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Abstract

Explicit constructions of pseudorandom objects play a central role in theoretical computer
science. Unfortunately, for many properties of interest, while a randomly chosen object would
satisfy them with high probability, deterministically constructing such objects remains notori-
ously challenging. For example, Erdős famously showed that a random graph is almost always a
Ramsey graph, yet explicitly constructing Ramsey graphs has been a long-standing open prob-
lem.

Recently, several explicit construction problems have seen progress through complexity-
theoretic ideas. Unlike previous ad-hoc methods tailored to individual cases, these complexity-
theoretic approaches offer systematic solutions applicable to broad families of explicit con-
struction problems. Central to this line of research is the Range Avoidance problem (Avoid),
which encapsulates a wide array of explicit construction problems: Deterministically solving
Avoid would simultaneously resolve many open questions in explicit construction. What are
the strengths and limitations of these complexity-theoretic techniques, and how can understand-
ing the complexity of Avoid illuminate these questions?

This thesis examines the complexity of explicit construction problems, with a particular focus
on the Range Avoidance problem. We uncover a strong connection between explicit construction
problems and fundamental questions in complexity theory, making progress in both domains.
Specifically, our contributions include:

• Algorithmic Method for Range Avoidance: We generalise Williams’s Algorithmic
Method (2011)—originally developed for proving circuit lower bounds—to solve the Range
Avoidance problem. Our results demonstrate that this method applies not only to circuit
lower bounds but also to explicit construction problems in general. Consequently, we derive
new complexity lower bounds and develop novel algorithms for special cases of Avoid.
Building on these techniques, we further show that a slight extension of the Algorithmic
Method fully characterises, i.e., is both necessary and sufficient for, proving circuit lower
bounds for ENP.

• Unconditional constructions: We present new unconditional results in explicit con-
structions. In particular, we devise an infinitely-often pseudodeterministic polynomial-
time algorithm for finding prime numbers. We also introduce a new algorithm for solving
the Range Avoidance problem. The latter result yields near-optimal circuit lower bounds
for the complexity classes Σ2E and S2E/1, resolving a 40-year-old open question from Kan-
nan (1982). These results are obtained through a novel “iterative win-win” method, which
is likely to have broader applications in complexity theory.

• Additional results: In addition, we study the related Heavy Range Avoidance prob-
lem, uncovering its connections to uniform lower bounds and derandomisation. We also
present new hardness results for the Range Avoidance problem under Rudich’s demi-bits
conjectures, which have implications in proof complexity as well.
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Chapter 1

Introduction

“How difficult could it be to find hay in a haystack?”

Howard Karloff [AB09, Chapter 21]

1.1 Explicit Construction Problems

The Prime Number Theorem implies that a significant fraction of integers are prime: If
one samples an n-bit integer uniformly at random (i.e., from the interval [2n−1, 2n)), then the
probability that it is prime is at least Ω(1/n). Therefore, to find a large prime number, it suffices
to generate a few random integers and test each of them for primality. Perhaps surprisingly, it
is unknown if the same task can be accomplished efficiently without using randomness: current
deterministic methods for generating n-bit primes either rely on strong number-theoretic or
complexity-theoretic assumptions (such as Cramér’s conjecture [Cra36] or P = BPP [IW97]), or
require exponential (2Ω(n)) time [LO87,TCH12,BHP01].1

It turns out that the above example of finding prime numbers is just one of numerous
difficult “explicit construction” problems, where a random object is very likely to satisfy a certain
desired property, but it appears very difficult to find any object satisfying the same property
deterministically :

• In 1959, Erdős [Erd59] famously introduced the probabilistic method to show that a ran-
dom graph is likely to be a Ramsey graph. Since then, it has been a notorious open
problem to find an explicit construction of Ramsey graphs: the best known explicit con-
structions achieve parameters that are significantly weaker than those obtained by random
graphs [FW81,Alo98,Gro00,Bar06].

Ramsey graphs are closely related to two-source dispersers and two-source extractors in
the study of pseudorandomness. Although there has been substantial progress in explic-
itly constructing such objects [CG88, Raz05, Bou05, BKS+10, BRSW12, Li12, CZ19, Li16,
BDT16, CL16, Coh16a, Coh16b, Coh17, Mek17, Li17, Li19, Lew19, Li23], the challenge of

1In fact, the problem of fast deterministic generation of primes was exactly the focus of the Polymath 4
project. This project establishes an improved algorithm for counting the parity of the number of primes in an
interval [TCH12], but despite much effort, it did not improve the 2n/2+o(1) time bound established in [LO87]
for deterministically generating an n-bit prime. See https://michaelnielsen.org/polymath/index.php?title=
Finding_primes (Accessed: Aug 28, 2025) for more details.

1

https://michaelnielsen.org/polymath/index.php?title=Finding_primes
https://michaelnielsen.org/polymath/index.php?title=Finding_primes


constructing an explicit two-source extractor with parameters matching those of random
functions remains wide open.

