance problem. There is a trivial FZPPNP

algorithm solving AvOID: randomly generate
strings y € {0,1}"*! and output the first y that is outside the range of C' (note that we need
an NP oracle to verify if y ¢ Range(C)). Recall that, as demonstrated by Korten [Kor21,
Section 3|, AvOID captures the complexity of explicit construction problems whose solutions
are guaranteed to exist by the probabilistic method (more precisely, the dual weak pigeonhole
principle [KraOlb, Jef04]), in the sense that constructing such objects reduces to Avoip. This
includes many important objects in mathematics and theoretical computer science, including
Ramsey graphs [Erd59], rigid matrices [Val77, GLW22, GGNS23|, two-source extractors [CZ19,
Li23], linear codes [GLW22], hard truth tables [Kor21|, and strings with maximum time-bounded
Kolmogorov complexity (i.e., KP°Y-random strings) [RSW22|. Hence, derandomising the trivial

FZPPNP algorithm for AvoID would imply explicit constructions for all these important objects.

Our results: new pseudodeterministic algorithms for Avoip. We show that, uncondi-
tionally, the trivial FZPPNP algorithm for AvoID can be made pseudodeterministic on infinitely
many input lengths. A pseudodeterministic algorithm [GG11] is a randomised algorithm that

outputs the same canonical answer on most computational paths. In particular, we have:

Theorem 7.1.5. For every constant d > 1, there is a randomised algorithm A with an NP oracle
such that the following holds for infinitely many integers n. For every circuit C: {0,1}" —
{0,13"F of size at most n?, there is a string yc € {0,1}" \ Range(C) such that A(C) either
outputs yo or L, and the probability (over the internal randomness of A) that A(C) outputs yc

is at least 2/3. Moreover, this theorem holds in every relativised world.

As a corollary, for every problem in APEPP, we obtain zero-error pseudodeterministic con-

structions with an NP oracle and one bit of advice (FZPPNP /1) that works infinitely often®:

Corollary 7.1.6 (Informal). There are infinitely-often zero-error pseudodeterministic construc-
tions for the following objects with an NP oracle and one bit of advice: Ramsey graphs, rigid

matrices, two-source extractors, linear codes, hard truth tables, and KP°Y -random strings.

4The one-bit advice encodes whether our algorithm succeeds on a given input length; it is needed since on
bad input lengths, our algorithm might not be pseudodeterministic (i.e., there may not be a canonical answer
that is outputted with high probability).

200

Actually, we obtain single-valued FSoP/; algorithms for the explicit construction problems
above (see Definition 7.2.2), and the pseudodeterministic FZPPNP/; algorithms follow from
Cai’s theorem that SoP C ZPPNP [Cai07]. We stated them as pseudodeterministic FZPPNP /
algorithms since this notion is better known than the notion of single-valued FSoP /4 algorithms.

Theorem 7.1.5 is tantalizingly close to an infinitely-often FPNP algorithm for AvoIp (with
the only caveat of being zero-error instead of being completely deterministic). However, since
an FPNP algorithm for range avoidance would imply near-maximum circuit lower bounds for
ENP. we expect that it would require fundamentally new ideas to completely derandomise our
algorithm. Previously, Hirahara, Lu, and Ren [HLR23, Theorem 36| presented an infinitely-often

pseudodeterministic FZPPNP

algorithm for the range avoidance problem using n® bits of advice,
for any small constant € > 0. Our result improves the above in two aspects: first, we reduce the

number of advice bits to 1; second, our techniques relativise but their techniques do not.

Lower bounds against non-uniform computation with maximum advice length. Fi-
nally, our results also imply lower bounds against non-uniform computation with maximum
advice length. We mention this corollary because it is a stronger statement than circuit lower
bounds, and similar lower bounds appeared recently in the literature of super-fast derandomi-
sation [CT21b].

Corollary 7.1.7. For every al(n) > w(1) and any constant k > 1, S2E/1 ¢ TIME[2¥] /30 ().
The same holds for YoE, (32E NTI2E) /1, and ZPENP/1 in place of SoE/1. Moreover, this holds

m every relativised world.

7.1.2 Intuitions

In the following, we present some high-level intuitions for our new circuit lower bounds.

Perspective: single-valued constructions

A key perspective in this chapter is to view circuit lower bounds (for exponential-time classes)
as single-valued constructions of hard truth tables. This perspective is folklore; it was also
emphasised in recent papers on the range avoidance problem [Kor21, RSW22].

Let IT C {0, 1}* be an e-dense property, i.e., for every integer N € N, [IIy| > &-2V. (In what
follows, we use Il := IIN{0, 1}N to denote the length-N slice of I1.) As a concrete example, let
IT}.rq be the set of hard truth tables, i.e., a string ¢t € Ily,.q if and only if it is the truth table of
a function f: {0,1}" — {0, 1} whose circuit complexity is at least 2" /n, where n := log N. (We
assume that n :=log N is an integer.) Shannon’s argument [Sha49, FMO05| shows that I} ,q is

a 1/2-dense property. We are interested in the following question:
What is the complexity of single-valued constructions for any string in IT,,q7

Here, informally speaking, a computation is single-valued if each of its computational paths
either fails or outputs the same value. For example, an NP machine M is a single-valued
construction for IT if there is a “canonical” string y € II such that (1) M outputs y on every
accepting computational path; (2) M has at least one accepting computational path. (That is,
it is an NPSV construction in the sense of [BLS85, FHOS93, Sel94, HNOS96].) Similarly, a BPP

201

machine M is a single-valued construction for II if there is a “canonical” string y € II such that M
outputs y on most (say > 2/3 fraction of) computational paths. (In other words, single-valued
ZPP and BPP constructions are another name for pseudodeterministic constructions [GG11].)°

Hence, the task of proving circuit lower bounds is equivalent to the task of defining, i.e.,
single-value constructing, a hard function, in the smallest possible complexity class. For ex-
ample, a single-valued BPP construction (i.e., pseudodeterministic construction) for Ily,q is
equivalent to the circuit lower bound BPE ¢ i.0.-SIZE[2"/n].° In this regard, the previous
near-maximum circuit lower bound for AsE := E*2P [MVW99] can be summarised in one sen-
tence: The lexicographically first string in Il,..q can be constructed in AP := p2P (which is

necessarily single-valued).

Reduction to AvoID. It was observed in [KKMP21, Kor21| that explicit construction of
elements from Tly..q is a special case of range avoidance: Let TT: {0,1}¥~! — {0,1}"V (here
N = 2™) be a circuit that maps the description of a 2" /n-size circuit into its 2"-length truth table
(by [FMO5], this circuit can be encoded by N —1 bits). Hence, a single-valued algorithm solving
AvoID for TT is equivalent to a single-valued construction for Ily,.q. This explains how our new
range avoidance algorithms imply our new circuit lower bounds (as mentioned in Section 7.1.1).

In the rest of Section 7.1.2, we will only consider the special case of AvVOID where the
input circuit for range avoidance is a P-uniform circuit family. Specifically, let {C,: {0,1}" —
{0,1}?"},,en be a P-uniform family of circuits, where |C,,| < poly(n).” Our goal is to find an
algorithm A such that for infinitely many n, A(1") € {0,1}?" \ Range(C,,); see Section 7.5.3
and Section 7.5.4 for how to turn this into an algorithm that works for arbitrary input circuit
with a single bit of stretch. Also, since from now on we will not talk about truth tables anymore,

we will use n instead of N to denote the input length of AVOID instances.

The iterative win-win paradigm of [CLO"23]|

In a recent work, Chen, Lu, Oliveira, Ren, and Santhanam [CLO"23] introduced the iter-
ative win-win paradigm for explicit constructions, and used that to obtain a polynomial-time
pseudodeterministic construction of primes that works infinitely often. Since our construction
algorithm closely follows their paradigm, it is instructive to take a detour and give a high-level

overview of how the construction from [CLOT23] works.®

®Note that the trivial construction algorithms are not single-valued in general. For example, a trivial 3oP =
NPNP construction algorithm for Ilharq is to guess a hard truth table ¢t and use the NP oracle to verify that ¢t
does not have size-N/log N circuits; however, different accepting computational paths of this computation would
output different hard truth tables. Similarly, a trivial BPP construction algorithm for every dense property II is
to output a random string, but there is no canonical answer that is outputted with high probability. In other
words, these construction algorithms do not define anything; instead, a single-valued construction algorithm
should define some particular string in II.

5To see this, note that (1) BPE ¢ i.0.-SIZE[2™/n] implies a simple single-valued BPP construction for Tyarq:
given N = 2", output the truth table of L,, (L restricted to n-bit inputs), where L € BPE is the hard language
not in SIZE[2" /n]; and (2) assuming a single-valued BPP construction A for IIa:q, one can define a hard language
L such that the truth table of L, is the output of A(12"), and observe that L € BPE.

"We assume that C), stretches n bits to 2n bits instead of n+ 1 bits for simplicity; Korten [Kor21] showed that
there is a P"P reduction from the range avoidance problem with stretch n + 1 to the range avoidance problem
with stretch 2n.

8Indeed, for every 1/poly(n)-dense property II € P, they obtained a polynomial-time algorithm A such that for
infinitely many n € N, there exists y, € II,, such that A(1") outputs y, with probability at least 2/3. By [AKS04]

202

In this paradigm, for a (starting) input length ng and some ¢ = O(log ng), we will consider
an increasing sequence of input lengths ng, n1,...,n; (jumping ahead, we will set n;41 = nf for
a large constant), and show that our construction algorithm succeeds on at least one of the
input lengths. By varying ng, we can construct infinitely many such sequences of input lengths
that are pairwise disjoint, and therefore our algorithm succeeds on infinitely many input lengths.

In more detail, fixing a sequence of input lengths ng,ni,...,n: and letting II be an e-dense
property, for each i € {0,1,...,t}, we specify a (deterministic) algorithm ALG; that takes 1™
as input and aims to construct an explicit element from II,,,. We let ALGq be the simple brute-
force algorithm that enumerates all length-ng strings and finds the lexicographically first string

in II,,,; it is easy to see that ALGq runs in Tj := 20(n0) time.

The win-or-improve mechanism. The core of [CLOT23] is a novel win-or-improve mecha-
nism, which is described by a (randomised) algorithm R. Roughly speaking, for input lengths
n; and n;y1, R(1™) attempts to simulate ALG; faster by using the oracle Iy, ., (hence it runs

in poly(n;+1) time). The crucial property is the following win-win argument:

(Win) Either R(1™) outputs ALG;(1™) with probability at least 2/3 over its internal random-

ness,

(Improve) or, from the failure of R(1™), we can construct an algorithm ALG,; that outputs

an explicit element from II,,,,, and runs in T;;; = poly(7;) time.

We call the above (Win-or-Improve), since either we have a pseudodeterministic algorithm
R(1™) that constructs an explicit element from II,, in poly(n;+1) < poly(n;) time (since it
simulates ALG;), or we have an improved algorithm ALG;; at the input length n; 4 (for example,
on input length ni, the running time of ALG; is 9 (ni/ﬁ> < 20(”1)). The (Win-or-Improve) part
in [CLO™"23]| is implemented via the Chen—Tell targeted hitting set generator [CT21a| (we omit
the details here). Jumping ahead, in this chapter, we will implement a similar mechanism using
Jerabek and Korten’s PNP reduction from the range avoidance problem to constructing hard
truth tables [Jer04, Kor21|.

Getting polynomial time. We briefly explain why (Win-or-Improve) implies a polynomial-
time construction algorithm. Let o be an absolute constant such that we always have T; 1 < T}*;

we now set 8 := 2. Recall that n; = nffl for every 7. The crucial observation is the following:
Although Tp is much larger than ng, the sequence {T;} grows slower than {n;}.

Indeed, a simple calculation shows that when ¢t = O(logng), we will have T; < poly(n;); see
[CLO"23, Section 1.3.1].

For each 0 < i < t, if R(1™) successfully simulates ALG;, then we obtain an algorithm for
input length n; running in poly(n;+1) < poly(n;) time. Otherwise, we have an algorithm ALG; ;1
running in T;41 time on input length n;;. Eventually, we will hit ¢ such that T3 < poly(n;), in
which case ALG; itself gives a polynomial-time construction on input length n;. Therefore, we

obtain a polynomial-time algorithm on at least one of the input lengths ng, ni,...,n:.

and the prime number theorem, the set of n-bit primes is such a property.

203

Algorithms for range-avoidance via Jerabek—Korten reduction

Now we are ready to describe our new algorithms for AvoiD. Roughly speaking, our new
algorithm makes use of the iterative win-win argument introduced above, together with an
easy-witness style argument [IKWO02] and the Jefabek—Korten reduction [Jer04, Kor21].” In the
following, we introduce the latter two ingredients and show how to chain them together via the

iterative win-win argument.

An easy-witness style argument. Let BF be the 29("_time brute-force algorithm out-
putting the lexicographically first non-output of C,,. Our first idea is to consider its compu-
tational history, a unique 20(”)—length string hgg (that can be computed in 20(n) time), and
branch on whether hgg has a small circuit or not. Suppose hgr admits a, say, n®-size circuit
for some large a, then we apply an easy-witness-style argument [[IKW02| to simulate BF by a
single-valued F35P algorithm running in poly(n®) = poly(n) time (see Section 7.1.3). Hence,
we obtained the desired algorithm when hgf is easy.

However, it is less clear how to deal with the other case (when hgg is hard) directly. The
crucial observation is that we have gained the following ability: we can generate a string hgg €

{0, 1}20(n) that has circuit complexity at least n®, in only 20 time.

The Jetrabek—Korten reduction. We will apply the Jefdbek—Korten reduction to make use
of the “gain” above. So it is worth taking a detour to review the main results of [Jer04, Kor21|.
Roughly speaking, this reduction gives an algorithm that uses a hard truth table f to
solve a derandomisation task: finding a non-output of the given circuit (that has
more output bits than input bits).!"

Formally, the Jefabek-Korten reduction is a PNP-computable algorithm Jefabek—Korten(C, f)
that takes as inputs a circuit C': {0,1}" — {0,1}?" and a string f € {0,1} (think of n < T),
and outputs a string y € {0,1}?". The guarantee is that if the circuit complexity of f is
sufficiently larger than the size of C, then the output y is not in the range of C.

This fits perfectly with our “gain” above: for 8 < o and m = n?, Jefabek—Korten(C,y,, hgF)
solves AvoID for (), since the circuit complexity of hgg, n®, is sufficiently larger than the size
of Cy,. Moreover, JefabekKorten(C,,, hgg) runs in only 29" time, which is much less than
the brute-force running time 2™ Therefore, we obtain an improved algorithm for AvoID on

input length m.

The iterative win-win argument. What we described above is essentially the first stage of
an win-or-improve mechanism similar to that from Section 7.1.2. Therefore, we only need to

iterate the argument above to obtain a polynomial-time algorithm.

9Korten’s result was inspired by Jefabek [Jef04], who proved that the dual weak pigeonhole principle is
equivalent to the statement asserting the existence of Boolean functions with exponential circuit complexity in a
certain fragment of Bounded Arithmetic.

9This is very similar to the classical hardness-vs-randomness connection [NW94,TW97], which can be under-
stood as an algorithm that uses a hard truth table f (i.e., a truth table without small circuits) to solve another
derandomisation task: estimating the acceptance probability of the given circuit. This explains why one may
want to use the Jefdbek—Korten reduction to replace the Chen—Tell targeted generator construction [CT21a]
from [CLO™"23], as they are both hardness-vs-randomness connections.

204

For this purpose, we need to consider the computational history of not only BF, but also
algorithms of the form Jetabek—Korten(C, f).!* For any circuit C' and “hard” truth table f, there
is a unique “computational history” h of Jefabek—Korten(C, f), and the length of h is upper
bounded by poly(|f|). We are able to prove the following statement akin to the easy witness
lemma [IKWO02|: if h admits a size-s circuit (think of s < T'), then Jefabek—Korten(C, f) can
be simulated by a single-valued F33P algorithm in time poly(s); see Section 7.1.3 for details on
this argument.'?

Now, following the iterative win-win paradigm of [CLOT23|, for a (starting) input length
ng and some t = O(logng), we consider an increasing sequence of input lengths ng, n1,...,ny,
and show that our algorithm A succeeds on at least one of the input lengths (i.e., A(1™) €
{0,1}?" \ Range(C,,) for some i € {0,1,...,t}). For each i € {0,1,...,t}, we specify an
algorithm ALG; of the form Jefabek—Korten(C),,, —) that aims to solve AvoOID for C,; in other
words, we specify a string f; € {0,1}%¢ for some T; and let ALG; := Jefabek—Korten(C,,,, f;).

The algorithm ALGy is simply the brute force algorithm BF at input length ng. (A conve-
nient observation is that we can specify an exponentially long string fo € {0, 1}20(n0) so that
Jerabek—Korten(Cy,, fo) is equivalent to BF = ALGp; see Fact 7.3.4.) For each 0 < i < ¢, to
specify ALG;11, let fi+1 denote the history of the algorithm ALG;, and consider the following

win-or-improve mechanism.

(Win) If fi1 admits an n{'-size circuit (for some large constant a), by our easy-witness argu-

ment, we can simulate ALG; by a poly(n;)-time single-valued F¥3P algorithm.

(Improve) Otherwise f;11 has circuit complexity at least ng', we plug it into the Jefabek-Korten
That is, we take ALG; 1 = Jerabek—Korten(C,. ,, fit1)

as our new algorithm on input length n;1.

reduction to solve AvoIp for Cy, _, .

Let T; = |f;|, then T;41 < poly(T;). By setting n;11 = nf for a sufficiently large 3, a similar
analysis as [CLO"23] shows that for some ¢t = O(logng) we would have T; < poly(n;), meaning
that ALG; would be a poly(n;)-time FPNP algorithm (thus also a single-valued FX5P algorithm)
solving AvoID for C),,. Putting everything together, we obtain a polynomial-time single-valued
F3oP algorithm that solves AvOID for at least one of the Cp,.

The hardness condenser perspective. Below, we present another perspective on the con-
struction above, which may help the reader understand it better. In the following, we fix
Cpn:{0,1}" — {0,1}?" to be the truth table generator TT, 2, that maps an n-bit description
of a log(2n)-input circuit into its length-2n truth table. Hence, instead of solving AvOID in
general, our goal here is simply constructing hard truth tables (or equivalently, proving circuit

lower bounds).

11 Actually, we need to consider all algorithms ALG; defined below and prove the properties of computational
history for these algorithms. It turns out that all of ALG; are of the form Jefabek—Korten(C, f) (including ALGo),
so in what follows we only consider the computational history of Jefabek—Korten(C, f).

12With an “encoded” version of history and more effort, we are able to simulate Jefabek—Korten(C, f) by a
single-valued FSyP algorithm in time poly(s), and that is how our S2E lower bound is proved; see Section 7.1.3
for details.

205

We note that Jerabek—Korten(TT,, 2, f) can then be interpreted as a hardness condenser
[BS06]:'* Given a truth table f € {0,1}7 whose circuit complexity is sufficiently larger than n,
it outputs a length-2n truth table that is maximally hard (i.e., without n/logn-size circuits).
The win-or-improve mechanism can be interpreted as an iterative application of this hardness
condenser.

At the stage i, we consider the algorithm ALG; := Jefabek—Korten(TT,, 2,, fi), which runs
in T; ~ |fi| time and creates (roughly) n; bits of hardness. (That is, the circuit complexity of
the output of ALG; is roughly n;.) In the (Win) case above, ALG; admits an n$-size history fi;1
(with length approximately |f;|) and can therefore be simulated in F39P. The magic is that in
the (Improve) case, we actually have access to much more hardness than n;: the history string
fit1 has nf* > n; bits of hardness. So we can distill these hardness by applying the condenser to
fi+1 to obtain a maximally hard truth tables of length 2n;; = 2n? , establish the next algorithm
ALG; 1 := Jerabek-Korten(TT,,, , 2n,.,, fi+1), and keep iterating.

Observe that the string f;+1 above has n$ > nf = n;4+1 bits of hardness. Since |fi11] = |fi
and n;41 = nf, the process above creates harder and harder strings, until |fi;1] < njp1 < ng,

so the (Win) case must happen at some point.

7.1.3 Proof Overview

In this section, we elaborate on the computational history of Jefabek—Korten and how the

easy-witness-style argument gives us FXoP and FS9P algorithms.

The Jerabek—Korten reduction

We first review the key concepts and results from [Kor21| that are needed. Given a cir-
cuit C': {0,1}" — {0,1}?" and a parameter T > 2n, we can builds another circuit GGM7|[C]
stretching n bits to T bits as follows:'*

e On input x € {0,1}", we set vgo = x. For simplicity, we assume that 7'/n = 2¥ for some
k € N. We build a full binary tree with k£ 4 1 layers; see Figure 7.1 for an example with
k= 3.

e For every i € {0,1,...,k—1} and j € {0,1,...,2° — 1}, we set v;112; and v;112j+1 to be
the first n bits and the last n bits of C(v; ;), respectively.

e The output of GGM[C](z) is defined to be the concatenation of vg o, Vg 1, - -, Vg ok _1-

The following two properties of GGM7[C| are established in [Kor21], which will be useful for

us:

1. Giveni € [T],C and = € {0,1}", by traversing the tree from the root towards the leaf with
the ¢-th bit, one can compute the i-th bit of GGM7[C](x) in poly(SIZE(C),logT) time.
Consequently, for every z, GGM¢[C](z) has circuit complexity < poly(SIZE(C),logT).

13 A hardness condenser takes a long truth table f with certain hardness and outputs a shorter truth table with
similar hardness.

1We use the name GGM because the construction is similar to the pseudorandom function generator of Gol-
dreich, Goldwasser, and Micali [GGMS86.

206

(vso| |vsa| [vse| [vs3]| |wsa| [vss| [vse]| |va7]

Figure 7.1: An illustration of the GGM Tree, in which, for instance, it holds that (vs4,v35) =
C(UQ’Q).

2. There is a PNP algorithm Jefabek—Korten(C, f) that takes f € {0,1}7 \ Range(GGMr[C])
as input and outputs a string u € {0,1}?" \ Range(C). Note that this is a reduction from
solving AvoID for C to solving AvoID for GGM7[C].

In particular, letting f be a truth table whose circuit complexity is sufficiently larger than
SIZE(C'). By the first property above, f is not in the range of GGM¢[C], and therefore
Jerabek—Korten(C), f) solves AvoID for C'. This confirms our description of Jerabek—Korten in Sec-
tion 7.1.1.

Computational history of Jefabek—Korten and an easy-witness argument for FXsP al-

gorithms

The algorithm Jerabek—Korten(C, f) works as follows: we first view f as the labels of the
last layer of the binary tree, and try to reconstruct the whole binary tree, layer by layer (start
from the bottom layer to the top layer, within each layer, start from the rightmost node to the
leftmost one), by filling the labels of the intermediate nodes. To fill v; j, we use an NP oracle
to find the lexicographically first string u € {0,1}" such that C(u) = vi41,2; © Vit1,2j+1, and set
v;,; = w. If no such u exists, the algorithm stops and report v;y12; o v;y12j+1 as the solution
to AvoID for C'. Observe that this reconstruction procedure must stop somewhere, since if it
successfully reproduces all the labels in the binary tree, we would have f = GGM7[C](vo,0) €
Range(GGM7[C]), contradicting the assumption. See Lemma 7.3.3 for details.

The computational history of Jerabek—Korten. The algorithm described above induces a
natural description of the computational history of Jefabek—Korten, denoted as History(C, f),
as follows: the index (i, j.) when the algorithm stops (i.e., the algorithm fails to fill in v, j,)
concatenated with the labels of all the nodes generated by Jefabek—Korten(C, f) (for the interme-
diate nodes with no label assigned, we set their labels to a special symbol L); see Figure 7.2 for
an illustration. The length of this history is at most 57, and for convenience, we pad additional

zeros at its end so that its length is exactly 57

207

(vso| |vs1| [vse| [vs3]| |vsa| [vss| [vse]| |va7]

Figure 7.2: An illustration of the history of Jefabek—Korten(C, f). Here we have History(C, f) =
(2,1)oLllllovggowvgzovggo...owvsr and Jerabek—Korten(C, f) = v320v33.

A local characterisation of History(C, f). The crucial observation we make on History(C, f)
is that it admits a local characterisation in the following sense: there is a family of local con-
straints {wx}xe{o,l}poly(n), where each 9, : {0,1}%7 x {0,1}7 — {0, 1} reads only poly(n) many
bits of its input (we think about it as a local constraint since usually n < T'), such that for fixed
f, History(C, f) o f is the unique string making all the v, outputting 1.

The constraints are follows: (1) for every leaf node vy, its content is consistent with the
corresponding block in f; (2) all labels at or before node (i, ji) are 1;'° (3) for every 2 € {0,1}",
C(z) # Vi, 4124, © Vi,+1,2j,+1 (meaning the algorithm fails at v;, ;,); (4) for every (i,j) after
(1%, Jx)s C(v5,5) = Vig1,2j ©Vit1,25+1 (v;; is the correct label); (5) for every (i,) after (i, j.) and
for every v < v;;, C(v) # vit1,2j © Vig1,2j+1 (vij is the lexicographically first correct label). It
is clear that each of these constraints above only reads poly(n) many bits from the input, and
a careful examination shows they precisely define the string History(C, f).

A more intuitive way to look at these local constraints is to treat them as a poly(n)-time
oracle algorithm Vystory that takes a string x € poly(n) as input and two strings h € {0, 1}5T
and f € {0,1}7T as oracles, and we simply let V:i’s{ory () = ¢y (ho f). Since the constraints above
are all very simple and only read poly(n) bits of h o f, Vhistory runs in poly(n) time. In some
sense, VHistory is a local II; verifier: it is local in the sense that it only queries poly(n) bits from
its oracles, and it is IT; since it needs a universal quantifier over z € {0, 1}P°Y(™ to perform all
the checks.

F>sP algorithms. Before we proceed, we give a formal definition of a single-valued FXoP
algorithm A. Here A is implemented by an algorithm V4 taking an input and two poly(|z|)-
length witnesses m; and 7. We say A(z) outputs a string z € {0, 1} (we assume ¢ = ¢(z) can
be computed in polynomial time from z) if z is the unique length-¢ string such that the following
hold:

e there exists 7y such that for every ma, Vhistory (%, 71, 72, z) = 1.16

15We say that (i, ;) is before (after) (ix,ji) if the pair (4,7) is lexicographically smaller (greater) than (i, j.).

16Note that our definition here is different from the formal definition we used in Definition 7.2.2. But from this
definition, it is easier to see why F32P algorithms for constructing hard truth tables imply circuit lower bounds
for 35E.

208

We can view Vhistory as a verifier that checks whether z is the desired output using another
universal quantifier: given a proof 7 and a string z € {0,1}¢. A accepts z if and only if for
every m2, Vhistory (€, m1, T2, 2) = 1. That is, A can perform exponentially many checks on 7 and

z, each taking poly(|z|) time.

The easy-witness argument. Now we are ready to elaborate on the easy-witness argument
mentioned in Section 7.1.1. Recall that at stage i, we have ALG; = Jefabek—Korten(C,,,, fi) and
fix1 = History(Cy,, fi) (the history of ALG;). Assuming that f;;; admits a poly(n;)-size circuit,
we want to show that Jefabek—Korten(Cy,,, fi) can be simulated by a poly(n;)-time single-valued
F3oP algorithm.

Observe that for every ¢t € [i + 1], fi—1 is a substring of f; since f; = History(Cy, ,, fi—1).
Therefore, fi+1 admitting a poly(n;)-size circuit implies that all f; admit poly(n;)-size circuits
for t € [i{]. We can then implement A as follows: the proof 7 is a poly(n;)-size circuit Cjyq
supposed to compute f;11, from which one can obtain in polynomial time a sequence of circuits
C4,...,C; that are supposed to compute fi,..., f;, respectively. (Also, from Fact 7.3.4, one can
easily construct a poly(ng)-size circuit Cy computing fp.) Next, for every ¢ € {0,1,...,i}, A
checks whether tt(Cy11)ott(C}) satisfies all the local constraints 1,’s from the characterisation
of History(C,,, ft). In other words, A checks whether Vkﬁ;t“:jr’yct (z) =1 for all z € {0, 1}Poly(ne),

The crucial observation is that since all the C; have size poly(n;), each check above can be
implemented in poly(n;) time as they only read at most poly(n;) bits from their input, despite
that tt(Cyt1) o tt(Cy) itself can be much longer than poly(n;). Assuming that all the checks of
A above are passed, by induction we know that fi+; = History(C,,, f;) for every t € {0,1,...,i}.
Finally, A checks whether z corresponds to the answer described in tt(Ciy1) = fit1.

Selectors and an easy-witness argument for FSoP algorithms

Finally, we discuss how to implement the easy-witness argument above with a single-valued
FSoP algorithm. It is known that any single-valued FSoBPP algorithm can be converted into an
equivalent single-valued FSoP algorithm outputting the same string [Can96, RS98| (see also the
proof of Theorem 7.5.7 for a self-contained argument). Therefore, in the following, we aim to

give a single-valued FS9BPP algorithm for solving range avoidance, which is easier to achieve.

FS9BPP algorithms and randomised selectors. Before we proceed, we give a formal defi-
nition of a single-valued FSoBPP algorithm A. We implement A by a randomised algorithm V4
that takes an input = and two poly(|z|)-length witnesses 71 and 75.'7 We say that A(x) outputs
a string z € {0,1}¢ (we assume ¢ = £(z) can be computed in polynomial time from x) if the

following hold:

e there exists a string h such that for every m, both V4(x,h,) and V4(z,m, h) output z
with probability at least 2/3. (Note that such z must be unique if it exists.)

Actually, our algorithm A will be implemented as a randomised selector: given two potential

proofs w1 and o, it first selects the correct one and then outputs the string z induced by the

17FS,P algorithms are the special case of FS2BPP algorithms where the algorithm Vi is deterministic.

209

correct proof.'®

Recap. Revising the algorithm in Section 7.1.2, our goal now is to give an FSoBPP simulation
of Jerabek—Korten(C,,,, fi), assuming that History(Cy,;, fi) admits a small circuit. Similar to the
local II; verifier used in the case of FX5P algorithms, now we consider a local randomised selector
Vaelect Which takes oracles 71, mo € {0,1}°7 and f € {0,1}7 such that if exactly one of the 7
and 7o is History(C, f), Vselect Outputs its index with high probability.

Assuming that f;y1 = History(Cy,, fi) admits a small circuit, one can similarly turn Vielect
into a single-valued FS3BPP algorithms A computing Jefabek—Korten(Cy,,, fi): treat two proofs
w1 and me as two small circuits C and D both supposed to compute f;11, from C and D we can
obtain a sequence of circuits {C;} and {D;} supposed to compute the f; for ¢ € [i]. Then we
can use the selector Vieleet to decide for each ¢ € [i + 1] which of the C; and Dy is the correct
circuit for f;. Finally, we output the answer encoded in the selected circuit for f;11; see the

proof of Theorem 7.5.7 for details.'”

Observation: it suffices to find the first differing node label. Ignore the (i, j.) part of
the history for now. Let {v} ;1 and {v? ;} be the node labels encoded in 71 and m, respectively.
We also assume that exactly one of them corresponds to the correct node labels in History(C, f).
The crucial observation here is that, since the correct node labels are generated by a deterministic
procedure node by node (from bottom to top and from rightmost to leftmost), it is possible to
tell which of the {vzlj} and {vlzj} is correct given the largest (i, j') such that vil,J, # UE,J,. (Note
that since all (i,7) are processed by Jefabek—Korten(C, f) in reverse lexicographic order, this
(7', 4") corresponds to the first node label that the wrong process differs from the correct process,
so we call this the first differing point.)

In more detail, assuming we know this (i, j'), we proceed by discussing several cases. First
of all, if (¢, ") corresponds to a leaf, then one can query f to figure out which of vil,’j, and ’L}ZZ,J,
is consistent with the corresponding block in f. Now we can assume (7', j’) corresponds to an
intermediate node. Since (¢’,j’) is the first differing point, we know that fuilurl,2 , 0 vi1,+172j,+1 =

vi2,+172j, Ovz‘2’+1,2j’+1 (we let this string to be a for convenience). By the definition i)f History(C, f),
it follows that the correct vy j» should be uniquely determined by «, which means the selector
only needs to read «, vl.l,7 i and ”1'2/, i and can then be implemented by a somewhat tedious case
analysis (so it is local). We refer readers to the proof of Lemma 7.5.5 for the details and only
highlight the most illuminating case here: if both of vl-1,7 7 and vf,’ ;o are good (we say a string 7
is good, if v # L and C(v) = «), we select the lexicographically smaller one. To handle the
(%, J») part, one needs some additional case analysis. We omit the details here and refer the
reader to the proof of Lemma 7.5.5.

The takeaway here is that if we can find the first differing label (¢, j'), then we can construct

the selector Vieleet and hence the desired single-valued FSoBPP algorithm.

18Tf both proofs are correct or neither proofs are correct, it can select an arbitrary one. The condition only
applies when exactly one of the proofs is correct.

9However, for the reasons to be explained below, we will actually work with the encoded history instead of
the history, which entails a lot of technical challenges in the actual proof.

210

Encoded history. However, the above assumes the knowledge of (i, j'). In general, if one is
only given oracle access to {v} ;}and {v? ;1 there is no poly(n)-time oracle algorithm computing
(7', 7") because there might be exponentially many nodes. To resolve this issue, we will encode
{vil’j} and {UzQ, ;} via Reed-Muller codes.

Formally, recall that History(C, f) is the concatenation of (i, j,) and the string S, where S
is the concatenation of all the labels on the binary tree. We now define the encoded history,
denoted as I—ﬁ;c;y(c, f), as the concatenation of (ix,jx) and a Reed—Muller encoding of S. The
new selector is given oracle access to two candidate encoded histories together with f. By
applying low-degree tests and self-correction of polynomials, we can assume that the Reed-
Muller parts of the two candidates are indeed low-degree polynomials. Then we can use a
reduction to polynomial identity testing to compute the first differing point between {vzlj} and
{vi j} in randomised polynomial time. See the proof of Lemma 7.5.3 for the details. This part

is similar to the selector construction from [Hirl5]|.

7.1.4 Karp—Lipton collapses and the half-exponential barrier

In the following, we elaborate on the half-exponential barrier mentioned earlier in the intro-
duction.”’ Let C be a “typical” uniform complexity class containing P, a Karp—Lipton collapse
to C states that if a large class (say EXP) has polynomial-size circuits, then this class collapses

to C. For example, there is a Karp—Lipton collapse to C = 35P:
Suppose EXP C P/,q1y, then EXP = ¥5P. (|[KL80|, attributed to Albert Meyer)

Now, assuming that EXP C P/,q, = EXP = C, the following win-win analysis implies
that C-EXP, the exponential-time version of C, is not in P/po1y: (1) if EXP ¢ P/,01y, then of
course C-EXP 2 EXP does not have polynomial-size circuits; (2) otherwise EXP C P/p01,. We
have EXP = C and by padding EEXP = C-EXP. Since EEXP contains a function of maximum
circuit complexity by direct diagonalisation, it follows that C-EXP does not have polynomial-size
circuits.

Karp-Lipton collapses are known for the classes P [KL80|, ZPPNP [BCG196], SoP [Cai07]
(attributed to Samik Sengupta), PP, MA [LFKN92, BFNW93|, and ZPPMSP [IKV18]. All the
aforementioned super-polynomial circuit lower bounds for XoEXP, ZPEXPNP. S,EXP, PEXP,
MAEXP, and ZPEXPMCSP are proven in this way.?!

The half-exponential barrier. The above argument is very successful at proving various
super-polynomial lower bounds. However, a closer look shows that it is only capable of proving
sub-half-exponential circuit lower bounds. Indeed, suppose we want to show that C-EXP does

not have circuits of size f(n). We will have to perform the following win-win analysis:

o if EXP ¢ SIZE[f(n)], then of course C-EXP O EXP does not have circuits of size f(n);

20A function f: N — N is sub-half-exponential if f(f(n)°) = 2°(") for every constant ¢ > 1, i.e., composing f
twice yields a subexponential function. For example, for constants ¢ > 1 and € > 0, the functions f(n) = n" an
ice yield b ial fi i F le, f > 1 and 0, the fi i ¢ and
n) = > ™ are sub-half-exponential, but the functions f(n) =2" an n) = 2°" are not.
2'o8 b-half 1, but the f 2 d 2°
21There are some evidences that Karp-Lipton collapses are essential for proving circuit lower bounds
[CMMW19].

211

o if EXP C SIZE[f(n)], then (a scaled-up version of) the Karp-Lipton collapse implies that
EXP can be computed by a C machine of poly(f(n)) time. Note that TIME[2P°W((?))]
does not have circuits of size f(n) by direct diagonalisation. By padding, TIME[2P°(f(7)]
can be computed by a C machine of poly(f(poly(f(n)))) time. Therefore, if f is sub-half-
exponential (meaning f(poly(f(n))) = 2°(), then C-EXP does not have circuits of size

fn).

Intuitively speaking, the two cases above are competing with each other: we cannot get

exponential lower bounds in both cases.

7.2 Preliminaries

Notation. We use [n] to denote {1,2,...,n}. A search problem IT maps every input z € {0,1}*
into a solution set II, C {0,1}*. We say an algorithm A solves the search problem II on input
x if A(z) € 11,.

7.2.1 Complexity Classes

We assume basic familiarity with computational complexity theory (see, e.g., [AB09, Gol08|
for references). Below we recall the definition of Sy TIME[T'(n)] [RS98, Can96|.

Definition 7.2.1. Let T: N — N. We say a language L € SoTIME[T(n)], if there exists
an O(T(n))-time verifier V (z, 7,) that takes = € {0,1}" and 7, m € {0,1}7(as input,
satisfying that

e if v € L, then there exists 7; such that for every mo, V(z, 71, m2) = 1, and
o if © ¢ L, then there exists mo such that for every m, V(z, 7, m2) = 0.

Moreover, we say L € SoF if L € SoTIME[T(n)] for some T'(n) < 29 and L € SoP if
L € SoTIME[p(n)] for some polynomial p.

It is known that SoP contains MA and PNP [RS98], and SoP is contained in ZPPNP [Cai07].
From its definition, it is also clear that SoP C 3oP NII5P.

7.2.2 Single-valued FX,P and FS;P Algorithms

We consider the following definitions of single-valued algorithms, which correspond to circuit
lower bounds for ¥5E and SsE.

Definition 7.2.2 (Single-valued FXoP and FSoP algorithms). A single-valued FX3P algorithm
A is specified by a polynomial ¢(-) together with a polynomial-time algorithm V4 (x, 7, m2). On
an input = € {0, 1}*, we say that A outputs y, € {0,1}*, if the following hold:

(a) There is a 1 € {0,1}40D) such that for every m € {0, 1}0=D), Vs (2, 71, m9) outputs .

(b) For every m € {0,1}(2D there is a m € {0, 1}4#D) such that the output of Vy(z, 71, 7o)

is either y, or L (where L indicates “I don’t know”).

212

A single-valued FSoP algorithm A is specified similarly, except that we replace the second

condition above with the following:

(b”) There is a m € {0,1}0#1) such that for every m € {0, 1}0*D V4(z, 71, m9) outputs y,.

Now, we say that a single-valued F¥oP (FSoP) algorithm A solves a search problem IT on
input z if it outputs a string y, and y, € II,. Note that from Definition 7.2.2, if A outputs a
string y,, then y, is unique.

For convenience, we mostly only consider single-valued algorithms A(x) with fixed output
lengths, meaning that the output length |A(x)| only depends on |z| and can be computed in

polynomial time given 1%/ .22

Single-Valued FS;P and FX,P algorithms with FPNP post-processing

We also need the fact that single-valued FSoP or FYoP algorithms with FPNP post-processing
can still be implemented by single-valued FSoP or FYXoP algorithms, respectively. More specifi-

cally, we have:

Theorem 7.2.3. Let A(z) be a single-valued FSaP (resp. FXaP) algorithm and B(z,y) be an
FPNP algorithm, both with fized output length. The function f(z) := B(z, A(x)) also admits an
FSoP (resp. FXaP) algorithm.

Proof. We only provide a proof for the case of single-valued FSoP algorithms. Recall that the
Lexicographically Maximum Satisfying Assignment problem (LMSAP) is defined as follows: given
an n-variable formula ¢ together with an integer k € [n], one needs to decide whether a; = 1,
where aq,...,a, € {0,1}" is the lexicographically largest assignment satisfies ¢. By [Kre8§|,
LMSAP is PNP_complete.

Let V4 (x,m,m2) be the corresponding verifier for the single-valued FSoP algorithm A. Let
L(z,y,i) be the PNP language such that L(z,y,i) = 1 if and only if B(z,y); = 1. Let ¢ =
|B(x,y)| be the output length of B. We now define a single-valued FSoP algorithm A by
defining the following verifier V3, and argue that A computes f.

The verifier V3 takes an input z and two proofs 71 and 72, where 7 consists of wy, acting
as the second argument to V4, and ¢ assignments z%, z%, e Zt} € {0,1}™. Similarly, 72 consists
of wy and 27, 23,..., 27 € {0,1}™.

First, V3 runs V4(z, w1, ws2) to get y € {0, 1}A@I Then it runs the reduction from L(z,y, 1)
to LMSAP for every i € [{] to obtain £ instances {(¢;, ki) }ic[q, where ¢; is an m-variable formula
and k; € [m]. (Without loss of generality by padding dummy variables, we may assume that
the number of variables in ¢; is the same for each i, i.e., m; and that m only depends on |z|
and |y|.) Now, for every p € [2], we can define an answer w, € {0,1}¢ by (w,); = (2/'), (ie.,
the value of B(x,y), assuming that 7, consists of the lexicographically largest assignments for
all the LMSAP instances).

In what follows, when we say that V3 selects the proof u € [2], we mean that V3 outputs wy,

and terminates. Then, Vi works as follows:

22Tf A takes multiple inputs like z,v, z, then the output length A(x,v, z) only depends on |z|, |y], |2| and can
be computed in polynomial time given 1!*!, 1%, and 1/*I,

213

1. For each p € [2], it first checks whether for every i € [¢], 2! satisfies ¢;. If only one of the
p passes all the checks, V3 selects that p. If none of them pass all the checks, V3 selects

1. Otherwise, it continues to the next step.

2. Now, letting Z# = z{' 0 2y 0. .. 0z for each p € [2]. V5 selects the p with the lexicograph-
ically larger Z#. If Z' = Z?, then V3 selects 1.

Now we claim that A computes f(x), which can be established by setting 7 or 72 be the

corresponding proof for V4 concatenated with all lexicographically largest assignments for the

{bi}ic- 0

7.2.3 The Truth Table Generator

Proving circuit lower bounds (for exponential-time classes) is equivalent to solving the range
avoidance problem on the truth table generator TT,, s, defined as follows. It was shown in [FMO5]
that for n, s € N, any s-size n-input circuit C' can be encoded as a stack program with description
size Ly s := (s + 1)(7 4+ log(n + s)). The precise definition of stack programs does not matter
(see [FMO5] for a formal definition); the only property we need is that given s and n such
that n < s < 2", in poly(2") time one can construct a circuit TT,s: {0, 1} — {0,1}%"
mapping the description of a stack program into its truth table. By the equivalence between
stack programs and circuits, it follows that any f € {0,1}2"\Range(TT,, s) satisfies SIZE(f) > s.

Also, we note that for large enough n € N and s = 2" /n, we have L, ; < 2".

Fact 7.2.4. Let s(n): N — N. Suppose that there is a single-valued FSoP algorithm A such
that for infinitely many n € N, A(12") takes a(n) bits of advice and outputs a string f, €
{0,1}* \ Range(TT,, s)). Then S2E/q(n) € SIZE[s(n)].

Proof sketch. We define a language L such that the truth table of the characteristic function of
Ln{0,1}™is A(1?"). It is casy to see that L ¢ SIZE[s(n)] and L € S2E/ (). O

7.3 The Jerabek—Korten Reduction

Our results crucially rely on a reduction in [Jef04,Kor21| showing that proving circuit lower

bounds is “the hardest explicit construction” under PNP reductions.

Notation. Let s be a string of length n. We will always use 0-index (i.e., the first bit of s is
so and the last bit of s is s,,—1). Let i < j, we use s; ; to denote the substring of s from the
i-th bit to the j-th bit, and s|; ;) to denote the substring of s from the 4-th bit to the (j — 1)-th
bit. (Actually, we will use the notation sj; ;) more often than sj; ; as it is convenient when we

describe the GGM tree.) We also use s 0 s30---0 s to denote the concatenation of k strings.

7.3.1 GGM Tree and the Reduction

We first recall the GGM tree construction from [GGMS86|, which is used in a crucial way
by [Jef04, Kor21].

214

Definition 7.3.1 (The GGM tree construction [GGMS86]). Let C: {0,1}" — {0,1}?" be a
circuit. Let n,T € N be such that 7' > 4n and let k be the smallest integer such that 2n > T
The function GGM7[C]: {0,1}" — {0,1}7 is defined as follows.

Consider a perfect binary tree with 2% leaves, where the root is on level 0 and the leaves
are on level k. Each node is assigned a binary string of length n, and for 0 < j < 2¢, denote
v;; € {0,1}" the value assigned to the j-th node on level i. Let z € {0,1}". We perform
the following computation to obtain GGM7[C](z): we set vgo := x, and for each 0 < i < k,
0<j <2 weset vit1,2j = C(vij)[on (i-e., the first half of C'(v; ;) and vit12511 := C(vij)n,2n)
(i.e., the second half of C(v; ;)). (We say the nodes (i + 1,25) and (i 4+ 1,25 + 1) are “children”
of (i,).)

Finally, we concatenate all values of the leaves and take the first T bits as the output:

GGMT[C](I) = (Uk,() OVg10---0 Uk72k,1)[0’T).

Lemma 7.3.2 (The output of GGM tree has a small circuit). Let GGMEval(C, T, z,i) denote
the i-th bit of GGMq[C)(x). There is an algorithm running in O(|C|-logT) time that, given
C,T,z,i, outputs GGMEval(C, T, z,1).

Proof Sketch. We first note that to compute the i-th bit of GGM¢[C](z) = (vgo o Vg1 00
Vg, 2k—1)[0,T), it suffices to compute vy, |;/,|. Computing vy, |;/,| can be done by descending from
the root of the GGM tree to the leave (k, [i/n]), which takes O(|C| - logT") time. O

It is shown in [Kor21]| that the range avoidance problem for C' reduces to the range avoidance
problem for GGM7[C]. In what follows, we review this proof, during which we also define the
computational history of “solving range avoidance of C' from GGMp[C]”, which will be crucial in

our main proof.

Lemma 7.3.3 (Reduction from solving range avoidance of C' to solving range avoidance of
GGM7[C]). Let C: {0,1}"* — {0,1}?" be a circuit. Let f be a non-output of GGM7[C], i.e.,
f € {0,1}T \ Range(GGM7[C]). Then, Jefabek—Korten(C, f) (as defined in Algorithm 7.5.1)

outputs a non-output of C in deterministic poly(T,n) time with an NP oracle.

Proof Sketch. The running time of Jerabek—Korten(C, f) follows directly from its description.
Also, note that whenever Jefabek—Korten(C, f) outputs a string v;11.2j © viy12i+1 € {0,1}7,
it holds that this string is not in the range of C. Therefore, it suffices to show that when
f €{0,1}7\ Range(GGM7[C]), Jerabek—Korten(C, f) does not return L.

Assume, towards a contradiction, that Jefabek—Korten(C, f) returns L. This means that all
the {v; ;}i; values are set. It follows from the algorithm description that f = GGM¢[C](vo),
which contradicts the assumption that f € {0,1}7 \ Range(GGM7[C]). O

In addition, we observe the following trivial fact:

Fact 7.3.4. Let C : {0,1}" — {0,1}*" be a circuit, T := 2*"-2n, and f be the concatenation of
all length-2n strings (which has length T'). Then f ¢ Range(GGM7[C]).