• Valiant [Val77] showed, again via the probabilistic method, that a random matrix is very
likely to be a rigid matrix. Explicit constructions of rigid matrices would have major
consequences in complexity theory, with applications to circuit complexity [Val77,Pud94,
AW17], communication complexity [Raz89, Wun12, Lok01, Pud94], and beyond [Lok09].
Yet, despite decades of work, the best known explicit constructions fall far short of the
rigidity parameters achieved by random matrices, and thus have not been strong enough
to yield the desired implications [Fri93,SSS97,GT18,VK21,Ram20].

• Random linear codes achieve a rate-distance trade-off known as the Gilbert–Varshamov
bound [Gil52, Var64] with high probability. Yet, despite extensive work, constructing
such codes explicitly has remained a longstanding open problem in coding theory [Jus72,
AGHP92,ABN+92,NN93,BT11,BT13,Ta-17].

• Perhaps the most dramatic example is that of circuit lower bounds. More than 75 years
ago, Shannon [Sha49] showed that most Boolean functions on n inputs require circuits
of size Ω(2n/n). Yet the strongest known lower bounds for any explicit function remain
extremely weak: only 3n over the complete basis [KM65,Sch74,Sto77,Pau77,Blu84,DK11]
and 5n over the De Morgan basis [Sch76, Zwi91, LR01, IM02]. Two recent breakthrough
works used intricate case analysis to push the bound slightly further, achieving 3.1n−o(n)
over the complete basis [FGHK16,LY22]. Even more embarrassingly, we are still unable to
rule out the possibility that ENP—the class of problems solvable in 2O(n) time with an NP

oracle—admits linear-size circuits. Arora and Barak’s textbook [AB09] described circuit
lower bounds as “complexity theory’s Waterloo.”

1.2 Complexity-Theoretic Constructions

Most previous explicit construction algorithms rely on ad-hoc insights tailored to the partic-
ular construction problems at hand. For example, the seminal zig-zag construction of expander
graphs [RVW02] involves studying the spectral properties of the “zig-zag product” of two graphs
in terms of the spectral properties of the original graphs. As a result, we are often stuck at many
seemingly simple explicit construction problems (such as constructing rigid matrices) since they
do not seem amenable to “ad-hoc analysis.”

In contrast, there are a few notable (counter-)examples where construction algorithms are
driven by general ideas from complexity theory rather than problem-specific tricks:

• Pseudodeterministic constructions for primes. Oliveira and Santhanam [OS17b]
showed unconditionally that there is a subexponential-time pseudodeterministic algorithm
that constructs primes infinitely often. A pseudodeterministic algorithm [GG11] is a ran-
domised algorithm that, with high probability, outputs a fixed canonical answer, indepen-
dent of the internal randomness. It is easy to see that the naïve randomised algorithm for
constructing primes using rejection sampling is not pseudodeterministic: Under different
choices of internal randomness, the algorithm is likely to output different primes.

2



Notably, the algorithm of Oliveira and Santhanam uses very few properties of primality:
only that there are a lot of primes (the Prime Number Theorem) and that primality can
be decided in deterministic polynomial time [AKS04]. Instead, the algorithm relies on
complexity-theoretic ideas such as derandomisation [IW01, TV07] and win-win analysis.
As a consequence, the algorithm solves the explicit construction problem (pseudodeter-
ministically) not only for primes, but for any dense property in P.

• Rigid matrices with an NP oracle. Alman and Chen [AC19] showed how to construct
rigid matrices with parameters much better than previously known, with the aid of an NP

oracle. That is, they designed an FPNP algorithm that, given 1n (the length-n unary string)
as input, outputs an n× n matrix that is rigid (in some parameter regime). Previously, it
was unclear how to construct such matrices even with an NP oracle.

Perhaps what is more interesting is their technical insight: They treated low-rank ma-
trices as a (non-standard) circuit class C and observed that constructing a rigid matrix
is equivalent to proving an (average-case) circuit lower bound against C . Then, they in-
voked Williams’s seminal “Algorithmic Method” [Wil13a,Wil14] for proving circuit lower
bounds. The Algorithmic Method needs a “circuit-analysis” algorithm for C , which follows
from previous work [CW21].2 The only property of matrix rigidity used by [AC19] is the
existence of such a “circuit-analysis” algorithm for C .

Compared to “ad-hoc” algorithms, algorithms based on complexity-theoretic ideas are able to
solve an entire class of explicit construction problems (e.g., all dense properties in P) and make
progress on many difficult problems that otherwise resist attack. However, one drawback is that
these algorithms only achieve weaker notions of explicitness: compared to standard, determin-
istic polynomial-time constructions, [OS17b] only achieves pseudodeterministic constructions,
and [AC19] requires an NP oracle. When can we leverage complexity theory to solve explicit
construction problems? Which notions of “explicitness” can we hope to achieve through such
methods? Is there a deeper “complexity theory” underlying these explicit construction problems?

1.3 The Range Avoidance Problem

It turns out that the following total search problem, known as the Range Avoidance problem
(Avoid), plays a central role in the study of explicit construction problems:

Problem 1.3.1 (Range Avoidance Problem). Given the description of a circuit C : {0, 1}n →
{0, 1}ℓ, where ℓ > n, output any string y ∈ {0, 1}ℓ that is not in the range of C. That is, for every
x ∈ {0, 1}n, C(x) ̸= y.

The dual weak pigeonhole principle [Kra01b, Jeř04] states that if N pigeons are placed into
M holes where M ≥ 2N , then there is an empty hole. This principle implies that Avoid is a
total problem, i.e., it always has a valid solution. As a natural example of total search problems
in functional Σ2P (TFΣ2P), this problem was also studied in [KKMP21] under the name 1-
Empty.3 Indeed, it is easy to see that Avoid belongs to (the function version of) Σ2P, but it

2The conference version of [CW21] appeared in SODA’2016.
3“Empty” stands for “empty pigeonhole principle”; the constant 1 means that the input circuit has stretch at

least one bit, i.e., ℓ ≥ n+ 1.

3



is unknown whether it is in FNP. We may try to solve Avoid by guessing a string y ∈ {0, 1}ℓ
as an answer, but it seems unclear how to verify that y is not in the range of C without using a
universal quantifier.

It was pointed out by Korten [Kor21] that the Range Avoidance problem nicely captures the
complexity of explicit constructions. Most explicit construction problems can be rephrased as
a unary total search problem: Given 1n as input, find a valid object of size n. It was shown in
[Kor21, Section 3] that many explicit construction problems reduce to Avoid, including Ramsey
graphs, rigid matrices, circuit lower bounds, and many more.4 In fact, for combinatorial objects
whose existence is proven via the probabilistic method, it tends to be the case that constructing
such objects reduces to the Range Avoidance problem.

Example 1.3.2. Consider, for example, the problem of proving circuit lower bounds. Fix a size
threshold such as s(n) := 2n/2, we want to solve the following (unary) total search problem: Given
1N as input where N := 2n, find the length-N truth table of any function f : {0, 1}n → {0, 1} that
cannot be computed by circuits of size s(n).

Let TT : {0, 1}O(s log s) → {0, 1}2n denote the function that takes as input the description of
a size-s circuit, and outputs the truth table of this circuit. (Here TT stands for “truth table”.) If
we could solve Avoid on the particular instance TT, then we could find a truth table tt ∈ {0, 1}2n

without size-s circuits, therefore proving a circuit lower bound. More precisely, solving Avoid for
TT in polynomial time is equivalent to proving a circuit lower bound for E, and solving Avoid for
TT in FPNP is equivalent to proving a circuit lower bound for ENP.

Perhaps surprisingly, the main result of [Kor21] is that proving circuit lower bounds is the
hardest explicit construction: There is a PNP-reduction from Avoid to the total search problem
defined in Example 1.3.2 for any s(n) = 2Ω(n). (As pointed out in [Kor21], the same result was
proven in the language of bounded arithmetic by Jeřábek [Jeř04].) In this regard, the study
of explicit construction sheds light on the (metamathematical) difficulty of circuit complexity:
Proving circuit lower bounds is hard because it is as hard as solving a wide class of explicit
construction problems, many of which (e.g., Ramsey graphs, rigid matrices, and so on) seem
unrelated at first glance.

1.4 Our Contributions: A Bird’s-Eye View

In this thesis, we investigate the complexity of explicit construction problems, with a partic-
ular emphasis on the Range Avoidance problem. Our study reveals an intimate and bidirectional
connection between explicit construction and complexity theory: Insights in complexity theory
often lead to advances in explicit constructions, and, in turn, these advances yield consequences
back to complexity theory as well!

An Algorithmic Method for explicit construction. First, motivated by the success of
the Algorithmic Method in constructing rigid matrices [AC19,BHPT24,CLW20,CL21,HV21],
we study the effectiveness of the Algorithmic Method for general explicit construction problems.

4Primality appears to be an exception. It remains unknown whether there is a polynomial-time reduction
from finding prime numbers to Avoid [PWW88,Kor22].
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In Chapter 3, we develop a version of the Algorithmic Method for solving the Range Avoid-
ance problem. While the traditional Algorithmic Method derives circuit lower bounds from
“non-trivial” circuit-analysis algorithms, our Algorithmic Method solves the Range Avoidance
problem with an NP oracle given a (different kind of) “non-trivial” circuit-analysis algorithm.
Using circuit-analysis algorithms that are implicit in the literature [Wil18c], we obtain uncon-
ditional FPNP algorithms for a special case of Range Avoidance for ACC0 circuits. This both
recovers the best known ACC0 circuit lower bounds [CLW20] and implies new lower bounds.

Our results suggest a reinterpretation of the intuition behind [AC19], which treats low-rank
matrices as a “circuit class” and applies the Algorithmic Method to prove circuit lower bounds.
We propose that the Algorithmic Method is fundamentally a technique for explicit construction
problems—proving circuit lower bounds is just one of its applications.

We take a step back and consider the Algorithmic Method for proving circuit lower bounds
in Chapter 4. We first prove a slight extension of the Algorithmic Method: circuit-analysis
algorithms, even with “ENP preprocessing”, imply circuit lower bounds. Next, we show that this
is in fact the complete Algorithmic Method that characterises circuit lower bounds for ENP: for
circuit classes C satisfying mild technical conditions, ENP is hard against C if and only if such
circuit-analysis algorithms with ENP-preprocessing exist. Curiously, while this result itself is
entirely within the realm of circuit complexity, the most natural way of deriving it seems to be
via explicit constructions and the Range Avoidance problem. We view this characterisation of
circuit lower bounds for ENP as a “gift” from explicit constructions to circuit complexity.