One can combine Fact 7.3.4 with Lemma 7.3.3 to obtain a brute force algorithm that solves

the range avoidance problem in 290" time with an NP oracle. Essentially, this brute force

215

Algorithm 7.3.1: Jefabek—Korten(C, f): The Jetdbek—Korten reduction
Input: C: {0,1}" — {0,1}?" denotes the input circuit, and
f €{0,1}T \ Range(GGMr[C]) denotes the input “hard” truth table
Output: A non-output of C'
Data: The computational history of Jefabek—Korten(C, f): a pair (iy, j») and an array
{vij}i; where i € {0,1...,k} and j € {0,1,...,2"}.
1 Let k + [logy(T/n)];
2 Append f with 2¥n — | f| zeros at the end;
3 for j «+ 0to 2 —1do
4 Vg < Sy G+’
/* the j-th ‘block’ of f */

5 for i + k — 1 downto 0 do
for j < 2/ — 1 downto 0 do
Let v; ; be the lexicographically smallest string in Cil(Ui_i_LQj 0 Vit1,2j41);
/* Note that this step needs to invoke the NP oracle */
if v; ; does not exist then
For every (', j') such that vy j is not set yet, set vy j < L;
10 Set i, := 14, and jx := J;
11 return v;12;j 0 v11,2j41;

12 return L

algorithm tests every possible length-2n string against the range of the circuit. It will be the
basis of our win-win analysis in Section 7.4.
Finally, we give the following remark, showing that the Jefabek—Korten reduction relativises.

Remark 7.3.5. Algorithm 7.3.1 and Lemma 7.3.3 relativises, in the sense that if the input is actually
an oracle circuit C© for some arbitrary oracle, the algorithm still works except now it needs to call

an NP? oracle to find the lexicographically smallest string in C‘l(viH’Qj 0 Vit1,2j4+1)-

7.3.2 II; Verification of the History of Jerabek—Korten(C, f)

In what follows, we say that (4,7) < (¢, ;') if either i < ¢ or (i = ¢ and j < j') (that is,
we consider the lexicographical order of pairs). Observe that Algorithm 7.3.1 processes all the

pairs (7, j) in the reverse lexicographic order.

Definition 7.3.6 (The computational history of Jefabek—Korten(C, f)). Let n,T € N be such
that logT <n < T. Let C: {0,1}" — {0,1}?" be a circuit, and f € {0,1}” be a “hard truth ta-
ble” in the sense that f ¢ Range(GGM7[C]). The computational history of Jerabek—Korten(C, f),

denoted as
History(C, f),

consists of (i, j«), as well as the concatenation of v; ; for every 0 <i < kand 0 < j < 2¢ in the
lexicographical order of (i, j) ((ix,jx) and the v; ; are defined in Algorithm 7.3.1). Each v, ; is
encoded by n + 1 bits enc(v; ;), where if v; ; € {0,1}" then enc(v; ;) = 00 wv;;, and if v;; = L
then enc(v; ;) = 1"*1. The length of this history is at most (281 — 1)(n + 1) + 2log T < 5T,

and for convenience we always pad zeros at the end so that its length becomes exactly 57

216

The following lemma summarises the properties of the computational history construction

above required for the Y9E lower bound in the next section.

Lemma 7.3.7. Let n,T € N be such thatlogT <n < T. Let C: {0,1}" — {0,1}?" be a circuit
and f € {0,1}7\ Range(GGM7[C]). Let h = History(C, f) and z := Jerabek—Korten(C, f).

1. (history contains input/output) There is a poly(logT)-time one-query oracle algo-
rithm in and an O(n)-time oracle algorithm Output, both having input parameters T,n
and taking a string h € {0,135 as oracle, such that the following hold:

(a) When given h as the oracle, int,, takes an additional input i € {0,1,...,5T — 1} and
outputs f;.

(b) When given h as the oracle, Outputy,, outputs z = Jefabek—Korten(C, f).

2. (II; verification of the history) There is an oracle algorithm V with input parameters
T,n such that the following holds:

(a) V takes f € {0,1}T, h € {0,1}°T as oracles and C and w € {0,1}518T+1) 45 inputs.

It runs in poly(n) time.

(b) h = History(C, f) is the unique string from {0,1}>T satisfying the following:
Vf’h(C,w) =1 for every w € {0, 1}5'(10gT+n).

Proof. From the definition of History(C, f), the construction of inr, and Outputy,, are straight-
forward. Now we describe the verifier V-7, where f € {0,1}T and h € {0,1}°T. Note that here
we fix the first oracle of V to be the input truth table f, while the second oracle h can be any
string from {0,1}57.

First, V reads (i, j,) from h. Note that the rest of i can be parsed as an array {vi}i;
where i € {0,1...,k} and j € {0,1,...,2'}. We will think of V as performing at most 2!
checks, each of which passes or fails. To show the second item of the lemma, we need to show
that (1) if a string & passes all the checks, then it must be the case that i = h; and (2) h passes
all the checks.

Specifically, V' checks h as follows:

e The values written on the leaves of {v; ;} are indeed f. That is, for every j € {0,1,...,2F—
1}, check that vy ; is consistent with the corresponding block in f.

e For every (i,7) > (ix,jx) such that i < k, C(v;;) = vit1,2j © Vit1,2j+1- (That is, the value

v; j is consistent with its two children.)

e For every (i,j) > (ix,J«) such that i < k, for every z € {0,1}" that is lexicographically
smaller than v; j, C(x) # vi41,2j ©Vit1,25+1. (That is, the value v; ; is the lexicographically

first preimage of its two children.)

e For every z € {0,1}", C(z) # vi,+1,2j, © Vi,+1,2j,+1- (That is, the two children of (i, j.)
form a non-output of C; by the previous checks, (i4,j,) is the lexicographically largest

such pair.)

217

e For every (i,7) < (ix,jx), vij = L.

Note that the above can be implemented with a universal (V) quantification over at most 5 -
(log T+n) bits. First, one can see that by the definition of the correct history h (Definition 7.3.6),
h passes all the checks above. Second, one can indeed see that all the conditions above uniquely

determine h, and therefore any h passing all the checks must equal h. O

Again, it is easy to observe that Definition 7.3.6 and Lemma 7.3.7 relativise.

Remark 7.3.8. Definition 7.3.6 and Lemma 7.3.7 relativise, in the sense that if C is an oracle circuit
C© for some arbitrary oracle, Definition 7.3.6 needs no modification since Algorithm 7.3.1 relativises,
and Lemma 7.3.7 holds with the only modification that V' now also need to take O as an oracle

(since it needs to evaluate C').

7.4 Circuit Lower Bounds for >»E

In this section, we prove our near-maximum circuit lower bounds for >oE by providing a new
single-valued F3sP algorithm for AvoID.

Let {Cy: {0,1}™ — {0,1}?"},,en be a P-uniform family of circuits. We show that there is
a single-valued FX5P algorithm A that, on input 1™, outputs a canonical string that is outside

the range of C), for infinitely many n € N.

Theorem 7.4.1. Let {C,,: {0,1}" — {0,1}*"},en be a P-uniform family of circuits. There is
a single-valued FXoP algorithm A with one bit of advice such that for infinitely many n € N,
A(1™) outputs yn, € {0,1}?"\ Range(C,,).

Proof. We begin with some notation.

(1)
Notation. Let n(!) be a large enough power of 2, n(6) = 22 for each integer £ > 1. Let
n((f) =n® and t® = O<log n((f)) be parameters that we set later. For each 1 < i <t let

10
nge) = (ng)l) . To show our algorithm A works on infinitely many input lengths, we will show

that for every ¢ € N, there is an input length nge) for some i € {0,1,... ,t(e)} such that A works.
Fix £ € N. From now on, for convenience, we will use n; and ¢ to denote ny) and t(0,

respectively.

Specifying T; and f;. For each input length n;, we will specify a parameter T; € N and a
string f; € {0,1}%¢. Our win-win analysis is based on whether f; € Range(GGMr,[C,,.]) for each
ie{0,1,...,t}.

Let Tp := 22" . 2ng and fj be the concatenation of all length-2ng strings (which has length
Tp). From Fact 7.3.4, we have that fy ¢ Range(GGMr,[Cy,]). For every i € [t], we define

fi = HiStOfy(Cniil,fifl).

From Definition 7.3.6, this also means that we have set T; = 5 - T;_; for every i € [t].
Let t be the first integer such that 7311 < 4n;11. Note that we have T; = 5. Ty < 23no+ilogh

and n; = (ng)!%" = 2187010 Hence, we have that ¢ < O(logng). (Also note that n{” < nf™.)

218

Description of our FX,P algorithm A. Now, let & € {0,1,...,t} be the largest integer
such that f; & Range(GGMr, [C,,]). Since fo ¢ Range(GGMp,[Cy,]), such a k must exist. Let
z := Jefabek-Korten(C,, , fr). It follows from Lemma 7.3.3 that z is not in the range of Cy,.
Our single-valued FXoP algorithm A computes z on input 1™ (see Definition 7.2.2). That is,
for some ¢1, 5 < poly(ng):

e There exists 71 € {0,1}* such that for every m € {0,1}%2, V4 (1™, 7y, mo) prints 2, and

e For every m € {0,1}/1, there exists some my € {0,1}%2 such that V, (1™, 7y, m2) prints

either z or L.

In more details, if k& < ¢, then V4 treats m; as an input to the circuit GGMg,_ , [C,

Nk4+1
let

|, and

fk-i—l = GGMr, |, [Cry ().

Here, the length of 7y is ¢; := ngy1 < poly(ng). If & = t, then V4 defines fk+1 := m and
¢y == Tiy1 < poly(ng). Tt is intended that fyy1 = fry1 = History(Ch, , fx) (which V4 needs to
verify). Note that in the case where k < t, since fr;1 € Range(GGMg,_, [Cy, ,]), there indeed
exists some 71 such that ka = fra1-

We note that Lemma 7.3.2 provides us “random access” to the (potentially very long) string
fk+1: given w1 and j € [Tk41], one can compute the j-th bit of fk-s—l in poly(ny) time. Also
recall from Lemma 7.3.7 that for each ¢, fiy1 = History(Cy,, fi) contains the string f;, which
can be retrieved by the oracle algorithm in described in Item 1 of Lemma 7.3.7. Therefore, for
each i from k downto 1, we can recursively define f; such that (fZ)J = m%ﬁiz (7). We define
fg to be the concatenation of all length-(2ng) strings in the lexicographical order, so fo = fo.
Applying the algorithm in recursively, we obtain an algorithm that given ¢ € {0,1,...,k} and
j €{0,1,...,T; — 1}, outputs the j-th bit of fz Since in only makes one oracle query, this
algorithm runs in poly(ny) time.??

Then, V4 parses the second proof 79 into my = (i,w) where i € {0,1,...,k} and w €
{0, 1}50ogTi+ni) - Clearly, the length of mo is at most o := log(k+1) +5(log Ty, +ny) < poly(ng).
Now, let Vhistory be the oracle algorithm in Item 2 of Lemma 7.3.7, we let V4 (1™, 7y, m2) check
whether the following holds: o

Vfi’fiﬂ(cm,w) _ 124 (7.1)

History

frt1
Tkmk?

algorithm defined in Item 1 of Lemma 7.3.7. Otherwise, V4 outputs L.

If this is true, then V4 outputs the string z := Output where Output is the output oracle

The correctness of A. Before establishing the correctness of A, we need the following claim:

Claim 7.4.2. fi11 = ka if and only if the following holds:

. V,_{Ciis’tjcg:ryl(Cni,w) =1 for every i € {0,1,...,k} and for every w € {0, 1}°(oTitn:)

23Note that the definition of fy is so simple that one can directly compute the j-th bit of fo in poly(ng) time.
24Here Vhistory also takes input parameters T; and n;. We omit them in the subscript for notational convenience.

219

Proof. First, assume that frp, 1 = ka. By Item la of Lemma 7.3.7, we have that fl = f;
for every ¢ € {0,1,...,k + 1}. Recall that by definition, f;y; = History(Cy,, fi) for every
i €{0,1,...,k}. Hence, by Item 2b of Lemma 7.3.7, we have that for every i € {0,1,...,k},
and for every w € {0, 1}°(osTitna) Vl_ﬁs’g;:;l(Cm,w) =1 holds.

For the other direction, suppose that for every ¢ € {0,1,...,k} and w € {0, 1}50ogTitni) e
have that Vl_ﬁs’gj:;l(cm,w) = 1 holds. First recall that fy = fy by definition. By an induction
on i € [k+1] and (the uniqueness part of) Item 2b of Lemma 7.3.7, it follows that f; = f; for

every i € {0,1,...,k+ 1}. In particular, fri 1 = fk+1~ o

Now we are ready to establish that A is a single-valued FY5P algorithm computing z on
input 1™. We first prove the completeness of A; i.e., there is a proof m; such that for every
o, Va(1™ mi,me) outputs z = Jerabek-Korten(Cy, , fr). We set m; to be the following proof:
If k <t, then fry1 € Range(GGMr,,,[Cy,,]), and we can set m; € {0,1}"*+1 to be the input
such that fr4 1 = GGM7p,_,[Cp,

fer1 = fk+1, and by Claim 7.4.2, we know that V4 will output z = Jerabek—Korten(C,, , fx) on

|(71); if k = t, then we simply set 71 = fr+1. Then, we have

every proof ms.

Next, we show that for every 7y, there is some 7o that makes V4 output either z or L. It
suffices to consider 1 such that for every my, V4 (1™ 1, m) # L. In this case, every invocation
of Equation 7.1 holds, and thus by Claim 7.4.2 we know that fr, 1 = ka. It follows that
Jerabek—Korten(Cy, , fr) = z and V4 will output z regardless of .

Finally, we generalise A and V4 to work on all inputs 1. On input 1", V4 calculates the
largest ¢ such that n(® < n, and also calculates the largest &’ such that nl(j) <n.If n](f) # n, then
V4 immediately outputs L and halts. Otherwise, V4 receives an advice bit indicating whether
K = k® where k©® is the largest integer such that fé& ¢ Range(GG MTég) [Cnl(f>]). If this is the
case, then V4 runs the verification procedure above; otherwise, it immediately outputs 1 and
halts. It is easy to see that V4 runs in poly(n) time, and is an infinitely-often single-valued

FX9P algorithm solving the range avoidance problem of {C), },en. O

From Remark 7.3.5 and Remark 7.3.8, one can observe that the proof above also relativises.

Hence, we have the following as well.

Theorem 7.4.3 (Relativised version of Theorem 7.4.1). Let O: {0,1}* — {0,1} be any oracle.
Let {C2:{0,1}" = {0,1}*"}.en be a P-uniform family of O-oracle circuits. There is a single-
valued FY9PC algorithm AC with one bit of advice such that for infinitely many n € N, A(1")
outputs 1, € {0,1}2" \ Range(C?).

We omit the proof of the following corollary since it is superseded by the results in the next

section.

Corollary 7.4.4. YoE & SIZE[2"/n] and (32E N1IoE) /1 € SIZE[2™/n]. Moreover, these results
relativise: for every oracle O, YEC € SIZEC[2" /n] and (22EC NIIL,EC) /1 € SIZEC[27/n].

7.5 Circuit Lower Bounds for S;E

In this section, we prove our near-maximum circuit lower bounds for SeE/; by giving a new

single-valued FS,P algorithm for AvOID.

220

7.5.1 Reed—Muller Codes

To prove maximum circuit lower bounds for S9E /1, we will need several standard tools for
manipulating Reed—Muller (RM) codes (i.e., low-degree multi-variate polynomials).

For a polynomial P: F;* —), where |, is the finite field of p elements, we use deg,,,(P)
to denote the maximum individual degree of variables in P. Let p be a prime, A,m € N. For
a string S € {0,1}2", we use RMg, A, (S) to denote its Reed-Muller encoding by extension:
letting H = {0,1,...,A—1} and wy,...,wam € H™ be the enumeration of all elements in H™
in the lexicographical order, RMp, A ;,,(5) is the unique polynomial P: F," — Fp such that (1)
P(w;) = S; for every i € [A™] and (2) deg,.(P) <A —-1.%

We also fix a Boolean encoding of [, denoted as Ency, : IF,, — {0, 1} MeePl - For simplicity, we
can just map z € {0,1,...,p — 1} to its binary encoding. In particular, Encp,(0) = 0ol and
Encp, (1) = 0M1°¢P1=161.20 Now we further define BRMg, A 1 (S) by concatenating RMg, A 1 (S)
with Encp,, thus obtaining a Boolean encoding again. Formally, letting P = RMp, A ,,,(S) and
wi,...,wym € FJ* be the enumeration of all elements from F}' in the lexicographic order, we
define BRMr, A 1 (S) = Encr, (P(w1)) o Encp,(P(w2)) o ... o Encg, (P(wpm)). We remark that
for every i € [A™], in poly(m,logp) time one can compute an index i’ € [p™ - [log p]] such that
BRMr,.A,m(S)i = Si.

We need three properties of Reed—Muller codes, which we explain below.

Self-correction for polynomials. We first need the following self-corrector for polynomials,
which efficiently computes the value of P on any input given an oracle that is close to a low-degree

polynomial P. (In other words, it is a local decoder for the Reed-Muller code.)

Lemma 7.5.1 (A self-corrector for polynomials, cf. [GS92, Sud95|). There is a probabilistic
oracle algorithm PCorr such that the following holds. Let p be a prime, m, A € N such that
A <p/3. Letg: Fy' — Fy be a function such that for some polynomial P of total degree at most
A,

Prlo(@) # P@] < 1/4
Then for all & € T}, PCorr?(p,m, A, Z) runs in time poly(A,logp,m) and outputs P(T) with
probability at least 2/3.

Low-max-degree test. We also need the following efficient tester, which checks whether a

given polynomial has maximum individual degree at most A or is far from such polynomials.?”

Lemma 7.5.2 (Low-max-degree tester [BFLI1, Remark 5.15]). Let n,A,p € N be such that
p>20-(A+1)2-n? and p is a prime. There is a probabilistic non-adaptive oracle machine LDT
such that the following holds. Let g:)y — ;. Then for 6 = 3n2- (A +1)/p, it holds that

1. if degpax(g9) < A, then LDTY(p,n, A) accepts with probability 1,

#5To see the uniqueness of P, note that for every P: F)" — F,, with deg,,,. (P) < A — 1, the restriction of P
to H™ uniquely determines the polynomial P. We can construct P using standard interpolation.

26This fact is useful because if we know a string m € {0, 1}“0g Pl encodes either 0 or 1, then we can decode it
by only querying the last bit of m.

2"To obtain the theorem below, we set the parameter § and e from [BFL91, Remark 5.15] to be

min (W(AH) , 1/2p) and min(WM , 1/2p) , respectively.

221

2. if g is at least §-far from every polynomial with maximum individual degree at most A,
then LDTY(p,n, A) rejects with probability at least 2/3, and

3. LDT runs in poly(p) time.

Comparing two RM codewords. Lastly, we show an efficient algorithm that, given oracle
access to two codewords of RMp,, A 1, computes the lexicographically first differing point between

the respective messages of the two codewords.

Lemma 7.5.3 (Comparing two RM codewords). Let p be a prime. Let m,A € N be such
that m - A < p/2. There is a probabilistic oracle algorithm Comp that takes two polynomials
fr9: Fyt — Fp as oracles, such that if both degy,.(f) and deg,,.«(g) are at most A, then the
following holds with probability at least 9/10:

o If f £ g, then Compf’g(p,m, A) outputs the lexicographically smallest element w in H™
such that f(w) # g(w), where H = {0,1,...,A —1}.%

o If f=g, then COmpf’g(p,m,A) outputs L.

e Comp makes at most poly(m - A) queries to both f and g, and runs in poly(m - A -logp)

time.

Proof. Our proof is similar to the proof from [Hir15|, which only considers multi-linear polyno-

mials. Our algorithm Comp/9(p, m, A) works as follows:

1. The algorithm has m stages, where the i-th stage aims to find the i-th entry of w. At the
end of the i-th stage, the algorithm obtains a length-i prefix of w.

2. For every i € [m):

(a) Let we; € H"! be the current prefix. For every h € {0,1,...,A — 1}, we run
a randomised polynomial identity test to check whether the restricted polynomial
flwei, h,) and g(w<;, h,) are the same, with error at most W.%}

(b) We set w; to be the smallest h such that our test above reports that f(w<;, h,-) and

g(w<g, h,-) are distinct. If there is no such h, we immediately return L.

By a union bound, all mH polynomial identity testings are correct with probability at least
9/10. In this case, if f = g, then the algorithm outputs L in the first stage. If f # g, by
induction on 4, we can show that for every i € [m], w<; is the lexicographically smallest element
from H™ such that f(w<;,-) and g(w<,,-) are distinct, which implies that the output w is also

the lexicographically smallest element w in H™ such that f(w) # g(w). O

28Gince both f and g have max degree at most A, their values are completely determined by their restrictions
on H™. Hence, if f # g, then such w must exist.

2*Note that these two polynomials have total degree at most m - A < p/2. Hence, if they are different, their
values on a random element from F;"ii are different with probability at least 1/2. Hence the desired error level
can be achieved by sampling O(logm + log A) random points from F™ ¢ and checking whether f(w<;,h,-) and
g(w<i, h,) have the same values.

222

7.5.2 Encoded History and S;BPP Verification
Next, we define the following encoded history.

Definition 7.5.4. Let C: {0,1}" — {0,1}?" be a circuit, and f € {0,1}T be a “hard truth

table” in the sense that f ¢ Range(GGM¢[C]). Let k, (i.,j.), and {v;;};; be defined as

in Algorithm 7.3.1. Let S be the concatenation of enc(v;;) for every i € {0,1,...,k — 1},

j€{0,1,...,2" — 1}, in the reserve lexicographical order of (i, j), padded with zeros at the end

to length exactly 57". (Recall that enc(v; ;) was defined in Definition 7.3.6.) Let p be the smallest

prime that is at least 20 - log® T', and m be the smallest integer such that (log)" >5-T.
The encoded computational history of Jerabek—Korten(C, f), denoted as

History(C, f),

consists of (i, jx), concatenated with BRMF, 106 7, (S5)-
The length of the encoded history is at most

[log(40 - log” T)] - (40 - log® T)los(>T)/loglog TH+L 4 916g T < T6

for all sufficiently large T', and for convenience we always pad zeros at the end so that its length

becomes exactly 7.3

Recall that the original computational history History(C, f) is simply the concatenation of
(%, jx) and S. In the encoded version, we encode its S part by the Reed—Muller code instead. In
the rest of this section, when we say history, we always mean the encoded history I-ﬁ;c?y(c, f)
instead of the vanilla history History(C, f).

We need the following lemma.

Lemma 7.5.5. Let n,T € N be such that logT <n < T. Let C: {0,1}" — {0,1}" be a circuit
and f € {0,1}7\ Range(GGM7[C]). Let h = History(C, f) and z := Jerabek—Korten(C, f).

1. (history contains input/output) There is a poly(logT)-time oracle algorithm in and
an O(n)-time oracle algorithm Output, both of which have input parameters T,n and take
a string he {0, 1}T6 as oracle, such that the following hold:

(a) int,, makes a single query to its oracle; when given h as the oracle, int, takes an
additional input i € {0,1,...,T% — 1} and outputs f;.

(b) Outputy,, makes at most 4n queries to its oracle; when given h as the oracle, Outputy, ,
outputs z = Jefabek—Korten(C, f).

2. (S2BPP verification of the history) There is a randomised oracle algorithm V with
mput parameters T, n such that the following hold:

(a) V takes strings f € {0,1}7 71,79 € {(),1}T6 as oracles, the circuit C, an integer
i€ [TG}, and € € (0,1) as input, and runs in poly(n,loge™!) time.

39For simplicity, even for T such that the length of the encoded history is longer than T, we will pretend its
length is exactly T° throughout this section. This does not affect the analysis in our main theorem Theorem 7.5.7
since there we only care about sufficiently large T

223

(b) For every w € {0,1}7° and every i € {0,1,...,T% — 1}, we have that
f’ﬂ—:h y — fvhvﬂ— y —
Pr|\Vi " (Coie) = hi| 21 —¢ and Pr|\Vp " (Ciie) =hi| >1—e¢.

Proof. Again, the algorithms int,, and Outputy,, can be constructed in a straightforward way. 3!
So we focus on the construction of V. Let p,m,k € N be as in Definition 7.5.4. We also set
F =T, and A =logT in the rest of the proof.

Our V always first selects one of the oracles w1 and 7 (say 7, for p € {1,2}), and then
outputs 7m,(i). Hence, in the following, we say that V selects 7, to mean that V' outputs 7, (%)
and terminates. Given m; and o, let g1, g2: F™ — F be the (potential) RM codewords encoded
in m; and o, respectively.’” From now on, we will assume that i points to an entry in the
encoded history g; or go instead of the encoded pair of integers (i4,j). We will discuss the

other case at the end of the proof.

Low-max-degree test and self-correction. Let ¢; be a large enough constant, we first
run LDT9 (p,m, A — 1) and LDT%(p,m,A — 1) for ¢; times. Recall that p > 20 - log® T,
m = [log(5T)/loglog T, and A = logT. It follows that p > 20 - ((A — 1) + 1)? - m?, which
satisfies the condition of Lemma 7.5.2. We also note that 3m? - ((A — 1) +1)/p < 1/4. Hence,
by Lemma 7.5.2, if g; is 1/4-far from all polynomials with maximum individual degree at most
A — 1, then LDTY' (p, m, A — 1) rejects with probability 2/3, and similarly for gs.

Now, if any of the runs on LDT9' (p, m, A — 1) rejects, V selects 7, and if any of the runs on
LDT%2(p,m, A — 1) rejects, V selects m1.%> In other words, V first disqualifies the oracles that
do not pass the low-max-degree test. We set c¢; to be large enough so that conditioning on the
event that V' does not terminate yet, with probability at least 0.99, both g; and g9 are 1/4-close
to polynomials g1 : F}' — F and go: F" — F, respectively, where deg,,,.(91) and deg,,,, (g2) are
at most A — 1.

We can then use PCorr?* (p, m, m-(A—1),-) and PCorr?? (p, m, m-(A—1),) to access the poly-
nomials g; and ga. (Note that m - (A —1) < p/3, which satisfies the condition of Lemma 7.5.1).
We repeat them each O(logT + logm) times to make sure that on a single invocation, they
return the correct values of g; and gs respectively with probability at least 1 — 1/(mT)“* for
a sufficiently large constant cy. By Lemma 7.5.1, each call to PCorr?' (p,m,m - (A — 1),-) or
PCorr92(p,m,m - (A — 1),-) takes polylog(T") time.

Selecting the better polynomial. From now on, we refine what it means when V selects
7, now it means that V' outputs the bit corresponding to 4 in g, (recall that we are assuming
that ¢ points to an entry in the encoded history g; or gs).

Let {vzlj} and {vfj} be the encoded histories in §; and go. Then V uses Comp?+92 (p, m, A—1)
34

to find the lexicographically largest (i, ;') such that vil,J, =+ vi2,7 - This requires at most

poly(m-A) queries to both g; and g2. By making ¢y large enough, we know that Comp operates

31To see that Outputy ,, makes at most 4n queries: Note that Output first reads the pair (ix,J«) from h, and
then reads two corresponding blocks from v; ; encoded in h. In total, it reads at most 2log 7'+ 2n < 4n bits from
h.

32Technically 71 and 72 are supposed to contain the RM codewords concatenated with Enc]Fp :Fp — {0, 1} Mogpl

33 As a minor detail, if both g; and go are rejected by some runs, V selects .

34Recall that the {v; ;} is encoded in the reverse lexicographic order (Definition 7.5.4).

224

correctly with probability at least 0.8. By operating correctly, we mean that (1) if g1 # go,
Comp finds the correct (i’,5') and (2) If g1 = g2, Comp returns L.
In what follows, we assume that Comp operates correctly. If Comp returns L, then V' simply

selects 7. Otherwise, there are several cases:

1. i/ = k. In this case, g; and go disagree on their leaf values, which intend to encode f.
V queries f to figure out which one has the correct value, and selects the corresponding
oracle. (Note that at most one of them can be consistent with f. If none of them are

consistent, then V selects 7.)

From now on, assume 7’ < k and set o = vil,+1?2j, o vil,+172j,+1. Note that by the definition

of (#,7"), it holds that a = v2-2,+1’2j, o ”1'2’+1,2j’+1 as well.

2. 7 < k and both vil,d., and v?,’j, are not L. In this case, V first checks whether both of
them are in C~1(a) (it can be checked by testing whether C(vl.l/J/) =« and C(vl%’j,) = Q).
If only one of them is contained in C~!(a), V selects the corresponding oracle. If none
of them are contained, V selects ;. Finally, if both are contained in C~1(«), V' checks

which one is lexicographically smaller, and selects the corresponding oracle.

3. i < k, and one of the vil,d., and U,LZ,J-, is L. Say that vf,’j, = 1 for some b € {1,2}, and
denote b := 3 — b as the index of the other proof. In this case, let (io,j,) denote the
predecessor of (i, ') in terms of the reverse lexicographical order (that is, the smallest
pair that is lexicographically greater than (i’, j')). Since Comp operates correctly, we have
that U}O’jo = Uz'Qo,jo' If Uilo,jo = 1, then 7 has to be incorrect (since by Definition 7.3.6, L’s
form a contiguous suffix of the history), and V selects m,. Otherwise, if 05?,7 i € CHa),
then m, is incorrect (as it claims that C~1(a) = @), and V selects 7. Otherwise, V selects

Ty

Analysis. Now we show that Pr VT”T’Z’W(i) = h(z)] > 2/3. (One can symmetrically prove that

Pr VTf::h(z) = h(z)} > 2/3.) To get the desired € error probability, one can simply repeat the
above procedure O(log1/¢) times and output the majority.

First, by Lemma 7.5.2, LDT9' (p, m, A — 1) passes with probability 1. If some of the runs of
LDTY2(p, m, A — 1) rejects, then V selects h. Otherwise, we know that with probability at least
0.99, PCorr9 (p,m,m - (A —1),-) and PCorr??(p, m,m - (A — 1),-) provide access to polynomials
g1 and g9 with maximum individual degree at most A — 1, where g1 encodes the correct history
values {v;;};; of Jerabek—Korten(C, f).

Then, assuming Comp operates correctly (which happens with probability at least 0.8), if
g1 = g2, then the selection of V' does not matter. Now we assume g # ga.

We will verify that in all three cases above, h (as the first oracle) is selected by V. In the
first case, by definition, all leaf values in h are consistent with f, and hence h is selected. In the

second case, since h contains the correct history values, we know that vil, j must be the smallest

35From Lemma 7.5.3, CompEl 92 (p,m, A — 1) itself operates correctly with probability at least 0.9. But the
access to g1 (similarly to gz2) is provided by PCorr?! (p, m,m - (A — 1), -), which may err with probability at most
1/(mT)°?. Hence, we also need to take a union bound over all the bad events that a query from Comp to g1 or
g2 is incorrectly answered.

225

element from C~!(a), so again h is selected. In the last case: (1) if vl-lmjo = 1, then vl.l,,j, has
to be L as well, thus h is selected; (2) if vilo’jo # 1 and vil,y]., = 1, then C~(a) = @, and since
the other proof 7 claims some element viz,vj, € C~!(a), h is selected; and (3) if vilo,jo # 1 and
vil,’j, # 1, then 7 claims that C~!(a) = @ and we can check that Uil,,j, € C~1(a), therefore h is

selected as well.

The remaining case: i points to the location of (i,,j,). In this case, V still runs the
algorithm described above to make a selection. Indeed, if Comp does not return 1, V operates
exactly the same. But when Comp returns L, V' cannot simply select 71 since we need to make
sure that V selects the oracle corresponding to h (it can be either 71 or m). Hence, in this
case, V first reads (il,j}) and (i2,52) from m; and mo. If they are the same, V simply selects
m1. Otherwise, for b € [2], V' checks whether vfi,ji = 1, and select the one that satisfies this
condition. (If none of the v?ﬁ,ji are, then V selects 71). If both of v% v are L, V selects the
w € [2] such that (i, j4) is larger.

Now, we can verify that V:,{ ’;Z’ﬂ selects h with high probability as well. (To see this, note that
in the correct history, (i4, j«) points to the lexicographically largest all-zero block.)

Finally, the running time bound follows directly from the description of V. O

A remark on relativisation

Perhaps surprisingly, although Lemma 7.5.5 heavily relies on arithmetisation tools such as
Reed-Muller encoding and low-degree tests, it in fact also relativises. To see this, the crucial
observation is that, similarly to Lemma 7.3.7, the verifier V' from Lemma 7.5.5 only needs black-
bozx access to the input circuit C, meaning that it only needs to evaluate C on certain chosen
inputs. Hence, when C' is actually an oracle circuit C© for some arbitrary oracle O, the only

modification we need is that V now also takes O as an oracle.

Remark 7.5.6. Definition 7.5.4 and Lemma 7.5.5 relativise, in the sense that if C' is an oracle
circuit C© for some arbitrary oracle, Definition 7.5.4 needs no modification since Definition 7.3.6
relativises, and Lemma 7.5.5 holds with the only modification that V' now also needs to take O

as an oracle (since it needs to evaluate C').

Indeed, the remark above might sound strange at first glance: arguments that involve PCPs
often do not relativise, and the encoded history I-ﬁéEo/ry(C, f) looks similar to a PCP since it
enables V' to perform a probabilistic local verification. However, a closer inspection reveals a key
difference: the circuit C' is always treated as a black box—both in the construction of history
(Definition 7.3.6) and in the construction of the encoded history (Definition 7.5.4). That is, the

arithmetisation in the encoded history does not arithmetise the circuit C' itself.

7.5.3 Lower Bounds for S;E

Let {C, : {0,1}" — {0,1}?"} be a P-uniform family of circuits. We show that there is a
single-valued FSoP algorithm A such that for infinitely many n € N, on input 1", A(1"™) outputs

a canonical string that is outside the range of C,,.

226

Theorem 7.5.7. Let {Cy,: {0,1}" — {0,1}*"},en be a P-uniform family of circuits. There is
a sequence of valid outputs {y, € {0,1}?" \ Range(Cp)}nen and a single-valued FSoP algorithm
A with one bit of advice, such that for infinitely many n € N, A(1™) outputs yn.

Proof. Our proof proceeds similarly to the proof of the previous Theorem 7.4.1. We will follow

the same notation.

n(f=1)
Notation. Let n(Y) be a large enough power of 2, n(0) = 22 for each integer £ > 1. Let
n(()é) =n® and t© = O(log né€)> be parameters that we set later. For each 1 < i < t(®), let

(

10
nf) = (ni{%) . To show our algorithm A works on infinitely many input lengths, we will show

that for every £ € N, there is an input length nZ@ for some ¢ € [t“)] such that A works.
Fix £ € N. From now on, for convenience, we will use n; and ¢ to denote nz@ and ¢,

respectively.

Specifying T; and f;. For each input length n;, we will specify a parameter 7; € N and a
string f; € {0,1}7¢. Our win-win analysis is based on whether f; € Range(GGM7.[Cy,,]) for each
ie{0,1,...,t}.

Let Ty := 22" . 2ng and fj be the concatenation of all length-2ng strings (which has length
Ty). From Fact 7.3.4, we have that fy ¢ Range(GGMr,[Cy,]). For every i € [t], we define

fi = HiStOI’y(Cni_p fi—l)'

From Definition 7.5.4, this also means that we have set T; = T ; for every i € [t].
Let ¢ be the first integer such that 71 < ns;1. Note that we have T; = (Tp)%" < 23706" and
n; = (no)'Y" = 21987010 Hence, we have that t < O(logng). (Also note that ny) < n((fﬂ).)

Description of our FSoP algorithm A. Now, let £ € {0,1,...,t} be the largest integer
such that f; & Range(GGMr, [C,,]). Since fo & Range(GGMr,[Cy,]), such a k must exist. Let
z 1= Jefabek—Korten(Cy, , fi), it follows from Lemma 7.3.3 that z is not in the range of C,,
(ie., z € {0,1}?™ \ Range(C,,)). Our single-valued FSoP algorithm A computes z on input 17
(see Definition 7.2.2).

We will first construct an SoBPP verifier V' that computes z in polynomial time on input
1™ and then use the fact that all SoBPP verifiers can be turned into equivalent SoP verifiers
with a polynomial-time blow-up [Can96, RS98|, from which we can obtain the desired verifier
V4 for A.

Description of an S9BPP verifier V computing z. Formally, V is a randomised polynomial-
time algorithm that takes 1™+ and two witnesses 71, m9 € {0,1}™+1 as input, and we aim to

establish the following:

There exists w € {0, 1} +1 such that for every 7w € {0,1}"*+!, we have

Pr[V(1™, w,m) = 2] > 2/3 and Pr[V(1™, 7, w) = 2] > 2/3,

227

where the probabilities are over the internal randomness of V.

In more detail, if & < ¢, then V' treats 71 and 72 as inputs to the circuit GGMg,_, [Cy, .],
and let
fit1 :== GGMp,_ | [C

Nk+1

J(m1) and gry1 = GGMqy , [Ch,,,](m2).

Here, the lengths of ;1 and my are ¢ := ny1 < poly(ng). If k = ¢, then V defines fk+1 = T,
Jk+1 := 2, and their lengths are ¢ := Ty11 < ngy1 < poly(ng). It is intended that one of the
fk+1 and ggy1 18 fr41 = I-ﬁsE)/ry(an, fx) (V needs to figure out which one).

We now specify the intended proof w € {0,1}"+1. When k < ¢, since fi41 is in the range of
GGM7, ., [Ch,,,], we can set w so that GGM7,_, [Cy, .,
W= fr+1-

Note that Lemma 7.3.2 provides us “random access” to the (potentially very long) strings

|(w) = fr+1. When k = t, we simply set

fk+1 and grpi1: (take ka as an example) given 7 and j € {0,1,...,Tx4+1 — 1}, one can
compute the j-th bit of ka in poly(ng) time. Also recall from Lemma 7.5.5 that for each i,
fiv1 = I-ﬁsz;y(cni, fi) contains the string f;, which can be retrieved by the oracle algorithm in
described in Item 1 of Lemma 7.5.5. Therefore, for each ¢ from k downto 1, we can recursively
define f; such that (f;); = |nﬁ+ﬁl (j) (similarly for g;). We also define fo and go to be the
concatenation of all length-(2ng) strings in the lexicographical order, so fo = go = fo.

Applying the algorithm in recursively, we obtain two algorithms F' and G (depending on
m1 and 7o, respectively) that given i € {0,1,...,k+ 1} and j € {0,1,...,T; — 1}, output the
j-th bit of fz or g;, respectively. Since in only makes one oracle query, these algorithms run in
poly(ng) time.

We are now ready to formally construct V. We first recursively define a series of procedures
Vo, -+, Vk+1, where each V; takes an input j and outputs (with high probability) the j-th bit
of f;. Let Vj be the simple algorithm that, on input j, computes the j-th bit of fy. For every
i € [k+ 1] and for some ¢; € [0,1) to be specified later, we define

Vi(a) = Selectgjzﬁ_’_gi (Cyyy s €0)s

where Select is the algorithm in Item 2 of Lemma 7.5.5. We note that since V;_; is a
randomised algorithm, when V; calls V;_1, it also draws independent random coins used by the
execution of V;_1. Moreover, all calls to fl and g; in V; can be simulated by calling our algorithms
F and G. Jumping ahead, we remark that V; is supposed to compute f; when at least one of f,
or §; is f;. We then set

Vi
V(1™ 7y, m2) = Outputy)

(note that Vi1 is defined from fk+1 and gr11, which are in turn constructed from m and m3),

where Outputy, . is the algorithm from Item 1 of Lemma 7.5.5.

Correctness of V. Let 7 € N be a large constant such that Selecty,, runs in (n -log1/e)”

Vi1, fisgi

Ti_17ni_1(Cni71,a, g;) makes at most (n;—1 -log1/e;)"

time. In particular, on any input «, Select
many queries to V;_;.

We say Select?™ ™ (C, a, ;) makes an error if the following statements is true (here h =

228

I-ﬁ;_o/ry(C’, f) from Lemma 7.5.5):%0
[mi=h OR my=h] AND |Selecth™™(Cp,_, ;) # ha]

Viet,fi,gi

Similarly, we say that Selecty, "™

(Cn,_,,,€i) makes an error if either (1) one of the
queries to V;_1 are incorrectly answered (i.e., the answer is not consistent with f;_1) or (2) all

queries are correctly answered but Select/i-1/i-di
Ti—1,mi—1

(Cn,_,,a, ;) makes an error. Note that (2)
happens with probability at most ¢; from Item 2 of Lemma 7.5.5.
Now we are ready to specify the parameter ;. We set e, = 1/(100 - ng41), and for every

i€{0,1,...,k}, we set
€it+1
4-(n;-logl/eip1)™

To show the correctness of V', we prove the following claim by induction.

&g =

Claim 7.5.8. Assume either fk—H = fra1 o7 Gk+1 = fry1. For everyi € {0,1,...,k+ 1} and
a € [|fil], Vi(a) outputs fi(a) with probability at least 1 — 2¢;.

Proof. The claim certainly holds for V. Now, for i € [k + 1], assuming it holds for V;_1, it

follows that Selecty: /-9

7 i (Cn; i, @, €;) makes an error with probability at most

g + (nz;l - log 1/5i)T - 2ei-1 < 2¢;.

By the definition of making an error and our assumption that either fk+1 = fr410r Gpt1 = frr1
(from which we know either f; = f; or §; = f;), it follows that V;(a) outputs fi(a) with
probability at least 1 — 2¢;. o

Note that Output%t}k makes at most 4ny queries to Vi1q. It follows from Claim 7.5.8 that
when either fk+1 = fra1 OF gk+1 = fr+1, we have that V (1™, mo) outputs z with probability
at least 1 — (4ng) - 1/(100n441) > 2/3. The correctness of V' then follows from our choice of w.

Running time of V. Finally, we analyse the running time of V', for which we first need to

bound log 5;1. First, we have
log 6;41_1 = logngy1 + log 100.
By our definition of €; and the fact that 7 is a constant, we have

log 5;1 = log E;Jrll +logd + 7 - (log n; + log log gi_—i-ll)
< 2log 5;11 + O(log n;).

Expanding the above and noting that k < ¢ < O(logny), for every i € [k + 1] we have that

k

log 5;1 <2k.0 (Z log n4> < poly(ng) - log ng.
=0

36The condition below only applies when at least one of m; and 7 is k. If neither of them are h, then Select
by definition never errs.

229

Now we are ready to bound the running time of the V;. First Vj runs in Ty = poly(ng) time.

For every i € [k + 1], by the definition of V;, we know that V; runs in time
T, = O((ni1 log 1/e:)") « (Tict +nf + 1),

where [is a sufficiently large constant and nf bounds the running time of answering each query

Viet1,fi,gi

SeIectTiihmil(Cm_l,a, g;) makes to f; or g;, by running F or G, respectively.

Expanding out the bound for T}, we know that V41 runs in time

k+1

20) . (poly(ng) - logny,)+ 7). nf . H n_q.
i=1

Since ny = n(l)ok and k < O(logng), the above can be bounded by poly(ny). This also implies
that V' runs in poly(ny) time as well, which completes the analysis of the SoBPP verifier V.

Derandomisation of the SoBPP verifier V' into the desired SoP verifier V4. Finally,
we use the underlying proof technique of SyBPP = SyP [Can96, RS98| to derandomise V' into a
deterministic SoP verifier V4 that outputs z.

By repeating V' poly(ng) times and outputting the majority among all the outputs, we can
obtain a new S9BPP verifier V such that

e There exists w € {0,1}™+! such that for every m € {0,1}"*+1, we have

PrlV(1", w,m) = 2] > 1—27"* and PrlV(1™, mw)=2]>1—-2""k (7.2)

Let ¢ = poly(ng) be an upper bound on the number of random coins used by V. We
also let m := poly (¢, ngy1) < poly(ng) and use V(1™ 7y, my;) to denote the output of V given
randomness 7. Now, we define V4 as follows: It takes two vectors 71, 72 € {0, 1}™+1 x ({0, l}é)m
as proofs. For 1 = (o, u1,ug, ..., uy) and Ty = (B,v1,v2,...,0m), Va4 outputs the majority of

the multi-set

{VQA™, a, B u; © v))} i j)em)?s
where u; @ v; denotes the bit-wise XOR of u; and v; (if no strings occur more than m?/2 times
in the set above, then Vy4 simply outputs L).
We will show there exists & = (v, r1,...,7n) such that for every 7 € {0, 1}"+1 x ({O, 1}@)m7

Pr(V4(1™,&,7) = 2] and Pr[Va(1™,7,&) = 2].

We first claim that there exist r1, ..., 7, € {0, 1} such that for every u € {0, 1}¢ and for every
7 € {0,1}™+1_ it holds that (1) for at least a 2/3 fraction of i € [m], we have V (1™, w, ; 7;Bu) =
z and (2) for at least a 2/3 fraction of i € [m], we have V(1™ 7, w;r; & u) = 2.

To see this, for every fixed u € {0,1}* and 7 € {0,1}™+1, by a simple Chernoff bound, the
probability, over m independently uniformly drawn rq,...,r,,, that more than a 1/3 fraction
of i € [m] satisfies V (1™, w, m;7; ® u) # 2 is at most 272" and the same probability upper

bound holds for the corresponding case of ‘N/(lnk, m,w;T; G u) # z as well. Our claim then just

230

follows from a simple union bound over all u € {0,1}* and 7 € {0,1}"+1,

Now, let v be the proof w such that the condition (7.2) holds, we set & = (v, 71,...,7m).
From our choice of v and 71, ..., 7y, it then follows that for every vy, ..., v, € {0,1}f and 7 €
{0, 1}™+1at least a 2/3 fraction of TN/(I”’C,% m;1;®v;) equals z, and similarly for ‘N/(lnk,w, Vi1 D
vj). This completes the proof.

Wrapping up. Finally, we generalise A and V4 to work on all inputs 1. On input 1%, V4
calculates the largest ¢ such that n¥) < n, and also calculates the largest &’ such that n,(f) <n.lIf
n,(j) # n, then V4 immediately outputs | and halts. Otherwise, V4 receives an advice bit indicat-
ing whether &' = k() where k(® is the largest integer such that f;.% ¢ Range(GGMTli@ [Cn,(f)])'
If this is the case, then V4 runs the verification procedure above; otherwise, it immediately
outputs L and halts. It is easy to see that V4 runs in poly(n) time, and is an infinitely-often

single-valued FSoP algorithm solving the range avoidance problem of {C,,}. O

Moreover, observe that in the proof of Lemma 7.5.5, all considered input lengths (the n,gg))

are indeed powers of 2. So we indeed have the following slightly stronger result.

Corollary 7.5.9. Let {Cp: {0,1}" — {0,1}*"},en be a P-uniform family of circuits. There
1s a single-valued FSoP algorithm A with one bit of advice such that for infinitely many r € N,
letting n = 2", A(1™) outputs y, € {0,1}?" \ Range(C,,).

We need the following reduction from Korten, which reduces solving range avoidance with

one-bit stretch to solving range avoidance with doubling stretch.

Lemma 7.5.10 (|[Kor21, Lemma 3|). Let n € N. There is a polynomial time algorithm A and
an FPNP algorithm B such that the following hold:

1. Given a circuit C: {0,1}"™ — {0,1}"FL, A(C) outputs a circuit D: {0,1}" — {0, 1}?".
2. Given any y € {0,1}?" \ Range(D), B(C,y) outputs a string z € {0,1}"+1 \ Range(C).
The following corollary then follows by combining Lemma 7.5.10 and Theorem 7.2.3.