The iterative win-win method. Next, we present new unconditional results in explicit
construction and circuit lower bounds:

• In Chapter 6, we present a polynomial-time, infinitely-often, pseudodeterministic construc-
tion of primes, improving upon the prior subexponential-time algorithm of [OS17b].

• In Chapter 7, we show that the complexity classes Σ2E and S2E/1 cannot be computed by
circuits of size 2n/n. Previously, only super-polynomial size lower bounds for these classes
were known [Kan82,MVW99,CCHO05,Cai07].

Both results rely on a novel iterative win-win method. Previous results only achieved sub-
optimal bounds: [OS17b] obtained subexponential-time constructions (ideally we would like
polynomial-time constructions) and [Kan82] proved super-polynomial circuit lower bounds (ide-
ally we would like exponential lower bounds). A common reason for the inefficiency of these
results is that their proofs use a win-win analysis that involves two cases; the structure of the
win-win analysis prevents us from obtaining optimal bounds in both cases. In fact, this proof
strategy yields so-called “half-exponential” bounds [MVW99].

Instead, in Chapter 6 and Chapter 7, we use a more refined win-win analysis involving not
two, but O(log n) many cases. A careful analysis of this iterative win-win approach gives optimal
bounds on each of the O(log n) cases.

We also remark that by the main result of [Kor21], the new circuit lower bound in Chap-
ter 7 implies pseudodeterministic constructions with an NP oracle for a wide range of objects,
including Ramsey graphs, rigid matrices, optimal linear codes, and more. These results further
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illustrate the strong synergy between circuit complexity and explicit constructions: advances in
one area would catalyse progress in the other.

Avoiding heavy elements. In Chapter 8, we study a variant of the Range Avoidance problem
which we call the Heavy Avoidance problem (Heavy-Avoid). In this problem, given a distribution
D over {0, 1}n (described by a circuit sampling from D) and a parameter δ ≥ 1/poly(n)≫ 2−n,
the goal is to output any string x ∈ {0, 1}n that is sampled from D with probability at most
δ. Clearly, this problem is total and can be solved in SearchBPP. Does it admit deterministic
algorithms? Or is it complete for prBPP?

We investigate both questions above and show that both are connected to long-standing
open problems in complexity theory. Just like Avoid is intimately connected to circuit lower
bounds, we show that Heavy-Avoid is also intimately connected to lower bounds against uniform
probabilistic circuits; in fact, deterministic algorithms for certain versions of Heavy-Avoid are
equivalent to such lower bounds. Then, we study the connection between Heavy-Avoid and
derandomisation. Leveraging recent advances in derandomisation [CT21a,LP23], we show that
Heavy-Avoid is prRP-hard under very weak, non-black-box reductions. We also study whether
Heavy-Avoid is prBPP-complete under more standard types of reductions, but in general this
remains an intriguing open question.

Hardness of Range Avoidance. Finally, in Chapter 9, we study the hardness of Avoid with
respect to deterministic (and nondeterministic) algorithms. Ilango, Li, and Williams [ILW23]
showed that, assuming the existence of subexponentially-secure indistinguishability obfuscations
(iO) [BGI+12,GGH+16, JLS21] and that NP ̸= coNP, there is no deterministic algorithm that
solves Avoid in polynomial time. This result may seem surprising, since there is a trivial
randomised algorithm for Avoid: simply output a random string and it is not in the range
of the input circuit with good probability. Building on this, Chen and Li [CL24] showed that
under certain subexponential assumptions in nondeterministic cryptography with a public-key
flavour (i.e., “Cryptomania” [Imp95]), there is no nondeterministic algorithm that solves Avoid

in polynomial time.
The main result in Chapter 9 strengthens these findings: we show that the existence of

demi-bits generators [Rud97] implies the non-existence of nondeterministic polynomial-time al-
gorithms solving the Range Avoidance problem. This improves upon the previous results [ILW23,
CL24] in two aspects: First, the assumption we use is of “Minicrypt” flavour and is arguably
weaker than those in [CL24]. Second, our results do not require any subexponential hardness
assumption.

As observed in [RSW22], the hardness of Avoid against nondeterministic algorithms is con-
nected to the theory of proof complexity generators [Kra25], hence our results have implications
in proof complexity as well. In Chapter 9, we further explore the consequences of our results in
proof complexity. A highlight is that we show how to build proof complexity generators from
demi-bits generators—even though, a priori, the definition of the former seemed much stronger
than that of the latter.
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Chapter 2

Preliminaries

We use Un to denote the uniform distribution over {0, 1}n. For a circuit C : {0, 1}n → {0, 1}ℓ,
denote the range of C as

Range(C) := {C(x) : x ∈ {0, 1}n}.

We use Õ(f(n)) to denote f(n) · (log f(n))O(1). The concatenation of the strings x and y is
denoted by x ◦ y.

Let S be a finite sample space and E be an event. We use Prx←S [E] to denote the probability
that E happens if x is sampled uniformly from S. Similarly, for a random variable Y , we use
Ex←S [Y ] to denote the expectation of Y when x is sampled uniformly from S.

The relative Hamming weight of a string x ∈ {0, 1}ℓ, denoted as δ(x), is the fraction of indices
i ∈ [ℓ] such that xi = 1. For two strings x, y ∈ {0, 1}ℓ of equal length, the relative Hamming
distance between x and y, denoted as δ(x, y), is the fraction of indices i ∈ [ℓ] for which xi ̸= yi.
A string x is said to be γ-far from (resp. γ-close to) a string y if δ(x, y) ≥ γ (resp. δ(x, y) < γ).
We say x ∈ {0, 1}n is γ-far from L ⊆ {0, 1}n if x is γ-far from every y ∈ L; otherwise x is γ-close
to L. For a vector u⃗ ∈ Rn and an integer d ≥ 1, the ℓd norm of u⃗ is

∥u⃗∥d :=

(
E

i←[n]
[|ui|d]

)1/d

.

A function f : N → N is said to be good if there is a Turing machine such that given n in
binary, it runs in time poly(log n, log f(n)) and outputs f(n) in binary.

A circuit class C is said to be typical if it contains the identity circuit and is closed under
negations and projections. More precisely, (1) every function that always outputs its input bits
is computable by a constant size C circuit; (2) for any C circuit C of size s and projection proj,
both ¬C and C ◦ proj have C circuits of size poly(s), and the descriptions of these circuits can
be computed in poly(s) time.

2.1 Circuit Classes

Throughout this thesis, the size of a circuit is defined as the number of wires (instead of
gates) in the circuit. We will use the following (single-output) circuit classes.

• AC0
d refers to depth-d circuits with AND and OR gates of unbounded fan-in, and NOT
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gates of fan-in 1. We define AC0 :=
⋃

d∈N AC0
d.

• AC0
d[m] refers to depth-d circuits with AND, OR, and MOD[m] gates of unbounded fan-in,

and NOT gates of fan-in 1. A MOD[m] gate outputs 1 if and only if m does not divide
the number of 1 in its inputs. We define AC0[m] :=

⋃
d∈N AC0

d[m]. Furthermore, we define
ACC0 :=

⋃
m∈N AC0[m].

• CC0
d[m] refers to depth-d circuits with only MOD[m] gates of unbounded fan-in. We define

CC0[m] :=
⋃

d∈N CC0
d[m] and CC0 :=

⋃
m∈N CC0[m].

• NC0
d refers to constant-size circuits such that the output depends on at most d input bits.

We define NC0 :=
⋃

d∈NNC0
d.

• Assume that F ∈ {AND,OR,XOR,MOD[m], . . . } is a gate, we define an F circuit as a
circuit with only an F gate fed by some (or all) of the input bits. In particular, we define
an Fd circuit as a circuit with an F gate of fan-in at most d fed by some (or all) of the
input bits.

We define SYM as the class of any symmetric Boolean function, i.e., f : {0, 1}n → {0, 1}
such that f(x) = g(x1 + x2 + · · ·+ xn) for some function g.

Suppose that C1 and C2 are circuit classes, we denote C1 ◦ C2 as the composition of these
two classes: the input bits feed an n-input m-output C2 circuit C2, and the m output bits of
C2 feed an m-input single-output C1 circuit C1. For instance, a SYM ◦ ACC0 circuit contains a
symmetric output gate whose inputs are ACC0 circuits.

For a circuit class C , we use C [s] to represent the sub-class of C circuits of size at most s.

2.2 The Computational Models

We need to deal with two (nondeterministic) computational models: standard multi-tape
Turing machines (TMs) and Random Access Machines (RAMs). The difference between TMs
and RAMs is the following: for each work tape of an RAM, there is a corresponding address
tape such that the head of the work tape is always in the cell whose index is the content of the
address tape [GS89]. We need to be careful about the machine model we are using. For example,
our ACC0-Satisfying-Pairs algorithm runs in the RAM model, but the highly-efficient PCPP
[BGH+05] works in the TM model.

Fortunately, we can use the following result to simulate one machine model by the other
efficiently. Let T (n) be a good function, we use NTIMETM[T (n)] and NTIMERAM[T (n)] to denote
the set of languages computable in nondeterministic T (n) time on a multi-tape Turing machine
and an RAM respectively. Then we have:

Theorem 2.2.1 ([GS89]).
⋃

c≥1NTIMETM[n logc n] =
⋃

c≥1NTIMERAM[n logc n].

By a padding argument, for some absolute constant c ≥ 1, for every good function T (n),

NTIMETM[T (n)] ⊆ NTIMERAM[T (n) logc T (n)],

and NTIMERAM[T (n)] ⊆ NTIMETM[T (n) logc T (n)].
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2.3 Machines That Take Advice

Let C be a complexity class and f : N → N. Denote C/f the class of functions computable
by a C machine with f(n) bits of advice [KL80]. More formally, a language L is in C/f if there
is another language L′ ∈ C and a sequence of “advice” strings

{
αn ∈ {0, 1}f(n)

}
n∈N such that

∀n ∈ N, x ∈ {0, 1}n, x ∈ L ⇐⇒ (1n, x, αn) ∈ L′.

For example, P/poly denotes the class of languages computable in polynomial time given ad-
vice strings of polynomial length, which is equal to the class of languages with polynomial-size
circuits [Pip79,KL80].