Corollary 7.5.11. Let {Cy,: {0,1}" — {0,1}""1},en be a P-uniform family of circuits. There
is a single-valued FSoP algorithm A with one bit of advice such that for infinitely many r € N,
letting n = 2", A(1") outputs y, € {0,1}"*1\ Range(Cy,).

The following corollary follows from Fact 7.2.4 and Corollary 7.5.11.
Corollary 7.5.12. SoE/y ¢ SIZE[2"/n].

Finally, we also note that by letting C,, be a universal Turing machine mapping n bits to n+1
bits in poly(n) time, we have the following strong lower bounds for SoE/; against non-uniform

time complexity classes with maximum advice.
Corollary 7.5.13. For every a(n) > w(1) and any constant k > 1, S2E/1 ¢ TIME[2M] /3n_).

From Remark 7.5.6 and noting that the derandomisation of SoBPP verifier V' to SoP verifier

Ay also relativises, we can see that all the results above relativise as well.

231

7.5.4 Infinitely-Often Single-Valued FS;P Algorithms for Arbitrary Range
Avoidance

Theorem 7.5.7 and Corollary 7.5.11 only give single-valued FSoP algorithms for solving range
avoidance for P-uniform families of circuits. Applying the Jefabek—Korten reduction (again),
we show that it can be strengthened into a single-valued infinitely-often FSoP algorithm solving

range avoidance given an arbitrary input circuit.

Theorem 7.5.14. There is a single-valued FSoP algorithm A with one bit of advice such that
for infinitely many s € N, for all s-size circuits C: {0,1}"* — {0,1}"*1 where n < s, A(C)
outputs yo € {0,111\ Range(C).

Proof Sketch. By Corollary 7.5.11, there is a single-valued FSoP algorithm W with one bit
of advice such that for infinitely many n € N, W(1%") outputs a string f, € {0,1}?" with
SIZE(f,) > 2" /n.

Now we construct our single-valued FSoP algorithm A with one bit of advice as follows: given
an s-size circuit C': {0,1}" — {0, 1}"*! with n < s as input; let m = [log s3] and f,, = W (12");
output Jefabek—Korten(C, f,,). It follows from Theorem 7.2.3 that A is a single-valued FSyP
algorithm with one bit of advice (the advice of A is given to W). O

Finally, SoP C zPPNP [Cai07] implies that every single-valued FSoP algorithm can also be

PNP

implemented as a single-valued FZP algorithm with polynomial overhead. Therefore, the

above theorem also implies an infinitely often FZPPNP algorithm for range avoidance.

Reminder of Theorem 7.1.5. There is a single-valued FZPPNP

advice such that for infinitely many s € N, for all s-size circuits C: {0,1}" — {0,131 where
n < s, A(C) outputs yo € {0,1}"1 \ Range(C). That is, for all those s, there is a string
yo € {0,1}"+1\ Range(C) such that A(C) either outputs yc or L, and the probability (over the
inner randomness of A) that A(C) outputs yc is at least 2/3.

algorithm A with one bit of

232

Chapter 8

The Complexity of Avoiding Heavy

Elements

8.1 Introduction

Let C be a Boolean circuit sampling a distribution D on N-bit strings. Say that an N-bit
string y is d-heavy in D if y occurs with probability at least § in D. Assuming that some
20-heavy string exists, for 6 > 1/poly(N), how hard is it to find a J-heavy string given C as
input?

We call this natural search problem the heavy element finding (Heavy Find) problem. It is
not difficult to see that the complexity of Heavy Find is closely related to the complexity of
derandomisation. There is a simple randomised polynomial-time algorithm for Heavy Find: we
use C' to draw O(N/4?) independent samples from D and output the string that occurs with the
greatest multiplicity in the multiset of samples. A standard application of Chernoff-Hoeffding
bounds shows that assuming that a 26-heavy string exists, the output of the algorithm will be
a string that is 6-heavy in D with high probability.

Moreover, a deterministic polynomial-time algorithm for Heavy Find implies BPP = P.
Indeed, let M be a probabilistic polynomial-time Turing machine with error bounded by 1/4 and
x be an input to M. We can define a circuit sampler C,, which interprets its input as randomness
r for the computation of M on z, outputting 1V if M accepts on z using randomness r and
0V otherwise. Observe that if M accepts z, the unique solution to Heavy Find on input C,
with parameter 6 = 1/3 is 1V, and if M rejects x, the unique solution to Heavy Find on input
C, with parameter 1/3 is 0V. Thus, a deterministic polynomial-time algorithm for Heavy Find
allows us to decide if M accepts x, also in deterministic polynomial time."

We now turn our original question on its head: given C as input, how hard is it to find a
string that is not d-heavy? We call this the heavy element avoidance (Heavy Avoid) problem.
Heavy Avoid is the complementary search problem to Heavy Find: a string y € {0,1}" is a
solution to Heavy Avoid if and only if it is not a solution to Heavy Find. The complexity of

Heavy Avoid is the primary focus of this chapter.

'Readers who are familiar with derandomisation might already see that the derandomisation also holds for the
promise version of BPP (prBPP). In fact, it is not hard to show that Heavy Find can be solved in deterministic
polynomial time if and only if prBPP collapses to prP, the promise version of P.

233

Superficially, Heavy Avoid seems to be a much simpler problem to solve than Heavy Find.
First, when 6 > 27V, Heavy Avoid is a total search problem, i.e., the promise that a non-
heavy N-bit string exists is automatically satisfied. In this chapter, we mainly focus on the
regime where § > 1/poly(NN), hence this is always true if NV is large enough. Second, there is a
trivial algorithm that list-solves Heavy Avoid: Since the number of §-heavy strings is at most
1/6, at least one of the lexicographically first [1/0] 4+ 1 strings of length N is guaranteed to
be a solution to Heavy Avoid. Third, there is a very efficient randomised algorithm for Heavy
Avoid with overwhelming success probability: output a uniformly random string of length N.
Note that by the previous observation that the number of d-heavy strings is at most 1/4, this
randomised algorithm fails on at most 1/ < poly(NN) of its random choices.

Our main contribution is to introduce Heavy Avoid as a natural search problem of interest,
and show that despite its seeming simplicity, Heavy Avoid has applications to several frontier
questions in complexity theory regarding uniform randomised lower bounds and derandomisation.
Indeed, we show that in many settings the existence of algorithms for Heavy Avoid is equivalent
to a complexity lower bound. The study of Heavy Avoid also illuminates recent almost-all-inputs-
hardness assumptions in the theory of derandomisation |[CT21a|, and leads to novel white-box

reductions in settings where black-box reductions are hard to show.

8.1.1 Results

Our results are twofold.

e First, we present algorithmic characterisations of lower bounds against uniform probabilis-
tic circuits via Heavy Avoid. That is, deterministic algorithms for Heavy Avoid (in certain
settings and with certain parameters) are equivalent to such lower bounds. In fact, we
obtain very general characterisations that hold for classes such as EXP, PSPACE, EXPNP
and NP, against uniform randomised circuit classes such as ACCY, TC?, or SIZE[poly].
This suggests that the analysis of Heavy Avoid could be useful in attacking frontier open
questions such as EXP ¢ BP-ACC” and EXPNP ¢ BPP.

e Then, we give applications of Heavy Avoid to derandomisation, including novel white-box
reductions from promise problems that are hard for prRP or prBPP to Heavy Avoid, as
well as connections to “almost-all-inputs-hardness" assumptions that have been explored

in recent work on derandomisation.

We consider both uniform and non-uniform versions of Heavy Avoid. In the uniform version,
the search algorithm is given N in unary, and needs to find a 6-light” element in Dy, where
D = {Dn}nen is an ensemble of distributions over N-bit strings that are sampled by some
uniform sequence of circuits from a circuit class. Since D is sampled by a uniform sequence of
circuits, we do not need to give the circuit sampler explicitly to the search algorithm—the search
algorithm can compute the circuit sampler by itself. In this uniform variant of the problem, fix
a parameter §: N — [0, 1], (D, §)-Heavy-Avoid is the problem of finding a 6(N)-light element in
Dy, given 1V as input.

2A 6-light element is one that is not d-heavy.

234

In the non-uniform variant of the problem, the search algorithm is given as input a circuit
sampler C from some circuit class C, and needs to output a J-light element in the distribution
sampled by C.

There are also two kinds of samplability we consider: implicit and ezplicit. In the implicit
version, our sampler C' is Boolean: given randomness r as input together with an index i € [N],
it outputs the i-th bit of the string sampled on randomness r. In this setting, the circuit size
is typically less than V. In the explicit version, the circuit C is given randomness 7 as input
and has N output bits: it outputs the string sampled on randomness r. In this setting, the
circuit size is at least IV, since there are N output bits. Note that when we show an implication
from solving Heavy Avoid to proving lower bounds, the implication is stronger when we consider
implicit solvers, since the algorithmic problem is easier to solve for implicit samplers.® An

implicit solver C(r,i) can easily be converted to an equivalent explicit solver
Cixplicit(r) := C(r,1)C(r,2)...C(r,N).

Equivalences Between Complexity Separations and Algorithms for Heavy Avoid

It is a long-standing open question to prove lower bounds against non-uniform circuits — we
still have not ruled out the possibility that every language computable in exponential time with
an NP oracle (EXPNP) has polynomial-size circuits. What is more embarrassing is our inability
to separate EXPNP from BPP (see, e.g., [Will3b, Wil19] for discussions), despite the belief shared
by many researchers that BPP = P [NW94,IW97].* Moreover, the state of affairs is the same
regarding lower bounds against uniform probabilistic circuits from restricted circuit classes: for
example, it is open whether EXP can be simulated by DLOGTIME-uniform probabilistic ACC°
circuits or EXPNP can be simulated by DLOGTIME-uniform probabilistic TCY circuits.”

Our first set of results gives equivalences between such explicit lower bounds against uniform
probabilistic circuits and efficient deterministic algorithms for Heavy Avoid. The equivalences
work in a wide variety of settings, for a range of circuit classes including ACC?, TC?, NC! and
general Boolean circuits, and for explicit lower bounds in several standard complexity classes
of interest such as EXP, EXPNP PSPACE and NP. Notably, these results give new algorithmic
characterisations of uniform lower bound questions by the existence of efficient algorithms for
a natural search problem. Thus, they could potentially be useful in attacking frontier open
questions such as the EXP vs (uniform probabilistic) ACC? question, or the EXPNP vs BPP
question.

We use BPC to denote the set of languages computed by DLOGTIME-uniform probabilistic

C-circuits.

Theorem 8.1.1 (Informal). Let C be a nice’ class of Boolean circuits. The following equivalences

3We measure the complexity of solving the search problem as a function of N, even in the implicit-sampler
setting.

4Since BPP is strictly contained in SIZE[poly] [AdI78], the open problem of separating EXPN® from BPP is
more embarrassing than separating EXPNP from SIZE[poly]! See also [Will19, Table 1] for a related perspective.

5Tt follows from EXPNP ¢ ACC® [Will4, CLW20], which is a non-uniform circuit lower bound, that EXPN?
cannot be simulated by DLOGTIME-uniform probabilistic ACCY circuits. (Note that we do not know how to prove
such lower bounds by exploiting the circuit uniformity condition.)

5In brief, a nice circuit class is one that contains ACO[GB]7 is closed under composition, and admits universal
circuits for the corresponding class.

235

hold:

(i) EXP & BP-C if and only if (D,)-Heavy-Avoid with §(N) = 1/polylog(N) can be solved
i deterministic polynomial time on infinitely many input lengths for any D that admits

implicit DLOGTIME-uniform C-samplers of size polylog(N).

(i1) EXPNP & BP-C if and only if (D, §)-Heavy-Avoid with §(N) = 1/polylog(N) can be solved
i deterministic polynomial time with an NP oracle on infinitely many input lengths for

any D that admits implicit DLOGTIME-uniform C-samplers of size polylog(N).

(1ii) PSPACE ¢ BP-C if and only if (D,d)-Heavy-Avoid with §(N) = 1/polylog(N) can be
solved in deterministic logarithmic space on infinitely many input lengths for any D that

admits implicit DLOGTIME-uniform C-samplers of size polylog(N).

() NP & BP-C if and only if (D,d)-Heavy-Avoid with §(N) = 1/polylog(N) can be solved
by DLOGTIME-uniform unbounded fan-in circuits of quasi-polynomial size and constant
depth on infinitely many input lengths for any D that admits implicit DLOGTIME-uniform
C-samplers of size polylog(N).

For the PSPACE lower bounds, analogous algorithmic characterisations hold for almost ev-
erywhere uniform lower bounds and for lower bounds against uniform randomised subexponential
size circuits. Perhaps interestingly, it follows from our arguments that the existence of efficient
algorithms for (D, §)-Heavy-Avoid in the settings considered in Theorem 8.1.1 is robust with
respect to the threshold parameter 6(N): the existence of algorithms for any §(IV) = o(1) yields
the existence of algorithms of similar complexity for §(/N) = 1/polylog (V).

Theorem 8.1.1 has direct corollaries that characterise frontier open questions in complexity

theory.
Corollary 8.1.2 (Informal). The following results hold:

(i) EXPNP ¢ BP-TC® if and only if Heavy-Avoid for implicit DLOGTIME-uniform TCO-
samplers can be solved in deterministic polynomial time with access to and NP oracle

on infinitely many input lengths.

(i) PSPACE ¢ BP-ACC® if and only if Heavy-Avoid for implicit DLOGTIME-uniform ACC-

samplers can be solved in logarithmic space on infinitely many input lengths.

Previously, algorithmic characterisations of non-uniform lower bounds were known for classes
such as NEXP [IKW02, Wil16] and EXPNP [Kor21, RSW22|, and such characterisations for uni-
form randomised lower bounds against general circuits (that is, against BPP) were known for
EXP [IWO01] and NEXP [Will6]. We are not aware of any previous algorithmic characterisation

of super-polynomial non-uniform or uniform randomised lower bounds for NP.

Connections to Derandomisation

We also explore relations between the complexity of Heavy Avoid and fundamental questions
in derandomisation. We consider the non-uniform variant of Heavy Avoid, where a Boolean

circuit sampler is given as input to the algorithm solving Heavy Avoid. For é: N — [0, 1],

236

Implicit-d-Heavy-Avoid is the problem where we are given as input a circuit C' implicitly
sampling a distribution on N bits (as explained at the beginning of Section 8.1.1), and would
like to output a d-light element in the distribution.

Our first result shows that the existence of efficient deterministic algorithms for Heavy Avoid
that, in addition, can be implemented by uniform circuits of sub-polynomial depth leads to a
complete derandomisation of prBPP. Note that in this result, to obtain the desired conclusion,

it is sufficient for this algorithm to solve the problem for implicit samplers.

Theorem 8.1.3. Let 6(N) = o(1) be any function. Suppose there is a constant € > 0 and a
deterministic algorithm A that solves the Implicit-d-Heavy-Avoid problem on implicit samplers

of size N¢. Moreover, assume that A can be implemented as a logspace-uniform circuit of size

poly(N) and depth N°Y). Then prBPP = prP.

If we could eliminate the circuit depth constraint from the statement of Theorem 8.1.3, it
would be possible to establish an equivalence between the derandomisation of prBPP and algo-
rithms for Heavy Avoid (in both the implicit and explicit settings). While obtaining this strong
characterisation remains elusive, in the next result, we obtain a non-trivial derandomisation
consequence from the existence of an efficient algorithm for Heavy Avoid without assuming a
circuit depth bound.

Let Gap-SAT denote the promise problem where YES instances are Boolean circuits with
at least half of the assignments being satisfying, and NO instances are unsatisfiable Boolean

circuits. It is well known that Gap-SAT is complete for the promise version of RP.

Theorem 8.1.4 (Informal). Let 6(N) = o(1) be any function. Suppose there is an algorithm for
Implicit-0-Heavy-Avoid on maps G: {0,1}P°Y() — {0, 1} (where N = 2"°) implicitly com-
putable by an input circuit of size poly(n), where the Heavy Avoid algorithm runs in poly(N)
time and is infinitely-often correct. Then there is an algorithm for Gap-SAT that runs in subez-

ponential time and is infinitely-often® correct.”

Theorem 8.1.3 and Theorem 8.1.4 are both established using non-black-box reductions that
make use of recent hardness-randomness trade-offs. In more detail, as explained in Section 8.1.2
below, Theorem 8.1.3 crucially relies on the instance-wise hardness-randomness trade-off for
low-depth circuits of Chen and Tell [CT21a|, while Theorem 8.1.4 combines the framework of
[CT21a] and the “leakage resilient” hardness-randomness framework of Liu and Pass [LP23]. In
contrast to the non-black-box nature of the proofs given for these two results, we show that
it will be quite difficult to obtain them using black-box reductions. In particular, we show
that improving Theorem 8.1.4 to a polynomial-time Levin reduction [Lev73] would derandomise

prBPP.% Stated more precisely, if there is an efficient black-box Levin reduction from the search

"In Theorem 8.1.4, we only obtain Gap-SAT algorithms satisfying a technical condition called infinitely-often*
correctness, which is a nonstandard variant of infinitely-often correctness. The crucial difference is that, for a
sequence of inputs {@n}nen, given 17, the algorithm is allowed to inspect every input 1,22, .., Zpoly(n), and
needs to provide a solution for x,. In other words, the algorithm is correct infinitely-often™ if it outputs the
correct answer on infinitely many input lengths n while having access to all input strings from the sequence that
have length polynomial in n. We refer the reader to Definition 8.4.7 and to the proof of Theorem 8.4.8 for more
details.

8Recall that in a Levin reduction between search problems we have a pair (f, g) of functions, where f maps
to an instance of the other problem while g converts a given solution into a solution to the original problem.

237

version of Gap-SAT to Heavy Avoid (even with respect to non-uniform explicit samplers), then
prBPP = prP holds unconditionally. We refer to Section 8.4.3 for more details.

Finally, we establish a deeper connection between the implicit non-uniform variant of Heavy
Avoid considered in this section and the recent paradigm of instance-wise hardness-randomness
trade-offs alluded to above [CT21a,LP22, LP23, CTW23|. Roughly speaking, in this paradigm,
we convert a hard function f : {0,1}"* — {0,1}P°Y(™ with multiple output bits into pseudoran-
domness, where the obtained derandomisation is instance-wise: for every = € {0,1}", if f is hard
to compute on x, then the derandomisation of the corresponding computation over input x suc-
ceeds. Naturally, the derandomisation assumptions used in these results need almost-all-inputs
hardness, meaning that f is hard on all but finitely many inputs (instead of input lengths).” In
Section 8.4.4, we prove that the existence of efficient deterministic algorithms for Heavy Avoid
in the implicit non-uniform setting is equivalent to the existence of functions f with multiple
output bits that are easy to compute deterministically but are hard against fixed polynomial-size
randomised algorithms. This result sheds light on the relevance of the techniques that we employ
to prove Theorem 8.1.3 and Theorem 8.1.4, and suggests that developing further connections
between Heavy Avoid and these modern hardness-randomness trade-offs paradigms could be a

fruitful research direction.

8.1.2 Techniques

We now discuss the proofs of Theorem 8.1.1, Theorem 8.1.3, and Theorem 8.1.4. We make

use of a variety of techniques to establish these results:

e The proof of Theorem 8.1.1 Item (744) relies on extremely efficient instance checkers for
a special PSPACE-complete problem investigated in [Che23|. This allows us to establish
equivalences for very weak circuit classes C at the frontier of existing separations. Extend-
ing the equivalence result to NP, EXP, and EXPNP in the context of weak circuit classes

poses some additional challenges that we address through different ideas and techniques.

e The proof of Theorem 8.1.3 relies on a novel application of the Chen—Tell non-black-box
hitting set generator construction from [CT21a, CLO23|. In contrast to previous appli-
cations, here the reconstruction procedure of the generator itself, as well as the assumed

algorithm for Heavy Avoid, plays a key role in the specification of a “hard” function.

e Finally, the proof of Theorem 8.1.4 builds on the proof of Theorem 8.1.3. It combines for
the first time the Chen—Tell derandomisation framework [CT21a| with the leakage resilience
derandomisation framework of [LP23|, using a win-win analysis. We show that either the
Heavy Avoid algorithm is leakage resilient, allowing us to apply the framework of [LP23],
or it can be implemented by a low-depth circuit, allowing us to apply the framework of
[CT21al. This enables us to derive a non-trivial derandomisation consequence without the

circuit depth constraint present in the hypothesis of Theorem 8.1.3.

Next, we describe some of our proofs and techniques in more detail.

?Compared with classical hardness-randomness frameworks such as [NW94, TW97, STV01], the advantage of
the new paradigm is that lower bounds against uniform algorithms (instead of non-uniform circuits) suffice for
worst-case derandomisation.

238

Sketch of the Proof of Theorem 8.1.1. We first explain the proof of Item (iii), i.e.,
the equivalence between the complexity separation PSPACE ¢ BP-C and the existence of (in-
finitely often) logarithmic-space algorithms for Heavy-Avoid over implicit DLOGTIME-uniform
C-samplers.

First, we show how to obtain the separation using algorithms for the implicit heavy avoid
problem. Using standard arguments, it suffices to show that for every choice of & > 1, there
is L € DSPACE[n?] such that L cannot be computed by DTIME[k - log n]-uniform randomised
C-circuits of size n*.

Let N = 2". We consider a map Gx: {0,1}"

a pair (M, r), where M is a short encoding (say, logn bits) of a clocked machine running in time

°om {0, 1}V that views its input string = as

10k -logn, and r is a random string. Let Dj; be the C-circuit of size at most n?* whose direct
connection language is encoded by the machine M. For i € [N], we define the i-th output bit of
Gn(x) as Dys(r,i). Due to its running time, the computation of M can be uniformly converted

into an AC? circuit of size at most n!0%

. Using that C is a nice circuit class, Gy can be implicitly
computed by a DLOGTIME-uniform probabilistic C-circuit Cy of size at most n@®).

Let B(1"V) be an algorithm of space complexity O(log N) that solves C-Implicit--Heavy-Avoid
on infinitely many values of N for the sequence G, and let Lp be the language defined by B.
Note that Lp is in DSPACE[O(n)] € DSPACE[n?]. To argue that Lp cannot be computed by
DTIME[k-log n]-uniform randomised C-circuits of size n*, it is enough to show that for every lan-
guage L computed by such circuits, each string in the sequence {yﬁ} n of truth-tables obtained
from L is -heavy in Gn(Up,(yy). Since B solves C-Implicit-d-Heavy-Avoid for the sequence
{Gn}, it follows that Lp # L.

The proof that the sequence {y%} n of truth-tables obtained from L is 6-heavy in G U (ny)
relies on the definition of Gy. In more detail, under the assumption that L admits DTIME[k -
log n]-uniform randomised C-circuits of size n*, it is not hard to show that its truth-table is

IM| " However, this probability is sufficiently large

produced with probability comparable to 2~
under the assumption that the encoding length |M]| is small in the definition of G .

The proof of the other direction in Theorem 8.1.1 is more interesting. We establish the
contrapositive. Suppose that for some Gp: {0,1}P°¥() — 0,1}V implicitly computed by
DLOGTIME-uniform C-circuits of size poly(n), every algorithm A(1") running in space O(log V)
fails to solve C-Implicit-d-Heavy-Avoid on every large enough input length N. We employ this
assumption to show that PSPACE C BP-C. For this, we recall the notion of instance checkers.
Let L C {0, 1}* be a language, and let {CT(L_) (x, 2) }nen be a family of probabilistic oracle circuits.

We say that C' is an instance checker for L if for every input z € {0,1}*:
1. Prz[Cé|(x,z) = L(z)] =1, and
2. for every oracle O, Prz[q%(x,z) ¢ {L(x),L}] <1/2™

We will rely on an appropriate PSPACE-complete language L* that admits highly efficient in-
stance checkers computable in any nice circuit class. This is a consequence of a result from
[Che23], as explained in Section 8.5.

We then consider a candidate algorithm A(17V) that computes as follows. On input 1%,
define tty to be the truth table of L* on n-bit inputs; we simply output tty. It is possible to

239

show that A computes in space O(log N) after an appropriate scaling of parameters, which we
omit here for simplicity. Therefore, A fails to solve C-Implicit-J-Heavy-Avoid on every large
enough input length N. This means that for every large enough N, the probability of ¢t under
the distribution Gn (Upely(ny) from above is at least § = 1/(log N)OW = 1/poly(n).

To explain how we compute L* on an input x € {0,1}", assume for simplicity that the
oracle instance checker circuit (call it 1C) only queries its oracle on input length n. We sample
v = n9W strings z1,...,2, € {0,1}P°Y(™ uniformly and independently at random, and for
each string z;, we define an oracle O; whose truth table is the string G (z;) € {0,1}"¥. We run
IC in parallel and obtain b; := IC%i(z) for each i € [v]. We output 1 if at least one bit among
bi,...,by is 1, and 0 otherwise.

Next, we argue that A computes L* with high probability. Let ¢ty denote the truth table of
L* on input length n. By our choice of v, with high probability the string ¢ty appears among
the strings Gy (z1),. .., Gn(zy), meaning that one of the oracles O; computes L* on inputs of
length n. Consequently, in this case, if L*(z) = 1 then at least one bit b; = 1, and the procedure
outputs 1. On the other hand, if L*(x) = 0, then by a union bound over the internal randomness
of IC, with high probability every bit b; € {0, L}. In this case, the procedure outputs 0. This
establishes the correctness of A. Using the efficiency of the instance checker and that C is a nice
circuit class, it is also possible to upper bound the circuit complexity of A and to analyse the
uniformity of the corresponding circuits. This implies that L* € BP-C. Since L* is PSPACE-
complete under DLOGTIME-uniform projection reductions, we get that PSPACE C BP-C, as
desired.

We now briefly comment on the additional ideas needed for the proofs of the other items
in Theorem 8.1.1. The proof of Item (i7) requires a different approach, since instance checkers
for EXPNP_complete languages are not known. We provide two different proofs in this case. In

PNP

more detail, the result for EX can be obtained using a win-win argument and a reduction

PNP_complete languages [Hirl5]. These two

to Item (44), or through the use of selectors for EX
approaches provide different extensions of the result, which we discuss in detail in Section 8.3.3.
On the other hand, the proof of Item (iv) relies on a randomised depth-efficient version of the
search-to-decision reduction for SAT based on the Valiant-Vazirani Isolation Lemma [VV86],
as well as the equivalence between the polynomial hierarchy and DLOGTIME-uniform constant-

depth circuits of exponential size [BIS90].

Sketch of the Proof of Theorem 8.1.3. Using existing results [BF99|, in order to deran-
domise prBPP it is sufficient to describe an algorithm that, given an input circuit D: {0, 1} —
{0,1} of size O(M) with the promise that Pr,[D(y) = 1] > 1/2, runs in deterministic time
poly(M) and outputs a positive input of D. To achieve this, we will rely on a novel application
of the Chen-Tell generator [CT21a| (with the improved parameters from |[CLO"23]). In more
detail, given a function f: {0,1}"* — {0,1}7(computed by logspace uniform circuits of size
T(n) and depth d(n), and a parameter M(n) such that ¢-logT < M < T'/¢ (for a constant c),
|CT21a, CLOT 23| provides algorithms HSG; and Recony depending on f such that:

e The algorithm HSGy(x) runs in deterministic 7¢ time and outputs a set of M-bit strings.

e Given = € {0,1}" and i € [T] as inputs, and oracle access to a candidate distinguisher

240

D: {0, 1} — {0,1}, Recon?(a:,i) runs in randomised (dnlM)¢ time. If D is dense and
avoids HSG¢(x), then with probability > 1 — 2—M Recon]lc)(x,i) outputs the ¢-th bit of
f(z).

We consider an appropriate function f’: {0,1}5(M) — {0,1}, where N = M for a
large enough constant C;. We view the input of f’ as the description of an arbitrary circuit
D: {0,1}™ — {0,1} of size O(M). In this construction, the parameter T = M®2 for a large
enough constant Cy > Cp, while d = M°M = N°M)_ Moreover, f' will be computed by a
logspace-uniform family of circuits. We then show that HSG (D) hits D if D is a dense circuit.
Note that the generator runs in time poly(7') = poly(M) by our choice of parameters.

The function f’ makes use of the algorithm A that solves the Implicit-§-Heavy-Avoid
problem on instances G: {0,1}" — {0,1}* that are implicitly computable in N¢ size. In more
detail, we let f/(D) = A(Cp), where Cp is an implicit (non-uniform) sampler of size N¢ for a
map Gp: {0,1}¥° — {0,1}"V described next.

First, we make a simplifying assumption: The sampler Gp has access to the code of a
machine M that serves as a logspace-uniform description of a circuit family that computes f’.
(Observe that this is self-referential, since we have defined f'(D) = A(Cp) above, while we will
also use f’ to define C'p. We will handle this issue later.)

The sampler Gp stores D as advice. This is possible because D is of size M, and if C}
is large enough, then M < N¢. The implicit sampler Cp(r,i) for Gp then uses its random
input string r of length N¢ and ¢ € [log N] to compute Recon]lc)/(D,i,r), where we have made
explicit the random string r used by Recon?/. Since d = M°M and C; is large enough, we
get that ReconJ[e),(D,i,r) can be computed in time (d - MM . pMye < peto) < Ne. This
completes the definition of f'(D) and of HSG (D). We note that to establish the size, depth,
and logspace-uniformity of the sequence of circuits computing f’ we can rely on the fact that f’
only needs to produce the code of Cp.'"

Next, we argue that HSGy (D) hits any dense circuit D. Assume this is not the case.
Then, since D avoids the generator, Recon]l? (D, i) outputs the i-th bit of /(D) with probability
at least 1 — 27 Consequently, by a union bound over i € [N], it follows that the string
A(Cp) = f/(D) € {0,1}" is output by Recon?(D, -) with probability 1 — o(1). In other words,
the string f'(D) is sampled with high probability by the sampler Gp encoded by Cp. On the
other hand, since f/(D) = A(Cp) and A solves the heavy avoid problem for Gp, we get that the
string f’(D) has probability o(1) under Gp. This contradiction implies that HSG (D) indeed
hits D.

It remains to explain how to fix the self-referential nature of the definition of Gp via the
implicit sampler C'p, which depends on f’ (and which in turn depends on Cp). In more detail,
the construction is self-referential due to the use of the routine Reconjlc),7 which depends on f’.

To patch the argument, we combine the following key points:

e There is a deterministic algorithm that, given the Turing machine My that prints the

circuit for f’ in logspace, outputs the description of Recony in poly(|(My)|) time.

'"We make a brief comment about the novelty of this argument. In order to define the “hard” function f’,
here we make use of the reconstruction procedure of the generator. This is different from an application of this
generator in [CLO™ 23|, where the code of the hitting set procedure plays a key role in the definition of the hard
function.

241

e We can combine O(1) many samplers into a single sampler that produces the convex
combination of the corresponding distributions. A string with weight o(1) under the new

distribution must have weight o(1) under each original sampler.

Therefore, we can change the description of Gp so that it interprets a small prefix of its random
input string as the description of a Turing machine My that prints a circuit of the expected
size using logarithmic uniformity, then use the first bullet above to produce the procedure
Recon; corresponding to f. Notice that with this change, the sampler Gp no longer depends
on f’. Moreover, since f’ is encoded by some finite machine My, using the second bullet the
argument described above to reach a contradiction and establish the correctness of the hitting
set generator still holds: When D avoids HSG/ (D) the modified sampler Gp outputs the string
/(D) = A(Cp) with constant probability, while as a solution to the heavy avoid problem for
G'p this string has probability o(1). This completes the sketch of the argument.'!

Sketch of the Proof of Theorem 8.1.4. Since this is a more sophisticated construction, we
only provide a brief sketch of the idea. As alluded to above, the argument combines the two
instance-wise hardness-randomness trade-offs introduced by Chen and Tell [CT21a| and by Liu
and Pass [LP23], respectively.

We employ a win-win analysis based on whether the assumed algorithm for Implicit-§-Heavy-Avoid
(call it Avoid) is “leakage resilient” hard. In more detail, let f: {0,1}" — {0,1}7 be a function,
A be a randomised algorithm, and = € {0,1}" be an input of f. We say that f(z) is £-leakage
resilient hard against A if for every “leakage string” leak € {0, 1}, there is some i € [T] such that
Pr[A(z, leak,i) = f(z);] < 2/3, where the probability is taken over the internal randomness of
A. Liu and Pass [LP23] showed that leakage resilient hardness can be used for derandomisation.

We can now explain the main idea behind the win-win analysis. If Avoid is leakage resilient
hard, we use the hardness-randomness trade-offs in [LP23]. If this is not the case, we show
that Avoid can actually be implemented by a low-depth circuit. We can then use the hardness-
randomness trade-offs in [CT21al, which requires the hard function to be computed by a low-
depth circuit family.

Implementing this plan turns out to require a delicate construction and the notion of infinitely-
often™ correctness appearing in the statement of Theorem 8.1.4. We refer to Section 8.4.2 for

more details.

8.2 Preliminaries

8.2.1 Notation

We use U,, to denote the uniform distribution over {0,1}". For a distribution D and an
element x, we use D(z) to denote the probability of x under D.

We say that a probability distribution D contains a §-heavy element if there is x in the
support of D such that D(x) > §. Any such element x is said to be §-heavy. In this case, we also
say that the distribution D is §-heavy. If an element z is not d-heavy, then we say it is J-light.

"'We note that this argument is non-black-box. The code of a machine M that describes a uniform circuit
family for f’ is needed to instantiate the Chen-Tell generator. In the aforementioned construction, this means
that black-box access to the algorithm A is not enough.

242

We will often consider a distribution ensemble D = {D,, },,>1, where each D,, is a distribution
supported over {0,1}". For convenience, we might simply refer to D as a distribution. We let
PSAMP denote the set of polynomial-time samplable distributions.

We say a probabilistic algorithm A for a search problem P is pseudodeterministic [GG11], if
for every input x, there is a canonical P-solution y of = such that A(z) outputs y with probability
> 2/3. It is easy to see that the success probability can be amplified to 1 — exp(—n) by parallel

repetition.

8.2.2 The Heavy Avoid Problem

In general, given a distribution D over {0,1}" and a parameter § € (0, 1), the Heavy Avoid
problem asks to find a string « € {0, 1}" such that D(x) < §. It is easy to see that such a string
always exists as long as 2" > 1/§. Consequently, the Heavy Avoid problem is a total search
problem. We mainly focus on the regime where 1/ is significantly smaller than 2", such as
d = 1/poly(n) or even just § ~ 1/logn.

We consider the Heavy Avoid problem in different settings, depending on whether the sampler

for D implicitly samples the distribution and whether it is computed uniformly.'?

e We say a distribution D over {0, 1}" is implicit (or, locally-samplable) if there is an efficient
procedure that given an integer ¢ and the randomness r used by the sampler, outputs the
i-th bit of the sample according to r. In the typical parameter regime, D runs in time
t ~ poly(logn, |r|) which is much smaller than n. Depending on the context, “efficient
procedure” could either mean Turing machines or circuits, as will be addressed in the next
bullet. Note that the random string r is also short and the sampler has sequential access

(instead of random access) to 7.

We use the word explicit to describe samplers that take poly(n) time, as opposed to implicit

samplers.

e We say a family of distributions D = {D,, }nen is uniformly samplable if there is a Turing
machine M that given 1" (and access to uniformly random bits), samples from D,,. (Sim-
ilarly, we often consider a Turing machine M (1™) that prints a circuit that samples D,,.)
On the other hand, if we only have a (non-uniform) family of circuits {C),}, where each

C,, samples from D,,, then we say the distribution is non-uniformly samplable.

We will also say that uniformly samplable distributions are sampled in time ¢, while non-

uniformly samplable distributions are sampled in size t.

Explicit Maps

Definition 8.2.1 (Uniform Heavy Avoid). Let D = {D,} € PSAMP, where each D,, is sup-
ported over {0,1}", and let §(n) € [0,1]. In the (D, d)-Heavy-Avoid problem, given 1" the goal
is to output an element x € {0,1}" such that D,(z) < §(n).

12Do not confuse the uniformity of the sampler with the distribution D,, which most often in this work will
not be the uniform distribution.

243

We say that the (D, d)-Heavy-Avoid problem can be solved in polynomial time if there is
a deterministic algorithm A(1") that runs in polynomial time and solves (D, ¢)-Heavy-Avoid.
Similarly, the (D, d)-Heavy-Avoid problem can be solved in pseudodeterministic polynomial
time if there is a pseudodeterministic algorithm A(1™) that runs in polynomial time and solves
(D, 6)-Heavy-Avoid.

Definition 8.2.2 (Non-Uniform Heavy Avoid). Let C: {0,1}™ — {0,1}" be a Boolean circuit,
and let D¢ be the distribution induced by C(U,y,). Let § € [0,1]. In the Non-Uniform-Heavy-Avoid
problem, given C' and d, the goal is to output an element x € {0, 1}" such that De(z) < 4.

We may also represent 1/¢ in unary when we want to emphasise that we consider the regime
where § > 1/poly(n). In this case, the input consists of (C,1%), let § := 1/¢, and the goal is to
output a d-light element of D¢.

We say that Non-Uniform-Heavy-Avoid can be solved in polynomial time if for every constant
¢ > 1, Non-Uniform-Heavy-Avoid over inputs where the circuit C' is of size at most n¢ and
d > 1/n can be solved in deterministic polynomial time.

Note that it is not hard to solve Non-Uniform-Heavy-Avoid with randomness.

Proposition 8.2.3. Let ¢ > 1. There is a probabilistic polynomial-time algorithm A such that,
given a circuit C: {0,1}™ — {0, 1}" of size at most n® and a parameter 6 > 1/n¢, A runs in time
polynomial in n® and outputs with high probability a set Tc 5 of size at most 2-(1/9) that contains
all 0-heavy elements of Do. Hence, if we output the lexicographically smallest string not in Tc s,

then we obtain a probabilistic polynomial-time algorithm solving Non-Uniform-Heavy-Avoid.

Let Scs = {z € {0,1}¢ | Dc(z) > 6}, where Do = C(Uy,). Note that the algorithm
A outputs with high probability a set T¢ s of bounded size such that Scs C T 5. However,
different executions of A might produce different sets Tz 5. Consequently, this does not give rise

to a pseudodeterministic algorithm for Non-Uniform-Heavy-Avoid.

Implicit Maps (Locally Samplable Distributions)

For locally samplable distributions (which will also be called “implicit maps” in this chapter),
it will be important to fix the following notation. A map, or generator, is a function G: {0,1}™ —
{0,1}" (typically N > m) such that our input distribution is G(U,,). We say the map is
implicitly computed by a circuit C'if C': {0,1}™x[N] — {0, 1} satisfies that for every r € {0,1}",
C(r, i) outputs the i-th bit of G(r). The input of Implicit-Heavy-Avoid will be a circuit C even
though we are actually solving Heavy Avoid on the corresponding instance G. (In the uniform
case, the circuit C is generated by a uniform procedure, in which case the input to the problem
is simply 1V.)

Although the input length, poly(|C|), is usually much smaller than N, the output length is
still N, hence we still measure the time complexity of algorithms solving Implicit-Heavy-Avoid
by N. For example, we say Implicit-Heavy-Avoid can be solved in deterministic polynomial

time if it can be solved by a deterministic machine that runs in time polynomial in N.

Definition 8.2.4 (C-Implicit-d-Heavy-Avoid for non-uniform samplers). Let C be a circuit

class, 0: N — [0,1], m, N,s: N — N be parameters. We define the C-implicit §-heavy avoid

244

problem for maps that stretch m(N) bits to N bits and are implicitly computed by C-circuits
of size at most s(N). (A typical parameter regime is that N = 2" for some integer n, 6(N) =
1/poly(n), and m(N), s(N) < poly(n). The parameters will be clear in each statement.)

The input of this problem is a size-s C-circuit C': {0,1}™ x [N] — {0,1}. Recall that this
circuit C' implicitly defines a map G: {0,1}™ — {0,1}" such that, for every » € {0,1}™, and
i € [N], C(r,i) outputs G(r); (the i-th bit of the N-bit string G(r)). Given C, the goal is to
output an element y € {0, 1}V such that Pr[G(U,) = y] < 6.

Similarly, we can also define C-Implicit-d-Heavy-Avoid for uniformly-samplable maps. Here,
we consider families of maps {Gxn} that are implicitly computed by DLOGTIME-uniform C-
circuits {Cn} of size at most s(N). In other words, there is a DLOGTIME-uniform sequence
{CN}n>1 of size-s(N) C-circuits such that, for every N > 1, r € {0,1}™®) and i € [N],
Cn(r,t) outputs Gn(r);, i.e., the i-th bit of the N-bit string Gy (r). (Here, we say {Cn} is
DLOGTIME-uniform if the direct connection language of Cn can be decided in O(log s(NV)) time.)

Definition 8.2.5 (C-Implicit-J-Heavy-Avoid for uniform samplers). Let m(N), s(N),d(N) be
parameters as above, and {Cxn} be a DLOGTIME-uniform sequence of C-circuits that defines
a family of maps {Gx}. That is, given € {0,1}" and i € [N], Cn(r,i) outputs the i-th
bit of Gn(r). The C-Implicit-d-Heavy-Avoid problem corresponding to {Gx} is the following
problem: Given 1V the goal is to output a string = € {0, 1} such that Pr,[Gn(7) = z] < §(N).

Note that the input to the Heavy Avoid problem is given by a circuit when we consider the
non-uniform formulations (in both the implicit and explicit settings), while the input to the
problem is simply the input length when we consider uniform formulations (since the sampler

can be efficiently obtained from the input length).

8.2.3 Time-Bounded Kolmogorov Complexity

We review some notions from time-bounded Kolmogorov complexity (see, e.g., [LO22]| for
more details). Let U be a Turing machine. Given a positive integer ¢ and a string = € {0,1}*,
we let

Kl () = min {|p[| U(p) outputs x in at most ¢ steps}.
pe{0,1}*

We say that K, (z) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As
usual, we fix U to be a time-optimal machine [LV19], i.e., a universal machine that is almost as
fast and length efficient as any other universal machine, and drop the index U when referring
to time-bounded Kolmogorov complexity measures.

For z € {0,1}", the probabilistic t-time-bounded Kolmogorov complezity of z is defined as

2
pK'(x) = min {k eN ‘ Pr [Elp e {0,1}*, U(p,w) outputs = within ¢ steps} > 3} .
w~{0,1}

In other words, if kK = pK'(x), then with probability at least 2/3 over the choice of the random

string w, given w, the string x admits a ¢t-time-bounded encoding of length k.

245

We can also consider the randomised Kt complexity of a string z € {0,1}*, defined as

rKt(x) = min + [logt Pr |U(p,r) outputs = in ¢ steps| > 2/3 ;.
@)= min Al foge] | pr 106.0) ourp il > 2/3)

All these notions of time-bounded Kolmogorov complexity can be generalised to capture the
conditional complexity of z given y in the natural way, i.e., by providing y as an extra input

string to the universal machine U.

8.2.4 Pseudorandomness and Derandomisation

Fix an input length n. A generator is simply a multiset G C {0,1}". We will consider
families of generators {G,, }nen where each G, C {0, 1}" is a generator outputting n-bit strings.
In the literature, it is also common to consider these generators as functions: let £(n) < n denote
the seed length of the generator, then the function G,,: {0,1}4") — {0,1}" is equivalent to the

multiset

{Gn(s) : s € {0,1}¢(MY.

In this chapter, we will use the subset- and functional-definitions of generators interchangeably.
Let A :{0,1}"™ — {0,1} be a function, H C {0,1}" be a generator, and € > 0 be a parameter.
We say that A is e-dense if Pry.fo 13 [A(7) = 1] > . We say that A e-avoids H if A is e-dense,
and for every string x € H, we have A(z) = 0. If A does not e-avoid H, then we say that H
e-hits A.
Let A: {0,1}* — {0,1} be a function, G: {0,1}* — {0,1}" be a generator, and £ > 0 be a
parameter. We say that A e-distinguishes G, if

LB MA@ =1 Pr(A(G(E) = 1) >
otherwise (if the above inequality does not hold), we say that G e-fools A.

Like many papers in derandomisation [Goll1lb,CT21a,LP22,LP23|, we will consider promise
versions of randomised complexity classes, such as prRP and prBPP. A promise problem [ESY84|
(ITygs, IIno) is a pair of disjoint sets (IIygs N IIyo = @). A machine solves the corresponding
promise problem if given an input z € {0,1}*, it outputs 1 when x € Ilygs and outputs 0
when = € Ilyo; note that there is no requirement on the behaviour of the machine when
x ¢ (Ilygs U TIno).

We also recall the definitions of the canonical prRP-complete problem Gap-SAT and the
canonical prBPP-complete problem CAPP.

Definition 8.2.6 (Gap-SAT). The problem Gap-SAT is the following promise problem (Ilygs, IIno):
IIygs consists of all circuits C' : {0,1}" — {0,1} that are 1/10-dense, and IIyo consists of all
circuits C' : {0,1}"™ — {0, 1} such that C(z) = 0 for every z € {0,1}".

Definition 8.2.7 (CAPP). The problem CAPP is the following promise problem (Ilygs, IIno):
On input (C,9), where C' : {0,1}" — {0,1} is a circuit and 6 € (0,1) is a number, Ilygs
consists of (C,d) where § > Pry. 10,13»[C(7)] + 1/10, and TIyo consists of (C,d) where § <
Pr, (o1 [C(2)] — 1/10.

246

The constant 1/10 in the above two definitions is arbitrary and can be amplified to 1/poly(n)
by parallel repetition.

8.3 Heavy Avoid and Lower Bounds Against Uniform Probabilis-

tic Circuits

In this section, we study the connection between the Heavy-Avoid problem and the problem
of proving lower bounds against uniform probabilistic circuits. Our main result is that in many
settings, lower bounds against uniform probabilistic circuits are characterised by the existence
of algorithms for Implicit-Heavy-Avoid.

Let C be a circuit class. A probabilistic C-circuit E(z;2) is a circuit from C that computes
over an input and an input z, where the latter corresponds to the random choice of E. We
denote BP-C the set of languages L that can be computed by a DLOGTIME-uniform sequence
of probabilistic C-circuits of polynomial size. We stress that the uniform machine generating the
C circuit is deterministic, while the circuit itself is allowed to make random choices (z).

Our results hold for any (uniform probabilistic) circuit class C that is nice, i.e., satisfies a

few technical conditions. More precisely, we say a circuit class C is nice if the following holds:
e (C contains AC’[@].) AC’[@] C C.

e (C is closed under composition.) For every language L € C and every DLOGTIME-
uniform family of oracle circuits {Cfl_)}neN making non-adaptive projection queries where
the top (i.e., post-processing) circuit is in C, the language computed by the circuit family
{CLn}, oy is still in DLOGTIME-uniform C.

e (C admits universal circuits.) There is a DLOGTIME-uniform family of C-circuits Eval
such that given the description of a C-circuit C (i.e., the truth table of the direct connection

language of C') and an input z, Eval((C), z) outputs C(z).

In the case that C is the union of depth-d circuits for every constant d, such as AC® or TC?,
we allow Eval to have higher depth than C': for every fixed depth d, the circuit evaluation
problem can be solved by a family of DLOGTIME-uniform C-circuit of constant depth.

It is not hard to check that many standard circuit classes considered in the literature are nice,
e.g., AC'[@], ACCY, TC? NC!, P/poly. For instance, universal circuits for NC! are constructed
in [Bus87], while universal circuits for TC? can be built using the universal threshold function
(see, e.g., [BW05]) and standard techniques.

A note on notation: throughout this section, when we use parameters n and N together,
we implicitly assume N = 2". We switch back and forth between the two parameters based on

which one is more natural in a given context.