In particular, this thesis will deal with the following complexity classes with advice:

• In Chapter 3, we use NTIMEGUESS[T (n), n/10]/(n/10) to denote the class of languages
computed by a nondeterministic machine in T (n) time, using n/10 nondeterministic bits
and n/10 advice bits. (See Theorem 3.3.1.)

• In Chapter 7, we prove a circuit lower bound for the class S2E/1, the class of languages
computable in symmetric exponential time with one bit of advice.

• One of the assumptions used in Chapter 9 is the existence of demi-bits generators se-
cure against AM/O(1), the class of Arthur–Merlin adversaries with O(1) advice bits (see
Section 9.2.2 for a precise definition).

2.4 Error-Correcting Codes

An error-correcting code with message length n, rate r, and relative distance δ is a function
Enc : {0, 1}n → {0, 1}rn such that for every pair of distinct x1, x2 ∈ {0, 1}n, the Hamming
distance between Enc(x1) and Enc(x2) is at least δ · rn. It is said to correct γ fraction of errors
if there is a function Dec : {0, 1}rn → {0, 1} such that for every y that is γ-close to Enc(x) for
some x ∈ {0, 1}n, Dec(y) = x.

We need the following standard construction of error-correcting codes.

Theorem 2.4.1 ([Spi96]). There is a GF(2)-linear error-correcting code (Enc,Dec) with a con-
stant rate and constant relative distance that can correct a constant fraction of errors. Moreover,
both Enc and Dec are uniformly computable in linear time.

2.5 Probabilistically Checkable Proofs of Proximity

We introduce Probabilistically Checkable Proofs of Proximity (PCPPs) [BGH+06] and the
two properties of PCPPs that will be useful for us: rectangularity and smoothness.

In what follows, a pair language is simply a subset of {0, 1}∗×{0, 1}∗. For an instance (z, x)

of a pair language, we treat z as the explicit input (which the PCPP verifier can read entirely)
and x as the implicit input (which the PCPP verifier could only read a few bits). For example,
Circuit-Eval is a pair language with two inputs, i.e., a circuit C and an input x, and the task
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is to evaluate C(x). A PCPP verifier for Circuit-Eval knows the input circuit C entirely but
can only access a few bits of x.

2.5.1 Basic Definitions

Definition 2.5.1 (PCP of Proximity Verifiers). Let r = r(n), q = q(n), ℓ = ℓ(n), d = d(n) be
good functions and L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. A PCPP verifier VPCPP for L
with proof length ℓ, randomness complexity r, decision complexity d, and query complexity q is
a tuple of Turing machines (Vtype, Vindex, Vdec) that verify a proof π ∈ {0, 1}ℓ of the statement
(z, x) ∈ L ∩ {0, 1}∗ × {0, 1}n in the following fashion.

• It randomly samples a seed ∈ {0, 1}r and generates

(itype[1], itype[2], . . . , itype[q])← Vtype(seed, z),

(i[1], i[2], . . . , i[q])← Vindex(seed, z).

For every j ∈ [q], itype[j] ∈ {input, proof} determines the type of the j-th query: If
itype[j] = input, the j-th query probes the i[j]-th bit of the “implicit input” x; otherwise
(i.e., itype[j] = proof), the j-th query probes the i[j]-th bit of the proof π.

• Let ans1, . . . , ansq be the answers to the queries defined above, we say VPCPP accepts
(z, x, π), denoted by VPCPPx◦Π(z, seed) = 1, if and only if Vdec(seed, z, ans1, . . . , ansq)=1.
The machine Vdec is said to be the decision predicate of VPCPP, and has circuit complexity
at most d(n).

We may represent the “implicit input” x as Πinput : [n] → {0, 1} and the proof π as Πproof :

[ℓ] → {0, 1} to emphasise that they are given as oracles to VPCPP. We sometimes denote the
outputs of Vtype and Vindex as I and denote the answers (ans1, . . . , ansq) as (Πinput ◦Πproof)|I .

We will also consider the PCPP verifier of pure languages (i.e. the first part z of any input
is always the empty string). In such case, we simply omit all the z in the definition above.

Definition 2.5.2 (PCP of Proximity). Let s = s(n) and δ = δ(n) be good functions, L ⊆
{0, 1}∗ × {0, 1}∗ be a pair language, and VPCPP = (Vtype, Vindex, Vdec) be a PCPP verifier for L.
We say VPCPP is a PCPP verifier for L with completeness error 1− c, soundness error s, and
proximity parameter δ if the following two conditions hold for every (z, x) ∈ {0, 1}∗ × {0, 1}n.

• (Completeness). If (z, x) ∈ L, then there is a proof π ∈ {0, 1}ℓ such that VPCPP accepts
(z, x, π) with probability at least c.

• (Soundness). Denote L(z) to be the set of y ∈ {0, 1}n such that (z, y) ∈ L. If x is δ-far
from L(z), then for every proof π ∈ {0, 1}ℓ, VPCPP accepts (z, x, π) with probability at
most s.

For most of the constructions of PCPPs, the completeness error can be made 0, which means
that for (z, x) ∈ L, there is a proof such that the verifier accepts with probability 1. Therefore,
we assume that the completeness error of a PCPP is 0 when it is not specified.

We need to define a stronger version of soundness called robust soundness as follows, as an
intermediate step for constructing PCPPs with nice parameters.
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Definition 2.5.3 (Robust PCP of Proximity [BGH+06]). Let s = s(n), δ = δ(n), and ρ = ρ(n)

be good functions, L ⊆ {0, 1}∗×{0, 1}∗ be a pair language, and VPCPP = (Vtype, Vindex, Vdec) be a
PCPP verifier for L. We say VPCPP is a robust PCPP verifier for L with robust soundness error
s, robustness parameter ρ, and proximity parameter δ if it satisfies the completeness property of
PCPP and the following robust soundness property.

• (Robust Soundness). The following holds for every (z, x) ∈ {0, 1}∗ × {0, 1}n. Denote
L(z) to be the set of y ∈ {0, 1}n such that (z, y) ∈ L. If x is δ-far from L(z), then for every
proof π ∈ {0, 1}ℓ, with probability at least 1 − s over the random bits seed, the answer
(ans1, . . . , ansq) of the queries of VPCPP is ρ-far from being accepted (i.e. we need to flip
at least a ρ fraction of the bits of the answers (ans1, . . . , ansq) to make the verifier accept).

2.5.2 Rectangular PCPs of Proximity

Roughly speaking, a rectangular PCPP verifier [BHPT24] treats the input as an Hinput ×
Winput matrix and the proof as an Hproof ×Wproof matrix, and generates the query indices in a
“rectangular” fashion. In particular, the random seed is split into two parts denoted as seed.row
and seed.col respectively, and there are two algorithms Vrow and Vcol such that:

• Vrow takes seed.row as input and generates irow[1], . . . , irow[q];
• Vcol takes seed.col as input and generates icol[1], . . . , icol[q];
• The final indices of the queries i[1], . . . , i[q] are defined as i[j] := (irow[j]− 1) ·W + icol[j],

where W =Winput or W =Wproof depending on the the type of the j-th query.
In other words, the row verifier Vrow (resp. the column verifier Vcol) takes the row randomness
seed.row (resp. the column randomness seed.col) and generates the row indices (resp. the column
indices) of the queries. Ideally, a rectangular PCPP should satisfy the following properties:

• (Perfect Rectangularity). The row randomness seed.row and column randomness
seed.col are independent random bits (i.e. the row and column query indices are inde-
pendent).

• (Randomness-Oblivious Type Predicate). The type predicate Vtype, which deter-
mines the types of the queries (i.e. whether a query is to the input or the proof oracle),
does not depend on the row and column random seeds.

• (Randomness-Oblivious Decision Predicate). The decision predicate Vdec, which
decides whether to accept the proof given the answers to the queries, does not depend on
the row and column random seeds.

However, as in [BHPT24], we do not know how to construct such rectangular PCPPs. Nev-
ertheless, we could construct a weaker version where the row and column randomness are almost
independent, and the dependencies of the decision and type predicates on the random seeds are
relatively simple. In particular, the random seed of an almost rectangular PCPP is partitioned
into three parts: seed.row, seed.col, and (a short portion) seed.shared and the following properties
are satisfied:

• (Almost Rectangularity). Vrow takes seed.row and seed.shared as inputs and gener-
ates the row query indices (irow[1], irow[2], . . . , irow[q]). Similarly, Vcol takes seed.col and
seed.shared as inputs and generates the column query indices (icol[1], icol[2], . . . , icol[q]).
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• (Randomness-Oblivious Type Predicate). The type predicate Vtype only depends on
seed.shared.

• (Randomness-Oblivious Decision Predicate). The decision predicate Vdec only de-
pends on seed.shared and p additional parity-check bits, where each parity-check bit pci is
a PARITY function over (a subset of indices in) (seed.row, seed.col).

We formally define such rectangular PCPPs as follows (for simplicity, we only define rectan-
gular PCPPs for pure languages).

Definition 2.5.4 (Rectangular PCPPs with Randomness-Oblivious Predicates). Let L ⊆ {0, 1}∗
be a language, Hinput = Hinput(n), Winput = Winput(n), Hproof = Hproof(n), Wproof = Wproof(n),
rrow = rrow(n), rcol = rcol(n), rshared = rshared(n), and p = p(n) be good functions such that
Hinput · Winput = O(n). A PCPP verifier VPCPP is said to be an almost rectangular PCPP
with row randomness rrow, column randomness rcol, and shared randomness rshared, that has a
randomness-oblivious predicate (ROP) with parity-check complexity p, if the following hold.

• (Randomness). The randomness complexity is r = rrow + rcol + rshared and the random
seed can be partitioned into three independent parts: row randomness seed.row ∈ {0, 1}rrow ,
column randomness seed.col ∈ {0, 1}rcol , and shared randomness seed.shared ∈ {0, 1}rshared .