8.3.1 Equivalences for PSPACE via Instance Checkers

Our equivalences for PSPACE follow from the existence of instance checkers [BK95, TV07]
for PSPACE-complete languages. To establish our equivalences with respect to restricted circuit

classes, we use a recent construction of AC?[@]-computable instance checkers by Chen [Che23)].

247

Below, we say that an oracle circuit E(_)(x, z) from BP-C makes projection queries if every
query it makes to the oracle can be computed by a projection over the inputs (x,z). After
gathering the answers of the oracles, the final output is computed by a C circuit over (z, z) and
these oracle answers. We stress that any oracle circuit that makes projection queries is non-
adaptive. When we say such a circuit is DLOGTIME-uniform, we mean that both the projection
(computing the queries to the oracles) and the top C circuit are DLOGTIME-uniform.

Theorem 8.3.1 (A PSPACE-Complete Language with Useful Properties). There is a language
L* C {0,1}* with the following properties:

1. (Complexity Upper Bound) L* € PSPACE.
2. (Completeness) L* is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC°[®] oracle
circuits {ICy }n>1 making projection queries such that, on every input string x € {0,1}"
and for every oracle O C {0,1}*, the following holds:

o ICO(x) only makes queries of length n to O.
o If O agrees with L* on inputs of length n, then Pr,[ICO(x;r) = L*(z)] = 1.
e For every oracle O, Pr,[ICO(z;r) € {L, L*(x)}] > 1 — exp(—n).

Theorem 8.3.1 follows from [Che23, Section 7|; we refer the reader to Section 8.5 for more
details.

We say that the C-Implicit-d-Heavy-Avoid problem corresponding to a given family {Gy}
of implicitly computed maps can be solved in space s(IN) if there is an algorithm A of space
complexity s(N) such that, for every input length N, there is some z € {0, 1} for which A(1V,)
outputs the i-th bit of x for all i € [N], and z is a solution to the C-Implicit-d-Heavy-Avoid
problem for Gy.

Theorem 8.3.2 (Equivalence for PSPACE). Let C be a nice class of Boolean circuits. The

following statements are equivalent:
(i) PSPACE ¢ BP-C.
(ii) For every choice of ¢,d,f € N, with m(N) = n? and §(N) = 1/n’, and for every sequence
{GN} of maps G : {0,1}™N) — {0, 13N implicitly computed by DLOGTIME-uniform C-

circuits of size at most n¢, the corresponding C-Implicit-d-Heavy-Avoid problem can be

solved in space O(log N) on infinitely many input lengths N .

Proof. We consider each implication below.

(i) = (7). Using the assumption, we show below that for every choice of k > 1, there is
L € DSPACE[n?] such that L cannot be computed by DTIME[k - log n]-uniform randomised C-
circuits of size n*.'? Since there exist PSPACE-complete problems, a standard argument shows
that this implies PSPACE ¢ BP-C.

131f C is a constant-depth circuit class defined as a union of classes for each fixed depth k, the argument can
be adapted accordingly.

248

Fix a large enough k > 1, and consider the map Gy: {0,1}™™) — {0,1}" defined as
follows, where m(N) := n3*. The map Gy views its input string = as a pair (M, r), where M is
the description of a clocked deterministic machine running in time 10k - logn, and r is the rest
of x, treated as a random string. We assume that this encoding satisfies that for a random x,
every machine M of description length £ occurs with probability ©(27¢/¢2) (this is possible since
Yot é% is bounded). The important part is that if the description length of M is a constant,
then it occurs with constant probability. Let Dys: {0,137 x {0,1}™ — {0,1} be the C-circuit
of size at most n** encoded by the machine M(17,:) (i.e., we assume that M computes the
direct connection language of Dys). For i € {0,1}", we define the i-th output bit of Gy (x) as
Dys(r,i). Note that a uniform computation over inputs of length at most 10k -logn and running
in time 10% - logn can be uniformly converted into an AC? circuit of size at most n'%. Since C
contains AC?, admits universal circuits, and is closed under composition, G can be implicitly
computed by a DLOGTIME-uniform probabilistic C-circuit Cy defined over m(N) +n input bits
and of size at most n®*, where C is a large enough universal constant that depends only on the
circuit class C.

Let B(1"V) be an algorithm of space complexity O(log N) that solves C-Implicit-6-Heavy-Avoid
on infinitely many values of N for the sequence G, with parameters c¢,d < C - k and function
d(N) < o(1). Let Lp be the language defined by B, i.e., a string z € {0,1}" is in Lp if and only
if the z-th bit of B(1Y) (with N = 2") is 1. Note that Lp is in DSPACE[O(n)].

We now argue that Lp cannot be computed by DTIME[k-log n]-uniform randomised C-circuits
of size n*. To prove this, it is enough to show that for every language L computed by such circuits,
each string in the sequence {y%}n of truth-tables obtained from L is -heavy in Gy (Upn(nvy) for
every large enough N. Under this claim, since B solves C-Implicit-d-Heavy-Avoid for the
sequence {Gy}, it follows that Lp # L.

To see that the claim holds, recall that L is computed by DTIME[k-log n]-uniform randomised
C-circuits of size n*. Consequently, there is a deterministic machine M} that runs in time
k -logn and decides the direct connection language of a corresponding randomised C-circuit Dy,
of size at most n?* and using at most n* random bits that computes L on n-bit inputs. We
now boost the success probability of the circuit Dy, via repetition and (approximate) majority
vote. More precisely, since the approximate majority function can be computed by DLOGTIME-
uniform AC? circuits [Ajt90, Vio09], C contains AC°, and C is closed under composition, there
is a deterministic machine M, 1 that runs in time 10k - logn and decides the direct connection
language of a corresponding randomised C-circuit 15L of size at most n* and using at most
n?* random bits that computes L on each n-bit input string with probability at least 1 — 2727
Moreover, we can assume that the description length of M 1 is a constant £gesc, hence it occurs
with constant probability. Let y% be the truth-table of L on input length n, i.e., [yk| = N =
2". By construction, using an union bound over all n-bit input strings, the probability that
GNUnny) = yk Is at least Q27 e /02) - (1 —27") > Q(1) > 4, for large enough N. This

shows that yk, is d-heavy, concluding the proof of this item.

(i) = (). We argue in the contrapositive. In other words, suppose that there is a choice of con-
stants ¢, d, and ¢, with m(N) = n? and 6(N) = 1/n’, and a sequence G : {0,1}(N) — {0, 1}V
implicitly computed by DLOGTIME-uniform C-circuits of size n such that every algorithm A(1V)

249

running in space O(log N) time fails to solve C-Implicit-J-Heavy-Avoid on every large enough
input length N. Next, we use this assumption to establish that PSPACE C BP-C, which con-
cludes the proof.

We consider a candidate algorithm A(17V) that computes as follows. Consider the language
L* from Theorem 8.3.1, and assume that L* € DSPACE[n?], where a € N. For a given N’ = 2",
we let tt%, € {0,1}Y" denote the truth table of L* over inputs of length n’. On input 17,
algorithm A outputs the string yy = tt}, 04~ € {0,1}V, where N’ = 2" for n/ = n'/%, and
uy =N — N'.

Note that A computes in space O(log N), due to our choice of parameters. Therefore, A fails
to solve C-Implicit-d-Heavy-Avoid on every large enough input length N. This means that for
every large enough N the probability of yy under Gn (U, (n)) is at least § =1/ nt.

We first describe a randomised algorithm that computes L*, deferring for now a discussion of
its correctness, circuit complexity, and uniformity. Let n = (n)%, as above. To compute L* on a
given input z of length n’ € N, we sample v = n®¢ strings 21, ...,z € {0, l}m(N) uniformly and
independently at random, and use the 2"'-bit prefixes O, ..., 0. of the corresponding oracles
O1,...,0, as candidate oracles for L* on input length n/, where each O; is the oracle associated
with the string G (z;) € {0,1}". In more detail, let b; = ICS; (x), where IC, is the algorithm
from Theorem 8.3.1. We output 1 if at least one bit among by, ..., b, is 1, and 0 otherwise.

Next, we argue that A computes L* with high probability. Consider an arbitrary input
length n’ and a given input string z € {0, 1}”,. By our choice of v, with high probability the
string yn appears among the strings Gy (21),...,Gn(2y). In particular, with high probability
the truth table tt}, appears as an N’-bit prefix of one of these strings, meaning that one of the
oracles O} computes L* on inputs of length n’. Consequently, in this case, if L*(z) = 1 then at
least one bit b; = 1, and the procedure outputs 1. On the other hand, if L*(z) = 0, then by a
union bound over the internal randomness of 1C,,/, with high probability every bit b; € {0, L}.
In this case, the procedure outputs 0. This establishes the correctness of A.

It remains to establish an upper bound on the circuit complexity of A and to analyse the
uniformity of the corresponding circuits. Note that each bit b; € {0,1, L} can be computed
by a randomised C-circuit of polynomial size, since Gy is implicitly computed by C-circuits of
polynomial size, IC,s is computable by randomised C-circuits of polynomial size, and C is closed
under composition. Moreover, the disjunction of the bits b; can also be computed in C, since this
class contains ACO[EB]. Therefore, A can be implemented by randomised C-circuits of polynomial
size. Finally, it is not hard to check that the corresponding sequence of randomised C-circuits
is DLOGTIME uniform, since IC is computed by DLOGTIME-uniform randomised circuits, and
G is implicitly computed by DLOGTIME-uniform circuits.

The above discussion implies that L* € BP-C. Since L* is complete under DLOGTIME-
uniform projection reductions, we get that PSPACE C BP-C, as desired. O

Our characterisations also extend to almost-everywhere lower bounds and subexponential

lower bounds, as demonstrated in the following theorems.

Theorem 8.3.3. Let C be a nice class of Boolean circuits. The following statements are equiv-

alent:

(i) PSPACE ¢ i.0.-BP-C.

250

(ii) For every choice of c,d,f € N, with m(N) = n? and §(N) = 1/n’, and for every sequence
{GnN} of maps Gy : {0,13N) — 10,1}V implicitly computed by DLOGTIME-uniform C-
circuits of size at most n, the corresponding C-Implicit-d-Heavy-Avoid problem can be

solved in O(log(N)) space for all large enough N.
Proof Sketch. The result follows from the same argument given for Theorem 8.3.2:

e (ii) = (4): If our algorithm B is correct on input 1%V, then our language L is hard on input

length n.

e (i) = (ii): If the language L* is hard on input length n’, then our algorithm A is correct
on input 1V where N = 2(")* O

We use BP-C-SIZE[f(n)] to denote the class of languages computable by DLOGTIME-uniform
BP-C circuits of size f(n).

Theorem 8.3.4. Let C be a nice class of Boolean circuits. The following statements are equiv-

alent:
(i) There is a constant ¢ > 0 such that PSPACE ¢ BP-C-SIZE[2™"].

(ii) There is a constant ¢ > 0 such that for 6(N) := 27" and for every sequence {Gn} of
maps Gy: {0,1}2" — {0,1} implicitly computed by DLOGTIME-uniform C-circuits of
size 2", the corresponding C-Implicit-d-Heavy-Avoid problem can be solved in poly(N)

time on infinitely many input lengths N.

Proof Sketch. The argument is an adaptation of the proof of Theorem 8.3.2 by adjusting a few
parameters, so we refer the reader to that proof for more details.

To see that (ii) = (i) holds, let &’ := £/4, and consider the map Gy : {0,1}(N) — {0, 1}V
where m(N) := on and the input bits are parsed into the description of a Turing machine M
that encodes a size-2"" C-circuit Dps and the rest random inputs (fed to Djs). Like in Theo-
rem 8.3.2, we assume that every constant-size Turing machine occurs with constant probability.
This map Gy can be implicitly computed by a DLOGTIME-uniform probabilistic C-circuit C'n
of size 2, in the sense that for every = € {0,1}™) and i € [N], the i-th bit of Gy (x) is equal
to Cn(x,7). We can see that for every language L € BP- C—SIZE[Z”EI], let y% denote the truth
table of L, then the probability that Gy (U, (n)) = yk is at least a constant. Hence, given an
algorithm B(1V) that solves the C-Implicit-d-Heavy-Avoid problem for § = o(1) (on infinitely
many N), the language whose truth table is the output of B(1V) is not in BP- C—SIZE[Z"E,] (on
infinitely many n). Since we further assumed that B runs in space O(log N), we obtain a hard
language in SPACE[O(log N)] = SPACE[O(n)] that is not in BP- C—SIZE[2”EI].

To see that (¢) = (i) holds, let L* denote the PSPACE-complete language in Theorem 8.3.1
and let &’ := £/(5a), where a > 1 is a constant such that L* € SPACE[n?]. Consider the following
algorithm A(1%) for solving the C-Implicit-§-Heavy-Avoid problem with parameter /. On
input 1V, let n’ := n'/%, N := 2"y, € {0, 1}N/ be the truth table of L* on input length n’,
then A outputs yn/ON*N/ € {0, 1}V, If A fails to solve C-Implicit-6-Heavy-Avoid, then we can
compute L* in BP-C-SIZE[2"] as follows. Let = € {0,1}" be an instance of L*, we set n := (n’)®
and N’ := 2", We sample v := (1/5(N))? < 25" strings z1,..., 2, € {0, I}Qn€ uniformly and

251

independently at random, and for each string z; we define an oracle O;: {0,1}* — {0,1}
whose truth table is the first N’ bits of Gn(z;). We then run IC against each O; and obtain
b = ICfL),i (x) for each ¢ € [v], and finally we output 1 if some b; is equal to 1. This algorithm
computes L* because with high probability, the truth table ¥, appears in these oracles, and also
the instance checker will never output 1 — L(z) by mistake. Our algorithm can be implemented
in BP-C-SIZE[27™"] C BP-C-SIZE[2(")]. O

Remark 8.3.5. In the proof of Theorem 8.3.2, we only need to solve the C-Implicit-d-Heavy-Avoid
problem for § = o(1) to obtain the lower bound (i.e., Item (¢)), while the latter implies algorithms for
the C-Implicit-d-Heavy-Avoid problem even when 6 = 1/poly(n) = 1/polylog(N). This illustrates
the robustness of the parameter ¢ in C-Implicit-d-Heavy-Avoid with respect to O(log N)-space
algorithms: if the problem is solvable for § = o(1), then it is also solvable for § = 1/polylog(N).
Similarly, Theorem 8.3.4 shows that if we consider implicit maps computable in the 27 time regime,
then this problem is solvable for § = o(1) if and only if it is solvable for § = 2="". In fact, it is
evident from the proofs that the robustness of the parameter § holds in every characterisation result

in Section 8.3.

8.3.2 [Equivalences for NP via Search-to-Decision Reductions

In this section, we show equivalences between uniform randomised lower bounds for NP
and Heavy Avoid algorithms implementable by constant-depth circuits. NP is not known to be
instance-checkable, hence we cannot use the technique from the previous section. However, it
turns out that search-to-decision reductions can also be used to argue the desired equivalences.
The standard search-to-decision reduction is highly sequential, so in order to show equivalences
that work for any nice circuit class, we use a depth-efficient version based on the Valiant-Vazirani
Isolation Lemma [VV86] which exploits our access to randomness.

We first need a generalisation of the standard result that NP ¢ BPP iff PH ¢ BPP.

Lemma 8.3.6. Let C be a nice circuit class. NP € BP-C if and only if PH ¢ BP-C.

Proof Sketch. The proof is essentially the same inductive argument as for the standard equiva-
lence between NP Q BPP and PH Q BPP. We must show that if NP C BPP then PH C BPP.
In order to implement that argument, we need to be able to do error reduction to exponentially
small error by DLOGTIME-uniform randomised C circuits, which holds since C contains ACY,
and Approximate Majority can be computed in DLOGTIME-uniform AC® [Ajt90, Vio09]. We
also need the closure of C under composition to be able to do induction, but that also holds

since C is nice. O
Now we proceed to our equivalences for NP.

Theorem 8.3.7 (Equivalences for NP). Let C be a nice circuit class. The following statements

are equivalent:

(i) NP ¢ BP-C.

(ii) There are positive integers k and v such that for every c,d,f € N, with m(N) = n?
and 5(N) = 1/nt, and for every sequence {Gn} of maps Gy: {0,1}™N) — {0,1}V
implicitly computed by DLOGTIME-uniform C-circuits of size at most n, the corresponding

252

C-Implicit-é-Heavy-Avoid problem can be solved by DLOGTIME-uniform unbounded fan-

(V)"

in circuits of size 21°8 and depth k on infinitely many input lengths N.

Proof. We consider each implication below.

(i1) = (). We will use the assumption to show that PH ¢ BP-C, and the desired implication
then follows from Lemma 8.3.6 and the assumption that C is nice.

As in the proof of the analogous equivalence for PSPACE, fix a large enough a > 1, and
consider the map Gy : {0,1}™) — {0,1}V defined as follows, where m(N) := n3*. The map
Gy parses its input string x into (M, r), where M is the description of a clocked determinis-
tic machine running in time 10a - logn, and r consists of the remaining bits of x, treated as
randomness. Let Dyr: {0,117 x {0,1}™ — {0,1} be the randomised C circuit of size at most
n?% encoded by the machine M (17,-) (i.e., we assume that M computes the direct connection
language of D). For i € {0,1}", we define the i-th output bit of G (x) as Dps(r, 7). Note that
G n can be implicitly computed by a DLOGTIME-uniform randomised C circuit Cy defined over
m(N) + n input bits and of size at most n"%, where C is a large enough universal constant.

As per assumption, let {Cn} be a DLOGTIME-uniform family of unbounded fan-in circuits of
size 21°6N)" and depth k such that for infinitely many N, Cy solves C-Implicit-d-Heavy-Avoid
on Gy, with parameters ¢ = C - a, d = 2a + 1, and §(IN) = o(1). (Recall that each output bit
of Gy is computed in time n¢, m(N) < n?, and we want to find a §(N)-light element.) Let
L be the language defined by {Cx}, i.e., a string z € {0,1}" is in L if and only if the z-th
bit of Cx(1"V) (with N = 2") is 1. Note that there are integers s and k&’ (depending only on
r and k) such that L is in ¥ -TIME[n®] by the known equivalence [BIS90| between PH and
DLOGTIME-uniform circuits of exponential size in n (which is quasi-polynomial size in N).

We now argue that L cannot be computed by DTIME]a -log n]-uniform randomised C circuits
of size n® To prove this, it is enough to show that for every language L’ computed by such
circuits, each string in the sequence {yﬁ; }n of truth-tables obtained from L’ is d-heavy in
G N (Upy(ny) for every large enough N. Under this claim, as B solves C-Implicit-0-Heavy-Avoid
for the sequence {Gy}, it follows that L # L'.

To see that the claim holds, suppose that L’ is computed by DTIME[a - log n]-uniform ran-
domised C circuits Dy, of size n®. Consequently, there is a deterministic machine My, that runs
in time a - logn and decides the direct connection language of a corresponding randomised C
circuit Dy/, and the circuit Dy, computes L' on n-bit inputs, has size at most n>* and uses at
most n® random bits. We can then reduce the error of the circuit Dy, to be exponentially small
by using the facts that Approximate Majority is in DLOGTIME-uniform AC® [Ajt90, Vio09] and
that C is nice. Thus we obtain a family of randomised Boolean circuits D 1, that has size at most
nC¢ uses at most n2® random bits, and computes L on each n-bit input string with probability
at least 1 —272". Moreover, there is a deterministic machine N 1 that runs in time 10a-log n and
decides the direct connection language of Dy. Since the description length of N 1/ 1s constant, it
occurs with constant probability in the distribution sampled by G . Let yﬁ,’ be the truth-table
of L on input length n, i.e., |y{(,/ | = N = 2". By construction, using an union bound over all
n-bit input strings, the probability that Gn(Upn)) = yk,/ is at least (1) - (1 —27") > §(N).
This shows that y]](,, is d-heavy, concluding the proof of the claim.

253

Note that the language L defined above depends on a, however by the standard fact that
there is a language Leomp complete for 3i/-TIME[n®] under DLOGTIME-uniform projections of
linear size, we get that that for each a, Lcomp is not computed by DTIME[a - log n]-uniform
randomised C circuits of size n®. This implies that Leomp & BPC, and hence that PH Q BPC.
Therefore NP ¢ BPC by Lemma 8.3.6, concluding the proof of this item.

(i) = (i1). We argue in the contrapositive. Suppose that there is a choice of constants ¢,d, and
¢, with m(N) = n? and 6(N) = 1/n’, and a sequence G : {0, 1}) — {0, 1}V implicitly com-
puted by DLOGTIME-uniform C circuits of size n¢ such that every DLOGTIME-uniform sequence
of unbounded fan-in circuits of size 2°8")” and depth 3 fails to solve C-Implicit-d-Heavy-Avoid
on every large enough input length N. We use this assumption to establish that NP C BPC,
which concludes the proof.

We consider a candidate algorithm A(1Y) that simply outputs ¢y, where tty is the truth
table of SAT on n-bit inputs. We consider a standard encoding of SAT in which SAT is depth-
efficiently paddable, i.e., there is an algorithm Pad implemented by DLOGTIME-uniform AC°
circuits which, given as inputs 1! for a positive integer ¢t and a formula ¢ of length at most
t, outputs an equisatisfiable formula ¢’ of length t. Note that A can be implemented by
DLOGTIME-uniform unbounded fan-in circuits of size 21°6(M)* and depth 3, using the known
simulation of non-deterministic quasi-linear time by uniform unbounded fan-in circuits [BIS90].
By assumption, A fails to solve C-Implicit-d§-Heavy-Avoid on every large enough input length
N. We show how to use this failure together with a depth-efficient randomised search-to-decision
reduction based on the Valiant-Vazirani Isolation Lemma [VV86] and depth-efficient paddability
of SAT to solve SAT in BPC, which implies NP C BPC by the NP-completeness of SAT with
respect to DLOGTIME-uniform projections.

By the failure of A, we have that for every large enough N, the probability of ¢ty under
GN(Unm(ny) 1s at least 6 =1/ n’. First, we describe a polynomial-time randomised algorithm B
to solve SAT. Let ¢ be a length-n input to SAT. For some T' = quasipoly(N) and ¢t = log T to be
determined later, we sample v := t° strings 21, ..., 2, € {0, 1}m(T) uniformly and independently
at random, and for each string z;, we define an oracle O; whose truth table is the string Gr(z;) €
{0, l}T. For each i < v, we try to use O; and a depth-efficient search-to-decision reduction to
find a satisfying assignment to ¢, as follows. Assume without loss of generality that ¢ has n
variables. We do the following for each i in parallel. We check if O;(pad(1%,¢)) = 1. If this
is not the case for any ¢, we reject. If O; does evaluate to 1 on the padded version of ¢, we
use this oracle to find a candidate satisfying assignment w to ¢ as follows. The idea is to use
the Valiant-Vazirani technique of intersecting the solution space of ¢ with k randomly chosen
hyperplanes for £ = 1...n to obtain formulas ¢1, ..., ¢,. The Valiant-Vazirani Isolation Lemma
[VV86] states that if ¢ is satisfiable, then with probability at least 1/4n over random choices of
these formulas, some ¢; has a unique solution. Note that each ¢; can be constructed from ¢
by randomised constant-depth circuits. We would like to use O; to find and check the unique
satisfying assignment so that we can verify that ¢ is satisfiable. An issue is that the ¢; are in
general of size larger than n, but they are still of size poly(n) and we choose ¢ a large enough
polynomial in n so that they can all be padded to length ¢. For each ¢; and each of the n

original variables zj in ¢, we use an oracle call to O; (using padding if necessary) to determine

254

if there is a satisfying assignment to ¢ with the variable x;, set to 0. If yes, we set the wire b;
to 1, else to 0. We check if there is a j such that the assignment xj, = b;; for each k satisfies
¢. If this is the case for some 7, we accept; otherwise we reject. Note that all of the above
can be implemented in constant-depth, apart from the oracle calls to O;, which we simulate by
evaluations of the implicit sampler for O;.

By the niceness of C, specifically the assumptions that AC°[@®] is contained in C and C is
closed under composition, as well as the fact that our sampler is implicitly computed by uniform
C circuits, there are DLOGTIME-uniform randomised C circuits of polynomial size implement-
ing the procedure above. We need to argue that these circuits correctly solve SAT with high
probability. Note that a circuit only accepts a formula ¢ if it verifies that some assignment
satisfies ¢. Hence, it suffices to check that any satisfiable ¢ is accepted with high probability.
By our choice of v, with high probability the string ¢t appears with multiplicity w(n) among
the strings Gr(21), ..., Gr(zy), meaning that w(n) of the oracles O; compute SAT on inputs of
length t. By the correctness of the paddability procedure, for all of these correct oracles, satis-
fiability questions about the randomised formulas ¢; are all answered correctly. This, together
with the lower bound on probability that one of the ¢; is uniquely satisfiable, implies that with
probability at least 1 — o(1), oracle calls to some oracle O; yield a satisfying assignment for ¢,

which is then correctly verified and results in acceptance of the circuit. O

8.3.3 Equivalences for EXP and EXP"¥ via a Win-Win Argument and Selec-
tors

In this section, we generalise our equivalence results to the classes EXP and EXPNP.

We provide two proofs. The first proof uses a win-win argument and relies on the existing
equivalence result for PSPACE (Theorem 8.3.2). The second proof uses selectors for EXPNP-
complete languages [Hirl5| or instance checkers for EXP-complete languages [BFLI1]. Each
proof has its advantages and disadvantages, as will be discussed in Remark 8.3.15.

We start with the first proof. We first state the equivalence result for EXPNP.

Theorem 8.3.8 (Equivalence for EXPNP). Let C be a nice class of Boolean circuits. The

following statements are equivalent:
(i) EXPNP ¢ BP-C.

(ii) For every choice of ¢,d,f € N, with m(N) = n? and 6(N) = 1/n*, and for every sequence
{GN} of maps Gy : {0,13N) — 10,1}V implicitly computed by DLOGTIME-uniform C-
circuits of size at most n¢, the corresponding C-Implicit-d-Heavy-Avoid problem can be

solved in deterministic time poly(IN) with access to an NP oracle on infinitely many input
lengths N .

Proof. We consider each implication below.

(it) = (7). The proof is completely analogous to the implication from (ii) to (¢) in Theorem 8.3.2.
The only difference is that due to the access to an NP oracle provided to each deterministic
polynomial-time algorithm for Implicit-d-Heavy-Avoid, the resulting hard language is in EXPNP

as opposed to PSPACE.

255

(i) = (). If EXPNP ¢ BP-C then either EXPN ¢ PSPACE or PSPACE ¢ BP-C. We show that
the desired conclusion holds in each one of these cases.

First, assume that EXPNP ¢ PSPACE. Recall that if EXPNP C SIZE[poly] then EXPNP =
PSPACE [BH92|. Therefore, it follows that EXPNP ¢ SIZE[poly]. In particular, there is a
language L € DTIME[2C() NP such that L ¢ SIZE[n¥] for every choice of k. Now fix a choice
of ¢,d,f € N, with m(N) = n? and §(N) = 1/n’, and consider a sequence {Gn} of maps
Gn: {0, 1}m(N) — {0,1}" implicitly computed by DLOGTIME-uniform C-circuits of size at
most n¢. Consider the following algorithm A: On input 1V, where N = 27, A outputs the N-bit
string wy corresponding to the truth-table of L on n-bit strings. Since L € DTIME[20(NP 4
computes in time poly(N) with access to an NP oracle. Moreover, since L is not computed by

* on infinitely many input lengths, where k is an arbitrary

(general) Boolean circuits of size n
constant, it follows that wy is not in the range of G for infinitely many values of V. Otherwise,
there would be a choice a for the seed of Gy such that wy = Gy (a), which yields a bounded-size
circuit for the function encoded by wy, given that Gy is implicitly computed by C-circuits of
bounded size. In particular, it follows that on infinitely many values of N, wy is not §-heavy
for G, as desired.

Now consider the remaining case, i.e., assume that PSPACE ¢ BP-C. Then, by Theo-
rem 8.3.2, we can solve the required C-Implicit-d-Heavy-Avoid problem in space O(log N) on
infinitely many input lengths N. Since O(log N) space algorithms can be simulated by poly (V)
time algorithm (not to mention that we have access to an NP oracle), the desired conclusion

also holds in this case. O

It is easy to see that a similar equivalence result for EXP also holds. Actually, the proof
is essentially the same as Theorem 8.3.8, with the only difference being that we use the Karp—
Lipton theorem for EXP [KL80| instead of the one for EXPNP [BH92|. Hence, we only state the

result and omit the proof here.

Theorem 8.3.9 (Equivalence for EXP). Let C be a nice class of Boolean circuits. The following

statements are equivalent:
(i) EXP ;(_ BP-C.

(ii) For every choice of ¢,d,f € N, with m(N) = n? and 6(N) = 1/n*, and for every sequence
{GnN} of maps Gy : {0,13YN) — 10,1}V implicitly computed by DLOGTIME-uniform C-
circuits of size at most n, the corresponding C-Implicit-d-Heavy-Avoid problem can be

solved in deterministic time poly(N) on infinitely many input lengths N.

Next, we present another proof of Theorem 8.3.8 for the special case where C is the class
of general Boolean circuits. The proof is direct and does not go through win-win arguments.
In one sentence, we use selectors for EXPNP-complete problems [Hir15] and note that the proof

strategy from Theorem 8.3.2 extends to selectors.

Definition 8.3.10. We say that a probabilistic polynomial-time oracle machine S'is a selector
for a language L C {0,1}* if the following holds. Let 01,0y C {0,1}* be arbitrary oracles.
Then, for any input x € {0,1}*, if L € {O1, 02} then

1??[501’02 (x) = L(x)] > 2/3.

256

It is possible to boost the success probability of the selector using standard techniques. In
addition, [Hirl5] proved that if a language L admits a selector, then it also admits a selector
that succeeds when given access to polynomially many oracles, provided that at least one of

them correctly computes L. These are summarised in the following result.

Theorem 8.3.11 ([Hirl5|). Every EXPNP-complete language admits a selector. Moreover, there
is a paddable EXPNP _complete language L' € DTIME[QO(”)]NP, a polynomial q, and a probabilistic

polynomial-time oracle algorithm S such that the following conditions hold:

e For everyn >1, z € {0,1}", andt > 1, if O1,...,0; C {0,1}* and L' € {Oy,..., 0},
then
%r[solv---:ot (z,1 = L'(z)] >1-2""

e FEvery oracle query of S(x) has length exactly q(n). Consequently, it is enough to assume
that the oracles Oy,...,0: {0,139 — {0,1} and that L/q(n) € {01,...,0:}, where

Ly = Ln{o,139.

The “moreover” part of the result follows from the existence of a selector for every EXPNP-

complete problem [Hirl5] combined with the paddability of L' and the discussion above.

Proof of Theorem 8.3.8, for the case that C is the class of general Boolean circuits.

(i) = (7). Again, the proof is completely analogous to the same implication in Theorem 8.3.2,

and we omit the details.

(i) = (11). We argue in the contrapositive. Suppose there is a choice of constants ¢, d, and ¢, with
m(N) =nand §(N) = 1/n’, and a sequence Gy : {0,1}™®) — {0,1}" implicitly computed by
general Boolean circuits of size at most n® such that every deterministic algorithm A(1%) with
access to an NP oracle that runs in poly(N) time fails to solve Implicit-d-Heavy-Avoid on every
large enough input length N. Next, we use this assumption to establish that EXPNP C BPP.

We consider a candidate algorithm A’(1") with access to an NP oracle that computes as
follows. Consider the EXPNP-complete language L’ from Theorem 8.3.11. On input 1V, A’
outputs the truth-table tty € {0,1}" of L’ over strings of length n, where N = 2". Note that
A’ uses an NP oracle and computes in time poly(N), since L' € DTIME[2CM]NP " Since A’
fails to solve Implicit-d-Heavy-Avoid, for every large enough N, the probability of tty under
GN(Up(ny) is at least § = 1/nt.

The rest of the argument is similar to that of the proof of Theorem 8.3.2. To compute L’
on some input z € {0,1}", we let n := q(n’), where ¢ is the polynomial from Theorem 8.3.11.

We sample ¢ := n3¢ strings 21, ..., 2 € {0, 1}m(N) uniformly and independently at random, and

/

s where each O; computes

use the corresponding oracles O1,...,O; as candidate oracles for L
according to the string Gn(z;) € {0,1}"V. By our choice of ¢, with high probability the string
ttn is among the oracles obtained from z1, ..., z;. In this case, there is at least one correct oracle
O; among the oracles O1,...,O;. Consequently, if we run S(z, 1%) with access to Oy, ..., Oy,
we compute L'(z) with high probability. Since n = poly(n'), t = poly(n), the selector runs in
time poly(n’,t), and the simulation of each oracle query to O; can be done using a computation

of the corresponding bit of Gy(z;) in time poly(n), it follows that given x of length n’ we can

257

compute L'(z) with high probability in time poly(n’). Finally, since L’ is complete for EXPNP

it follows that EXPNP C BPP, as desired. O

Inspecting the proof, it is not hard to see that it also extends to almost-everywhere and
subexponential lower bounds. Since the proofs are straightforward modifications of the argument

given above, we only state the results and omit the proof details.
Theorem 8.3.12. The following statements are equivalent:
(i) EXPNP ¢ i.0.-BPP.

(i) For every choice of the parameters c,d,f € N, with m(N) = n? and §(N) = 1/n*, and
for every sequence {Gn} of maps Gy : {0,1}™N) — {0, 13N implicitly computed in time
n®, the Implicit-d-Heavy-Avoid problem can be solved with access to an NP oracle in

deterministic time poly(N) for every large enough N.
Theorem 8.3.13. The following statements are equivalent:

(i) There is a constant ¢ > 0 such that ENP ¢ BPTIME[2™"].

(ii) There is a constant € > 0 such that for §(N) := 27" and for every sequence {Gn} of maps
Gy:{0,1}2" — {0,1}N implicitly computed in time 2", the Implicit-6-Heavy-Avoid
problem on {Gn} can be solved with access to an NP oracle in deterministic time poly (V)

on infinitely many values of N.

One can also use the instance checkers for EXP-complete languages [BFLI1| (which imply
selectors for such languages [Hirl5|) to prove similar characterisations for EXP. For example, the

following theorem holds (we omit the details as it is the same as our second proof for EXPNP):
Theorem 8.3.14. The following statements are equivalent:
(i) EXP ¢ i.0.-BPP.

(ii) For every choice of the parameters c,d, ¢ € N, with m(N) = n¢ and §(N) = 1/n, and
for every sequence {GnY} of maps Gy : {0,1}™N) — {0, 1} implicitly computed in time
n¢, the Implicit-d-Heavy-Avoid problem can be solved in deterministic poly(N) time for
every large enough N.

Remark 8.3.15 (Comparison between the two proof methods). We presented two proofs for Theo-

rem 8.3.8. Both proofs have their advantages and disadvantages, as we summarise below:

e The first proof only uses (non-adaptive) instance checkers [Che23] that have small circuit
complexity overheads, hence it works for restricted circuit classes such as AC® [®] and ACC.
On the other hand, the second proof needs to use the selectors for EXPNY [Hir15] which is

highly adaptive, hence does not extend to smaller circuit classes such as C = NC' or ¢ = TC".@

e The second proof proceeds by a direct argument and hence generalises to almost-everywhere
and subexponential time lower bounds (Theorem 8.3.12 and Theorem 8.3.13), while the first

proof uses a win-win analysis and does not seem to generalise to these cases.

“One can also construct non-adaptive instance checkers for EXP-complete languages from highly-efficient
PCPs such as [BGH' 06, BS08, BCGT13,BV14]. In fact, the results in [BV14] imply an instance checker
whose circuit complexity is only a 3-CNF over its randomness r. However, it is unclear if that instance
checker also has low circuit complexity over the input z. (Looking into the proof, it seems that one needs

258

to at least compute a Reed-Solomon encoding of). Therefore, we chose to use the off-the-shelf AC®[@)]
instance checker in [Che23] for PSPACE and resort to a win-win argument for EXP. On the other hand, it
is unclear to the authors whether the selectors in [Hirl5] can be made non-adaptive.

8.4 Heavy Avoid and Derandomisation

In this section, we study the relation between algorithms for Heavy Avoid and derandomi-
sation, with connections to recent developments in instance-wise hardness-randomness trade-

offs [CT21a, LP22, Kor22, LP23, CTW23|. This section mainly considers Heavy Avoid for non-

uniformly and implicitly sampled distributions.

8.4.1 A Non-Black-Box Reduction

We show that in some scenarios, solving the Implicit-Heavy-Avoid problem on non-uniform
samplers implies general derandomisation of prBPP. Intriguingly, our reduction from prBPP to
Heavy Avoid is non-black-box and relies on the code of an algorithm for Implicit-Heavy-Avoid.

We first introduce appropriate notation. We say that a Boolean circuit family {C),} has
dimension d(n) x T'(n) if for each n € N, the gates of), are partitioned into d(n) layers, each
layer contains at most 7'(n) gates, and each gate on layer i only receives inputs from layer i — 1.
The depth of the circuit is d(n) and the width of the circuit is T'(n). We will always assume
d(n) < T(n). A circuit family of dimension d(n) x T'(n) is logspace-uniform if there is a Turing
machine that on input 1", uses at most O(logT'(n)) space, and prints the description of C,.

Recall that for e(n) > 0, a Boolean function f: {0,1}M — {0, 1} is e-dense if

Pr x)=1]>e(M).
W ICED BRI
We say f e-avoids a hitting set H C {0,1}™ if f is e-dense and for every y € H, f(y) = 0.
Now we are ready to state our main technical tool, the instance-wise hardness-randomness
trade-off in [CT21a).

Theorem 8.4.1 ([CT21a| with the improved parameters from [CLO"23|). There is an absolute
constant ¢ > 1 such that the following holds. Let f: {0,1}* — {0,137 be a multi-output
function computable by a logspace-uniform circuit of dimension d(n) x T'(n). Let M(n) be a pa-
rameter such that clogT < M < TY¢. Then there are algorithms CT21.HSGy and CT21.Recony
depending on f, such that:

o The algorithm CT21.HSG¢(x) runs in deterministic T time and oulputs a set of M-bit
strings.

o Given x € {0,1}" and i € [T] as inputs, and oracle access to a candidate distinguisher
D: {0,1}M — {0,1}, CT21.Recon?(337i) runs in randomised (dnM)¢ time. If D (1/M)-
avoids CT21.HSG(z), then with probability > 1 —2—M CT21.Recon]l?(§c, i) outputs the i-th
bit of f(x).

Moreover, there is a deterministic algorithm that, given the Turing machine My that prints

the circuit for f in logspace, outputs the descriptions of CT21.HSGy and CT21.Recony in time
poly([(Mp)]).

259

Remark 8.4.2. The hardness-randomness trade-offs in [CT21a, CLO' 23] were stated for hard func-
tions of the form f: {0,1}" — {0,1}", where the reconstruction algorithm prints the entire string
f(z) in < T time. Inspecting their proofs, it is easy to see that the same holds when we have a
function f: {0,1}" — {0,1}7 and the reconstruction algorithm prints the i-th bit of f(z) in < T
time, given ¢ € [T] as an input.

Theorem 8.4.3 (Non-black-box reduction under logspace-uniform sub-polynomial depth algo-
rithms). Let 6(n) = o(1) be any function. Suppose there is a constant € > 0 and an algorithm
A((C)) that solves the Implicit-6-Heavy-Avoid problem on instances G: {0,1}¥" — {0,1}V
that are implicitly computable by a circuit C of size N¢, where a description of C is given as in-

put. Moreover, assume that A can be implemented as a logspace-uniform circuit of size poly(IN)
and depth N°V . Then prBPP = prP.

Proof. Since prBPP C prRPPRP [BF99], it suffices to prove that prRP = prP. That is, we want a
deterministic algorithm that, given as input a size-2M circuit D: {0, 1} — {0, 1}, distinguishes
between the case that D rejects every input and the case that D is 1/2-dense.

Let ¢ be the constant in Theorem 8.4.1, and set N := M3¢/¢. We recall our assumption:
given an implicit map with parameters as above, for some T' < poly(N), d < N°) and § <
o(1), there is a logspace-uniform circuit A of dimension d x T' that solves the corresponding
Implicit-d-Heavy-Avoid problem deterministically.

Consider the implicit map Gp: {0,1}¥° — {0,1}"V, where the underlying circuit Cp for
computing each output bit of Gp is as follows. Given x € {0,1}"" and i € [N], we parse z as
(Mjy,7), where My is a program, and 7 consists of the remaining bits of z (treated as randomness).
We can encode z in such a way that every program of length ¢ appears with probability mass
©(27¢/£?), hence every program with constant description length appears with probability mass
(1) > 4. Suppose that My is a logspace-uniform Turing machine that defines a circuit of size
T - poly(M) and depth d + polylog(M) that computes a function f: {0, 1}0(M) — {0,1}¥ (this

can be syntactically ensured by imposing a space constraint on My). We let
Cp(x,i) := CT21.Recon?(<D),z’;r). (8.1)

Here, CT21.Recon((D),i;r) denotes the output of CT21.Recon({D),7) on randomness r. Note
that when we compute Cp(z,i), we treat D both as the distinguisher (for the reconstruction
algorithm CT21.Recon) and as the input of f. We then run CT21.Recon on randomness r and
(attempt to) reconstruct the i-th bit of f((D)). If the length of (M) is a constant, then we have
Ir| > N® —O(1) > M?*9 > (d?> - O(M) - M)°, hence there is always enough randomness to feed
into Recon. Also, by Theorem 8.4.1, the description (Cp) can be computed from the description
(D) in poly(M) time and polylog(M) depth.'* Note that Gp can be implicitly computed in
time N¢ due to our choice of parameters.

Define a function f’: {0, 1}O(M) — {0, 1}V as follows: Given a size-2M circuit D: {0, 1}M —
{0,1} as input, f' computes the circuit Cp as in (8.1) and outputs A((Cp)). Recall that A is

“The depth upper bound is dominated by computing the description of CT21.Recon; from M}, which takes
time polylog(M). Although CT21.Recony is an adaptive oracle algorithm, to compute the code of CT21.Recon?
from (D) we only need to concatenate the codes of CT21.Recony and D together, hence this step is depth-efficient.

260

computed by a logspace-uniform circuit of dimension d x T', hence f’ is computed by a logspace-
uniform circuit of size T" - poly(M) and depth d + polylog(M).

Assuming D is 1/2-dense, we argue that CT21.HSG¢/((D)) hits D. Otherwise, D (1/2)-avoids
CT21.HSG ({D)). By Theorem 8.4.1, for every i € [N], with probability at least 1 — 27 over
the randomness r, CT21.Recon?,(<D>,i;r) is equal to the i-th output bit of f'({(D)). By a
union bound, w.p. at least 1 — N - 2=M over the randomness 7, we have that for every i € [N],
CT21.Recon?,((D>,i;r) = f'({D));. Since f'({D)) = A({Cp)) by definition, we have:

Pr(Gp(x) = A((Cp)) | (M) = (My) where (My,r) =a] > 1-N-27% >1/2.

Since the description length of My is a constant, it follows that (My) = (M) with constant
probability. Hence,
Pr(Gp(z) = A((Cp))] = (1),

contradicting our assumption that A solves the Implicit-é-Heavy-Avoid problem.
We have shown that if D is 1/2-dense, then CT21.HSG ((D)) hits D. We can compute
CT21.HSG ((D)) in poly(T, N) < poly(M) time, hence we can solve the Gap-UNSAT problem

in deterministic polynomial time. This implies that prRP = prP, as desired. O

Remark 8.4.4. The above reduction is non-black-box for two reasons. First, the statement prBPP C
prRPPRP can be seen as a non-black-box reduction from prBPP to prRP [BF99]. Second, and perhaps
more interestingly, the reduction from prRP to Implicit-Heavy-Avoid is also non-black-box, as it
requires the algorithm A for Implicit-Heavy-Avoid to be a logspace-uniform circuit of low depth
and relies on an application of Theorem 8.4.1 over this low-depth circuit. Indeed, the proof of

Theorem 8.4.1 performs arithmetisation on this low-depth circuit.

Remark 8.4.5. Tt is also interesting to compare Theorem 8.4.3 with [Kor22, Theorem 8]. The latter
result is a black-bor reduction from prBPP to a problem called R-Lossy CODE. In contrast, our
Theorem 8.4.3 needs additional constraints on the algorithm solving Implicit-Heavy-Avoid and
makes non-black-box use of that algorithm.

Our Implicit-Heavy-Avoid is a special case of R-Lossy CODE in the following sense. Recall
that R-Lossy CODE is the problem where, given circuits Comp : {0,1}" x {0,1}™ — {0,1}"~!
and Decomp : {0,1}"~! — {0,1}" and a parameter § > 0, one needs to find some x € {0,1}" such
that Pr,_ g 1ym[Decomp(Comp(z,r)) = 2] < . Given an implicit map C : {0,1}" x [N] — {0,1}
as the input of Implicit-d-Heavy-Avoid (recall that » < N in the typical parameter setting), we
can reduce it to the R-Lossy CODE instance (Comp, Decomp) where Comp(z,) simply outputs its
randomness r, and Decomp(r) = C(r,1)C(r,2)...C(r,N). In this sense, Implicit-Heavy-Avoid is

no more than a special case of R-LLossy CODE where the compressor circuit is trivial.

8.4.2 Getting Rid of the Depth Assumption

In this section, we show how to get rid of the low-depth assumption in Theorem 8.4.3 in
a weaker but non-trivial setting. An ideal statement would be: a deterministic polynomial-
time algorithm for Implicit-Heavy-Avoid implies a deterministic polynomial-time algorithm
for Gap-SAT or CAPP. Compared to the ideal statement, the actual result that we prove only
holds for subexponential-time infinitely-often algorithms, as we shall explain later.

We note that it should not be too surprising that a subexponential-time infinitely-often

261

algorithm for Implicit-Heavy-Avoid implies a subexponential-time infinitely-often algorithm
for Gap-SAT. In fact, combining Theorem 8.3.9 and [IWO01], it is easy to show that this holds

for heuristic algorithms.'®
Theorem 8.4.6. The following items are equivalent.

o (Infinitely-often subexponential-time heuristic derandomisation.)

For every language L € BPP, every ensemble of polynomial-time samplable distributions
D = {D,} € PSAMP, every polynomial p(-), and every constant 6 > 0, there exists a
deterministic Turing machine M running in on’ time, such that for infinitely many input

lengths n,
Pr [L(x) # M(z)] < 1/p(n).

x~Dy,
o (Infinitely-often polynomial-time algorithms for uniform Implicit-Heavy-Avoid.)

For every §(N) = 1/polylog(N), and for every sequence {Gn'} of maps G : {0, 1}polylos(N) _y
{0,1}Y where each bit of Gy is implicitly computed in polylog(N) time, there is a de-
terministic poly(N)-time algorithm that solves the Implicit-d-Heavy-Avoid problem for
{GN} on infinitely many input lengths N.

Proof Sketch. In fact, both items are equivalent to EXP # BPP. The equivalence between the
first item and EXP # BPP is shown in [[W01], and the equivalence between the second item and
EXP # BPP follows from Theorem 8.3.9. O

We now attempt to prove a version of Theorem 8.4.6 with respect to worst-case algorithms,
instead of heuristics. Our worst-case version of Theorem 8.4.6 also has many caveats such as
being infinitely-often and requiring subexponential time, but the biggest caveat might be that
we could only obtain infinitely-often algorithms in the following, somewhat artificial, setting:
For a sequence of inputs {x,, }nen, the algorithms read many inputs z1, s, . .. s Tpoly(n) Dut are

only required to solve z,. We call this “infinitely-often*” algorithms. Formally, we have:

Definition 8.4.7. Let P be a computational problem and {z,},en be a sequence of inputs.
We say an algorithm A infinitely-often* solves P on {z,} if there is a polynomial p(-) such that

for infinitely many integers n, A(1", 21, T2, ..., ZTp@)) outputs a valid P-solution for z,,.

In other words, an infinitely-often* algorithm has access to the (non-uniform) sequence of
inputs around x,,, as opposed to the usual setting where the algorithm only has access to the
given input string. We remark that our algorithm in Theorem 8.4.8 works in a weaker model

where the machine only reads z;,, and z,(,) and outputs an answer for x,,. However, we believe

p(n
that Definition 8.4.7 is a more accurate model to capture win-win analyses in complexity theory,
hence choose to define it in this way.

For ease of notation, in what follows, we will denote the sequence x1, xo, ..., z, simply by

T1~¢. We are now able to state our main result in this section.

5Note that Theorem 8.4.6 refers to Implicit-Heavy-Avoid for uniformly samplable distributions, which is
different from most results in this section. We believe that more connections between Implicit-Heavy-Avoid
for uniformly samplable distributions and average-case derandomisation can be obtained (e.g., using the recent
“unstructured hardness to average-case randomness” [CRT22]), but we do not pursue this direction here.

262

Theorem 8.4.8 (A non-black-box reduction for Implicit-Heavy-Avoid).

Assume there is an infinitely-often polynomial-time algorithm for Implicit-Heavy-Avoid
with subexponential stretch. That is, for every constants a > 1, € > 0, and function § < o(1),
there exists a deterministic algorithm Avoid running in poly(N) time such that for infinitely
many n € N and N := 2", and for every generator G: {0,1}™" — {0,1}" implicitly described
by a size-n® circuit C: {0,1}™" x [N] — {0,1}, Avoid((C)) solves Implicit-§-Heavy-Avoid on
G.

Then there is an infinitely-often™ suberponential-time algorithm for Gap-SAT. That is, for
every € > 0 and ¢ > 1, there exists a deterministic algorithm Derand running in 2% time such
that the following holds: For every sequence of circuits { Dy }nen, where each Dy, : {0,1}™ —
{0,1} is a circuit of size 2n°, Derand(1", (D1 poly(n))) infinitely-often® solves Gap-SAT on {Dp}.

Our proof combines the two instance-wise hardness-randomness trade-offs introduced by
Chen and Tell [CT21a| and Liu and Pass [LP23] recently. Since the hardness-randomness trade-
off in [CT21a| is already summarised in Theorem 8.4.1, in what follows, we summarise the

hardness-randomness trade-off in [LP23].

Definition 8.4.9. Let f: {0,1}" — {0,1}7("™ be a function, A be a randomised algorithm, and
x € {0,1}" be an input of f. We say that f(x) is {-leakage resilient hard against A if for every
“leakage string” leak € {0,1}%, there is some i € [T] such that Pr[A(z, leak,i) = f(z);] < 2/3,

where the probability is over the internal randomness of A.

We need the following result by Liu and Pass [LP23] showing that leakage resilient hardness

can be used for derandomisation.

Theorem 8.4.10 (|[LP23|). There are algorithms LP23.PRG and LP23.Recon and an abso-
lute constant ¢ > 1 such that the following holds. Let f: {0,1}* — {0,1}7(™ be a function,
D: {0,1}M — {0,1} be a distinguisher, and x € {0,1}" be an input of f. Let £ := (M logT)*
and 7 := O(log? T/log M). Then:

e LP23.PRG: {0,1}7 x {0,1}" — {0,1}M runs in deterministic poly(T, M) time.
e LP23.Recon'™): {0,1}¢ x [T] = {0,1} runs in randomised poly(£,logT).

o If f(z) is (-leakage resilient hard against LP23.Recon® then LP23.PRG(f(x), —) is a (tar-
geted) PRG that (1/10)-fools D.

Proof Sketch. This follows by observing that the leakage resilient hardness-randomness trade-
off in [LP23| holds instance-wise. In particular, if we let g be the “k-reconstructive PRG”
described in [LP23, Theorem 3.11] (which follows from [STVO01]), then LP23.PRG(f(x),z) =
g/@ (1m) 1M). the algorithm LP23.Recon is simply the corresponding “reconstruction
algorithm” R as defined in [LP23, Definition 3.10]. O

Suppose that f: {0,1}"* — {0,1}"™ is computable by a deterministic Turing machine M
running in time 7'(n). We can define f"st: {0,1}" — {0,1}7'™ for some function T"(n) <
poly(T(n), m(n)) such that f"st(x) outputs the computational history of f(x), i.e., the sequence
of configurations of M when computing over the input string z. It will be useful to consider
the leakage-resilience hardness of st since if fMst is not leakage resilient hard, then f can be

computed by a low-depth circuit:

263

Claim 8.4.11. Let f: {0,1}" — {0,1}7() be a function computable in time T(n), £ = £(n)
be a parameter, and A be a randomised algorithm running in time Ta(n). Then, for d(n) :=
O(Ta(n) + €(n) +logT(n)), there is a logspace-uniform circuit C: {0,1}" — {0,1}7") of di-
mension d(n) x 24" such that the following holds. For every input x € {0,1}", if fMst(z) is
not 4(n)-leakage resilient hard against A, then f(x) = C(x).

Proof. The circuit C(z) enumerates all strings leak € {0,1}¢ and computes A(z, leak, i) for each
i. Although A is a randomised algorithm, we can compute A(z,leak,i) by brute force using a
logspace-uniform circuit of width 2074(™) and depth O(T4(n)). Then, (for each leak) C' verifies
whether the computational history H (z,leak) defined by H(x, leak); = A(x, leak,) is indeed the
correct history for f(x); this can be done by a logspace-uniform circuit of width poly(7'(n)) and
depth O(log T'(n)), by checking that every local step in H(z,leak) is correct. Whenever there
is some leak that corresponds to the correct history for f(x), the circuit C' outputs the value of
f(z) according to this history. The depth of C is d(n) < O(Ta(n) + £(n) + logT(n)) and the

size of C' is exponential in d(n). O
Now we are ready to prove Theorem 8.4.8.

Proof of Theorem 8.4.8. Let ¢ > 1 and € > 0 be constants. Let {D,},en be a sequence of
circuits where each D,,: {0,1}™ — {0,1} is of size 2n°. Recall that we want a deterministic
2" _time algorithm that infinitely-often* solves Gap-SAT on {D,}. Let ¢; be the constant in
Theorem 8.4.1 (the trade-off in [CT21al) or Theorem 8.4.10 (the trade-off in [LP23]), whichever
is larger. Let x := [max{4c/e,8c;/c}|; the meaning of this constant is that we will perform a
win-win analysis over input lengths m and m”. Finally, let a := 4kcep and L(t) = 2" The
input instances of our Heavy Avoid algorithm will be generators Gy : {0, 1}*" — {0, 1}X® whose

output bits are implicitly computable in t% size.

c, e We want a Gap-SAT algorithm on n‘size circuits in 2™ time
cl Overheads of the trade-offs in Theorem 8.4.1 and Theorem 8.4.10
k= 0(c/e) Our win-win analysis is over input lengths m and m”
a = O(c2 /€) We need a Heavy Avoid algorithm for generators
L(t) =2V ! G:{0,1}*" — {0,1}L® implicitly computable in t* size

Table 8.1: Constants used in this proof.

sida(M)

For any integer M, its index idx(M) is defined as the largest integer such that M = m
for some integer m. (Note that most integers have index 0.) We say an input length M is big if
idx(M) is odd, and is small if idz(M) is even. For convenience, we will always use upper-case
M to denote big input lengths and lower-case m to denote small input lengths. Looking ahead,
each small input length m will be paired with a big input length m” and vice versa; if our Heavy
Avoid algorithm succeeds on input length m, then our Gap-SAT algorithm succeeds on either
length m or length m”.

We now define the sequence of implicit descriptions Cy: {0,1}*" x [L(t)] — {0,1} for each
t € N, which we feed into our Heavy Avoid algorithm. Each C; also defines the generator
Gy : {0,1}*" = {0,1}X®). Let M be the t-th smallest big input length. Note that M < O(t*).
Let x denote the input of G;. We parse x into ((My),r), where (M) is the description of a

264

Turing machine My and the remaining M (2etD)er hits 7 are treated as randomness. As in the
proof of Theorem 8.4.3, we encode x in such a way that every constant-length program M
occurs with constant probability. Now, let d := M2%/3 and f be the d x 2¢ circuit outputted by
M within space constraint d. Then

Ci(x,1) 1= CT21.Recon?M(<DM>, ir).

Recall that CT21.Recon uses at most (d - [(Dps)[?)* < (dM?¢)°t random bits, hence we have
enough random bits to feed into CT21.Recon. We can see that each bit of G; can be computed
in M3eer < phReer < 9 gige.

Let Avoid be our algorithm for Implicit-d-Heavy-Avoid that runs in deterministic poly(L(t))
time. Let I be the set of input lengths ¢ for which Avoid((C})) correctly outputs a d-light element

of GG;. Using the same reasoning as Theorem 8.4.3, one can see that:

Claim 8.4.12. Lett € I, M be the t-th big input length, and let d := M¢e/2. Suppose there is a
constant-length Turing machine that outputs a circuit f' of dimension d x 2% in O(d) space such
that f'((Cy)) = Avoid((Cy)). Then CT21.HSG# ((Cy)) hits Dpy.

Let Avoidt denote the algorithm that outputs the computational history of Avoid. Note
that Avoid"st((C})) runs in Thist(t) < poly(L(t)) time. Now let m € N be the t-th small input
length, M := m" be the t-th big input length, and ¢(t) := (m - log Thist(t))*. Consider the

following criterion for our win-win analysis:

» Crit(t): Avoid"st((C})) is £(t)-leakage resilient hard against LP23.Recon”™.

Our algorithm Derand works as follows. On input (1", (D1ps)):

e Suppose n is small, m := n, and M := n". Assume that m is the ¢-th small input length
and assume that Crit(¢) holds. Then by Theorem 8.4.10,

LP23.PRG(Avoid"t((C})), —): {0,1}" — {0,1}™

is a PRG that (1/10)-fools D,,, where r := O(log? Thist(t)/logm) < O(t5/2/ logm) < m#/?.
By enumerating this PRG, we can solve the Gap-SAT (in fact, CAPP) problem on input

. . . . £ .
D,,, in deterministic 2™ time.

Note: The definition of Cy involves Dj; = Dy«; this is why we need our infinitely-often*

algorithm to have access to inputs on a larger length.

e Suppose n is big, M :=n, and m = n/%. Suppose that M is the ¢-th big input length
and assume that Crit(#) does not hold. Then it follows from Claim 8.4.11 that there is a
logspace-uniform circuit Avoid of dimension ' x T" such that m(«m) = Avoid((C})),
where d’ = O(m¢ + £(m) + log Thist(t)) < O(m® + (mts/*)1) < M/? and T' = 2¢. By
Claim 8.4.12, CT2LHSG .~ ((C)) hits D). Since the size of this HSG is 20(%) < 2M°%
we can solve the Gap-SAT problem on Dy in 2M° time.

For every t € I, let m be the ¢-th small input length and M = m". If Crit(¢) holds, then our
algorithm solves Gap-SAT on input D,,; otherwise our algorithm solves Gap-SAT on input Djy.
Since |I| is infinite, it follows that our algorithm infinitely-often* solves Gap-SAT on {D,}. O

265

8.4.3 On Black-Box Reductions to Heavy-Avoid

We complement the previous non-black-box reductions by showing that if there is a black-
box reduction from Gap-SAT to Heavy-Avoid of a certain type, then we would have prBPP = prP
unconditionally. In more detail, we consider the natural notion of Levin reductions [LevT73|, i.e.,
“witness-mapping”’ reductions between search problems, and show that a Levin reduction from
search-Gap-SAT to Heavy-Avoid implies prBPP = prP.

Intriguingly, these results together separate the notion of (weak) non-black-box reductions
and black-box (i.e., Levin) reductions between two natural problems w.r.t. current techniques!
That is, improving the weak non-black-box reductions in Theorem 8.4.3 and Theorem 8.4.8 to
Levin reductions (which is a stronger notion of black-box reduction) would imply breakthroughs
in complexity theory.

As the notion of Levin reductions is standard in complexity theory (for a recent example,
see [MP24]), we only recall its definition in the special case of reducing search-Gap-SAT to
Heavy-Avoid:

Definition 8.4.13. We say there is a Levin reduction from search-Gap-SAT to Heavy-Avoid if
there are functions f,g computable in deterministic polynomial time such that the following
holds:

e For every circuit C' : {0,1}" — {0, 1} that is 1/2-dense (i.e., that is a valid search-Gap-SAT
instance), f(C) = (D,1!) is a Heavy-Avoid instance where we want to find a (1/t)-light
string in D.

e For every string y that is (1/t)-light for D, g(C,y) is a valid solution for search-Gap-SAT
for C. That is, if C' is 1/2-dense, then C(g(C,y)) = 1.

Theorem 8.4.14. If there is a polynomial-time Levin reduction (f,g) from search-Gap-SAT to
Heavy-Avoid, then prP = prBPP.

Proof. First, we describe the main idea. The crucial observation is that there is a trivial al-
gorithm that “list-solves” any Heavy-Avoid instance, that is, outputs a list of solutions such
that some element in the list is not heavy. In particular, let (D, 1!) be an input instance of
Heavy-Avoid, and consider the trivial algorithm that outputs an arbitrary list of ¢ + 1 distinct
strings. By an averaging argument, at least one string in this list will be a (1/¢)-light element
of D. This means that using the list and a witness-mapping reduction, we can produce at least
one satisfying assignment if the input circuit is dense.

We proceed to the formal proof. Again, by [BF99], it suffices to prove that prP = prRP. Let
C :{0,1}" — {0,1} be an input to Gap-SAT. We first reduce C to a Heavy-Avoid instance
(D,1%) := f(C). Then we compute an arbitrary list of ¢ + 1 distinct strings 1, xo,...,x411. We
are guaranteed that some x; is a d0-light element of D, hence if C' is 1/2-dense, then g(C,x;)
would be a satisfying assignment of C. Consequently, if there is an index ¢ € [{] such that
C(g(C,z;)) = 1, then we output 1, otherwise we output 0. It is easy to see that if C is
unsatisfiable then we always output 0, while if C' is 1/2-dense then we always output 1. Hence,

we have prP = prRP, and this concludes the proof.]

266

8.4.4 Heavy Avoid versus Almost-All-Inputs Hardness

Finally, we show connections between Implicit-Heavy-Avoid and the almost-all-inputs hard-
ness assumptions, introduced recently in [CT21a].

The results in this section are motivated by two conjectures. Given the non-black-box re-
ductions presented in Theorem 8.4.3 and Theorem 8.4.8; it seems natural to conjecture that
Implicit-Heavy-Avoid is complete for prBPP under “the most natural notion of non-black-box

reductions’”:

Conjecture 8.4.15 (Informal). If Implicit-Heavy-Avoid for non-uniform samplers admits a

deterministic polynomial-time algorithm, then prBPP = prP.

On the other hand, there is another intriguing conjecture implicit in the work of Chen—
Tell [CT21al. Recall that Chen and Tell [CT21a| showed how to derive prBPP = prP given a
multi-output function f: {0,1}" — {0,1}" that is almost-all-inputs hard against randomised
algorithms, provided that f can be computed in low depth. They also showed that prBPP = prP
necessitates the existence of multi-output functions with almost-all-inputs hardness, but the
hard function they construct might require high depth. Still, this demonstrates that almost-all-
inputs hardness might be the right hardness assumption for derandomisation. It is tempting to

conjecture that low-depth constraints are, in fact, not necessary:

Conjecture 8.4.16 (Informal). If there is a multi-output function f: {0,1}" — {0,1}"™ com-
putable in deterministic polynomial time that is almost-all-inputs hard against fixed-polynomial

time randomised algorithms, then prBPP = prP.

In this section, we show that in an “implicit” setting, Conjecture 8.4.15 and Conjecture 8.4.16
are equivalent! In fact, we show that Implicit-Heavy-Avoid is the computational problem
characterising the task of “creating” almost-all-inputs hardness (against randomised algorithms).
We also show that creating such hardness is equivalent to generating strings with high conditional

sublinear-time probabilistic Kolmogorov complexity.

Our “implicit” setting. We consider functions with a possibly long output, i.e., f: {0,1}" —
{0, 1} where £(n) is larger than the running time of our adversaries. Consequently, it makes
sense to only require our adversaries to output each bit of f(z) given x and the index of that
bit. It is worth noting that the hardness-randomness trade-offs in both [CT21a] and [LP23] hold
for such implicit adversaries.

Formally, let A be a randomised algorithm, we say that A locally computes f(x) if for every
i € [£(n)], it holds that Pr[A(x,i) = f(x);] > 2/3, where the probability is over the internal
randomness of 4. An equivalent way of saying this is that f(z) is not 0-leakage resilient hard
against A in the sense of Definition 8.4.9.

We also consider the task of generating strings with high (conditional) sublinear-time prob-
abilistic Kolmogorov complexity. (Our equivalence results hold for both pKPY and rKPoY.)
Roughly speaking, fix a universal Turing machine U, a time bound ¢, and strings x,y, where
|r|] < t < |y|. The conditional complexity of y given x is the length of the shortest program p
such that U(p,w,x,7) outputs the i-th bit of y in ¢ steps, with w being the randomness. How-

ever, there is a technical detail that is worth stressing: In our definition, we require the resources

267

(z and r) to have length at most ¢, hence the universal Turing machine U has time to read them

in their entirety. A possible alternative definition would be that U has oracle access to strings

x and r (whose lengths might be > t), but it is unclear if we can extend our equivalence result

(Theorem 8.4.18) to these alternative definitions.

Definition 8.4.17 (Sublinear-time probabilistic Kolmogorov complexity). Let U be a universal
Turing machine, x,y € {0,1}*, and ¢ € N. (Think of |z| < ¢ and |y| > ¢.) We artificially define

Yyl41 = *

e Sublinear-time pK' complexity:

2
pKy(y | z) = min{k €N ‘ e [317 € {0,1}%,Vi € [ly| + 1], U(1", p, w, z,4) = yz} > 3}.

In other words, if k& = pK};(y |), then with probability at least 2/3 over the choice of
the length-t random string w, given w and x, the string y admits a t-time-bounded local

encoding of length k.

e Sublinear-time rK! complexity:

[U(ltapawax7é) = yz] >

Wil N

rK! r) = min ‘Vie + 1],
ot 10— min {1l | vie]+ 1

b

Pr
w~{0,1}

Now we are ready to present our equivalence result.

Theorem 8.4.18. The following are equivalent.

(1)

(Almost-all-inputs hardness.) For every polynomial p(-), there exists a polynomial q(-)
and a function f: {0,1}" — {0,1}9) computable by a deterministic polynomial-time al-
gorithm, such that every algorithm running in randomised p(n) time only locally computes

f(z) on finitely many inputs x € {0,1}*.

(Deterministic algorithms for Heavy-Avoid.) For every polynomial p(-), there exists a
polynomial q(-) such that the following holds. Let C denote the class of circuits with n input
bits and q(n) output bits where each output bit is implicitly computed by a size-p(n) circuit,

then C-Implicit-(1/p(n))-Heavy-Avoid can be solved in deterministic polynomial time.

(Finding strings with large conditional pKP°Y-complexity.) For every polynomial
p(+), there exists a polynomial q(-) and a deterministic polynomial-time algorithm that given
an input = € {0,1}", finds a string y € {0,1}2") such that pKr(™) (y |) > logp(n).

(Finding strings with large conditional erOly—compleXity.) For every polynomial
p(+), there exists a polynomial q(-) and a deterministic polynomial-time algorithm that given
an input z € {0,1}", finds a string y € {0,139 such that rKP™ (y | z) > log p(n).

Arguably, the most interesting implication above is (1) = (2), which can be interpreted as

instance-wise hardness vs. randomness for solving Implicit-Heavy-Avoid without depth con-

straints.

268

Lemma 8.4.19. In Theorem 8.4.18, (1) = (2) holds. That is, almost-all-inputs hardness (of

any kind, without depth restrictions) can be used to solve Implicit-Heavy-Avoid.

Proof. Let T(n) and ¢'(n) be two polynomials such that there is a multi-output function
f:{0,1}* — {0,1}¢™ computable in deterministic 7'(n) time that is almost-all-inputs hard
against randomised algorithms running in time p(n)®. Let q(n) := poly(T(n),q (n)), and
fecp: {0,1}* — {0,1}9(™) denote the PCP of f: On input z € {0,1}", fpcp(x) outputs
the concatenation of strings z, pcpy, pcpy,. .., PCPy (n), Where z = f(x) and each pcp; is a
length-poly(7'(n)) PCP proof for the assertion that the i-th output bit of f(x) is equal to
zi. (Any efficiently-computable PCP with polynomial length and constant query complexity
works here, e.g., [ALM 98 BGH'06,Din07].) We claim that fpcp is an algorithm that solves
C-Implicit-(1/p(n))-Heavy-Avoid.

Suppose, towards a contradiction, that fpcp does not solve C-Implicit-(1/p(n))-Heavy-Avoid
on an input (C) € {0,1}¢. The input (C) encodes a circuit C' of size p(n) (hence £ = O(p(n)))
that implicitly represents a generator G: {0,1}" — {0,1}9™. Given (C), r € {0,1}", and
i € [q(n)], the i-th output bit of G(r) can be computed in O(p(n)) time. Since fpcp fails on
(C), we have

Pr [fece((C)) = GO 2 1/p(n). (52)

Now we present a randomised algorithm A running in p(n)® time that locally computes f
on input (C). Given an integer 7, we want to compute the i-th bit of f((C)). We repeat the
following O(p(n)?) times:

1. Sample a random string r ~ {0, 1}".

2. Parse G(r) as the concatenation of z, pcpy, pcpy, .. ., PCPy/ (n)-

3. Invoke the PCP verifier O(p(n)) times to verify that pcp; is indeed a correct PCP proof
that £((C)); = 2

4. If all invocations of the PCP verifier are successful, then we output z; and halt.

If we have not outputted anything after these O(p(n)?) iterations, then we output a random bit.

Let A denote the above randomised algorithm. We now analyse A.

e (Running time.) Since each bit of pcp; can be retrieved in O(p(n)) time, Step 3 above
takes O(p(n)?) time, hence the whole algorithm runs in at most O(p(n)*) < p(n)® time.

o (“Soundness.”) At each iteration where we parse G(r) as 2, pcpy, . - ., PCPy (), if F({C))i #
z;, then no matter what pcp; is, the PCP verifier will catch an error with probability at
least 1 — exp(—p(n)). Hence, the probability that A((C),:) halts in Step 4 above and
outputs 1 — f((C)); is at most exp(—p(n)).

e (“Completeness.”) On the other hand, by Eq. (8.2), with probability at least 1 — (1 —
1/p(n))P™* > 1 — exp(—p(n)), there is some iteration of the above algorithm in which
G(r) = fecp((C)). During this iteration, it will be the case that z; = f((C)); and pcp; is
a valid PCP proof for this, therefore we will output f((C)); and halt. It follows that the
probability that none of the p(n)? iterations succeed and we output a random bit at the

end is also upper bounded by exp(—p(n)).

269

The “Soundness” and “Completeness” above imply that A locally computes f((C)). To
conclude, if f is indeed almost-all-inputs hard against randomised algorithms running in time
p(n)8, then fpcp solves the C-Implicit-(1/p(n))-Heavy-Avoid problem on all but finitely many
inputs.]

Now we present the complete proof for Theorem 8.4.18.

Proof of Theorem 8.4.18. We consider each implication below.
(1) = (2): This follows from Lemma 8.4.19.

(2) = (3): Let p(n) be a polynomial and p’(n) := p(n)2. By (2), for some polynomial g(n), there
is a polynomial-time algorithm Avoid solving the C-Implicit-(1/p/(n))-Heavy-Avoid problem,
where the generators have output length g(n) and each bit can be computed in size p’(n). Let
U be a universal Turing machine and suppose that given input = € {0,1}", we want to find a
string y € {0,1}9(") such that pK%(n)(y |) > logp(n).

Consider the generator G, : {0,1}P("+logp(n) _y £0 1}9(") that is implicitly computed by
the following circuit C,: given (z,i) as input, where z € {0,1}P(W+18P() and i € [q(n)],
Cy(z,1) outputs the i-th bit of G(z). We parse z into ((M),r), where M is a Turing machine of
description length log p(n), and r € {0, 1}?(™ is treated as randomness. Then, C,(z, i) outputs
U(1P™) (M), r, z,i). Clearly, C; can be implemented by a circuit of size O(p(n)) < p'(n).

Let y € {0,1}9™ be any string that is Wln)—light for G, we claim that pKZ[}(n) (y |) >
logp(n). This is easily shown by contradiction. Suppose that pKZ(n) (y |) < logp(n), then
w.p. at least 2/3 over r ~ {0,1}?(") there is a program M of description length logp(n) such
that for every i € [n + 1], U(1P™, (M), r,z,i) = y;; in other words, G ((M),r) = y. This
contradicts our assumption that y is ﬁ—ligh‘c for G.

Hence, solving the C-Implicit-(1/p’(n))-Heavy-Avoid problem on G, will give us a string
y € {0,1}4() such that pK];J(n) (y |) > logp(n).

(3) = (4): This follows from the fact ([LO22, Fact 2|) that for every universal Turing machine
U, every x,y € {0,1}" and every time bound ¢, we have pK},(y |) < 1K} (y | z). It is easy to
verify that this is still true with respect to our notions of sublinear-time-bounded Kolmogorov

complexity.

(4) = (1): Let g(n) be any polynomial, f: {0,1}" — {0,1}9" be any function, and A be
a randomised algorithm running in p(n) time. We claim that for every input x € {0,1}", if
rKP? (f(z) | @) > |A| + w(1), then A fails to locally compute f(z). Indeed, if A locally

computes f(z), then

Vil 1), Pr LA = UK, (A) i) = f@)] 2 273
r~{0,1}prn

Clearly, this means that tKP(™*(f(z) | z) < |A| + O(1).
Suppose that f is a deterministic polynomial-time algorithm that given an input € {0,1}",
outputs a string y € {0,1}9(such that rKP(* (y | 2) > 2log p(n). It follows directly that every

randomised algorithm running in p(n) time only locally computes f(x) for finitely many inputs

270

x € {0,1}* (as long as the algorithm admits a constant-size description). Hence f is almost-all-

inputs hard against p(n)-time randomised algorithms. O

Given the above equivalence, it is easy to see that Conjecture 8.4.15 and Conjecture 8.4.16
are equivalent, since Conjecture 8.4.15 asserts the equivalence between (2) and prBPP = prP,

while Conjecture 8.4.16 asserts the equivalence between (1) and prBPP = prP.

8.5 Properties of the PSPACE-Complete Language

In this section, we discuss the proof of the following result.

Theorem 8.3.1 (A PSPACE-Complete Language with Useful Properties). There is a language
L* C {0,1}* with the following properties:

1. (Complexity Upper Bound) L* € PSPACE.
2. (Completeness) L* is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC°[@®] oracle
circuits {ICp, }n>1 making projection queries such that, on every input string x € {0,1}"
and for every oracle O C {0,1}*, the following holds:

o ICO(x) only makes queries of length n to O.
o If O agrees with L* on inputs of length n, then Pr,[ICO(x;7) = L*(z)] = 1.
o For every oracle O, Pr,[ICO(z;r) € {L, L*(z)}] > 1 — exp(—n).

To establish this theorem, we verify that the language called LWH-TV described in [Che23,
Section 7] satisfies the properties we need.'® In particular, [Che23] showed that this language
is PSPACE-complete and has instance checkers in AC°[@]. However, [Che23] only considered
P-uniformity. For both the instance checker and the PSPACE-hardness reduction, a few minor
modifications of the construction are needed to achieve DLOGTIME-uniformity.

The rest of this section will verify the required uniformity conditions by inspecting the proof
in [Che23, Section 7]. Note that we will assume familiarity with [Che23, Section 7].'"

8.5.1 Preliminaries

We assume familiarity with notations in [Che23, Section 7| such as pwy, £, sz,, and F,.
We will use length-sz,, strings and elements in FF,, interchangeably (instead of explicitly going
through the bijection &,). The following tasks can be computed in DLOGTIME-uniform AC%[@)
[HV06]:

o (Iterated addition.) Given ai,...,az € {0,1}**", compute ;.1 a; € {0, 1}5".

o (Iterated multiplication.) Given aj,...,a; € {0,1}**» where t < logn, compute Hie[t] a; €
{0, 1}5%.

16We work with LTV instead of the final language LPSPACE because the only difference between LWHTV and
LPSPACE is paddability, which is not required for our arguments.
Y"The full version of [Che23] can be found at ECCC Report TR22-183.

271

We will need a DLOGTIME-uniform ACO[@] circuit for polynomial interpolation over Ty,
which is the following task. Let oy, ao, ..., a; be the lexicographically smallest ¢ elements in [F,,.
Given (1, 32,...,0: € F,, and z € F,, as inputs, the goal is to output p(z), where p : F,, — F,, is
the unique degree-(¢t — 1) polynomial over F,, such that p(a;) = f; for every i € [t].

It is shown in [Che23, Corollary 7.2] that the polynomial interpolation problem admits a
uniform AC°[@®] circuit when ¢ < logn. Jumping ahead, the circuit is not DLOGTIME-uniform
since (8.3) requires one to compute the inverse of a; — «a;, and it is unclear how to compute
inverses over F,, in DLOGTIME-uniform AC’[@®]. One way to work around this technical issue is

to let the interpolation algorithm output two numbers u,v € F,, such that p(z) = u-v~L.

Claim 8.5.1. For any constant t > 1'%, there is a DLOGTIME-uniform AC°[®)] circuit that
given z,B1, ..., By € By, as inputs, outputs two elements u,v € F,, such that p(z) = u-v=t, where

p: F, — Fy, is the unique degree-(t —1) polynomial over By, such that p(c;) = B; for every i € [t].

Proof Sketch. The expression for p(z) is

p(z) =) B] j__% (8.3)

, . . Qa;
i€t ge[t\{d}

Hence, we have p(z) = u - v~! where

1<i<j<t
u=p=> Bi- [[G-ap-] (2i-ay.
i€l jelt\{i} 1</ <y'<t
i'#i and j'#i

(Note that we omitted some (—1)* terms since our field has characteristic 2.)

The desired DLOGTIME-uniform AC°[@)] circuit follows from [HVO06]. O

8.5.2 The Instance Checker

We assume familiarity with the notations in [Che23, Section 7|, such as Sq, fni; Jn,j, @n.j-
We start by showing that [Che23, Algorithm 7.1] (i.e., the instance checker for the polynomials
{fn.i} defined in [Che23, Lemma 7.3]) admits a DLOGTIME-uniform family of BP-AC’[@] oracle
circuits. The instance checker receives input parameters n,¢ € N such that 1 < i < n, input £ €
7, and oracle access to n—i+1 functions fi, fi_l,.l, cen fn: F — Fy,. It draws z;, zi41, .. ., 2n—1

F,, uniformly at random and performs the following steps:

1. First, it computes @;, @it1,...,0, € FI! as in [Che23, Eq. (8)]. For each i < j < n and
¢ € [n], let jmax be the maximum j' < j such that j' >, J,, y = ¢ and @, ;; # MUL (or L
if such j’ does not exist). If jmax does not exist, then (&;) = xy; otherwise (@;); = 2.,
We will show in Claim 8.5.2 that given j and ¢, we can compute jmax in O(logn) time;

hence, we can compute each &; via a DLOGTIME-uniform projection.

2. Then, it queries the oracles to obtain r; = fj(d’j) for every i < j <n.

18 Actually, solving the polynomial interpolation problem for ¢ = 3 suffices for our instance checker.

272

3. Let t := cgeg + 1 = 3 (by [Che23, Lemma 7.7|, the polynomials have individual degree at

most 2), wi, ..., w; be the first ¢t non-zero elements of IF,,. For each i < j < mn and ¢ € [t],

it queries the oracles to obtain 65 = fjﬂ((&j)‘]"d“w‘f).

4. For every i < j < n in parallel:

e If Q, ; = MUL, then it verifies that r; = rj11 - Termy, ;(&;), where Term,, ; is defined
in [Che23, Eq. (4)] and hence computable by DLOGTIME-uniform AC°[@] circuits.

e Otherwise, let p be the unique degree-(¢ — 1) polynomial such that p(w,) = ﬂg for
every ¢ € [t], we can use Claim 8.5.1 to obtain the values p(0), p(1), and p(z;). If

i # 59, ((d5),;,p(0),p(1)) or 7541 # p(z;), then output L and halt.
5. Finally, if 7, = 1 then accept and output r; (= f(&)); otherwise output L.

We remark that the values p(0),p(1),p(z;) in Item 4 are represented as u - v~—! for some

u,v € F,, but it is still possible to check the equalities. For example:

o If Q = 3, then Sg(z,y0,y1) = Yo - Y1, hence Sg(z,yozy *, 12, +) = r if and only if yoy; =

rZ021-
o If Q =V, then Sg(z,y0,¥1) =1 — (1 — yo)(1 — y1), hence Sg(z,y025 ' y12;) = r if and
only if (20 — y0)(21 —y1) = 2021(1 — 7).
e If Q = LIN, then Sg (2,0, 41) = zy1 + (1 —2)yo, hence So(x,yozy ', y127 1) = r if and only
if zy120 + (1 — x)yoz1 = rzo21.
The first three steps above issue queries to the oracles fi, fi+1, cen fn, and it is easy to see that
these queries can be generated by a DLOGTIME-uniform projection over Z and Z = (z;, ..., 2n—1).
The last two steps above perform DLOGTIME-uniform AC’[®] computation over Z and the

answers returned from the oracles. This establishes the complexity of the instance checker.

Finally, we need to compute jmax efficiently:

Claim 8.5.2. There is an algorithm running in O(logn) time that given i < j <n and £ € [n],
finds the mazimum j' < j such that j' > 1, J, j =€, and Q, ;7 # MUL.

Proof. We recall the definitions of J,, ; and @, ; from [Che23, Proof of Lemma 7.6]. For some
integers m < A < y/n computable in O(logn) time, we have:

1, LIN) if 7> A2,
j mod A, LIN) otherwise, if A1 j,
1,MUL) otherwise, if j > (m + 1)\,

(
(Jnj> @nj) = (
(
(J/A, Qj/x € {3,V}) otherwise.

If £ > X, then we can safely return L. If ¢ = 1 and j > A? + 1, then we can simply return

Jmax = J — 1. Otherwise, there are only two possible candidates for jmax:

e The case that (Jy, j, @nj) = (j mod A, LIN): the largest j/ < min{j, \?} s.t. j mod X = ¢;

273

e The case that (Jnj, Qnj) = (j/A,Qjn): J' =1L\

We discard any candidate not in the range [7, j) and return the (larger) remaining candidate j'.
If neither candidate is in [7, j), then we return L. This finishes the algorithm for finding jmax in
O(logn) time. O

The instance checker for LWH-TV reduces to the instance checker for the polynomials {f,.;}
in a straightforward way. In fact, let input € {0,1}™ be the input of LWHTV and k be the
integer defined in [Che23, Algorithm 7.2| (computable in O(logm) time), then:

e given access to (a purported oracle for) the m-th slice of LWHTV one can access the

polynomials fy,, i, fryip+1s - s frngn, via DLOGTIME-uniform projections;

e given input and the answers of each f,, ;j(Z) (j > i), where & € F}. corresponds to the
length-(n - sz,,) prefix of input, one can compute LWH-TV (input) using [Che23, Eq. (10)
and (11)] via a DLOGTIME-uniform AC°[®] circuit.

Since the instance checker for {f,;} is a DLOGTIME-uniform BP-AC°[®] circuit making

LWH-TV " Finally, the error probability of

projection queries, so is the instance checker for
the instance checker for {f,;} is at most poly(n)/2" by [Che23, Claim 7.12|, hence the error

probability of the instance checker for L"H-TV is also at most poly(n)/2" by a union bound.

8.5.3 PSPACE-Completeness

We also need to show that LWHTV is PSPACE-complete under DLOGTIME-uniform projec-
tions. Note that L"WH-TV is an arithmetisation of the problem TQBF" defined in [Che23, Section
7.3, thus we first show that TQBF" is PSPACE-complete under DLOGTIME-uniform projec-
tions, and then reduce TQBFY to LWHTV using DLOGTIME-uniform projections. However, the
PSPACE-completeness reduction presented in [Che23, Section 7.3] (from the classical TQBF to

TQBF"Y) is not a projection, so we need to implement the reduction more efficiently here.

Definition of TQBF". There are 8 - (g") possible width-3 clauses on n variables and we let
¢<H1% be a bijection between [8 - (g)] and the set of valid width-3 clauses. A 3-CNF ¢ can thus
be described by a string y € {0, 1}8'(3). The TQBF" problem takes such a bit-string as an input,

constructs the corresponding 3-CNF & (xy, z9,...,x,), and outputs

121Q2x2 . .. Qnry O(21,22,...,20), (8.4)

where @Q; equals 3 for odd 7 and V for even 1.

PSPACE-completeness of TQBF". First, the proof of the PSPACE-completeness of TQBF
(that is, computing (8.4) when ® is a general circuit) actually shows the following stronger
result: For every language L € PSPACE, there is a polynomial-time Turing machine M and a
polynomial ¢(n) such that, for every z € {0,1}", z € L if and only if

Q121Q272 - . . Qu(n)Ta(n) M (21mms T1mt(n))

274

where, again, Q; equals 3 for odd i and V for even i. (See [ALR99] for an exposition. In
particular, [ALR99, Section 6.2] pointed out that the above PSPACE-completeness reduction
can be computed by a DLOGTIME-uniform projection.)

Since P is equal to DLOGTIME-uniform SIZE[poly| [BI94|, there is a family of poly(n)-
size circuits {Cy,: {0,1}*H() 2101} that simulates M and satisfies the following uniformity
conditions. Let s(n) < poly(n) denote the number of gates in C), (including input gates), then
1,2,...,s is a valid topological order of C,, (the first n + ¢ gates are inputs and the s-th gate is
the output gate). By adding dummy gates, we may assume that no gate has both children being
z; variables (this will imply that our final is 1-local). Finally, the direct connection language of
C,, can be computed in O(logn) time: there is an algorithm running in deterministic O(logn)
time that given n, indices of gates g1, g2, g3 € [|Cn|] (where g1 > max{g2, g3}), and assignments
b1, b2, b3 € {0,1}, returns true if and only if the outputs of g2 and g3 are fed as inputs of g; and
{9: = bi}ie[g)] is consistent with the gate type of g; (e.g., if g1 is an AND gate, then it cannot be
the case that by = 1 but by = 0).

Now we show that this implies a DLOGTIME-uniform projection reduction from L to TQBF".
We will reduce an instance z € {0,1}" of L to a TQBF" instance ®, with s(n) variables. Let D

be a clause expressing

(9i # bi) V (g5 # bj) V (9r #),

where g5, g;, gi are variables corresponding to gates in C,, and b;, b;, by, € {0,1}. We may assume
that g; > max{g;,gx}. Then, D appears in ® if and only if g;, gx are fed as inputs of g; but
{9i = bi}icj) is inconsistent with the gate type of g;. This information can be retrieved by O(1)
queries to the direct connection language.

Finally, the TQBF" instance we produced is

Q171Q272 . . . Qﬁ(n)xﬁ(n)EIg(Z(n)—i—n—&—l)Ns(n) (I)(Zlfvnv L1~t(n)> g(ﬁ(n)—i—n—&-l)ws(n))a

and we may insert V quantifiers among g(s(n)4n+1)~s(n) t0 make the quantifiers alternate. It is
easy to see that the reduction is computable in DLOGTIME; it is a projection because every

clause (i.e., gate in C,) only touches one z; variable.

PSPACE-completeness of LWH-TV_ The reduction from TQBFY to LWH-TV is straightforward.
First, by [Che23, Lemma 7.10], the truth-table of TQBF" on input length m coincides with
the truth-table of f,1 = gﬁ) over the Boolean cube, for some n = poly(m). Hence, when
L = TQBFY, the algorithm A9 (as defined in Item 4 of [Che23, Lemma 7.3]) is a DLOGTIME-
uniform projection. Second, the reduction in [Che23, Lemma 7.19] produces the instance (Z, ¢, @)
where ¢ and 4 are constant vectors whose each bit can be computed trivially, and z'= ArLed (z)
and z is the input of L. Hence, when L = TQBF", this reduction is also a DLOGTIME-uniform
projection over zx.

Combining all of the above, we can see that the overall reduction from any language L €
PSPACE to ZWH-TV is a DLOGTIME-uniform projection.

275

Chapter 9

Hardness of Range Avoidance from
Demi-Bits

9.1 Introduction

We make progress on the hardness of the range avoidance problem and the existence of proof

complezity generators. We begin with a brief overview of these two lines of research.

9.1.1 Range Avoidance

It is easy to see that the range avoidance problem admits a trivial randomised algorithm:
given a circuit G : {0,1}"™ — {0, 1}"" as input, a uniformly random m-bit string would be a valid
output with high probability. On the other hand, deterministic algorithms for AvOID would
imply breakthroughs in explicit constructions and circuit lower bounds [Kor21, RSW22, GLW22,
GGNS23]. Since such breakthroughs are widely believed to be true (albeit difficult to prove), the
aforementioned results only suggest that deterministic algorithms for AvoIiD would be difficult
to obtain unconditionally, rather than that such algorithms are unlikely to exist. This raises a
natural question: Is there a deterministic algorithm for Avoip?

Perhaps surprisingly, recent results suggested that the answer is likely no under plausible
cryptographic assumptions. Ilango, Li, and Williams [ILW23| showed that AvoID is hard for
deterministic algorithms assuming the existence of subexponentially secure indistinguishability
obfuscation (iQ) and that NP # coNP. Chen and Li [CL24| extended this result and showed
that AvOID is hard even for nondeterministic algorithms, under certain assumptions regarding
the nondeterministic hardness of LWE (Learning with Errors) or LPN (Learning Parity with
Noise). In addition to providing compelling evidence for the hardness of AvOID, these results
establish a strong separation between deterministic and randomised algorithms (recall that there
exists a trivial randomised algorithm for AvoOID).

The hardness results in [ILW23, CL24| open up several exciting research directions:

1. Can the hardness of range avoidance be based on weaker (or alternative) as-

sumptions?

The assumptions used in prior work, i.e., iO [ILW23] and public-key encryption [CL24],

belong to Cryptomania in the terminology of Impagliazzo’s worlds [Imp95|. Can we base

276

the hardness of range avoidance on assumptions of a “Minicrypt” flavor, such as one-way
functions or pseudorandom generators? Additionally, both [ILW23] and [CL24| rely on

1

subexponential indistinguishability assumptions'. Are such subexponential assumptions

necessary?

2. Can we obtain hardness of AvoiD for instances computed by restricted circuits?

Previously, under assumptions related to LWE, Chen and Li [CL24] showed that AvoIiD
remains hard even when each output bit of G is computed by a so-called “DOR o MAJ o
ANDo1ogn) circuit”. No such results were known for other restricted circuit classes. The

related remote point problem has been shown to be hard under LPN-style assumptions for
XOR o ANDg(10g n) (i-e., O(logn)-degree polynomials over Fa) [CL24].

This chapter makes progress on both fronts. We show that AvOID is hard for nondetermin-
istic algorithms under the existence of demi-bits generators with sufficient stretch? [Rud97]. A
formal definition of demi-bits generators is deferred to Section 9.2.1, and candidate constructions
supporting their existence are discussed in Section 9.5. For the purpose of this introduction, it
suffices to keep in mind that demi-bits generators are a version of cryptographic pseudorandom
generators secure against nondeterministic adversaries.

We highlight two key features of our results here:

1. Minicrypt-style assumptions against nondeterministic adversaries.

Roughly speaking, demi-bits generators are (cryptographic) pseudorandom generators se-
cure against nondeterministic adversaries®. They are arguably a natural “Minicrypt” ana-
logue of pseudorandom generators in the context of cryptography against nondeterministic
adversaries. Moreover, our results only rely on the super-polynomial hardness of these
demi-bits generators, thereby completely getting rid of the subexponential (or “JLS™style)

assumptions used in prior work.

2. Hardness for restricted circuit classes.

Under the assumption that certain concrete demi-bits generators are secure (e.g., those
based on LPN or Goldreich’s PRG), we show that the range avoidance problem remains
hard for nondeterministic algorithms even when the underlying circuits belong to XOR o

ANDg 1), i.e., constant-degree polynomials over Fs.

9.1.2 Proof Complexity Generators

Let G : {0,1}™ — {0,1}"™ be a Boolean circuit where m > n, and P be a propositional proof
system. We say that G is a (secure) proof complexity generator [ABRWO04, Kra0Ola] against P if,

'More precisely, the assumptions in [[LW23, CL24] assert subexponential indistinguishability against
polynomial-time adversaries. This level of security is referred to as “JLS-security” in [[LW23], where “JLS”
comes from the strengths of the “well-founded” assumptions used to construct ¢Q in [JLS21].

2The stretchability of generic demi-bits generators is only partially understood. Recent work of Tzameret and
Zhang [TZ24] shows that demi-bits generator with 1-bit stretch G : {0,1}" — {0,1}™"" implies those with a
sublinear bits of stretch G’ : {0,1}"™ — {0,1}"+"" for any constant 0 < ¢ < 1. This is the first proof that generic
demi-bits generators are stretchable at all, but it still falls short of the linear or polynomial stretch assumed in
our hypothesis.

3In fact, Rudich [Rud97] introduced two ways to define pseudorandomness against nondeterministic adver-
saries: super-bits and demi-bits. Demi-bits are weaker than super-bits.

277

for every string y € {0,1}™, the (properly encoded) statement “y ¢ Range(G)” does not admit
short proofs in P.* A comprehensive survey about proof complexity generators can be found
in [Kra25].

The study of proof complexity generators is motivated by at least the following themes:

1. Pseudorandomness in proof complexity [ABRWO04].

A standard pseudorandom generator G : {0,1}" — {0,1}™ [Yao82| fools a (polynomial-
time) algorithm D if D cannot distinguish the outputs of G from truly random m-bit
strings; that is, D(Uy,) ~ D(G(Uy,,)), where Uy denotes the uniform distribution over ¢-bit
strings. Analogously, one can say that G fools a propositional proof system P if P cannot
distinguish between the outputs of G and truly random m-bit strings, and a natural way

of formalising this is to say that P cannot efficiently prove any string outside the range of

G.

Following the idea of pseudorandomness in proof complexity, subsequent works [Kra04,
Picl1,Krall,Raz15,Kha22] studied the hardness of the Nisan—Wigderson generator [NW94|
as a proof complexity generator in various settings. In particular, an influential conjecture
of Razborov [Razl5, Conjecture 2| asserts that the Nisan-Wigderson generator based on
any “sufficiently hard” function in NP N coNP is a proof complexity generator against Ex-
tended Frege; that is, computational hardness can be transformed into proof complexity

pseudorandomness.

2. Candidate hard tautologies for strong proof systems.

There are two difficulties in proving lower bounds for strong proof systems such as Frege
and Extended Frege: the lack of techniques and the lack of candidate hard tautologies. The
latter problem was highlighted by Bonet, Buss, and Pitassi [BBP95|, who demonstrated
that many combinatorial tautologies can be proved efficiently in Frege, hence disqualifying
them as hard candidates. This issue has been further discussed in [Kra0lb, Kra04,ST21,
Kha22].

Tautologies from proof complexity generators are among the few natural candidates that
appear hard for strong proof systems. It seems plausible that for some mapping G :
{0,1}™ — {0,1}"*! and some (or even every) y € {0,1}"*!\ Range(G), the natural CNF
encoding of the tautology “y ¢ Range(G)” requires super-polynomially long Extended
Frege proofs.

3. Unprovability of circuit lower bounds.

Given our very limited progress in circuit complexity, it is tempting to conjecture that
circuit lower bounds are hard to prove in formal proof systems. For a Boolean function
f:4{0,1}" — {0,1} and a size parameter s, one can write down a propositional formula
Ib(f,s) (of size 2°(") asserting that no circuit of size at most s computes f. The proof

complexity of such formulas has been studied extensively [Raz98, Raz04, Kra04, Raz15,

If y is in fact in the range of G, then “y ¢ Range(G)” is a false statement and hence has no proof in any
sound proof system. Therefore, this requirement is equivalent to that, for every y ¢ Range(G), the tautology
“y & Range(G)” is hard to prove in P.

278

Picl15,PS19,ST21, PS22]|, due to its implications for the metamathematics of complexity
theory.

Consider the truth table generator TT : {0,1}P°¥(s) — 10,1}2", which maps a size-s
circuit C' to its 2"-bit truth table. By definition, TT is a proof complexity generator
against a proof system P if and only if P cannot efficiently prove any circuit lower bound
Ib(f,s). Krajicek [Kra04] introduced the notion of pseudo-surjectivity and showed that
TT is the hardest pseudo-surjective generator: The existence of any generator pseudo-
surjective against P implies that TT is pseudo-surjective against P (and thus that P
cannot prove circuit lower bounds). Razborov [Razl5| further showed unprovability of
circuit lower bounds in the proof system Res(eloglog N) by exhibiting a proof complexity

generator that is iterable for this system.’

Krajicek [Kra04,Kra23, Kra24| conjectured that there exists a proof complexity generator
that is secure against every propositional proof system. One could also consider a slightly weaker
conjecture that for every propositional proof system P, there is a proof complexity generator
Cp (possibly depending on P) that is hard against P. At first glance, these conjectures may
appear unrelated to standard hardness assumptions in complexity theory or cryptography, as
proof complexity generators require “y ¢ Range(G)” to be hard to prove for every y (i.e.,
the best-case y), while complexity-theoretic or cryptographic hardness assumptions tend to be
either worst-case or average-case. We elaborate on the notion of “best-case” proof complexity
in Section 9.1.4.

In this chapter, we give strong evidence for the weaker conjecture by showing that it follows
from the existence of demi-bits generators (with sufficiently large stretch) [Rud97]. The latter
is a natural and fundamental assumption in the study of cryptography against nondeterministic
adversaries. Furthermore, we show that our generators are even pseudo-surjective under certain

regimes.’

9.1.3 Owur Results

Hardness of range avoidance. Our main result is that the existence of demi-bits generators

implies that AvOID ¢ SearchNP, i.e., AvOID is hard for nondeterministic search algorithms.

Theorem 9.1.1 (Main). If there exists a demi-bits generator G : {0,1}* — {0,1}0" then
AvOID ¢ SearchNP.

In fact, we show that composing the demi-bits generator with a hash function in some
pairwise independent hash family would yield a hard instance for AvoID. In its full generality,
our arguments hold for arbitrary strong seeded extractors, and the theorem below follows from
the leftover hash lemma [ILL89|, which guarantees that pairwise independent hash families are
such extractors; see Theorem 9.3.1 for details.

We present the version using pairwise independent hash families here due to its elegance:

STterability is a weaker notion than pseudo-surjectivity. Kraji¢ek [Kra04] also showed that TT is the “hardest”
iterable generator. Therefore, the existence of a proof complexity generator iterable for some proof system implies
that TT is also iterable (and thus hard) for this proof system.

5The parameters of our pseudo-surjectivity results fall just short of those required to apply Krajicek’s re-
sult [Kra04], hence they do not imply the hardness of the truth table generator. This limitation is inherent; we
discuss this issue in more detail after presenting Theorem 9.1.7.

279

Theorem 9.1.2. Let G : {0,1}"* — {0,1}V be a demi-bits generator, H = {h : {0,1}¥ —
{0,1}™} be a family of pairwise independent hash functions, and A be a nondeterministic
polynomial-time algorithm. If N > 10m > n, then there exists h € H such that A fails to

solve the range avoidance problem on the input ho G.

As discussed before, this result improves upon [ILW23,CL24| in several key aspects. First, we
only require super-polynomial hardness of the demi-bits generators, thereby completely eliminat-
ing the subexponential- or JLS-hardness assumptions. Second, our assumptions are solely based
on the existence of demi-bits generators, a primitive arguably situated within “nondeterministic
Minicrypt.” Finally, by instantiating the extractors with pairwise independent hash functions
computable by linear transformations over Fy, and using demi-bits generators computable by
constant-degree [Fo-polynomials, we establish the hardness of AVOID even for circuits where each

output bit is computable in constant Fa-degree (i.e., XOR o AND (1) circuits):

Corollary 9.1.3 (Informal). Assuming the existence of demi-bits generators computable in
XORo ANDg 1y (Assumption 9.2.3), the range avoidance problem for XOR o ANDo(yy circuits is
not in SearchNP.

Proof complexity generators. Building on this result, we show that for any fixed proposi-
tional proof system P closed under certain reductions, demi-bits generators for P imply proof
complexity generators for P. In particular, the existence of demi-bits generators secure against
NP /poly implies the weaker version of Krajicek’s conjecture, providing strong evidence that the
latter conjecture is true.

Moreover, this result suggests a new approach for constructing proof complexity generators
for concrete proof systems closed under certain reductions, such as Res[®]: it suffices to construct

demi-bits generators secure against the same proof system.

Theorem 9.1.4. Let P be a proof system closed under parity reductions. If there exists a demi-
bits generator G : {0,1}" — {0,1}%" secure against P, then there is a (non-uniform) proof

complexity generator secure against P.

Unprovability of dwPHP(PV) in PV from demi-bits. Our results also have implications
in bounded arithmetic. A central goal in bounded arithmetic is to delineate the logical power
required to formalise reasoning about computational complexity. Two well-studied theories in
this context are Cook’s theory PV; [Coo75], which corresponds to reasoning in deterministic
polynomial time, and Jefabek’s theory APCy [Jef04, Jer07]”, which extends PV by adding
the dual weak pigeonhole principle for polynomial-time functions (dwPHP(PV)), and captures
aspects of randomised polynomial-time reasoning.

Despite decades of interest, it has remained open whether APC; and PV; are actually dis-
tinct theories—that is, whether dwPHP(PV) is unprovable in PV;. Recently, Ilango, Li, and
Williams [ILW23] provided the first evidence separating the two: they showed that dwPHP(PV)
is unprovable in PV; under the assumptions that indistinguishability obfuscation (iQ) with JLS

security exists and that coNP is not infinitely often in AM. We remark that the same separation

"Note that the terminology “APC;” was first used in [BKT14].

280

was also shown by Krajicek [Kra21], albeit under an assumption that is regarded as “unlikely” (P
admits fixed-polynomial size circuits). In this work, we establish the same separation assuming

the existence of demi-bits generators against AM/p(y).

Theorem 9.1.5. Assume there exists a demi-bits generator G : {0,1}* — {0,1}*™ secure
against AM/O(l). Then, the Dual Weak Pigeonhole Principle for polynomial-time functions
(dwPHP(PV)) is not provable in PV. (In particular, APCy is a strict extension of PVy.)

The only property of PV; used in our argument is the KPT witnessing theorem [KPT91|,
which states that if PV proves the dual weak pigeonhole principle for polynomial-time functions,
then there exists a deterministic polynomial-time algorithm for solving AvoIiD with O(1) circuit-
inversion oracle queries ([ILW23, Definition 19]). Our separation result in Theorem 9.1.5 follows
by showing that no such algorithm can exist. Moreover, for any parameter k = k(n), assuming
the existence of demi-bits generators secure against AM/ o 1og 1), e further rule out deterministic

polynomial-time algorithms for AvVOID that make k circuit-inversion oracle queries.

Theorem 9.1.6. Let m = m(n) > n and k = k(n) be parameters. If there exists a demi-bits
generator G : {0, 1} — {0, 1}19%F7 secure against AM/0(10g k), then there is no polynomial-time
deterministic algorithm for AVOID on circuits with n inputs and m outputs using k circuit-

mversion oracle queries.

Pseudo-surjective proof complexity generators. Assuming demi-bits generators against
NP /poly, we show that our proof complexity generators are even pseudo-surjective against every
proof system. (The precise definition of k-round pseudo-surjectivity is presented in Defini-
tion 9.2.14.)

Theorem 9.1.7. Let m = m(n) > n and k = k(n) be parameters. If there exists a demi-
bits generator G : {0,1}" — {0, 1}190%™ secure against NP/poly, then for every mon-uniform
propositional proof system P, there is a non-uniform proof complexity generator Gpj : {0,1}" —

{0,1}™ that is k-round pseudo-surjective against P.

Kraji¢ek [Kra04] proved that, under appropriate parameter settings, the existence of pseudo-
surjective proof complexity generators is equivalent to the pseudo-surjectivity of the truth table
generator. As a corollary, the existence of pseudo-surjective generators against a proof system
‘P implies that every circuit lower bound is hard to prove in P.

However, the parameters in our Theorem 9.1.7 fall short of applying Kraji¢ek’s result and
therefore do not imply the pseudo-surjectivity of the truth table generator. Specifically, to apply
Krajicek’s results, we need a proof complexity generator that is computable by circuits of size
s and is k-round pseudo-surjective for some k > s; see the proof of [Kra04, Theorem 4.2] for
detailed discussions. In contrast, Theorem 9.1.7 guarantees a generator computable by circuits
of size poly(n, k) that is k-round pseudo-surjective, which is in the regime where k < s and thus
outside the reach of Krajicek’s equivalence.

This limitation is inherent to the generality of our result: we construct generators secure
against all proof systems, whereas under the assumption E & SIZE[2°(")], there exists a proof
system that can prove circuit lower bounds (e.g., by simply hardwiring an axiom that certain

E-complete language has exponential circuit complexity). Thus, under this standard hardness

281

assumption, it is provably impossible to extend our results to the regime where k > s and
thereby obtain pseudo-surjectivity of the truth table generator. It remains an intriguing open
question whether our approach can be refined to construct proof complexity generators of size
s that are k-round pseudo-surjective against specific systems such as Fxtended Frege, for some
k > s. Such a result would imply that Extended Frege cannot prove any circuit lower bounds.

Finally, we comment on the strength of the adversaries required in our assumptions on
demi-bits generators. In the main theorem (Theorem 9.1.1), a SearchNP algorithm for AvoIiD
is transformed into a nondeterministic adversary that breaks the demi-bits generator. Since
SearchNP is a uniform class, it suffices to assume that the generator is secure against uniform
nondeterministic adversaries. In contrast, Theorem 9.1.6 requires the generator to be secure
against AM/ o 10g k(n)) adversaries. This is because the adversary invokes the Goldwasser-Sipser
protocol [GS86], which is in AM, and needs to hardwire the index of the circuit-inversion query
that succeeds with good probability. In Theorem 9.1.7, we require security against NP /,q1y
adversaries, as our adversary needs to hardwire a “good” sequence of teacher responses in the

student-teacher game, thus it is highly non-uniform.

9.1.4 Perspective: Average-Case to Best-Case Reductions in Proof Com-
plexity

Theoretical computer science has traditionally focused on the worst-case complexity of prob-
lems: An algorithm A solves a problem if A(z) succeeds on every input x. Motivated by practical
heuristics (where worst-case analysis tends to be overly pessimistic) and cryptography (where
worst-case hardness is not sufficient for security), average-case complexity has emerged as an
important research direction [Imp95,BT06a|. In this setting, fixing a distribution D over inputs,
an algorithm A solves a problem if A(x) succeeds with good probability over = < D. Re-
cently, average-case complexity has received attention in proof complexity as well: For example,
[Pan21,dRPR23, CARN 23] proved proof complexity lower bounds for CLIQUE and COLORING
for random graphs.

An important topic in average-case complexity is worst-case to average-case reductions:
reductions showing that if a problem L is hard in the worst-case, then a related problem L’ is
hard on average. Worst-case to average-case reductions are known for the Permanent [CPS99],
Discrete Logarithm [BM84|, Quadratic Residuosity [GM84], certain lattice problems [Ajt96], and
more recently for problems in meta-complexity [Hirl8|. On the other hand, “black-box” worst-
case to average-case reductions are unlikely to exist for NP-complete problems [FF93, BT06b].

In contrast, the notion of best-case complexity has received far less attention. Perhaps
one reason is that this notion is often trivial in standard computational complexity: for every
language L, either the all-zero function or the all-one function can decide L on the “best”
input.® However, in proof complexity, best-case hardness is a meaningful and natural notion,
as illustrated by proof complexity generators, which are stretching functions GG such that the
statement “y ¢ Range(G)” is hard to prove even for the best choice of y.

In this context, our results can be interpreted as an average-case to best-case reduction in

80ne notable exception appears in recent derandomisation results [CT21a] based on almost-all-input hardness
assumptions. In particular, it was shown that prP = prBPP follows from the existence of depth-efficient multi-
output functions with high best-case complexity against randomised algorithms.

282

proof complexity. Indeed, Theorem 9.1.4 transforms demi-bits generators, where statements of
the form “y ¢ Range(G)” are hard to prove for an average-case y, to proof complexity generators,
where such statements are hard for a best-case .

We find the existence of such average-case to best-case reductions quite surprising. Our
arguments crucially exploit the power of nondeterministic computation, and the phenomenon
of average-case to best-case reductions seems unique to the setting of proof complexity and
hardness against nondeterministic algorithms. We believe that further exploring the scope and
limitations of average-case to best-case reductions is a promising direction for future research.

We remark that there are also worst-case to best-case reductions in proof complexity. Kra-
jicek [Kra09] constructed a proof complexity generator whose hardness can be based on the
hardness of the pigeonhole principle, thereby reducing the best-case hardness of an entire family
of tautologies to that of a single tautology. Inspired by this example, Garlik, Gryaznov, Ren, and
Tzameret [GGRT25] recently showed a worst-case to best-case reduction for the rank principles.
Let “rank(A) > r” denote the collection of polynomial equations expressing that the rank of an
n X n matrix A is greater than r. If a proof system (closed under certain algebraic reductions)
cannot prove “rank(I,) > r” where I, is the n x n identity matrix, then it also cannot prove

“rank(A) > r” for every n x n matrix A.

9.2 Preliminaries

9.2.1 Demi-Bits Generators

Definition 9.2.1 (Demi-Bits Generators). Let n,m be length parameters such that n < m.
A function G : {0,1}" — {0,1}"™ is an (s, ¢)-secure demi-bits generator if there is no NP /poly

adversary Adv of size s such that

P Ad =1] > d P Adv(G =1]=0.
P M) =1zc and | Pro [Adv(G(x) = 1
The results in this chapter require demi-bits generators with large stretch and computable

with small circuit complexity. In particular, we need the following assumptions:

Assumption 9.2.2 (Demi-bits Generators with Polynomial Stretch). For every constant ¢ > 1,

there exists a family of demi-bits generators {g,, : {0,1}" — {0,1}"™} secure against NP/,

Assumption 9.2.3 (Demi-bits Generators with n!*¢ Stretch in Constant Degree). There exist
constants € > 0, d > 2, and a (non-uniformly computable) family of demi-bits generators
{gn : {0,1}™ = {0,1}" "} secure against NP/ poly, such that each output bit of g, is computable
by a degree-d polynomial over Fs (i.e., an XOR o ANDy circuit).

Our main hardness results for AvoiD will be based on Assumption 9.2.2; we also need
Assumption 9.2.3 to obtain hardness results for constant-degree AvOID. In Section 9.5, we

justify these assumptions and provide some candidate constructions.

283

9.2.2 Arthur—Merlin Protocols

An Arthur—Merlin protocol |Bab85| for a language L is a constant-round public-coin in-
teractive protocol between a computationally unbounded Prover (Merlin) and a randomised

polynomial-time Verifier (Arthur) that satisfies the following properties for every input x:
e Completeness: If z € L, then there is a Prover that makes the Verifier accept w.p. > 2/3.
e Soundness: If z ¢ L, then no Prover can make the Verifier accept w.p. > 1/3.

Let AM denote the set of languages with an Arthur—Merlin protocol. The round-collapse
theorem of Babai [Bab85| implies that every language in AM actually has an Arthur—Merlin
protocol with two rounds: Verifier sends the first message, Prover sends a proof, and Verifier
decides whether x € L. Hence, AM can be seen as a randomised version of NP; indeed, one can
prove that AM = NP under circuit lower bound assumptions [KvM02, MV05,SU05, SU06|.

Goldwasser—Sipser set lower bound protocol. We need the following well-known AM

protocol for proving lower bounds on the size of efficiently recognisable sets.

Lemma 9.2.4 ([GS86], also see [AB09, section 8.4|). There is an Arthur—Merlin protocol such
that the following holds. Suppose that both Prover and Verifier receive a nondeterministic circuit

C:{0,1}" — {0,1} and a number s <2". Let S = {x € {0,1}" : C(x) = 1}. Then

e Completeness: If |S| > s, then there exist messages Prover can send such that Verifier

accepts with probability at least 2/3.

e Soundness: If |S| < s/2, then regardless of what Prover sends, Verifier accepts with

probability at most 1/3.

Moreover, the protocol is a two-round public-coin protocol: Verifier first sends a random seed r
and receives a message m; then it deterministically decides whether to accept based on r and m

in polynomial time.

Arthur—Merlin protocols as adversaries.

Definition 9.2.5 (Breaking demi-bits generators by AM adversaries). Let m > n. An AM
adversary breaks a demi-bits generator G : {0,1}" — {0,1}" if both Prover and Verifier receives

a common input y € {0,1}™, and:

e for > 1/3 fraction of y € {0, 1}", there exists a Prover that makes the Verifier accepts with
probability > 2/3,;

e for all y € Range(G), for every Prover, the Verifier accepts with probability < 1/3.
We also consider AM adversaries with advice:

Definition 9.2.6 (AM/,) adversaries). An AM/y(,) adversary is an Arthur—Merlin protocol
where the Verifier is a probabilistic polynomial-time machine that additionally receives a k(n)-
bit advice string a,, (which may depend on the input length n but not on the specific input y).

The interaction on input y proceeds as follows:

284

1. The Verifier uses a,, and randomness r to generate a message to the Prover;
2. The Prover replies with a message;
3. The Verifier accepts or rejects based on y, a,, r, and the Prover’s response.
The acceptance probabilities are still defined over Verifier’s internal randomness, with the advice

string fixed to a,,.
Proposition 9.2.7. Let G be a demi-bits generator.

o If there exists an AM adversary breaking G, then there exists an NP /o1y adversary breaking

G ([AdI78]).
o For every constant k > 2, if there exists a k-round AM adversary breaking G, then there
exists a (standard) two-round AM adversary breaking G (|Bab85]).
9.2.3 FNP v.s. SearchNP

In this chapter, we need to distinguish between the two notions FNP and SearchNP.

Definition 9.2.8 (SearchNP [CL24]). Let P be a search problem and R be the binary relation
defining P. We say P can be solved by a nondeterministic polynomial-time algorithm if there

is a nondeterministic Turing machine M such that for every input z,

e If z has a solution, then M (x) has an accepting computation path, and every accepting

path will output a valid solution y, i.e., R(z,y) is true.
e If z has no solution, then M (z) has no accepting computation path.

The class of search problems solvable by nondeterministic polynomial-time algorithms is defined
as SearchNP.

Definition 9.2.9 (FNP [CL24]). The class of search problems defined by a polynomial-time
relation, i.e., R € P is defined as FNP.

While it is clear that FNP C SearchNP, the following example suggests that this inclusion is

strict.

Proposition 9.2.10 ([CL24|). IfP # NP, then there is a total search problem in SearchNP\FNP.
For more knowledge about nondeterministic algorithms, readers are referred to [CL24, Sec-

tion 2.4].

9.2.4 Proof Complexity

Recall that TAUT, the set of DNF tautologies, is the canonical coNP-complete problem. A

propositional proof system is simply a nondeterministic algorithm for TAUT. More formally:

Definition 9.2.11 ([CR79]). An algorithm P(p,) is called a propositional proof system if it

satisfies the following conditions:

e (Completeness) For every ¢ € TAUT, there exists a string 7 € {0, 1}* such that P(p,)

accepts.

285

e (Soundness) For every ¢, m € {0,1}*, if P(p,) accepts, then ¢ € TAUT.
e (Efficiency) P(p,) runs in deterministic poly(|¢| + |7|) time.

We say that P is a non-uniform propositional proof system if P is a polynomial-size circuit

instead of a uniform algorithm (that is, P is equipped with non-uniform advice).

Definition 9.2.12 (Proof Complexity Generators [ABRW04, Kra04]). Let s(n) < n be a func-
tion for seed length. A proof complexity generator is a map C), : {0,1}* — {0,1}" computed by
a family of polynomial-size circuits {C), },. A generator is secure against a propositional proof
system P if for every large enough n and every y € {0,1}", P does not have a polynomial-size

proof of the (properly encoded) statement
vz € {0,1}°,Cu(z) # y.

It is easy to see that the existence of proof complexity generators is closely related to the

hardness of range avoidance. In fact, we have:

Theorem 9.2.13 (Informal version of [RSW22, Theorem 6.6]). The range avoidance problem
with suitable stretch is in FNP if and only if there exists a propositional proof system that breaks

every proof complexity generator.

Pseudo-surjectivity. In addition to the basic notion of hardness for proof complexity gener-
ators, several stronger notions have been proposed in the literature, including freeness [Kra0O1lb],
iterability and pseudo-surjectivity [Kra04|, and \/-hardness [Kra24|. Pseudo-surjectivity is the
strongest hardness notion among them. In this chapter, we show that our proof complexity
generators are pseudo-surjective in certain parameter regimes.

To motivate the definition of pseudo-surjectivity [Kra04, Definition 3.1|, it is helpful to
consider Student-Teacher games for solving AvoIlD. Let G : {0,1}" — {0,1}™ be a circuit
where m > n. A polynomial-time Student attempts to find a string y € {0, 1} \ Range(G) with
the help of a Teacher who has unbounded computational power. The game proceeds in rounds.
In each round i, the Student proposes a candidate string y; € {0,1}", and if y; € Range(G),
the Teacher returns a preimage ¢; € {0, 1}" such that G(g;) = y;. If the Student ever proposes
a string outside the range of G, they win the game.

A Student who attempts to solve AvVOID in k rounds can be represented as k circuits
B, Bo,..., By, where each B; uses the Teacher’s responses from previous rounds to generate the
next query. Specifically, By outputs a fixed string y; € {0,1}™, and each subsequent circuit B;
(¢ > 1) takes the previous responses qi, ¢2, . .., gi—1 € {0, 1}" as inputs and outputs y; € {0, 1}™.

The game proceeds as follows:

e The Student proposes y; := By € {0,1}™. If y; ¢ Range(G), then the Student wins the
game; otherwise, the Teacher returns some ¢; € {0,1}" such that G(q1) = y1.

e The Student then proposes ya := Ba(q1) € {0,1}™. If y» ¢ Range(G) then the Student
wins the game; otherwise, the Teacher returns g2 € {0,1}" such that G(g2) = ya.

286

e This continues until round &, where the Student proposes yx := Bk(q1, ..., qx-1) € {0,1}™.
If yi. & Range(G), then the Student wins the game; otherwise, the Student loses the game.

To formally express whether the Student succeeds in the game, we define a formula stating
that at least one of the Student’s queries is outside the range of G. Let B : {0,1}" — {0,1}™
be a circuit, z € {0, 1}"/ and = € {0, 1}" be disjoint variables, we define 7(G)p(;)(x) to be the
(properly encoded) statement that B(z) # G(z). Then, using 4, ..., qk—1 € {0,1}" to represent

the Teacher’s responses, the Student wins if and only if

k
v T(G)Bi((hu-“)‘h'—l)(qi)' (9.1)

Roughly speaking, a generator G is pseudo-surjective for a proof system P if P cannot
prove any Student wins the game, no matter how the Student is constructed. In other words,
a generator G is pseudo-surjective for P if, for every sequence of Student circuits (By, ..., Bg),
the formula (9.1) is hard to prove in P.

Note that pseudo-surjectivity is indeed a stronger notion than standard hardness for proof
complexity generators. Indeed, for every y € {0,1}" \ Range(G), the trivial one-round Student
with By = y clearly wins the game—yet pseudo-surjectivity implies that this fact is hard to
prove in P.

We proceed to the formal definition. We also introduce the notion of k-round pseudo-
surjectivity, where the unprovability of (9.1) only holds for k-round Students for some fixed
k= k(n).

Definition 9.2.14 (k-round pseudo-surjectivity [Kra04|). Let P be any proof system, G :

{0,1}" — {0,1}™ be a circuit where m > n, and s be a size parameter.

o We say that G is s-pseudo-surjective for P if for every k and every sequence of Student

circuits (B, Ba, ..., By), (9.1) requires P-proof of size at least s.

e Fixing a parameter k = k(n), we say that G is k-round s-pseudo-surjective for P if for

every sequence of Student circuits (By, Ba, ..., Bg), (9.1) requires P-proof of size > s.

When s = n®1), we omit the parameter s and simply say that G is (k-round) pseudo-

surjective for P.

9.2.5 Bounded Arithmetic

Roughly speaking, PV is a theory of bounded arithmetic capturing “polynomial-time” rea-
soning. The language of PVy, L£(PV), contains a function symbol for every polynomial-time
algorithm f : N*¥ — N, defined using Cobham’s characterization of polynomial-time func-
tions [Cob64|. Although Cook’s PV [Coo75] was originally defined as an equational theory (i.e.,
the only relation in PV is equality and there are no quantifiers), one can define a first-order theory
PV by adding suitable induction schemes [Coo75, KPT91]|. In the literature, the notation PV is
often used to refer to the set of polynomial-time computable functions as well. The precise defini-
tion of PV is somewhat involved, and we refer the reader to the textbooks [Kra95, CN10,Kral9]
and references [Coo75, Jer06, CLO24, Li25].

287

To capture reasoning in randomised polynomial time, Jetabek [Jer04, Jer05, Jer07| defined a
theory APC; by extending PV; with the dual weak Pigeonhole Principle for PV functions (i.e.,
polynomial-time functions). Let Eval((C),z) := C(x) be the circuit evaluation function. For a
function ¢(n) > n, define dwPHP,(Eval) to be the following sentence

dwPHP,(Eval) :=
Vn € Log Veircuit C : {0,1}" — {0,1}7 3y € {0,1}™ vz € {0,1}" [Eval(C, z) # y].

Here, “n € Log” is the standard notation in bounded arithmetic, which means that n is the
bit-length of some object; this notation allows us to reason about objects of size poly(n) instead
of merely size polylog(n). The above sentence can be interpreted as the totality of AvoID: every
input C': {0,1}" — {0, 1}“™ has at least one solution ¥.

For this chapter, it suffices to think of ¢(n) as a large polynomial in n; in fact, under
suitable hardness assumptions, we will be able to show that PV cannot prove dwPHP, for

every polynomial £(n). This suffices to separate APC; from PV;.

KPT witnessing and Student-Teacher games. The only property of bounded arithmetic

theories that we need in this chapter is the KPT witnessing theorem:

Theorem 9.2.15 (KPT Witnessing Theorem for PV [KPT91|). For every quantifier-free for-
mula ©(Z,y,z) in the language L(PV), if PV1 FVZ Jy Vz o(Z,y, z), then there is a k € N and
L(PV)-terms ty,ta, ..., t; such that

k
PV FVE V2 V.. Vo \/ @@ (&, 21, 2im1), 20). (9.2)

i=1
In particular, Theorem 9.2.15 implies that if PV; F dwPHP,(Eval), then there exists a
constant k and a polynomial-time Student that wins the Student-Teacher game for the Range
Avoidance problem. (Note that here the Student is computed by a uniform algorithm that gets
(1™, C) as inputs, as opposed to a family of non-uniform circuits in Section 9.2.4). To see this,
let p((1™,C),y,z) = 1 iff Eval(C, z) # y and apply Theorem 9.2.15. We obtain a constant k¥ € N

and L(PV)-terms t1,ta, ..., t; such that:

k
PViFVn € Log VC Vz; Vzy...Vz \/ Eval(C, z;) # ti(Cyz1,. .., zi—1). (9.3)
i=1

This implies that the following Student wins the Student-Teacher game in k& rounds:

1. The Student and the Teacher are given a circuit C : {0,1}" — {0, 1} as input.

2. In the first round, the Student proposes y; := t1(C) as a candidate non-output. If gy
is correct (i.e., Vz1 @(C,y1,21) is true), then the Student wins the game. Otherwise,

the Teacher provides a counterexample z; such that Eval(C,z;) = yi, i.e., a preimage
21 € C 71(3/1).

288

3. Then, the Student proposes a new candidate ys := t2(C, z1) based on the counterexample
given in the first round. If y5 is a correct non-output, then the Student wins the game.
Otherwise, the Teacher again provides a counterexample zo such that Eval(C, z2) = o,

i.e., a preimage zo € C~1(y2).

4. The game proceeds until the Student provides a correct witness .

9.2.6 Extractors

Definition 9.2.16 (k-Source). A random variable X is a k-source if for every x € Supp(X),
Pr[X =2] <27F

Definition 9.2.17 (Strong Seeded Extractors). A polynomial-time computable function Ext :
{0,137 x {0,1}¢ — {0,1}™ is a (k, €)-strong seeded extractor if for every k-source X over {0,1}",
the statistical distance of (Uy, Ext(X,Uy)) and (Uy,Uy,) is at most e.

Below is the only property of strong seeded extractors that we will use:

Fact 9.2.18. Suppose Ext : {0,1}" x {0,1}¢ — {0,1}™ is a (k,¢)-strong seeded extractor.
Then for every (possibly unbounded) adversary A : {0,1}™ — {0,1}, the number of strings
x € {0,1}" such that

Pr [A(r,Ext(z,r)) =1 P A(r,z) =1] — 9.4
r<—{01:1}d[(r, Ext(z, 7))]<W{071}d;&{071}m[(r,z) =1 —¢ (9.4)

is at most 2.

Proof Sketch. Fix an adversary A, let X be the set of strings « € {0,1}" such that (9.4) holds.
(We abuse notation and also use X to denote the uniform distribution over itself.) Note that A
distinguishes Ext(X’,7) from the uniform distribution with advantage . If |X| > 2¥ then the
min-entropy of X is at least k, contradicting the extractor properties of Ext. Hence |X| < 2F. O

We require extractors with exponentially small €, which can be constructed from any family

of pairwise independent hash functions.

Theorem 9.2.19 (Leftover Hash Lemma [ILL89]). Let h : {0,1}" x {0,1}¢ — {0,1}™ be a
family of pairwise independent hash functions, where the first component (length n) is its input
and the second component (length d) is its key. Then for every k,e such that m = k—2log(1/¢),
h is a (k,e)-strong seeded extractor.

In particular, if n > m and d > 2n, there exists a family of pairwise independent hash
functions h that is Fo-linear.” If we set n >3m+3,d>2n, k:=n—1,e:=2"""1 then h is

an (n — 1,¢)-strong seeded extractor.

9.3 Hardness of Range Avoidance

Theorem 9.3.1. Assume that for some m > n, there exists a demi-bits generator G : {0,1}" —
{0,1}™ and Ext : {0,1}" x {0,1}¢ — {0,1}™ is an (N — 1,27™ V) -strong seeded extractor.
(N,d < poly(m).) Then AVOID for polynomial-size circuits of stretch n — m is not in SearchNP.

9That is, for each fixed r € {0,1}¢, the function h(—,r) is an Fo-linear function over its inputs.

289

Proof. Let r € {0,1}¢, define the circuit C,. : {0,1}" — {0,1}™ with r hardwired:
Cr(s) = Ext(G(s),r).

Assume towards contradiction that there is a nondeterministic polynomial-time algorithm A
solving AvoiD. We construct the following nondeterministic adversary B(y) that breaks the
demi-bits generator G. Given an input y € {0,1}", the adversary B accepts y if and only if
there exists 7 € {0,1}% such that some nondeterministic branch of A(C,) outputs Ext(y,r).

It is easy to see that B rejects every string y € Range(G). To see this, suppose that y = G(s)
for some s € {0,1}". Then

Cr(s) = Ext(G(s),r) = Ext(y,r),

hence A(C,) will never output Ext(y,).

It remains to show that B accepts at least 1/2 fraction of strings y € {0,1}V. For r €
{0,1}4,2 € {0,1}™, let A'(r, z) be the adversary that outputs 1 if there is a nondeterministic
branch of A(C,.) that outputs z, and outputs 0 otherwise. Since Ext is an (N —1,27™~!)-strong
seeded extractor, the following is true for at least 1/2 fraction of y € {0, 1}:

Pr [A'(r,Ext(y,r)=1]> Pr [A(r,z)=1-2"""1>2 ™1
r{0,1}¢ r{0,1}¢
z+{0,1}™

For such y, there exists r* € {0,1}% and a nondeterministic branch of A(C,+) that outputs

Ext(y,).
It follows that B rejects every string in Range(G) but accepts at least 1/2 fraction of strings
y € {0,1}. This contradicts the security of G. O

Theorem 9.1.2. Let G : {0,1}" — {0,1}" be a demi-bits generator, H = {h : {0,1}" —
{0,1}™} be a family of pairwise independent hash functions, and A be a nondeterministic
polynomial-time algorithm. If N > 10m > n, then there exists h € H such that A fails to

solve the range avoidance problem on the input ho G.

Proof. We construct an extractor Ext(y,h) := h(y) (y € {0,1}¥,h € H). According to Theo-
rem 9.2.19, Ext: {0, 1}¥ xH — {0,1}™ is an (N —1,27™"!)-strong seeded extractor. Therefore,
by Theorem 9.3.1, there exists h € H such that A fails to solve AvoID on Ext(G(-),h), i.e.,
hoG. Ul

Corollary 9.3.2. Under Assumption 9.2.3, there are constants ¢ > 0 and d > 2 such that
AvoID for XOR o ANDy circuits (i.e., degree-d polynomials over Fy) of stretch n — n*e is not
in SearchNP.

Proof. Assumption 9.2.3 implies a demi-bits generator G : {0,1}" — {0, 1}”““S and each output
bit of G can be computed by a degree-d polynomial over Fy, where § > 0 and d > 2 are constants.
Let € :=§/2, Ext : {0, 1}”1+6 x {0, 1}2"1+5 — {0,1}"""° be a (n'*0 — 1,277 ~1)strong lincar

seeded extractor guaranteed by Theorem 9.2.19. Then, for every nondeterministic adversary A4,

290

there exists r € {0, 1}2"1+(S such that A fails to solve AVOID on the instance
Cy(s) := Ext(G(s),r).
Since Ext is multi-linear and G is a degree-d polynomial over Fy, C,. is an XORoANDy circuit. [

9.3.1 From Demi-Bits Generators to Proof Complexity Generators

Let P be a proof system and G : {0,1}" — {0,1}* be a function computable in polynomial
size where £ > n. (We allow G to take non-uniform advice.) Let b € {0,1}*, denote as 7,(G) the

propositional formula encoding that b is not in the range of G. We say G is a:

e demi-bils generator against P, if for at least a 1/3 fraction of b € {0, 1}, P does not have

polynomial-size proof of 7,(G); and G is a

e proof complexity generator against P, if for every b € {0, 1}€ , P does not have polynomial-
size proof of 7,(G).

The precise definition of 7,(G) as a 3-CNF is as follows. The variables of 7,(G) consist of
x € {0,1}" and hist € {0,1}*, where s is the number of internal gates in G (including the
output gates but not including the input gates). The intended meaning is that G(z) = b and
hist represents the values of internal gates of G during the computation of G(z). Each gate in
G corresponds to a bit vg; if g is an input (internal) gate then v, refers to some w; (hist;). For
each internal gate g € G labeled by an operation o, (such as A, V, or @) and two children gates
g1, gr, we have a constraint

Vg = Vg, ©g Vg,

in 7,(G). Similarly, for each i € [¢] representing an output gate g;, we have a constraint

in 7,(G). Note that since every constraint only depends on at most 3 variables, it can be written
as a 3-CNF of size at most 23 = 8, and we can add every clause in this 3-CNF into 7,(G). We
assume that the @ gate of fan-in 2 is included in our basis (looking ahead, it will be used to
implement the extractor). The 3-CNF 7,(G) is simply the union of (3-CNFs generated from)
these constraints over every internal and output gate g € G.

Now we define the notion of simple parity reductions between two CNFs. This is a technical

notion that we need in Claim 9.3.4.

Definition 9.3.3. Let F(z) and G(y) be CNF formulas over variables z = (z1,...,2,) and
y = (Y1,--.,Ym). We say that there is a simple parity reduction from F to G, denoted as
F <% @, if:

e Variables. The reduction is computed by a GF(2)-linear mapping redu : {0,1}" —
{0,1}™ (that is, every output bit of redu is the XOR of a subset of its input bits).

e Axioms. For any clause g € G, one of the following happens:

— goredu = True;

291

— goredu is equal to some axiom in F'; or
— ¢ is a width-1 clause (i.e., one that consists of a single literal) and goredu is the XOR

of a subset of axioms in F' (in which case these axioms in F are also width-1 clauses).

We say a proof system P is closed under simple parity reductions if there is a polynomial
p such that the following holds. For every CNF F' and G, if there is a simple parity reduction
from F' to G and there is a length-¢ P-proof of G, then there is a length-p(¢) P-proof of F'.

We note that this notion is weaker than that of (degree-1) algebraic reductions in [BGIPO1,
dRGNT21]. It follows from [dRGN'21, Lemma 8.3] that many algebraic proof systems (such as
Nullstellensatz and Polynomial Calculus) over GF(2) are closed under simple parity reductions
when the complexity measure is degree. While we do not know if Res[®] (resolution over linear
equations modulo 2 [IS20]) is closed under low-degree algebraic reductions, it is straightforward
to prove that Res[®] is closed under simple parity reductions (see Theorem 9.3.6).

Recall that G : {0,1}" — {0,1}"V is a purported demi-bits generator, Ext : {0,1}" x
{0,1}¢ — {0,1}™ is an extractor, and for a fixed r € {0, 1}¢ we define the circuit C, : {0,1}" —
{0,1}™ as

Cy(s) == Ext(G(s),r).

We say that Ext is linear if for every fixed randomness r, the function Ext(-,r) : GF(2)Y —
GF(2)™ is GF(2)-linear. For every r we fix a circuit Ext, for computing Ext(-,r) using @& gates

of fan-in 2 only.

Claim 9.3.4. Suppose that Ext is a linear extractor. For every y € {0,1}V and r € {0,1}¢,

there is a simple parity reduction from 1,(G) to 1.(C,), where z := Ext(y,r).

First, as a sanity check, we show that 7,(G) follows from 7,(C,) logically: Suppose that
7,(G) is false and that y = G(s) for some s € {0,1}", then

Cy(s) = Ext(G(s),r) = Ext(y,r) = z,

meaning that 7,(C;) is also false. Now we show that if Ext is a linear extractor, then the above

deduction is actually a simple parity reduction under our formalisation of 7,(G):

Proof of Claim 9.3./. Recall that the variables of 7,(G) consist of s € {0,1}" and histg €
{0,116l where |G| denotes the number of internal gates in G. Also, recall the variables of
7.(C,) consist of s € {0,1}" and histc, € {0,1}|. Since C,(s) = Ext(G(s),r), histc, consists
of histg as well as the internal gates of Ext(-,r). Since Ext is linear, each internal gate in
Ext(-,r) is an XOR of variables in histg. Therefore, one can compute a GF(2)-linear map
redu : {0,1}* 161 — {0,1}71] that maps (s, histg) to (s, histc,).

Now we show that for every clause ¢ € 7,(C,), one of the three cases in Definition 9.3.3

happens. Note that ¢ comes from an internal gate or an output gate of C.

e If ¢ comes from an internal gate of G, then co redu (which is equal to c itself) is an axiom

in 7,(G).

e If ¢ comes from an internal gate in Ext(-,r), then coredu = True by the definition of redu.

292

e The only remaining case is that ¢ comes from an output gate. Suppose this is the i-th
output gate of C, (where i € [m]), and let v} denote the variable (of 7,(C;)) representing
the i-th output of C,. Note that ¢ is a width-1 axiom stating that v} = z;.

Let S; C [N] be such that Ext(y,7); = ,cg, yj- Then redu maps v; to g, ij, where

UJG is the variable in 7,(G) that represents the j-th output gate of G. We also have that
z; = @jeSi y;. Hence coredu is the XOR of the axioms ij = y; over all j € ;. Since each
ij = y; is an axiom in 7, (@), this concludes the proof. O

Theorem 9.3.5. Let P be a proof system closed under parity reductions. Let G : {0,1}" —
{0,1}N be a demi-bits generator secure against P, and Ext : {0, 1} x {0,1}¢ — {0,1}™ be an
(N — 2,27 Y_strong linear seeded extractor. Then there is a non-uniform proof complexity

generator secure against P.

Proof. Suppose for contradiction that for every r € {0,1}¢, there exists a string z(r) € {0,1}™
such that P admits a length-¢ proof of 7,,)(C;), where £ < poly(|G|). For r € {0, 1}¢ and
z € {0,1}™ let A'(r, z) be the adversary that outputs 1 if P admits a length-¢ proof of 7,(C})

and outputs 0 otherwise. Since for every r, A'(r, z(r)) = 1, we have

Pr [A(r,z)=1]>2"".
r+{0,1}¢
z<{0,1}™

Since Ext is a (n —2,27™~!)-strong extractor, for at least a 3/4 fraction of y € {0, 1}V, we have

Pr [A'(r,Ext(y,r)=1]> Pr [A(rz)=1-2""""1>0.
r<{0,1}4 r«{0,1}4
z+{0,1}™
Hence, for such y € {0,1}", there exists some r := r(y) such that P admits a length-¢ proof
of 7,(C,) where z := Ext(y,r). Since there is a parity reduction from 7,(G) to 7,(C,) and P is
closed under parity reductions, it follows that P admits a length-poly(¢) proof of 7,(G) as well,

contradicting the security of G as a demi-bits generator against P. O

Although super-polynomial lower bounds for Res[®] remain open, it seems conceivable that
we will eventually prove such lower bounds sooner or later. Our results suggest a potential
approach for designing proof complexity generators against Res[®]: it suffices to design a demi-
bits generator against Res[®] (which might be an easier task) and then apply Theorem 9.3.5.

We end this section by proving that Res[®] is closed under simple parity reductions:

Theorem 9.3.6. Res[®] is closed under simple parity reductions. That is, let F(xi.n) = f1 A
Jo A A fm and G(Y1on) = g1 A g2 A+ A gy be CNF formulas such that F <% G. If there
erists Res[®] refutation of G in s steps, then there exists a Res|®] refutation of F in 2nm’ + s

steps.

Proof. We assume familiarity with Res[®] (the definition can be found in [[S20]).

Let C1,C5,...,Cs be a Res[®] refutation of G where each C; is a disjunction of linear
equations modulo 2, C; = g; for every 1 <i <m, and Cs = L. Let redu: {0,1}" — {0,1}" be
the simple parity reduction from F to G. Define C} = C; o redu, then C/ is still a disjunction of

293

linear equations modulo 2. It is easy to see that C7,C%, ..., C is still a valid Res[®] derivation,
and that C? = 1. Hence there is an s-step Res[®] refutation from the axioms {g; o redu}i<i<m.

It suffices to show that each g; o redu can be proved from the axioms of F. This is easy to
see when g; o redu = True or g; o redu is equal to some f;, hence we only need to consider the
third case in Definition 9.3.3 where g; o redu is the XOR of some axioms in f;. Note that one
can derive (a ®b = 0) from (a = 0) and (b = 0) in 2 steps'", hence g; o redu can be derived from
F in 2n steps. Since there are at most m’ linear clauses of the form g; o redu that need to be

derived, the total number of steps is at most 2nm’ + s. O

9.4 Lower Bounds for Student-Teacher Games

In this section, we show that the Range Avoidance problem is hard for Student-Teacher
games. In Section 9.4.1 we prove lower bounds against uniform, polynomial-time Students,
which implies a conditional separation between bounded arithmetic theories PV, and APC;.
In Section 9.4.2, we show that demi-bits generators can be transformed into proof complexity

generators that are pseudo-surjective.

9.4.1 Separating PV; from APC,;

As discussed in Section 9.2.5, to separate PVy from APCy, it suffices to show that there is
no polynomial-time Student that wins the Student-Teacher game in O(1) rounds. In fact, we
will show something stronger: Let k& = k(n) be a parameter, assuming the existence of demi-
bits generators secure against AM /O(log k), there is no polynomial-time Student that wins the

Student-Teacher game in k(n) rounds.

Theorem 9.4.1. Let m,n, k be parameters such that m > n. Assume there exists a demi-bits
generator G : {0,1}" — {0, 1} secure against AM/o(1og k- Let Ext : {0, 1} x {0, 134 — {0,1}™
be an (N —1,2719%™) _strong extractor. Then for every deterministic polynomial-time Student A,
there is a string r € {0,1}% and a Teacher such that A fails to solve AVOID on C, in k rounds,
where Cy : {0,1}™ — {0, 1} is the circuit

Cy(s) == Ext(G(s),r).

Proof. Let A denote the Student algorithm where A(i, C, 21, . .., z;_1) outputs the i-th candidate
solution. For strings s1,...,s; € {0,1}" (where j < k), we say that (si1,...,s;) is a valid trace
for A on the input C, if all of the following are true:

o C,(s1) = A(1,C,) (that is, s; is a valid counterexample for A(1, —));

o C,(s2) = A(2,C,, s1) (that is, so is a valid counterexample for A(2, —));

e ...

e and C,(sj) = A(4,Cy, 51,52, ...,5j—1) (that is, s; is a valid counterexample for A(j,—)).

We prove the following stronger claim that implies Theorem 9.4.1:

OFirst weaken (b = 0) to derive (a = 1V a @b = 0), then resolve (a = 0) and (a = 1V a® b = 0) to derive
(a®b=0).

294

Claim 9.4.2. For every j < k, there exist s1,s2,...,s; € {0,1}" such that

Pr [(s1,...,s;) ts a valid trace for A on the input C,] > 2=2m,
r«{0,1}4

Clearly, Claim 9.4.2 implies Theorem 9.4.1 by setting j := k and noticing that 272%™ > 0.

We prove Claim 9.4.2 by induction on j. The base case j = 0 is trivially true. Now we

assume the claim is true for j — 1, which gives strings s1,...,s;_1 such that
Pr [(s1,...,5j—1) is a valid trace for A on the input C,] > 92— 1)m,
r<{0,1}4

Consider the following AM /o (1o) Protocol that attempts to break the demi-bits generator G.
This protocol has the index j hardwired as advice but is otherwise uniform.
Algorithm 9.4.1: The AM/ (1o &) Protocol P breaking demi-bits generator G
Input: A string y € {0, 1}.

1 Prover sends s1,...,5j_1;

2 Prover and Verifier run the Goldwasser—Sipser protocol to estimate

(s1,...,8j—1) is a valid trace for A on the input C,

Pr
r<{0,1}¢ |and Ext(y,r) = A(4,Cy, s1,...,5j-1).

)

3 Ifp> 2= (21=1)m=1 then Verifier accepts; if p< 2= (21=1)m=2 then Verifier rejects;

Completeness of P. We show that for > 1/2 fraction of y, there is a Prover such that the
Verifier accepts w.p. > 2/3 in P. In the first round, the honest Prover sends (si,...,sj—1) as

guaranteed by the induction hypothesis. Recall that this means

Pr [(s1,...,8j—1) is a valid trace for A on the input C,| > 92— 1)m,
r«{0,1}¢

Let Test(r, z) = 1if (s1,...,s;-1) is a valid trace for A on the input C, and z = A(j,Cy, s1,...,8j-1),

and Test(r, z) = 0 otherwise. Clearly, we have

Pr [Test(r, z) = 1] > 2720-1m jgm — o=(2j-1)m
r+{0,1}4 2+-{0,1}™

Since Ext is an (N — 1,271%m)_strong extractor, for > 1/2 fraction of y’s, it holds that

P Test(r, Ext(y,r)) = 1] > P Test(r, z) = 1] — 27 10km > 9= (2j—1)m—1
re{Oljl}d[est(r, Bxt{y, 7)) 1= re{O,l}d,zre{O,l}m[est(r, 2)] -

It follows that there is a Prover for the Goldwasser—Sipser protocol in Line 2 of Algorithm 9.4.1
such that the verifier accepts with probability at least 2/3.

Employing the lack of soundness. Since G is a demi-bits generator that is secure against
AM/0(10g k) adversaries, P does not have the soundness for all sufficiently large n. In other words,

there is a Prover® that makes the Verifier accepts some y € Range(G) with probability > 1/3.

295

Fix such a string y, let s; be any n-bit string such that G(s;) =y, and let s1,...,s;-1 € {0,1}"
be the message sent in Line 1 (of Algorithm 9.4.1) by Prover® on the input y.

Since Verifier accepts with probability > 1/3, by the soundness of the Goldwasser—Sipser
Protocol (Lemma 9.2.4), we have that

(s1,...,8j—1) is a valid trace for A on the input C,

Pr > 9-i2m+1)-2,
r«{0,1}¢ |and Ext(y,r) = A(4,Cyr,s1,...,5j-1).

Note that Ext(y,r) = C;(s;), hence the above condition inside Pr, ¢ q}a[-] means exactly that
(s1,...,55) is a valid trace for A(C;). This implies Claim 9.4.2 for j. O

We remark that the parameters we obtained in Theorem 9.4.1 are (almost) tight in the
following sense. Theorem 9.4.1 showed that (under plausible assumptions) for every parameter
k < poly(n), there is no deterministic polynomial-time Student that wins the Student-Teacher
game for AvOID in k rounds, when given an AvOID instance of size s = poly(k,n) > k. On
the other hand, under plausible derandomisation assumptions, for every size parameter s, there
exists a deterministic polynomial-time Student that wins the game on size-s circuits within
k = poly(s,n) > s rounds [ILW23, Appendix A].

Finally, setting &k := O(1) in Theorem 9.4.1, we obtain the following separation:

Theorem 9.1.5. Assume there exists a demi-bits generator G : {0,1}* — {0,1}*™ secure
against AM/O(l). Then, the Dual Weak Pigeonhole Principle for polynomial-time functions
(dwPHP(PV)) is not provable in PV. (In particular, APCy is a strict extension of PVy.)

9.4.2 From Demi-Bits to Pseudo-Surjectivity

Theorem 9.4.3. Let G : {0,1}" — {0,1}" be a demi-bits generator secure against NP /poly,
k € N, and Ext : {0,1}" x {0,1}¢ — {0,1}™ be an (N — 1,¢)-strong linear extractor for
g :=2710km (L d N < poly(m).) Then for every non-uniform propositional proof system P,
there is a string r € {0,1}¢ such that the circuit C, : {0,1}" — {0,1}™ defined as

Cy(s) :== Ext(G(s),r)

is a non-uniform k-round pseudo-surjective proof complexity generator secure for P.

Proof. Suppose, for contradiction, that such an r € {0,1}¢ does not exist. Then, for any
r € {0,1}4, there exist student circuits

B = {Bi(r): {0,137 = {o, 1}m}ie[k:+l]

such that P admits a proof of

k+1
\/ T(CT)Bi(QLQm--,qz‘A)(Qi)'

i=1

(i.e., P can prove that B(") wins the Student-Teacher game on C,.)

296

Now we attempt to break the demi-bits generator G. For j =0,1,...,k + 1, define

3 Student B such that:
;= max ~ Pr (1) P proves that B wins the Student-Teacher game on C,;
(s1,52,...,85)€{0,1}77 r+{0,1}™
(2) Bi(s1,...,si—1) = Cy(s;) for all i € [j].

(Item (2) says that the history of the Student-Teacher game in the first i rounds is exactly

51,...,5j.) We make the following claims on the values of ®y and ®j1:

e &y =1: When j = 0, item (2) obviously holds, and item (1) holds by our assumption that

C, is not a pseudo-surjective proof complexity generator;

e O; 1 =0: When j =k + 1, for any r, B items (1) and (2) cannot hold simultaneously.
This is because (2) implies that B loses the Student-Teacher game, which contradicts (1).

Simple calculations show that there exists j € {0,1,...,k} such that
(I)j-27m—5>2-(1)j+1,

We use such j to break the demi-bits generator G. Let (s7,...,s}) be the tuple such that the

maximum is achieved in the definition of ®;, i.e.,

3 Student B such that:
O, = grl} (1) P proves that B wins the Student-Teacher game on C;;
r<—0,13™
(2) Bi(s],...,s;_1) = Cy(s7) for all 7 € [j].

Consider the following algorithm: on an input y € {0,1}", let
[3 Student B such that:
(1) P proves that B wins the Student-Teacher game on C,;

re{01}™ [(2) By(s, ..., s01) = Cr(s]) = Ext(G(s}),r) for all i € [],
and Bji1(s7,. .. ,s;) = Ext(y,r).

Our algorithm accepts y if p(y) > ®; - 27™ — ¢, and rejects if p(y) < ®;11. This can be
implemented by the Goldwasser-Sipser set lower bound protocol since ®; - 27" —& > 2- &,
and the condition inside Pr,, g 1ym [-] is certifiable in polynomial time with the help of a prover.

Finally, we prove that this algorithm breaks demi-bits generator G:

e For any y € Range(G), we have p(y) < ®;,1:
Suppose y = G(s). Then

[3 Student B such that:

(1) P Proves that B wins the Student-Teacher game on Ext(G(-),r);
re{0,1}™ | (2) By(s],...,s;_1) = Ext(G(s]),r) for all i € [j],

and Bj1(s],-..,5;) = Ext(G(s), 7).

297

<Dy,

Where the < in the second line follows from the definition of ®;, 4.

e For half of y € {0,1}", we have p(y) > ®; - 27" —e:

For simplicity, we use “Test(r, Ext(y,7))” to denote the condition inside Pr,. ¢ 1y=[] in
the definition of p(y). We have:

Pr [Test(r,z)] = ®; - 2™
Br [Test(r2)) = ¢,
z«{0,1}™

By the definition of strong extractors, for half of y € {0,1}", we have

r<—{1?),r1}m [TESt(Ta EXt(y7 T))] > 7“<—{1?),r1}m [TeSt(ra Z)} — &= @y L2TT gl O
z<{0,1}™

Corollary 9.4.4. Suppose for any parameter N < poly(n), there exists a demi-bits generator
G : {0,1}" — {0,1} secure against NP/pory. Then for every non-uniform propositional proof
system P and any parameters k < poly(n) and n < m < poly(n), there is a circuit C' : {0,1}" —
{0,1}™ of size poly(n) such that C is a k-round pseudo-surjective proof complexity generator

secure against P.

Proof. In Theorem 9.4.3, let N := 100km and Ext: {0,1}" x {0,1}°%™) — {0,1}™ be an
(N — 1,2710km) strong seeded extractor guaranteed by Theorem 9.2.19. Then there exists
r e {0,1}90¢™) such that C, := Ext(G(-),r) is a k-round pseudo-surjective proof complexity

generator secure against P. O

9.5 Candidate Demi-Bits Generators

9.5.1 Demi-Bits Generators with Polynomial Stretch

Assumption 9.2.2 (demi-bits generators with polynomial stretch) follows from Rudich’s con-
jecture on the unprovability of circuit lower bounds [Rud97], with the truth table generator TT
being a candidate demi-bits generator.

For a Boolean function f : {0,1}" — {0,1} and a parameter s(n) < poly(n), let Ib(f,s)
denote the sentence stating that “f requires circuit complexity at least s(n)”. This sentence
can be written as a CNF of size 20" and, if true, admits a trivial proof of length 20(s(n)
in most reasonable proof systems. Rudich’s conjecture asserts that there is no (non-uniform)
propositional proof system that has length—20(”) proofs of Ib(f, s) for a large fraction of Boolean
functions f. This can be equivalently formulated as the non-existence of “NP /j,q1y-natural proofs”
against polynomial-size circuits (see [Rud97| for more details). Rudich’s conjecture was further
investigated in [PS19,ST21].

It is easy to see that Rudich’s conjecture is equivalent to the demi-hardness of the “truth
table generator” TT : {0,1}9(1°89) — {0, 112" Given as input the description of a size-s circuit
C, TT(C) outputs the truth table of C. As we only want demi-bits generators with polynomial

stretch, we can set the parameter s(n) to be 2" for some constant € > 0.

298

Rudich’s conjecture follows from the existence of any super-bits generator g : {0,1}° —
{0,1}**! [Rud97, GGMS6].'! It is open whether Rudich’s conjecture also follows from the exis-
tence of any demi-bits generator g : {0,1}* — {0,1}*1, i.e., whether TT is the “most secure”
demi-bits generator (see Open Problem 4 of [Rud97|). Hence, we have:

Proposition 9.5.1. Assumption 9.2.2 follows from either:
e Rudich’s conjecture on the unprovability of random circuit lower bounds; or

e the existence of super-bits generators.

9.5.2 Constant-Degree Demi-Bits Generators from LPN

Learning Parity with Noise (LPN) is the assumption that noisy linear equations over Fy
are hard to solve. Let n € N be the number of variables, m := m(n) € N be the number of
equations, and p := u(n) € (0, 1) be the noise rate. Here we work in the regime where m = n!*¢
and p = n~° for some constant ¢ > 0. Let A < FJ'"" be a random matrix, § € F} be a
hidden random vector (i.e., the solution), and € < Ber(u)™ be a hidden noise vector where each
entry is equal to 1 w.p. u independently. The LPN assumption asserts that the following two

distributions are computationally indistinguishable:
(A, A5+ ¢é) vs. (A Up).

Roughly speaking, we will assume the above indistinguishability holds even for nondeterministic
adversaries, in the sense that no non-uniform proof system can efficiently prove a vector v € F™

is not of the form A5+ € when €'is a (p - m)-sparse vector. That is:

Assumption 9.5.2. For some (public) matrix A € F;'", there is no polynomial-size non-
uniform nondeterministic circuit C' : {0,1}™ — {0, 1} such that C' accepts a constant fraction
of random strings but rejects every string of the form AS+ €, where € € Fy is (u - m)-sparse
and 5 € [Fy.

Fact 9.5.3. Assumption 9.5.2 implies Assumption 9.2.35.

1-1/d

Proof. Let d := [2/e]. Since p-m < ™——, by [GGNS23, Lemma 3.1], there exists a polynomial-

(pm!+1/d)

time computable function f : IFQO — [F5' whose range contains all vectors of sparsity at

most s, such that each output of f is a degree-d polynomial.

1+1/d
Now consider the following generator g : IFQO(“ m J+n

pm+1/dy

— F5'. The input of g consists of
and § € F. The output is A5+ f(€ens) (where A is hardwired in the circuit
computing g). It is easy to see that every output bit of g is computable by a degree-d polynomial

— O
€enc € Iy, (

over Fy, and the range of g contains every vector of the form A§+ & where €is (p-m)-sparse and
§ € F5. The input length of ¢ is O(um!+t/?) 4+ n < O(n'+%/2), which is polynomially smaller
than the output length m = n'*e. O

1This is true for s(n) = ALSON i super-bits generators with subexponential security exist, then TT is a secure
demi-bits generator even for s(n) = poly(n).

299

9.5.3 Constant-Degree Demi-Bits Generators from Goldreich’s Generator

Goldreich’s generator is an influential candidate pseudorandom generator with large stretch
that is computable with constant locality (i.e., in NC%) [Gollla]. To define the generator G :
{0,1}™ — {0,1}™, fix a d-uniform hypergraph with n vertices and m (ordered) hyperedges each
of size d, and a predicate P : {0,1}¢ — {0,1}. For each i € [m], the i-th output bit is obtained
by applying P to the input bits on the i-th hyperedge. That is, suppose the i-th hyperedge

contains vertices v; 1,02, ..., V;q, then on input x € {0,1}", the i-th output bit is
G(2)i = P(Ty, 1, Ty s Tuy g)-
It seems plausible to conjecture that Goldreich’s generator is a secure demi-bits generator
when instantiated with a suitable hypergraph and a suitable predicate P:

Assumption 9.5.4. There exist constants c¢,d > 1, a predicate P : {0,1}¢ — {0,1}, and a
non-uniform family of d-hypergraphs {G,, }nen with n¢ hyperedges such that Goldreich’s PRG
G :{0,1}" — {0,1}™ instantiated with P and {G,} is a secure demi-bits generator.

Clearly, Assumption 9.5.4 implies Assumption 9.2.3.
In fact, the following predicate P : F§ — [y is frequently considered in the literature:

PMST06($1N5) ‘=X + o+ XT3+ Tax5.

Note that Pysos is a degree-2 function over Fa. It was shown in [MST06| that some instantiation
of Goldreich’s PRG with PysTo fools linear tests. Instantiations using this predicate were
also conjectured to be secure against polynomial-time adversaries in [BKR23|. Instantiating
Goldreich’s PRG with the predicate PysTog and a suitable family of 5-hypergraphs gives us a
candidate demi-bits generator computable by degree-2 polynomials over Fs.

To summarise, we have:
Proposition 9.5.5 (Informal). Assumption 9.2.3 follows from either:
o the demi-hardness of Learning Parity with Noise in certain parameter regimes; or

o the demi-hardness of certain suitably instantiated Goldreich’s generator.

9.6 Hardness of Range Avoidance from Predictable Arguments

Hango, Li, and Williams [ILW23] proved AvoID ¢ FP assuming the existence of JLS-secure
10 and NP # coNP. Given our main result that the existence of demi-bits generators implies
the hardness of AvOID, it is natural to ask whether the ¢O assumption used in [ILW23] can be

weakened to a “Minicrypt” assumption. In particular, we conjecture:

Conjecture 9.6.1. AvoiD ¢ FP follows from the existence of one-way functions and NP #
coNP.

Unfortunately, we are not able to prove Conjecture 9.6.1. Instead, in this section, we present

an alternative interpretation of [ILW23|. Although the results and proofs are not new, we hope

300

that our new perspective helps make progress towards proving Conjecture 9.6.1, or in general,

basing AvOID ¢ FP from minimal assumptions.

Witness encryptions. Instead of iO, what [[LW23] actually needs is a primitive called witness
encryption |GGSW13|. Let L € NP (usually we take L to be an NP-complete language such as
SAT). A witness encryption scheme for L is a pair of algorithms (Enc, Dec) with the following
interface:'?

e Given an instance x € {0,1}", a message m, a security parameter 1*, and some random

coins 7, Enc(x, b, 1*;7) outputs the encryption of m under .

e Given an instance x € {0,1}", a witness w that x € L, a ciphertext ct, and the security
parameter 1%, Dec(z, w, ct, 1*) outputs the encrypted message m. (We assume that Dec is

deterministic.)
We require (Enc, Dec) to be correct and 277 _secure for some constant £ > 0; here we say

e (Enc,Dec) is (perfectly) correct if for every x € L, witness w for x, bit b, and randomness
r, it is the case that
Dec(x, w, Enc(z,b,1*;7),1%) = b.

e (Enc,Dec) is §(-)-secure if for every x ¢ L, message m, and every non-uniform adversary

A of size poly(n),

Pr[A(Enc(z,m, 1)) = 1] — PrlAU) = 1]| < 6(n).

Hardness of AvoiD from predictable arguments. Witness encryption implies the follow-
ing predictable argument system [FNV17| for L. Let x € {0,1}" be an instance known to both
the prover and the verifier. Recall that in an argument system, the prover is computationally
bounded. If z € L, then the prover also has access to a witness w € {0,1}™. Let £ > m be a

parameter and \ := ¢2/¢.

e First, the Verifier picks a random message m <« {0, 1}4, encrypts m as ct < Enc(z, m, 1)‘),

and sends ct to the Prover.

e Then the Prover sends a message m’. In particular, the honest Prover sends m’ <«
Dec(x, w, ct, 17).

e The Verifier accepts if and only if m’ = m.

Now, suppose that there is a deterministic algorithm A solving AvOID, we show that L €
coNP. The idea is to use A as the prover in the above argument system. In particular, let Cy ¢ :
{0,1}™ — {0,1}* denote the circuit that given w € {0,1}™ as input, outputs Dec(z,w, ct, 1*).

Upon receiving ct, Prover always sends A(Cy) to Verifier.

2Witness encryption schemes as defined in [GGSW13] can only encrypt a one-bit message m € {0,1}. To
obtain a witness encryption scheme that can encrypt an arbitrarily long message, one can simply encrypt each
message bit independently. The security of this new scheme follows easily from a hybrid argument.

301

Claim 9.6.2. If x € L, then the Prover will never convince the Verifier.

Proof. The only message that convinces the verifier is 7 := Dec(z,w,ct, 1), where w is a

witness of © € L. Clearly, m is in the range of Cy . O
Claim 9.6.3. If x & L, then the Prover has a non-zero probability of convincing the Verifier.

Proof. Let m* € {0,1} be any string such that A(ct) = m* with probability at least 27¢
over a truly random ct. Since A runs in polynomial time (which means the security of witness
encryption holds for A), the probability over ct < Enc(x,m*, 1) that A(ct) = m* is at least
27t —27% > 0. O

The above claims imply a nondeterministic algorithm for deciding the complement of L.
On input = € {0,1}", guess the Verifier’s first message m and randomness r, compute ct :=
Enc(x,m, 1%;7), and accept if the Verifier accepts when the Prover replies with A(Cy o).

In summary, witness encryption implies that NP has a special type of predictable argument
system. Moreover, if AvOID € FP, then plugging the AvOID algorithm as the prover results in
the following intriguing situation: if z € L, then the Verifier never accepts, while if x & L, then
the Verifier accepts with non-zero probability! This allows us to put every language with such
argument systems in coNP.

An interesting question is to identify the weakest possible argument system for NP such
that the above situation happens. Can we build such argument systems using only one-way

functions? Such an argument system would make progress towards proving Conjecture 9.6.1.

302

Chapter 10

Conclusions and Future Directions

In this thesis, we studied explicit construction problems through the lens of complexity
theory. Our results reveal an intimate and bidirectional connection between the two: techniques
from complexity theory yield new algorithms for explicit construction problems, and conversely,
understanding the complexity of explicit construction problems has important consequences back
to complexity theory as well.

A central computational problem arising from the study of explicit construction problems is
the Range Avoidance problem (AvoID). Our findings suggest that understanding the complexity
of AvOID is a key step towards resolving many important open questions, both in explicit
constructions and in complexity theory more broadly.

We conclude by highlighting several future research directions that emerge from this thesis:

Algorithmic Methods for small-stretch Avoip. A drawback of the framework developed
in Chapter 3 is that, even given the best possible SATISFYING-PAIRS algorithms, it could only
solve AVOID instances with large stretch, i.e., circuits C' : {0,1}" — {0,1}¢ where £ > n!+21),
Many (if not most) interesting explicit construction problems reduce to AvoiD with small stretch,
where our Algorithmic Method does not appear to be helpful for obtaining FPNP-explicit con-
structions for them.

Consider, for instance, the problem of constructing Ramsey graphs:

Example 10.0.1. A graph G = (V, E) over n = |V| vertices is a Ramsey graph if it does not
contain cliques or independent sets of size at least (say) 10logn. It requires N := (g) bits to encode
an n-vertex graph G. However, if G is not Ramsey and S C V is a clique or independent set of
size 10logn in G, then G can be described more succinctly: specify S, a bit b € {0,1} (indicating
whether S is a clique or an independent set), and the (%) — (10 lgg ") edges outside S. This description
uses M := (10logn) -logn +1+ (3) — (101§g”) < N — 30logn bits.

Let CRramsey : 10,1} — {0,1}¥ be the circuit that maps a length-M succinct encoding of a
non-Ramsey graph G into its adjacency matrix. Then, explicitly constructing a Ramsey graph is

equivalent to solving the Range Avoidance problem on the instance Cramsey-

Note that every output bit of Cramsey can be computed in polylog(n) time, so Cramsey has
very low circuit complexity. However, its stretch is very small (there are only ©(log N) more
output bits than input bits), preventing us from obtaining FPNP_explicit constructions of Ramsey

graphs using Chapter 3. What kind of circuit-analysis algorithms are sufficient for handling such

303

small-stretch AvOID instances? Is there a generic Algorithmic Method for solving AvOID when

the stretch is small?

Toward optimal win-win arguments in complexity theory. The results in Chapter 6
and Chapter 7 suggest that many complexity-theoretic results based on win-win arguments can
be improved to near-optimal by an iterative win-win approach.

An immediate open problem in this direction is to prove an exponential circuit lower bound
for MA-E/q, the exponential-time analogue of MA with one-bit advice. Buhrman, Fortnow, and
Thierauf [BFT98| proved a super-polynomial lower bound for this class using a single-step win-
win argument. Can we obtain a near-optimal lower bound via an iterative win-win argument?

Another example comes from Impagliazzo and Wigderson [IW01]|, who showed that if EXP #
BPP, then BPP admits subexponential-time heuristic derandomisation on infinitely many in-
put lengths. It is unclear whether a “high-end” analogue of this result holds: if EXP ¢
BPTIME[2"O(1)}7 does it follow that BPP admits infinitely-often quasi-polynomial time heuristic
derandomisation? A related question is to prove the prRP-hardness of Implicit-Heavy-Avoid
(Theorem 8.4.8) in the polynomial-time regime, i.e., showing that a polynomial-time algorithm
for Implicit-Heavy-Avoid implies an infinitely-often* polynomial-time algorithm for Gap-SAT
(instead of only a subexponential-time algorithm).

We briefly list additional win-win arguments whose current bounds are non-optimal, with

the hope that the iterative win-win method may strengthen them to optimal results:

e Easy-witness lemma. Impagliazzo, Kabanets, and Wigderson [IKW02| showed that if
NEXP C P/poly, then NEXP has “easy witnesses” in the sense that every accepting NEXP
computation has an (exponentially-long) witness that is the truth table of a polynomial-
size circuit. Is there an analogue for subexponential size bounds? That is, if NEXP C
SIZE[2”O<1)], is it true that every accepting NEXP computation has a witness with circuit

complexity < gn°9

e ACCY lower bounds. Williams [Wil14] proved NEXP ¢ ACC® using non-trivial circuit-
analysis algorithms for ACC?. These circuit-analysis algorithms are able to handle ACC°
circuits of subexponential size, but converting this into a subexponential ACCY circuit

lower bound for NEXP remains open.

As shown in [MW?20, Che19], ACC° lower bounds for NEXP follow from (variants of) the
easy-witness lemma, which in turn follows from (refined versions of) circuit lower bounds
for MA/1 and MA-E/; [BFT98, San09|. Thus, progress on any one of these fronts could

unlock progress on the others.

e Circuit lower bounds for BPEXPMSP | Impagliazzo, Kabanets, and Volkovich [IKV18]
proved that ZPEXPMCSP Z P/poly. Partially inspired by this result, Hirahara, Lu, and
Ren [HLR23] obtained a near-maximum circuit lower bound for BPEXPMSP with 27
bits of advice, where € > 0 is an arbitrary constant. Can we prove an exponential lower
bound for BPEXPMCSP (possibly with one bit of advice), improving the circuit lower bound
in [IKV18| to near-optimal and getting rid of the 2™ advice bits in [HLR23|?

304

e RP vs. ZPP. Kabanets [Kab01] showed that every RP algorithm can be simulated by a
subexponential-time ZPP algorithm infinitely often that “appears correct” to every efficient
adversary. Williams [Wil16] later gave a worst-case simulation but with a fixed polynomial
amount of advice bits, i.e., he showed that there exists a constant ¢ > 0 such that RP C
1.0.-ZPSUBEXP/,,c. Can we improve these simulations to only have a polynomial overhead?

In particular, can we show that RP C i.0.-ZPP/,?

305

Bibliography

[Aar06]

[ABOY|

[AB18]

[ABN*92

[ABRWO4]

[AC19]

[AdI78

[AGO]]

[AGHP92]

[AHWW16]

[Ajt83]

[Ajt90]

Scott Aaronson. Oracles are subtle but not malicious. In CCC, pages 340-354. IEEE
Computer Society, 2006. doi:10.1109/CCC.2006.32. 199

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009. doi:10.1017/CB09780511804090. 1, 2, 137, 138, 166, 177,
212, 284

Amir Abboud and Karl Bringmann. Tighter connections between Formula-SAT and shaving
logs. In ICALP, volume 107 of LIPIcs, pages 8:1-8:18, 2018. doi:10.4230/LIPIcs.ICALP.
2018.8. 102

Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IFEE
Transactions on Information Theory, 38(2):509-516, 1992. doi:10.1109/18.119713. 2

Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudo-
random generators in propositional proof complexity. SIAM J. Comput., 34(1):67-88, 2004.
doi:10.1137/S0097539701389944. 277, 278, 286

Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In
FOCS, pages 1034-1055, 2019. doi:10.1109/FOCS.2019.00067. 3, 4, 5, 20

Leonard M. Adleman. Two theorems on random polynomial time. In FOCS, pages 75-83,
1978. doi:10.1109/8FCS.1978.37. 104, 107, 235, 285

Eric Allender and Vivek Gore. On strong separations from AC” (extended abstract). In
Fundamentals of Computation Theory, 8th International Symposium, FCT ’91, volume
529 of Lecture Notes in Computer Science, pages 1-15. Springer, 1991. doi:10.1007/
3-540-54458-5_44. 25, 80

Noga Alon, Oded Goldreich, Johan Héstad, and René Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures Algorithms, 3(3):289-304,
1992. doi:10.1002/rsa.3240030308. 2, 125

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends: or: a polylog
shaved is a lower bound made. In STOC, pages 375-388. ACM, 2016. doi:10.1145/
2897518.2897653. 20, 102

Miklés Ajtai. Li-formulae on finite structures. Ann. Pure. Appl. Log., 24(1):1-48, 1983.
doi:10.1016/0168-0072(83)90038-6. 24

Miklos Ajtai. Approximate counting with uniform constant-depth circuits. In Advances
In Computational Complexity Theory, volume 13 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 1-20. DIMACS/AMS, 1990. doi:
10.1090/DIMACS/013/01. 249, 252, 253

306

https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.1109/18.119713
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1109/FOCS.2019.00067
https://doi.org/10.1109/SFCS.1978.37
https://doi.org/10.1007/3-540-54458-5_44
https://doi.org/10.1007/3-540-54458-5_44
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1090/DIMACS/013/01
https://doi.org/10.1090/DIMACS/013/01

[Ajt96]

[AKSO04]

[ALM+98|

[Al098]

[ALR99]

[APY09]

[AS10]

[AW17]

[Bab85]

[Bar89)

[Bar06]

[BB1§|

[BBPYS5|

[BCG*96]

[BCGT13|

Miklos Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC,
pages 99-108, 1996. doi:10.1145/237814.237838. 282

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics, 160(2):781-793, 2004. doi:10.4007/annals.2004.160.781. 3, 151, 153, 202

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501—
555, 1998. doi:10.1145/278298.278306. 269

Noga Alon. The shannon capacity of a union. Comb., 18(3):301-310, 1998. doi:10.1007/
PL00009824. 1

Eric Allender, Michael C. Loui, and Kenneth W. Regan. Reducibility and completeness. In
Algorithms and Theory of Computation Handbook, Chapman & Hall/CRC Applied Algo-
rithms and Data Structures series. CRC Press, 1999. URL: https://dl.acm.org/doi/10.
5555/1882757.1882780. 275

Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms
for the nearest codeword problem. In APPROX-RANDOM, volume 5687 of Lecture Notes in
Computer Science, pages 339-351. Springer, 2009. doi:10.1007/978-3-642-03685-9_26.
22

Vikraman Arvind and Srikanth Srinivasan. Circuit lower bounds, help functions, and
the remote point problem. In Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 383-396, 2010. URL:
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/30.html. 22, 23,
24, 26, 82

Josh Alman and R. Ryan Williams. Probabilistic rank and matrix rigidity. In STOC, pages
641-652. ACM, 2017. doi:10.1145/3055399.3055484. 2

Léaszl6 Babai. Trading group theory for randomness. In STOC, pages 421-429. ACM, 1985.
doi:10.1145/22145.22192. 284, 285

David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC*. J. Comput. Syst. Seci., 38(1):150-164, 1989. doi:10.1016/
0022-0000(89)90037-8. 102

Boaz Barak. A simple explicit construction of an nOUos n)_Ramsey graph. arXiv preprint,

math/0601651, 2006. doi:10.48550/arXiv.math/0601651. 1

Ben Berger and Zvika Brakerski. Zero-knowledge protocols for search problems. In Interna-
tional Conference on Security and Cryptography for Networks (SCN), pages 292-309, 2018.
doi:10.1007/978-3-319-98113-0_16. 152

Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples for
Frege systems? In Feasible Mathematics II, pages 30-56, Boston, MA, 1995. Birkh&user
Boston. doi:10.1007/978-1-4612-2566-9_3. 278

Nader H. Bshouty, Richard Cleve, Ricard Gavalda, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421—
433, 1996. doi:10.1006/jcss.1996.0032. 199, 211

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In STOC, pages 585-594. ACM, 2013. doi:
10.1145/2488608.2488681. 258

307

https://doi.org/10.1145/237814.237838
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1145/278298.278306
https://doi.org/10.1007/PL00009824
https://doi.org/10.1007/PL00009824
https://dl.acm.org/doi/10.5555/1882757.1882780
https://dl.acm.org/doi/10.5555/1882757.1882780
https://doi.org/10.1007/978-3-642-03685-9_26
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/30.html
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1145/22145.22192
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.48550/arXiv.math/0601651
https://doi.org/10.1007/978-3-319-98113-0_16
https://doi.org/10.1007/978-1-4612-2566-9_3
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681

[BDT16]

[BF99)

[BFLY1]

[BENW93]

[BFT9S)

[BGH*05]

[BGH*06]

[BGI*12|

[BGIPO1]

[BH92]

[BHPO1]

[BHPT24|

[BIO4]

[BIS90]

[BK95]

Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Explicit two-source extractors for
near-logarithmic min-entropy. Electron. Colloguium Comput. Compler., TR16-088, 2016.
URL: https://eccc.weizmann.ac.il/report/2016/088. 1

Harry Buhrman and Lance Fortnow. One-sided versus two-sided error in probabilistic com-
putation. In STACS, volume 1563 of Lecture Notes in Computer Science, pages 100-109.
Springer, 1999. doi:10.1007/3-540-49116-3_9. 240, 260, 261, 266

Laszl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3-40, 1991. doi:10.1007/
BF01200056. 221, 255, 258

Léaszl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computatioanl Complezity, 3:307—
318, 1993. doi:10.1007/BF01275486. 211

Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
CCC, pages 812, 1998. doi:10.1109/CCC.1998.694585. 199, 304

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Short PCPs verifiable in polylogarithmic time. In CCC, pages 120-134, 2005. doi:10.
1109/CCC.2005.27. 10, 27, 114, 115, 116, 117

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. SIAM J. Comput., 36(4):889—
974, 2006. doi:10.1137/S0097539705446810. 11, 13, 26, 96, 112, 113, 114, 115, 117, 124
126, 131, 144, 258, 269

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6:1-6:48, 2012. doi:10.1145/2160158.2160159. 6

Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267-289, 2001. doi:10.1006/JCSS.2000.1726. 292

Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and
the exponential hierarchy. In FSTTCS, volume 652 of Lecture Notes in Computer Science,
pages 116-127. Springer, 1992. doi:10.1007/3-540-56287-7_99. 256

R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes. II. Proc.
London Math. Soc. (3), 83(3):532-562, 2001. doi:10.1112/plms/83.3.532. 1, 151

Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from
rectangular PCPs. STAM J. Comput., 53(2):480-523, 2024. doi:10.1137/22M1495597. 4,
13, 18, 20, 27, 112, 113, 114, 115, 117, 126, 131, 132, 134

David A. Mix Barrington and Neil Immerman. Time, hardware, and uniformity. In SCT,
pages 176-185. IEEE Computer Society, 1994. doi:10.1109/SCT.1994.315806. 275

David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC'. J. Comput. Syst. Sci., 41(3):274-306, 1990. doi:10.1016/0022-0000(90)90022-D.
240, 253, 254

Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269-291, 1995. doi:10.1145/200836.200880. 247

308

https://eccc.weizmann.ac.il/report/2016/088
https://doi.org/10.1007/3-540-49116-3_9
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01275486
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1006/JCSS.2000.1726
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1112/plms/83.3.532
https://doi.org/10.1137/22M1495597
https://doi.org/10.1109/SCT.1994.315806
https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1145/200836.200880

[BKKS23]

[BKR23)

[BKS+10]

[BKT14]

[BLS85]

[Blu84]

[BM84]

[Bou05]

[BRSW12|

[BSO6]

[BS08]

[BSVWO03]

[BT94|

[BT06a]

[BTO6b]

Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir. Lower bounds
for pseudo-deterministic counting in a stream. In ICALP, volume 261 of LIPIcs, pages 30:1—
30:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023. doi:10.4230/LIPICS.
ICALP.2023.30. 152

Andrej Bogdanov, Pravesh K. Kothari, and Alon Rosen. Public-key encryption, lo-
cal pseudorandom generators, and the low-degree method. In TCC (1), volume 14369
of Lecture Notes in Computer Science, pages 268-285. Springer, 2023. doi:10.1007/
978-3-031-48615-9_10. 300

Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers, and extractors.
J. ACM, 57(4):20:1-20:52, 2010. doi:10.1145/1734213.1734214. 1

Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approx-
imate counting. J. Symb. Log., 79(2):496-525, 2014. doi:10.1017/JSL.2013.37. 280

Ronald V. Book, Timothy J. Long, and Alan L. Selman. Qualitative relativizations of com-
plexity classes. J. Comput. Syst. Sci., 30(3):395-413, 1985. doi:10.1016/0022-0000(85)
90053-4. 201

Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci., 28:337—
345, 1984. doi:10.1016/0304-3975(83)90029-4. 2

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13(4):850-864, 1984. doi:10.1137/0213053. 164,
177, 282

Jean Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 1(01):1-32, 2005. doi:10.1142/
S1793042105000108. 1

Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for n°!) en-
tropy, and Ramsey graphs beating the Frankl-Wilson construction. Annals of Mathematics,
176:1483-1544, 2012. doi:10.4007/annals.2012.176.3.3. 1

Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In CCC,
pages 73-87. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.26. 206

Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551-607, 2008. doi:10.1137/050646445. 27, 96, 258

Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In STOC, pages 612—-621, 2003.
doi:10.1145/780542.780631. 125

Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350-366, 1994. doi:10.
1007/BF01263423. 25, 80

Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor.
Comput. Sci., 2(1), 2006. doi:10.1561/0400000004. 282

Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for
NP problems. SIAM Journal of Computing, 36(4):1119-1159, 2006. doi:10.1137/
S0097539705446974. 282

309

https://doi.org/10.4230/LIPICS.ICALP.2023.30
https://doi.org/10.4230/LIPICS.ICALP.2023.30
https://doi.org/10.1007/978-3-031-48615-9_10
https://doi.org/10.1007/978-3-031-48615-9_10
https://doi.org/10.1145/1734213.1734214
https://doi.org/10.1017/JSL.2013.37
https://doi.org/10.1016/0022-0000(85)90053-4
https://doi.org/10.1016/0022-0000(85)90053-4
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1137/0213053
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.4007/annals.2012.176.3.3
https://doi.org/10.1109/CCC.2006.26
https://doi.org/10.1137/050646445
https://doi.org/10.1145/780542.780631
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
https://doi.org/10.1561/0400000004
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539705446974

[BT11|

[BT13]

[Bus87]

[BV14]

[BWO05]

[Cai07]

[Can96]

[CCHOO5]

[CDM23]

[CARN*23)

[CGss|

[CGL*19]

[Chel8]

[Chel9]

[Che23]

[CHLR23)|

Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-
Ramanujan graphs using the zig-zag product. SIAM J. Comput., 40(2):267-290, 2011.
doi:10.1137/080732651. 2

Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. Theory Comput., 9:253-272, 2013. doi:10.4086/T0C.2013.V009A005.
2

Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In STOC, pages
123-131. ACM, 1987. doi:10.1145/28395.28409. 247

Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In ICALP,
volume 8572 of Lecture Notes in Computer Science, pages 163-173, 2014. doi:10.1007/
978-3-662-43948-7_14. 19, 96, 258

Amos Beimel and Enav Weinreb. Monotone circuits for weighted threshold functions. In
CCC, pages 67-75. IEEE Computer Society, 2005. doi:10.1109/CCC.2005.12. 247

Jin-yi Cai. S5 € ZPPN?. J. Comput. Syst. Sci., 73(1):25-35, 2007. doi:10.1016/j.jcss.
2003.07.015. 5, 199, 200, 201, 211, 212, 232

Ran Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett., 57(5):237—
241, 1996. doi:10.1016/0020-0190(96)00016-6. 209, 212, 227, 230

Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara.
Competing provers yield improved Karp—Lipton collapse results. Inf. Comput., 198(1):1-23,
2005. doi:10.1016/j.1c.2005.01.002. 5, 199

Arkadev Chattopadhyay, Yogesh Dahiya, and Meena Mahajan. Query complexity of search
problems. In MFCS, volume 272 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2023. doi:10.1145/3519935.3520043. 152

Jonas Conneryd, Susanna F. de Rezende, Jakob Nordstrém, Shuo Pang, and Kilian Risse.
Graph colouring is hard on average for Polynomial Calculus and Nullstellensatz. In FOCS,
pages 1-11. IEEE Computer Society, 2023. doi:10.1109/F0CS57990.2023.00007. 282

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230-261, 1988. doi:
10.1137/0217015. 1

Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubinstein. Fine-
grained complexity meets IP = PSPACE. In SODA, pages 1-20. STAM, 2019. doi:10.1137/
1.9781611975482.1. 102

Lijie Chen. Toward super-polynomial size lower bounds for depth-two threshold circuits.
arXiv preprint, abs/1805.10698, 2018. doi:10.48550/arXiv.1805.10698. 103

Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits.
In FOCS, pages 1281-1304, 2019. doi:10.1109/F0CS.2019.00079. 19, 22, 304

Lijie Chen. New lower bounds and derandomization for ACC, and a derandomization-centric
view on the algorithmic method. In ITCS, volume 251 of LIPIcs, pages 34:1-34:15. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.34. 19,
238, 239, 247, 248, 258, 259, 271, 272, 273, 274, 275

Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point, and
hard partial truth table via satisfying-pairs algorithms. In STOC, pages 1058-1066. ACM,
2023. doi:10.1145/3564246.3585147. 7

310

https://doi.org/10.1137/080732651
https://doi.org/10.4086/TOC.2013.V009A005
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1109/CCC.2005.12
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/0020-0190(96)00016-6
https://doi.org/10.1016/j.ic.2005.01.002
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1109/FOCS57990.2023.00007
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.48550/arXiv.1805.10698
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.4230/LIPICS.ITCS.2023.34
https://doi.org/10.1145/3564246.3585147

[CHLR25]

[CHR24|

[CHR26]

[CIKK16]

[CL16]

[CL21]

[CL24]

[CLLO21]

[CLO*23]

[CLO24|

[CLW20]

[CMMW19]

[CN10]

[Cob64]

[Coh16al

Lijie Chen, Shuichi Hirahara, Zeyong Li, and Hanlin Ren. Symmetric exponential time
requires near-maximum circuit size. J. ACM, November 2025. doi:10.1145/3778166. 7

Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires near-
maximum circuit size. In STOC, pages 1990-1999. ACM, 2024. doi:10.1145/3618260.
3649624. ii, 7, 155

Lijie Chen, Yang Hu, and Hanlin Ren. New algebrization barriers to circuit lower bounds via
communication complexity of Missing-String. In ITCS, 2026. To appear. doi:10.48550/
arXiv.2511.14038. 8

Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In CCC, volume 50 of LIPIcs, pages 10:1-10:24.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.
10. 86

Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source extrac-
tors, and almost optimal privacy amplification protocols. In FOCS, pages 158-167. IEEE
Computer Society, 2016. doi:10.1109/F0CS.2016.25. 1

Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma. In STOC, pages 761-771, 2021. doi:10.1145/
3406325.3451132. 4, 19, 20, 22, 23

Yilei Chen and Jiatu Li. Hardness of range avoidance and remote point for restricted circuits
via cryptography. In STOC, pages 620—-629, 2024. doi:10.1145/3618260.3649602. 6, 276,
277, 280, 285

Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. Majority vs. approximate linear sum
and average-case complexity below NC'. In JCALP, volume 198 of LIPIcs, pages 51:1-51:20,
2021. doi:10.4230/LIPIcs.ICALP.2021.51. 19, 91, 108, 109

Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam. Polynomial-
time pseudodeterministic construction of primes. In FOCS, pages 1261-1270. IEEE, 2023.
doi:10.1109/FOCS57990.2023.00074. ii, 7, 202, 203, 204, 205, 238, 240, 241, 259, 260

Lijie Chen, Jiatu Li, and Igor C. Oliveira. Reverse mathematics of complexity lower bounds.
In FOCS, pages 505-527. IEEE, 2024. doi:10.1109/F0CS61266.2024.00040. 287

Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In FOCS, pages 1-12, 2020. doi:10.1109/F0CS46700.2020.
00009. 4, 5, 19, 20, 22, 23, 25, 28, 30, 31, 32, 33, 35, 54, 81, 88, 89, 91, 99, 108, 111, 235

Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and
equivalences between circuit lower bounds and Karp-Lipton theorems. In CCC, volume
137 of LIPIcs, pages 30:1-30:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.
doi:10.4230/LIPIcs.CCC.2019.30. 211

Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity, volume 11.
Cambridge University Press, 2010. doi:10.1017/CB09780511676277. 287

Alan Cobham. The intrinsic computational difficulty of functions. In Proc. Logic, Method-
ology, and the Philosophy of Science, pages 24-30, 1964. 287

Gil Cohen. Making the most of advice: New correlation breakers and their applications. In
FOCS, pages 188-196. IEEE Computer Society, 2016. doi:10.1109/F0CS.2016.28. 1

311

https://doi.org/10.1145/3778166
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.1145/3618260.3649624
https://doi.org/10.48550/arXiv.2511.14038
https://doi.org/10.48550/arXiv.2511.14038
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1109/FOCS.2016.25
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1145/3618260.3649602
https://doi.org/10.4230/LIPIcs.ICALP.2021.51
https://doi.org/10.1109/FOCS57990.2023.00074
https://doi.org/10.1109/FOCS61266.2024.00040
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1017/CBO9780511676277
https://doi.org/10.1109/FOCS.2016.28

[Coh16b|

[Coh17]

[CooT5]

[Cop82]

[COS18]

[CPS99)]

[CPW23]

[CR79]

[CR22]

[Cra36]

[CRT22]

[CT21a)

[CT21b)

[CTW23]

[CW19a]

Gil Cohen. Two-source extractors for quasi-logarithmic min-entropy and improved privacy
amplification protocols. Electron. Colloquium Comput. Complex., TR16-114, 2016. URL:
https://eccc.weizmann.ac.il/report/2016/114. 1

Gil Cohen. Towards optimal two-source extractors and Ramsey graphs. In STOC, pages
1157-1170. ACM, 2017. doi:10.1145/3055399.3055429. 1

Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary
version). In STOC, pages 83-97. ACM, 1975. doi:10.1145/800116.803756. 280, 287

Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.,
11(3):467-471, 1982. doi:10.1137/0211037. 79

Ruiwen Chen, Igor C. Oliveira, and Rahul Santhanam. An average-case lower bound against
ACC®. In LATIN, volume 10807 of Lecture Notes in Computer Science, pages 317-330.
Springer, 2018. doi:10.1007/978-3-319-77404-6_24. 19, 22

Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of permanent. In STACS,
volume 1563 of Lecture Notes in Computer Science, pages 90-99. Springer, 1999. doi:
10.1007/3-540-49116-3_8. 282

Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs. A map of witness
maps: New definitions and connections. In Public Key Cryptography (2), volume 13941
of Lecture Notes in Computer Science, pages 635-662. Springer, 2023. doi:10.1007/
978-3-031-31371-4_22. 152

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36-50, 1979. doi:10.2307/2273702. 285

Lijie Chen and Hanlin Ren. Strong average-case circuit lower bounds from nontrivial de-
randomization. SIAM J. Comput., 51(3):20-115, 2022. doi:10.1137/20M1364886. ii, 19,
22, 23, 54, 86, 88, 89, 90, 108, 109

Harald Cramér. On the order of magnitude of the difference between consecutive prime
numbers. Acta Arithmetica, 2:23-46, 1936. URL: http://eudml.org/doc/205441. 1, 151

Lijie Chen, Ron D. Rothblum, and Roei Tell. Unstructured hardness to average-case ran-
domness. In FOCS, pages 429-437. IEEE, 2022. doi:10.1109/F0CS54457.2022.00048.
156, 262

Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In FOCS, pages 125-136, 2021. doi:10.1109/F0CS52979.2021.00021. 6,
155, 157, 158, 159, 160, 161, 169, 178, 187, 188, 189, 190, 191, 192, 193, 203, 204, 234, 237,
238, 240, 242, 246, 259, 260, 263, 264, 267, 282

Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In STOC, pages 283-291, 2021. doi:10.1145/
3406325.3451059. 201

Lijie Chen, Roei Tell, and Ryan Williams. Derandomization vs refutation: A unified
framework for characterizing derandomization. In FOCS, pages 1008-1047. IEEE, 2023.
doi:10.1109/F0CS57990.2023.00062. 238, 259

Lijie Chen and Ruosong Wang. Classical algorithms from quantum and Arthur-Merlin com-
munication protocols. In ITCS, volume 124 of LIPIcs, pages 23:1-23:20. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.23. 20

312

https://eccc.weizmann.ac.il/report/2016/114
https://doi.org/10.1145/3055399.3055429
https://doi.org/10.1145/800116.803756
https://doi.org/10.1137/0211037
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/3-540-49116-3_8
https://doi.org/10.1007/3-540-49116-3_8
https://doi.org/10.1007/978-3-031-31371-4_22
https://doi.org/10.1007/978-3-031-31371-4_22
https://doi.org/10.2307/2273702
https://doi.org/10.1137/20M1364886
http://eudml.org/doc/205441
https://doi.org/10.1109/FOCS54457.2022.00048
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.1109/FOCS57990.2023.00062
https://doi.org/10.4230/LIPIcs.ITCS.2019.23

[CW19b]

[CW21]

[CZ19]

[Din07]

[DK11]

[DPV13]

[DPV21]

[DPWV22

[ARGN*21]

[dRPR23]

[Erd59]

[ESY84]

[FF93]

[FGHK16]

[FGJ+26]

Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via PCPs of proximity. In CCC, volume 137 of LIPIcs, pages 19:1-19:43,
2019. doi:10.4230/LIPIcs.CCC.2019.19. 19, 39, 49, 54, 65, 87, 88, 89, 103, 144, 147

Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and
more: Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1-
2:14, 2021. doi:10.1145/3402926. 3

Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. Annals of Mathematics, 189(3):653-705, 2019. doi:10.4007/annals.2019.189.
3.1. 1, 200

Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457 .1236459. 27, 269

Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n—o(n) lower bound
on the circuit complexity of affine dispersers. In MFCS, volume 6907 of Lecture Notes in
Computer Science, pages 256—265. Springer, 2011. doi:10.1007/978-3-642-22993-0_25.
2

Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. On pseudodeterministic approxima-
tion algorithms. In MFCS, pages 61:1-61:11, 2018. doi:10.4230/LIPIcs.MFCS.2018.61.
152

Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. Complete problems for multi-
pseudodeterministic computations. In ITCS, 2021. doi:10.4230/LIPIcs.ITCS.2021.66.
152

Peter Dixon, Aduri Pavan, Jason Vander Woude, and N. V. Vinodchandran. Pseu-
dodeterminism: promises and lowerbounds. In STOC, pages 1552-1565, 2022. doi:
10.1145/3519935.3520043. 152

Susanna F. de Rezende, Mika G66s, Jakob Nordstrém, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In STOC, pages 209-222.
ACM, 2021. doi:10.1145/3406325.3451080. 292

Susanna F. de Rezende, Aaron Potechin, and Kilian Risse. Clique is hard on average for
unary Sherali-Adams. In FOCS, pages 12-25. IEEE, 2023. doi:10.1109/F0CS57990.2023.
00008. 282

Paul Erdés. Graph theory and probability. Canadian Journal of Mathematics, 11:34-38,
1959. doi:10.4153/CJM-1959-003-9. 1, 200

Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61(2):159-173, 1984.
doi:10.1016/S0019-9958(84)80056-X. 246

Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. STAM J.
Comput., 22(5):994-1005, 1993. doi:10.1137/0222061. 282

Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A better-than-3n lower bound for the circuit complexity of an explicit function. In FOCS,
pages 89-98, 2016. doi:10.1109/F0CS.2016.19. 2

Noah Fleming, Stefan Grosser, Siddhartha Jain, Jiawei Li, Hanlin Ren, Morgan Shirley,
and Weigiang Yuan. Total search problems in ZPP. In ITCS, 2026. To appear. doi:
10.48550/arXiv.2512.01138. 8

313

https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.1145/3402926
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.4230/LIPIcs.MFCS.2018.61
https://doi.org/10.4230/LIPIcs.ITCS.2021.66
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/3406325.3451080
https://doi.org/10.1109/FOCS57990.2023.00008
https://doi.org/10.1109/FOCS57990.2023.00008
https://doi.org/10.4153/CJM-1959-003-9
https://doi.org/10.1016/S0019-9958(84)80056-X
https://doi.org/10.1137/0222061
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.48550/arXiv.2512.01138
https://doi.org/10.48550/arXiv.2512.01138

[FHOS93)|

[FMO5]

[FNV17]

[Frio3]

[FS16]

[FSS84]

[FWS1]

[GG11]

[GG17]

[GG21]

[GGH*07]

[GGH™16]

[GGH1S]

[GGH19]

[GGMS6|

[GGMW20]

Stephen A. Fenner, Steven Homer, Mitsunori Ogiwara, and Alan L. Selman. On using
oracles that compute values. In STACS, volume 665 of Lecture Notes in Computer Science,
pages 398-407. Springer, 1993. doi:10.1007/3-540-56503-5_40. 201

Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit
size of the hardest functions. Information Processing Letters, 95(2):354-357, 2005. doi:
10.1016/3.ipl.2005.03.009. 198, 201, 202, 214

Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of knowl-
edge. In Public Key Cryptography (1), volume 10174 of Lecture Notes in Computer Science,
pages 121-150. Springer, 2017. doi:10.1007/978-3-662-54365-8_6. 301

Joel Friedman. A note on matrix rigidity. Comb., 13(2):235-239, 1993. doi:10.1007/
BF01303207. 2

Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform classes.
In CCC, volume 50 of LIPIcs, pages 19:1-19:14, 2016. doi:10.4230/LIPIcs.CCC.2016.19.
28, 32, 33

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Math. Syst. Theory, 17(1):13-27, 1984. doi:10.1007/BF01744431. 24

Peter Frankl and Richard M. Wilson. Intersection theorems with geometric consequences.
Comb., 1(4):357-368, 1981. doi:10.1007/BF02579457. 1

Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloguium Comput. Complez., TR11-136, 2011.
URL: https://eccc.weizmann.ac.il/report/2011/136/. 2, 152, 200, 202, 243

Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-deterministic
NC. In ICALP, pages 87:1-87:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.87. 152

Sumanta Ghosh and Rohit Gurjar. Matroid intersection: A pseudo-deterministic parallel
reduction from search to weighted-decision. In APPROX-RANDOM, pages 41:1-41:16, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.41. 152

Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In STOC, pages 440-449, 2007. doi:10.1145/
1250790.1250855. 30

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882-929, 2016. doi:10.1137/14095772X. 6

Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In
ITCS, pages 17:1-17:18, 2018. doi:10.4230/LIPIcs.ITCS.2018.17. 152

Michel X. Goemans, Shafi Goldwasser, and Dhiraj Holden. Doubly-efficient pseudo-
deterministic proofs. arXiv preprint, abs/1910.00994, 2019. doi:10.48550/arXiv.1910.
00994. 152

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792-807, 1986. doi:10.1145/6490.6503. 206, 214, 215, 299

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
deterministic streaming. In ITCS, pages 79:1-79:25, 2020. doi:10.4230/LIPIcs.ITCS.
2020.79. 152

314

https://doi.org/10.1007/3-540-56503-5_40
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/BF01303207
https://doi.org/10.1007/BF01303207
https://doi.org/10.4230/LIPIcs.CCC.2016.19
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/BF02579457
https://eccc.weizmann.ac.il/report/2011/136/
https://doi.org/10.4230/LIPIcs.ICALP.2017.87
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1137/14095772X
https://doi.org/10.4230/LIPIcs.ITCS.2018.17
https://doi.org/10.48550/arXiv.1910.00994
https://doi.org/10.48550/arXiv.1910.00994
https://doi.org/10.1145/6490.6503
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.4230/LIPIcs.ITCS.2020.79

[GGNS23]

[GGR13]

[GGRT25]

[GGSW13]

[Gil52]

[GIPS21]

[GJST6]

[GKR15]

[GL8Y]

[GL19)

[GLW22

[GM84]|

[GNW11]

[Gol0g]

[Golllal

Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range
avoidance for constant depth circuits: Hardness and algorithms. In APPROX/RANDOM,
volume 275 of LIPIcs, pages 65:1-65:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2023. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.65. 200, 276, 299

Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In ITCS, pages 127-138, 2013. doi:10.1145/2422436.
2422453. 152

Michal Garlik, Svyatoslav Gryaznov, Hanlin Ren, and Iddo Tzameret. The weak rank
principle: Lower bounds and applications. Manuscript, 2025. 8, 283

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In STOC, pages 467-476. ACM, 2013. doi:10.1145/2488608.2488667. 301

E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504-522, 1952. doi:10.1002/j.1538-7305.1952.tb01393.x. 2

Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of NP search problems. In CCC, pages 36:1-36:22,
2021. doi:10.4230/LIPIcs.CCC.2021.36. 152

M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237-267, 1976. doi:10.1016/0304-3975(76)
90059-1. 147

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. J. ACM, 62(4):27:1-27:64, 2015. doi:10.1145/2699436.
160

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25-32, 1989. doi:10.1145/73007.73010. 177, 179

Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in Log-Space. In
SODA, pages 606-620, 2019. doi:10.1137/1.9781611975482.38. 152

Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth circuits
and connections to pseudorandomness. In APPROX/RANDOM, volume 245 of LIPIcs,
pages 20:1-20:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/
LIPIcs.APPROX/RANDOM.2022.20. 31, 200, 276

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270-299, 1984. doi:10.1016/0022-0000(84)90070-9. 282

Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. In Studies
in Complezity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, volume 6650 of Lecture Notes in Computer Science, pages 273-301. Springer,
2011. doi:10.1007/978-3-642-22670-0_23. 35

Oded Goldreich. Computational complexity: a conceptual perspective. Cambridge University
Press, 2008. doi:10.1017/CB09780511804106. 166, 212

Oded Goldreich. Candidate one-way functions based on expander graphs. In Studies in
Complexity and Cryptography, volume 6650 of Lecture Notes in Computer Science, pages
76-87. Springer, 2011. doi:10.1007/978-3-642-22670-0_10. 300

315

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.1145/2422436.2422453
https://doi.org/10.1145/2422436.2422453
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1145/2699436
https://doi.org/10.1145/73007.73010
https://doi.org/10.1137/1.9781611975482.38
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-642-22670-0_23
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1007/978-3-642-22670-0_10

[Goll1b]

[Golllc]

[Goll7]

[Gol18]

[Gol25]

[GROS]

[Gro00]

[Grol5|

[GSS6]

[GS89]

[GS92]

[GT18]

[HABO2

[Hass89]

[Hirl5]

[Hir18]

Oded Goldreich. In a world of P = BPP. In Studies in Complexity and Cryptography,
volume 6650 of Lecture Notes in Computer Science, pages 191-232. Springer, 2011. doi:
10.1007/978-3-642-22670-0_20. 246

Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling, pages
302-332. Springer, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_24. 132,
133

Oded Goldreich. On the doubly-efficient interactive proof systems of GKR. Electron.

Colloguium Comput. Complez., TR17-101, 2017. URL: https://eccc.weizmann.ac.il/
report/2017/101. 160, 188, 189, 190

Oded Goldreich. On doubly-efficient interactive proof systems. Foundations and Trends®)
in Theoretical Computer Science, 13(3):158-246, 2018. doi:10.1561/0400000084. 188

Oded Goldreich. Multi-pseudodeterministic algorithms. In Computational Complexity
and Local Algorithms, volume 15700 of Lecture Notes in Computer Science, pages 22—43.
Springer, 2025. doi:10.1007/978-3-031-88946-2_2. 152

Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In APPROX-
RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 455-468. Springer,
2008. doi:10.1007/978-3-540-85363-3_36. 30, 91, 106

Vince Grolmusz. Low rank co-diagonal matrices and ramsey graphs. FElectron. J. Comb., 7,
2000. doi:10.37236/1493. 1

Ofer Grossman. Finding primitive roots pseudo-deterministically. FElectron. Colloquium
Comput. Complez., TR15-207, 2015. URL: https://eccc.weizmann.ac.il/report/2015/
207. 152

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In STOC, pages 59-68. ACM, 1986. doi:10.1145/12130.12137. 282, 284

Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik 89, Symposium
on Logical Foundations of Computer Science, Pereslav-Zalessky, USSR, July 3-8, 1989,
Proceedings, volume 363 of Lecture Notes in Computer Science, pages 108-118, 1989. doi:
10.1007/3-540-51237-3_10. 10

Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf. Process.
Lett., 43(4):169-174, 1992. doi:10.1016/0020-0190(92)90195-2. 178, 221

Oded Goldreich and Avishay Tal. Matrix rigidity of random Toeplitz matrices. Comput.
Complex., 27(2):305-350, 2018. doi:10.1007/S00037-016-0144-9. 2

William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695-716,
2002. doi:10.1016/80022-0000(02)00025-9. 191, 194

Johan Hastad. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res.,
5:143-170, 1989. doi:10.1145/12130.12132. 24

Shuichi Hirahara. Identifying an honest EXPN? oracle among many. In CCC, volume 33
of LIPIcs, pages 244-263. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015. doi:
10.4230/LIPIcs.CCC.2015.244. 211, 222, 240, 255, 256, 257, 258, 259

Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In FOCS,
pages 247-258, 2018. doi:10.1109/F0CS.2018.00032. 282

316

https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1007/978-3-642-22670-0_24
https://eccc.weizmann.ac.il/report/2017/101
https://eccc.weizmann.ac.il/report/2017/101
https://doi.org/10.1561/0400000084
https://doi.org/10.1007/978-3-031-88946-2_2
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.37236/1493
https://eccc.weizmann.ac.il/report/2015/207
https://eccc.weizmann.ac.il/report/2015/207
https://doi.org/10.1145/12130.12137
https://doi.org/10.1007/3-540-51237-3_10
https://doi.org/10.1007/3-540-51237-3_10
https://doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1007/S00037-016-0144-9
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1145/12130.12132
https://doi.org/10.4230/LIPIcs.CCC.2015.244
https://doi.org/10.4230/LIPIcs.CCC.2015.244
https://doi.org/10.1109/FOCS.2018.00032

[HIR23]

[HLR23)|

[HMP+93]

[HNOS96]

[HP10]

[HV06]

[HV21]

[TKV18|

[TKW02]

[Ma25]

[ILL89)

[ILW23]

[IMO02]

[Imp95]

[1520]

Yizhi Huang, Rahul Ilango, and Hanlin Ren. NP-hardness of approximating meta-
complexity: A cryptographic approach. In STOC, pages 1067-1075. ACM, 2023. doi:
10.1145/3564246.3585154. §

Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren. Bounded relativization. In CCC, volume
264 of LIPIcs, pages 6:1-6:45. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.
doi:10.4230/LIPIcs.CCC.2023.6. 8, 199, 201, 304

Andras Hajnal, Wolfgang Maass, Pavel Pudlak, Mari6 Szegedy, and Gyo6rgy Turan. Thresh-
old circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129-154, 1993. doi:10.1016/
0022-0000(93)90001-D. 109

Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman. Comput-
ing solutions uniquely collapses the polynomial hierarchy. STAM J. Comput., 25(4):697-708,
1996. doi:10.1137/S0097539794268315. 201

Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In CCC,
pages 270-279. IEEE Computer Society, 2010. doi:10.1109/CCC.2010.33. 103, 104

Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields
of characteristic two. In STACS, volume 3884 of Lecture Notes in Computer Science, pages
672-683. Springer, 2006. doi:10.1007/11672142_55. 191, 194, 271, 272

Xuangui Huang and Emanuele Viola. Average-case rigidity lower bounds. In CSR, vol-
ume 12730 of Lecture Notes in Computer Science, pages 186-205, 2021. doi:10.1007/
978-3-030-79416-3_11. 4, 20

Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural proper-
ties as oracles. In C'CC, volume 102 of LIPIcs, pages 7:1-7:20, 2018. doi:10.4230/LIPIcs.
CCC.2018.7. 211, 304

Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672-694,
2002. doi:10.1016/S0022-0000(02)00024-7. 85, 155, 204, 205, 236, 304

Rahul Ilango. The oracle derandomization hypothesis is false (and more) assuming no
natural proofs. 2025. URL: https://eccc.weizmann.ac.il/report/2025/190. 8

Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions. In STOC, page 12-24. ACM, 1989. doi:10.1145/73007.73009. 279,
289

Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In STOC, pages 1076-1089. ACM, 2023. doi:
10.1145/3564246.3585187. 6, 276, 277, 280, 281, 296, 300, 301

Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for boolean
circuits. In MFCS, volume 2420 of Lecture Notes in Computer Science, pages 353—364.
Springer, 2002. doi:10.1007/3-540-45687-2_29. 2

Russell Impagliazzo. A personal view of average-case complexity. In SCT, pages 134-147.
IEEE Computer Society, 1995. doi:10.1109/SCT.1995.514853. 6, 276, 282

Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann.
Pure Appl. Log., 171(1), 2020. doi:10.1016/J.APAL.2019.102722. 292, 293

317

https://doi.org/10.1145/3564246.3585154
https://doi.org/10.1145/3564246.3585154
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1137/S0097539794268315
https://doi.org/10.1109/CCC.2010.33
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://eccc.weizmann.ac.il/report/2025/190
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1016/J.APAL.2019.102722

[TW97]

[TWO1]

[Jei04]

[Jer05]

[Jer06]

[Jer07]

[JLS21]

[JusT2]

[Kab01]

[Kan82]

[KCOO]

[Kha22]

[KKMP21]

[KLSO]

[KM65]

[Kor21]

[Kor22]

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In STOC, pages 220-229. ACM, 1997. doi:10.1145/258533.
258590. 1, 151, 198, 204, 235, 238

Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672—688, 2001. doi:10.1006/jcss.2001.
1780. 3, 85, 153, 155, 161, 236, 262, 304

Emil Jefabek. Dual weak pigeonhole principle, Boolean complexity, and derandomization.
Ann. Pure Appl. Log., 129(1-3):1-37, 2004. doi:10.1016/j.apal.2003.12.003. 3, 4, 200,
203, 204, 214, 280, 288

Emil Jerabek. Weak pigeonhole principle and randomized computation. PhD thesis, Charles
University in Prague, 2005. 288

Emil Jerabek. The strength of sharply bounded induction. Math. Log. Q., 52(6):613-624,
2006. doi:10.1002/MALQ.200610019. 287

Emil Jerabek. Approximate counting in bounded arithmetic. J. Symb. Log., 72(3):959-993,
2007. doi:10.2178/JSL/1191333850. 280, 288

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In STOC, pages 60-73. ACM, 2021. doi:10.1145/3406325.3451093. 6, 277

Jorn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans. Inf.
Theory, 18(5):652—-656, 1972. doi:10.1109/TIT.1972.1054893. 2

Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
J. Comput. Syst. Sci., 63(2):236-252, 2001. doi:10.1006/JCSS.2001.1763. 305

Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control.,
55(1-3):40-56, 1982. doi:10.1016/S0019-9958(82)90382-5. 5, 155, 198, 199

Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In STOC, pages 73-79,
2000. doi:10.1145/335305.335314. 199

Erfan Khaniki. Nisan-Wigderson generators in proof complexity: New lower bounds. In
CCC, volume 234 of LIPIcs, pages 17:1-17:15. Schloss Dagstuhl - Leibniz-Zentrum fiir In-
formatik, 2022. doi:10.4230/LIPICS.CCC.2022.17. 278

Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total
functions in the polynomial hierarchy. In ITCS, volume 185 of LIPIcs, pages 44:1-44:18,
2021. doi:10.4230/LIPIcs.ITCS.2021.44. 3, 22, 104, 202

Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In STOC, pages 302-309, 1980. doi:10.1145/800141.804678. 11, 155,
199, 211, 256

Boris M Kloss and Vadim A Malyshev. Estimates of the complexity of certain classes of
functions. Vestn. Moskov. Univ. Ser., 20:44-51, 1965. 2

Oliver Korten. The hardest explicit construction. In FOCS, pages 433-444. IEEE, 2021.
doi:10.1109/F0CS52979.2021.00051. 4, 5, 31, 85, 105, 200, 201, 202, 203, 204, 206, 214
215, 231, 236, 276

Oliver Korten. Derandomization from time-space tradeoffs. In CCC, volume 234 of LIPIcs,
pages 37:1-37:26. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/
LIPICS.CCC.2022.37. 4, 259, 261

318

https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.1002/MALQ.200610019
https://doi.org/10.2178/JSL/1191333850
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1109/TIT.1972.1054893
https://doi.org/10.1006/JCSS.2001.1763
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPICS.CCC.2022.17
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1145/800141.804678
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.4230/LIPICS.CCC.2022.37
https://doi.org/10.4230/LIPICS.CCC.2022.37

[KPTY1]

[Kra95]

[Kra0Ola]

[Kra01b]

[Kra04]

[Kra09]

[Krall]

[Kral9]

[Kra21]

[Kra23]

[Kra24|

[Kra25]

[Kre88|

[KvMO02]

[KWOs]

[Lev73]

[Lev87]

[Lew19]

Jan Krajicek, Pavel Pudlak, and Gaisi Takeuti. Bounded arithmetic and the polyno-
mial hierarchy. Annals of Pure and Applied Logic, 52(1):143-153, 1991. doi:10.1016/
0168-0072(91)90043-L. 281, 287, 288

Jan Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, 1995. doi:
10.1017/CB09780511529948. 287

Jan Kraji¢ek. On the weak pigeonhole principle. Fundamenta Mathematicae, 170:123-140,
2001. doi:10.4064/fm170-1-8. 277

Jan Krajicek. Tautologies from pseudo-random generators. Bull. Symb. Log., 7(2):197-212,
2001. doi:10.2307/2687774. 3, 200, 278, 286

Jan Krajicek. Dual weak pigeonhole principle, pseudo-surjective functions, and provability
of circuit lower bounds. J. Symb. Log., 69(1):265-286, 2004. doi:10.2178/js1/1080938841.
278, 279, 281, 286, 287

Jan Krajicek. A proof complexity generator. In Proc. from the 13th International Congress
of Logic, Methodology and Philosophy of Science (Beijing, August 2007), Studies in Logic
and the Foundations of Mathematics. King’s College Publications, London, 2009. URL:
https://www.karlin.mff.cuni.cz/ krajicek/generator.pdf. 283

Jan Kraji¢ek. On the proof complexity of the Nisan-Wigderson generator based on a hard
NP N coNP function. J. Math. Log., 11(1), 2011. doi:10.1142/50219061311000979. 278

Jan Krajicek. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2019. doi:10.1017/9781108242066. 287

Jan Kraji¢ek. Small circuits and dual weak PHP in the universal theory of p-time algorithms.
ACM Trans. Comput. Log., 22(2):11:1-11:4, 2021. doi:10.1145/3446207. 281

Jan Krajicek. A proof complexity conjecture and the Incompleteness theorem. The Journal
of Symbolic Logic, page 1-5, 2023. doi:10.1017/js1.2023.69. 279

Jan Krajicek. On the existence of strong proof complexity generators. Bulletin of Symbolic
Logic, 30(1):20-40, 2024. doi:10.1017/bs1.2023.40. 279, 286

Jan Krajicek. Proof complexity generators. Cambridge University Press, 2025. doi:10.
1017/9781009611664. 6, 278

Mark W. Krentel. The complexity of optimization problems. J. Comput. Syst. Sci.,
36(3):490-509, 1988. doi:10.1016/0022-0000(88)90039-6. 213

Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501-1526,
2002. doi:10.1137/80097539700389652. 200, 284

Johannes Kobler and Osamu Watanabe. New collapse consequences of NP having small
circuits. SIAM J. Comput., 28(1):311-324, 1998. doi:10.1137/S0097539795296206. 199

Leonid A. Levin. Universal sequential search problems. Problemy peredachi informatsii,
9(3):115-116, 1973. URL: https://mathnet.ru/eng/ppi9il4. 237, 266

Leonid A. Levin. One-way functions and pseudorandom generators. Comb., 7(4):357-363,
1987. doi:10.1007/BF02579323. 35, 91

Mark Lewko. An explicit two-source extractor with min-entropy rate near 4/9. Mathematika,
65(4):950-957, 2019. doi:10.1112/S0025579319000238. 1

319

https://doi.org/10.1016/0168-0072(91)90043-L
https://doi.org/10.1016/0168-0072(91)90043-L
https://doi.org/10.1017/CBO9780511529948
https://doi.org/10.1017/CBO9780511529948
https://doi.org/10.4064/fm170-1-8
https://doi.org/10.2307/2687774
https://doi.org/10.2178/jsl/1080938841
https://www.karlin.mff.cuni.cz/~krajicek/generator.pdf
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1017/9781108242066
https://doi.org/10.1145/3446207
https://doi.org/10.1017/jsl.2023.69
https://doi.org/10.1017/bsl.2023.40
https://doi.org/10.1017/9781009611664
https://doi.org/10.1017/9781009611664
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539795296206
https://mathnet.ru/eng/ppi914
https://doi.org/10.1007/BF02579323
https://doi.org/10.1112/S0025579319000238

[LFKN92|

[Li12]

[Li16]

[Li17]

[Li19]

[Li23]

[Li24]

[Li25]

[LLR24|

[LO8T7]

[LO22]

[LokO01]

[Lok09]

[LORS24]

[LOS21]

[LP22|

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859-868, 1992. doi:10.1145/146585.
146605. 211

Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In FOCS,
pages 688—697. IEEE Computer Society, 2012. doi:10.1109/F0CS.2012.26. 1

Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy.
In FOCS, pages 168-177. IEEE Computer Society, 2016. doi:10.1109/F0CS.2016.26. 1

Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In STOC, pages 1144-1156. ACM, 2017. doi:10.1145/3055399.3055486. 1

Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.
In CCC, volume 137 of LIPIcs, pages 28:1-28:49. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019. doi:10.4230/LIPICS.CCC.2019.28. 1

Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In
FOCS, pages 1271-1281. IEEE, 2023. doi:10.1109/FO0CS57990.2023.00075. 1, 200

Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified,
truly uniform. In STOC, pages 2000-2007. ACM, 2024. doi:10.1145/3618260.3649615.
7, 155

Jiatu Li. An introduction to feasible mathematics and bounded arithmetic for computer
scientists. Electron. Colloquium Comput. Complezx., TR25-086, 2025. URL: https://eccc.
weizmann.ac.il/report/2025/086. 287

Jiawei Li, Yuhao Li, and Hanlin Ren. Finding bugs in short proofs: The metamathematics
of resolution lower bounds. arXiv preprint, abs/2411.15515, 2024. doi:10.48550/arXiv.
2411.15515. iii, 8

J. C. Lagarias and Andrew M. Odlyzko. Computing 7(z): An analytic method. J. Algo-
T#hnw,8(2%1737191,1987.doi:10.1016/0196—6774(87)90037-X.1,151

Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic Kolmogorov
complexity. Bull. FATCS, 137, 2022. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/700. 153, 245, 270

Satyanarayana V. Lokam. Spectral methods for matrix rigidity with applications to size-
depth trade-offs and communication complexity. J. Comput. Syst. Sci., 63(3):449-473, 2001.
doi:10.1006/JCSS.2001.1786. 2

Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Found. Trends
Theor. Comput. Sci., 4(1-2):1-155, 2009. doi:10.1561/0400000011. 2

Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam. On the complex-
ity of avoiding heavy elements. In FOCS, pages 2403—-2412. IEEE, 2024. doi:10.1109/
F0CS61266.2024.00140. 7

Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and
the structure of probabilistic time. In STOC, pages 303-316, 2021. doi:10.1145/3406325.
3451085. 152, 153

Yanyi Liu and Rafael Pass. Characterizing derandomization through hardness of Levin-
Kolmogorov complexity. In CCC, pages 35:1-35:17, 2022. doi:10.4230/LIPICS.CCC.2022.
35. 238, 246, 259

320

https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1109/FOCS.2012.26
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.1145/3055399.3055486
https://doi.org/10.4230/LIPICS.CCC.2019.28
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.1145/3618260.3649615
https://eccc.weizmann.ac.il/report/2025/086
https://eccc.weizmann.ac.il/report/2025/086
https://doi.org/10.48550/arXiv.2411.15515
https://doi.org/10.48550/arXiv.2411.15515
https://doi.org/10.1016/0196-6774(87)90037-X
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.1006/JCSS.2001.1786
https://doi.org/10.1561/0400000011
https://doi.org/10.1109/FOCS61266.2024.00140
https://doi.org/10.1109/FOCS61266.2024.00140
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.4230/LIPICS.CCC.2022.35
https://doi.org/10.4230/LIPICS.CCC.2022.35

[LP23]

[LRO1]

[Lup58§]

[LV19]

[LY22]

[Mek17]

[Mie09]

[MP24]

[MSTO06]

[Mur71]
[MV05]

[MVW99]

[MW20]

[NN93|

[NW94]

[O1i19]

[OS174a]

Yanyi Liu and Rafael Pass. Leakage-resilient hardness vs randomness. In CCC, volume 264
of LIPIcs, pages 32:1-32:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023. 6,
237, 238, 242, 246, 259, 263, 264, 267

Oded Lachish and Ran Raz. Explicit lower bound of 4.5n — o(n) for Boolean circuits. In
STOC, pages 399-408. ACM, 2001. doi:10.1145/380752.380832. 2

Oleg B Lupanov. The synthesis of contact circuits. Doklady Akademii Nauk SSSR,
119(1):23-26, 1958. URL: https://www.mathnet.ru/eng/dan22802. 198

Ming Li and Paul M. B. Vitanyi. An Introduction to Kolmogorov Complezity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1. 245

Jiatu Li and Tiangi Yang. 3.1n — o(n) circuit lower bounds for explicit functions. In STOC,
pages 1180-1193. ACM, 2022. doi:10.1145/3519935.3519976. 2, 151

Raghu Meka. Explicit resilient functions matching Ajtai-Linial. In SODA, pages 1132-1148.
SIAM, 2017. doi:10.1137/1.9781611974782.73. 1

Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math.
Artif. Intell., 56(3-4):313-338, 2009. doi:10.1007/s10472-009-9169-y. 115, 140

Noam Mazor and Rafael Pass. Gap MCSP is not (Levin) NP-complete in Obfustopia.
In CCC, volume 300 of LIPIcs, pages 36:1-36:21. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2024. doi:10.4230/LIPICS.CCC.2024.36. 266

Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC°. Random
Struct. Algorithms, 29(1):56-81, 2006. doi:10.1002/RSA.20112. 300

Saburo Muroga. Threshold logic and its applications. Wiley, 1971. 104

Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using
hitting sets. Comput. Complex., 14(3):256-279, 2005. doi:10.1007/S00037-005-0197-7.
284

Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial ver-
sus half-exponential circuit size in the exponential hierarchy. In COCOON, volume 1627
of Lecture Notes in Computer Science, pages 210-220. Springer, 1999. doi:10.1007/
3-540-48686-0_21. 5, 155, 199, 202

Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887. 19, 304

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838-856, 1993. doi:10.1137/0222053. 2

Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-
167, 1994. doi:10.1016/50022-0000(05)80043-1. 86, 110, 111, 156, 161, 198, 204, 235,
238, 278

Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In ICALP,
pages 32:1-32:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.32. 152

Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In CCC, volume 79 of LIPIcs, pages 18:1-18:49,
2017. doi:10.4230/LIPIcs.CCC.2017.18. 86

321

https://doi.org/10.1145/380752.380832
https://www.mathnet.ru/eng/dan22802
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1137/1.9781611974782.73
https://doi.org/10.1007/s10472-009-9169-y
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.1002/RSA.20112
https://doi.org/10.1007/S00037-005-0197-7
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/0222053
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.CCC.2017.18

[0S17b)

[0S18]

[Pan21]

[Par21]

[Pat0s]

[Pau77]

[Pic11]

[Picl5]

[Pip79]

[PSO4]

[PS19)

[PS22]

[Pud94]

[PWWS8S]

[Ram20]

[Raz89)

[Raz98]

[Raz04]

[Raz05]

Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. In STOC, pages 665—677, 2017. doi:10.1145/3055399.3055500. 2, 3, 5, 152, 153,
154, 156, 157, 158, 159, 164

Igor C. Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approximation.
In RANDOM, pages 55:1-55:19, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.55. 152

Shuo Pang. Large clique is hard on average for resolution. In CSR, volume 12730
of Lecture Notes in Computer Science, pages 361-380. Springer, 2021. doi:10.1007/
978-3-030-79416-3_22. 282

Orr Paradise. Smooth and strong PCPs. Comput. Complez., 30(1):1, 2021. doi:10.1007/
S00037-020-00199-3. 15, 31

Mihai Patragcu. Succincter. In FOCS, pages 305-313, 2008. doi:10.1109/F0CS.2008.83.
31

Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean func-
tions. SIAM J. Comput., 6(3):427-443, 1977. doi:10.1137/0206030. 2

Jan Pich. Nisan-Wigderson generators in proof systems with forms of interpolation. Math.
Log. Q., 57(4):379-383, 2011. doi:10.1002/MALQ.201010012. 278

Jan Pich. Circuit lower bounds in bounded arithmetics. Ann. Pure Appl. Log., 166(1):29-45,
2015. doi:10.1016/J.APAL.2014.08.004. 278

Nicholas Pippenger. On simultaneous resource bounds (preliminary version). In FOCS,
pages 307-311. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.29. 11, 24

Ramamohan Paturi and Michael E. Saks. Approximating threshold circuits by rational
functions. Inf. Comput., 112(2):257-272, 1994. doi:10.1006/inco.1994.1059. 104

Jan Pich and Rahul Santhanam. Why are proof complexity lower bounds hard? In FOCS,
pages 1305-1324. IEEE Computer Society, 2019. doi:10.1109/F0CS.2019.00080. 278, 298

Jan Pich and Rahul Santhanam. Learning algorithms versus automatability of Frege sys-
tems. In ICALP, volume 229 of LIPIcs, pages 101:1-101:20. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.101. 278

Pavel Pudlak. Communication in bounded depth circuits. Comb., 14(2):203-216, 1994.
doi:10.1007/BF01215351. 2

Jeff B. Paris, A. J. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle
and the existence of infinitely many primes. J. Symb. Log., 53(4):1235-1244, 1988. doi:
10.1017/50022481200028061. 4

C. Ramya. Recent progress on matrix rigidity - A survey. arXiv preprint, abs/2009.09460,
2020. doi:10.48550/arXiv.2009.09460. 2

Alexander A. Razborov. On rigid matrices (in Russian). Technical report, 1989. URL:
https://people.cs.uchicago.edu/ razborov/files/rigid.pdf. 2

Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complex.,
7(4):291-324, 1998. doi:10.1007/s000370050013. 278

Alexander A. Razborov. Resolution lower bounds for perfect matching principles. J. Com-
put. Syst. SCL,69(1%3727,2004.doi:lO.1016/J.JCSS.2004.01.OO4.278

Ran Raz. Extractors with weak random seeds. In STOC, pages 11-20. ACM, 2005. doi:
10.1145/1060590.1060593. 1

322

https://doi.org/10.1145/3055399.3055500
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.55
https://doi.org/10.1007/978-3-030-79416-3_22
https://doi.org/10.1007/978-3-030-79416-3_22
https://doi.org/10.1007/S00037-020-00199-3
https://doi.org/10.1007/S00037-020-00199-3
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1137/0206030
https://doi.org/10.1002/MALQ.201010012
https://doi.org/10.1016/J.APAL.2014.08.004
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.1006/inco.1994.1059
https://doi.org/10.1109/FOCS.2019.00080
https://doi.org/10.4230/LIPICS.ICALP.2022.101
https://doi.org/10.1007/BF01215351
https://doi.org/10.1017/S0022481200028061
https://doi.org/10.1017/S0022481200028061
https://doi.org/10.48550/arXiv.2009.09460
https://people.cs.uchicago.edu/~razborov/files/rigid.pdf
https://doi.org/10.1007/s000370050013
https://doi.org/10.1016/J.JCSS.2004.01.004
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1145/1060590.1060593

[Raz15]

[RR97]

[RS8

[RSW22]

[Rud97]

[RVWO02]

[RWZ26]

[San09]

[Sch74]

[Sch76]

[Sel94]

[Sha49]

[Sho92]

[Spi96]

[SS897]

[ST21]

[Sto77]

Alexander Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181(2):415-472, 2015. doi:10.4007/annals.
2015.181.2.1. 278, 279

Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24—
35, 1997. doi:10.1006/jcss.1997.1494. 86

Alexander Russell and Ravi Sundaram. Symmetric alternation captures BPP. Comput.
Complex., 7(2):152-162, 1998. doi:10.1007/s000370050007. 200, 209, 212, 227, 230

Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for
circuits. In FOCS, pages 640-650. IEEE, 2022. doi:10.1109/F0CS54457.2022.00067. 6,
7, 200, 201, 236, 276, 286

Steven Rudich. Super-bits, demi-bits, and le/qpoly—natural proofs. In RANDOM, vol-
ume 1269 of Lecture Notes in Computer Science, pages 85-93, 1997. doi:10.1007/
3-540-63248-4_8. 6, 277, 279, 298, 299

Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, 155:157-187, 2002.
doi:10.2307/3062153. 2

Hanlin Ren, Yichuan Wang, and Yan Zhong. Hardness of range avoidance and proof com-
plexity generators from demi-bits. In ITCS, 2026. To appear. doi:10.48550/arXiv.2511.
14061. iii, 7

Rahul Santhanam. Circuit lower bounds for Merlin—Arthur classes. SIAM J. Comput.,
39(3):1038-1061, 2009. doi:10.1137/070702680. 199, 304

Claus-Peter Schnorr. Zwei lineare untere Schranken fiir die Komplexitit Boolescher Funk-
tionen. Computing, 13(2):155-171, 1974. doi:10.1007/BF02246615. 2

Claus-Peter Schnorr. The combinational complexity of equivalence. Theor. Comput. Sci.,
1(4):2897295, 1976. doi:10.1016/0304-3975(76)90073-6. 2

Alan L. Selman. A taxonomy of complexity classes of functions. J. Comput. Syst. Sci.,
48(2):357-381, 1994. doi:10.1016/S0022-0000(05)80009-1. 201

Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System technical
journal, 28(1):59-98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x. 2, 198, 201

Victor Shoup. Searching for primitive roots in finite fields. Mathematics of Computation,
58(197):369-380, January 1992. doi:10.1090/S0025-5718-1992-1106981-9. 163, 176

Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IFEFE
Transactions on Information Theory, 42(6):1723-1731, 1996. doi:10.1109/18.556668. 11

Mohammad Amin Shokrollahi, Daniel A. Spielman, and Volker Stemann. A remark on
matrix rigidity. Inf. Process. Lett., 64(6):283-285, 1997. doi:10.1016/50020-0190(97)
00190-7. 2

Rahul Santhanam and Iddo Tzameret. Iterated lower bound formulas: a diagonalization-
based approach to proof complexity. In STOC, pages 234-247. ACM, 2021. doi:10.1145/
3406325.3451010. 278, 298

Larry J. Stockmeyer. On the combinational complexity of certain symmetric boolean func-
tions. Math. Syst. Theory, 10:323-336, 1977. doi:10.1007/BF01683282. 2

323

https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.4007/annals.2015.181.2.1
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1007/s000370050007
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1007/3-540-63248-4_8
https://doi.org/10.1007/3-540-63248-4_8
https://doi.org/10.2307/3062153
https://doi.org/10.48550/arXiv.2511.14061
https://doi.org/10.48550/arXiv.2511.14061
https://doi.org/10.1137/070702680
https://doi.org/10.1007/BF02246615
https://doi.org/10.1016/0304-3975(76)90073-6
https://doi.org/10.1016/S0022-0000(05)80009-1
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1090/S0025-5718-1992-1106981-9
https://doi.org/10.1109/18.556668
https://doi.org/10.1016/S0020-0190(97)00190-7
https://doi.org/10.1016/S0020-0190(97)00190-7
https://doi.org/10.1145/3406325.3451010
https://doi.org/10.1145/3406325.3451010
https://doi.org/10.1007/BF01683282

[STVO1]

[SU05]

[SUO6]

[Sud9s]

[Sud97]

[SW13]

[Ta-17]

[TCH12]

[TVO07]

[TZ24]

[Vad12]

[Val77]

[Var64]

[Vin05]

[Vio09)

[Vio20]

[VK21]

Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001. doi:10.1006/jcss.2000.1730.
161, 238, 263

Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172-216, 2005. doi:10.1145/1059513.1059516.
156, 161, 162, 169, 178, 179, 180, 181, 284

Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Comput. Complex., 15(4):298-341, 2006. doi:10.1007/S00037-007-0218-9. 284

Madhu Sudan. Efficient Checking of Polynomials and Proofs anf the Hardness of Approz-
imation Problems, volume 1001 of Lecture Notes in Computer Science. Springer, 1995.
doi:10.1007/3-540-60615-7. 178, 221

Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J.
Complez., 13(1):180-193, 1997. doi:10.1006/jcom.1997.0439. 175

Rahul Santhanam and R. Ryan Williams. On medium-uniformity and circuit lower bounds.
In CCC, pages 15-23. IEEE Computer Society, 2013. doi:10.1109/CCC.2013.40. 19

Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In STOC, pages 238—
251. ACM, 2017. doi:10.1145/3055399.3055408. 2

Terence Tao, Ernest Croot, III, and Harald Helfgott. Deterministic methods to find primes.
Math. Comput., 81(278):1233-1246, 2012. doi:10.1090/S0025-5718-2011-02542-1. 1,
151

Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complezity, 16(4):331-364, 2007. doi:10.1007/
s00037-007-0233-x. 3, 153, 154, 155, 247

Iddo Tzameret and Luming Zhang. Stretching demi-bits and nondeterministic-secure pseu-
dorandomness. In ITCS, volume 287 of LIPIcs, pages 95:1-95:22. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.ITCS.2024.95. 277

Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1-336, 2012. doi:10.1561/0400000010. 137

Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, volume 53
of Lecture Notes in Computer Science, pages 162-176, 1977. doi:10.1007/3-540-08353-7\
_135. 2,200

R. Varshamov. Estimate of the number of signals in error correcting codes. Awtomat. i
Telemekh, 25:1628-1629, 1964. URL: https://mathnet.ru/eng/at11783. 2

N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415-418, 2005. doi:10.1016/j.tcs.2005.07.032. 199

Emanuele Viola. On approximate majority and probabilistic time. Comput. Complez.,
18(3):337{’)757 2009. doi:10.1007/500037-009-0267-3. 249, 252, 253

Emanuele Viola. New lower bounds for probabilistic degree and AC® with parity gates.
Electron. Colloquium Comput. Complex., page 15, 2020. URL: https://eccc.weizmann.
ac.il/report/2020/015. 19

Ben Lee Volk and Mrinal Kumar. Lower bounds for matrix factorization. Comput. Complez.,
30(1):6, 2021. doi:10.1007/S00037-021-00205-2. 2

324

https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1007/S00037-007-0218-9
https://doi.org/10.1007/3-540-60615-7
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1109/CCC.2013.40
https://doi.org/10.1145/3055399.3055408
https://doi.org/10.1090/S0025-5718-2011-02542-1
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.4230/LIPICS.ITCS.2024.95
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1007/3-540-08353-7_135
https://mathnet.ru/eng/at11783
https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.1007/S00037-009-0267-3
https://eccc.weizmann.ac.il/report/2020/015
https://eccc.weizmann.ac.il/report/2020/015
https://doi.org/10.1007/S00037-021-00205-2

[VLOY]

[VV&6]

[VW1§|

[VW20]

[VW23

[WDP+22]

[Will3a

[Wil13b]

[Will4]

[Wil16]

[Wil18a]

[Will8b]

[Wil18¢|

[Will9]

[Wun12]

[Yao82]

[Yao85]

Jacobus Hendricus Van Lint. Introduction to coding theory, volume 86. Springer-Verlag
Berlin Heidelberg, 1999. doi:10.1007/978-3-642-58575-3. 165

Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85-93, 1986. doi:10.1016/0304-3975(86)90135-0. 240, 252, 254

Emanuele Viola and Avi Wigderson. Local expanders. Computational Complezity,
27(2):225-244, 2018. doi:10.1007/s00037-017-0155-1. 136

Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of
ACC circuits: Expanding the reach of #SAT algorithms. In STACS, volume 154 of LIPlIcs,
pages 59:1-59:17, 2020. doi:10.4230/LIPIcs.STACS.2020.59. 19

Nikhil Vyas and Ryan Williams. On oracles and algorithmic methods for proving lower
bounds. In ITCS, volume 251 of LIPIcs, pages 99:1-99:26. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.99. 199

Jason Vander Woude, Peter Dixon, A. Pavan, Jamie Radcliffe, and N. V. Vinodchandran.
The geometry of rounding. Electron. Colloguium Comput. Complex., TR22-160, 2022. URL:
https://eccc.weizmann.ac.il/report/2022/160. 152

R. Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM Journal of Computing, 42(3):1218-1244, 2013. doi:10.1137/10080703X%. 3, 19, 86,
103

R. Ryan Williams. Towards NEXP versus BPP? In CSR, volume 7913 of Lecture Notes in
Computer Science, pages 174-182. Springer, 2013. doi:10.1007/978-3-642-38536-0_15.
235

R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1-2:32, 2014.
doi:10.1145/2559903. 3, 19, 79, 235, 304

R. Ryan Williams. Natural proofs versus derandomization. SIAM Journal of Computing,
45(2):497-529, 2016. doi:10.1137/130938219. 19, 85, 236, 305

R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965-1985, 2018. doi:10.1137/15M1024524. 79

R. Ryan Williams. Limits on representing Boolean functions by linear combinations of
simple functions: Thresholds, ReLUs, and low-degree polynomials. In CCC, volume 102 of
LIPIcs, pages 6:1-6:24, 2018. doi:10.4230/LIPIcs.CCC.2018.6. 19, 49, 54, 87, 89

R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1-25, 2018. doi:10.4086/toc.2018.v014a017. 5, 19, 25, 80

R. Ryan Williams. Some estimated likelihoods for computational complexity. In Computing
and Software Science, volume 10000 of Lecture Notes in Computer Science, pages 9-26.
Springer, 2019. doi:10.1007/978-3-319-91908-9_2. 235

Henning Wunderlich. On a theorem of Razborov. Comput. Complex., 21(3):431-477, 2012.
doi:10.1007/800037-011-0021-5. 2

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In FOCS, pages 80-91, 1982. doi:10.1109/SFCS.1982.45. 164, 177, 278

Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In FOCS, pages 1-10. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.49.
24

325

https://doi.org/10.1007/978-3-642-58575-3
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/s00037-017-0155-1
https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.4230/LIPIcs.ITCS.2023.99
https://eccc.weizmann.ac.il/report/2022/160
https://doi.org/10.1137/10080703X
https://doi.org/10.1007/978-3-642-38536-0_15
https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
https://doi.org/10.1137/15M1024524
https://doi.org/10.4230/LIPIcs.CCC.2018.6
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1007/978-3-319-91908-9_2
https://doi.org/10.1007/S00037-011-0021-5
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1985.49

[Zak83] Stanislav Zak. A Turing machine time hierarchy. Theor. Comput. Sci., 26:327-333, 1983.
doi:10.1016/0304-3975(83)90015-4. 26, 28

[Zwi9l] Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric Boolean
functions over the basis of unate dyadic Boolean functions. SIAM J. Comput., 20(3):499—-
505, 1991. doi:10.1137/0220032. 2

326

https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1137/0220032

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Explicit Construction Problems
	1.2 Complexity-Theoretic Constructions
	1.3 The Range Avoidance Problem
	1.4 Our Contributions: A Bird's-Eye View
	1.5 List of Papers

	2 Preliminaries
	2.1 Circuit Classes
	2.2 The Computational Models
	2.3 Machines That Take Advice
	2.4 Error-Correcting Codes
	2.5 Probabilistically Checkable Proofs of Proximity

	3 Range Avoidance via Satisfying-Pairs
	3.1 Introduction
	3.2 Technical Overview
	3.3 Preliminaries
	3.4 Range Avoidance
	3.5 Remote Point
	3.6 Hard Partial Truth Tables
	3.7 Average-Case Hard Partial Truth Tables
	3.8 Unconditional Algorithms for Range Avoidance

	4 The ``Complete'' Algorithmic Method
	4.1 Overview
	4.2 Preliminaries
	4.3 Derandomisation with Preprocessing Implies Circuit Lower Bounds
	4.4 Strong Average-Case Circuit Lower Bounds
	4.5 Applications
	4.6 Equivalences between Circuit Lower Bounds and Derandomisation with Preprocessing

	5 Constructions of Rectangular PCPs of Proximity
	5.1 Construction of Smooth and Rectangular PCPP
	5.2 Rectangular PCPPs with Low Query Complexity

	6 Polynomial-Time Pseudodeterministic Constructions
	6.1 Introduction
	6.2 Preliminaries
	6.3 Pseudodeterministic Constructions for Dense Properties
	6.4 Modified Shaltiel–Umans Generator with Uniform Learning Reconstruction
	6.5 Improved Chen–Tell Targeted Hitting Set Generator

	7 Near-Maximum Circuit Lower Bounds and New Algorithms for Range Avoidance
	7.1 Introduction
	7.2 Preliminaries
	7.3 The Jeřábek–Korten Reduction
	7.4 Circuit Lower Bounds for Sigma2E
	7.5 Circuit Lower Bounds for S2E

	8 The Complexity of Avoiding Heavy Elements
	8.1 Introduction
	8.2 Preliminaries
	8.3 Heavy Avoid and Uniform Lower Bounds
	8.4 Heavy Avoid and Derandomisation
	8.5 Properties of the PSPACE-Complete Language

	9 Hardness of Range Avoidance from Demi-Bits
	9.1 Introduction
	9.2 Preliminaries
	9.3 Hardness of Range Avoidance
	9.4 Lower Bounds for Student-Teacher Games
	9.5 Candidate Demi-Bits Generators
	9.6 Hardness of Range Avoidance from Predictable Arguments

	10 Conclusions and Future Directions
	Bibliography