• (Query Pattern). There are algorithms Vtype, Vrow, and Vcol running in deterministic
poly(|seed|) time that generates the queries in a rectangular fashion. More specifically:

◦ (itype[1], . . . , itype[q]) ← Vtype(seed.shared), where itype[j] ∈ {input, proof} for all j ∈
[q];
◦ (irow[1], . . . , irow[q])← Vrow(seed.row, seed.shared);
◦ (icol[1], . . . , icol[q])← Vcol(seed.col, seed.shared);
◦ For every j ∈ [q], the index of the j-th query is i[j] := irow[j] ·W + icol[j], where
W =Winput if itype[j] = input and W =Wproof otherwise.

Like normal PCPP verifiers, the j-th query is to the i[j]-th bit of the input if itype[j] =
input, and is to the i[j]-th bit of the proof if itype[j] = proof. Note that since Hinput ·Winput

may be larger than n, the query to the input is not well-defined when i[j] > n. In such
case, we define the answer to be ⊥.

• (Decision Predicate). There are algorithms Vdec and Vpc running in deterministic
poly(|seed|) time such that the following holds.

◦ The algorithm Vdec(seed.shared) generates a circuit VDec : {0, 1,⊥}p+q → {0, 1}.
◦ The algorithm Vpc(seed.shared) generates p XOR gates (i.e., GF(2)-linear functions)
pc1, . . . , pcp : {0, 1}rrow+rcol → {0, 1}.

Assume that (ans1, . . . , ansq) ∈ {0, 1,⊥}q are the answers to the queries. For every i ∈ [p],
we denote pci := pci(seed.row, seed.col). The PCPP verifier accepts the proof if

VDec(ans1, . . . , ansq, pc1, . . . , pcp) = 1.

The decision complexity of this PCPP verifier is said to be the circuit complexity of Vdec.

14



Remark 2.5.5. For clarity, we now present the streamlined procedure of how a rectangular PCPP
with randomness-oblivious predicate works:

1. Sample shared randomness seed.shared ∈ {0, 1}rshared . Based on it,
(a) Construct a decision predicate circuit VDec← Vdec(seed.shared).
(b) Construct the parity-checks functions (pc1, . . . , pcp) ← Vpc(seed.shared). Here, each pci

is a PARITY function over (a subset of indices in) seed.row and seed.col.
(c) Compute query types

(itype[1], itype[2], . . . , itype[q])← Vtype(seed.shared).

2. Sample row randomness seed.row ∈ {0, 1}rrow . Compute row indices

(irow[1], irow[2], . . . , irow[q])← Vrow(seed.row, seed.shared).

3. Sample column randomness seed.col ∈ {0, 1}rcol . Compute column indices

(icol[1], icol[2], . . . , icol[q])← Vcol(seed.col, seed.shared).

4. Compute randomness parity checks

PC := (pc1(seed.row, seed.col), , . . . , pcp(seed.row, seed.col)).

5. Compute ans := (ans1, ans2, . . . , ansq) as in Definition 2.5.4.
6. Output the result of the computation VDec(ans,PC).

In the Algorithmic Method, we also care about the circuit complexity of computing the query
indices from the random seed. In fact, our rectangular PCPPs will have the lowest possible
circuit complexity: the query indices are computable by a projection (i.e., NC0 circuit of locality
1). More formally:

Definition 2.5.6. We say that the query indices of a rectangular PCPP can be computed by
(polynomial-time) projections if for every seed.shared, the functions V row and V col (which maps
seed.row and respectively seed.col to the row/column parts of query indices) are projections
over seed.row and respectively seed.col, and moreover these projections can be computed in
polynomial time given seed.shared.

2.5.3 Smooth PCP of Proximity

Apart from rectangularity, we also want our PCPPs to be smooth: each location is probed
with equal probability.1 The formal definition is as follows.

Definition 2.5.7 (Smooth PCPPs for Pure Languages). Let r = r(n), q = q(n) be good
functions, L ⊆ {0, 1}∗ be a language, and VPCPP = (Vtype, Vindex, Vdec) be a PCPP verifier for
L with randomness complexity r. We say VPCPP is a smooth PCPP verifier if for all locations
loc1, loc2 in the proof oracle, over a uniformly random seed ← {0, 1}r and a uniformly random
index j ← [q], loc1 and loc2 are probed by VPCPP with equal probability in the j-th query.

1In some literature (e.g. [Par21]), the smoothness of PCPPs is defined differently: the queries to both the input
oracle and the proof oracle need to be smooth, i.e., each location in the input (resp. the proof) is queried with
equal probability. Here, we only require the queries to the proof oracle to be smooth and pose no requirement
on the query distribution over the input oracle.
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Smooth PCPPs can be viewed as PCPPs that can tolerate errors in the proof: since all the
locations in the proof are queried with equal probability, a slightly corrupted version of a correct
proof is still likely to be accepted, as shown in the following lemma.

Lemma 2.5.8. Let q = q(n), ℓ = ℓ(n), s = s(n) be good functions, L ⊆ {0, 1}∗ be a language,
and VPCPP be a smooth PCPP verifier for L with soundness error s, proof length ℓ, and query
complexity q. Assume that x ∈ L ∩ {0, 1}n and π ∈ {0, 1}ℓ is a correct proof for x ∈ L, i.e.,
VPCPPx◦π(seed) accepts with probability 1 over seed ← {0, 1}r. Then for every π′ such that
the relative Hamming distance between π′ and π is at most ε, VPCPPx◦π′(seed) accepts with
probability at least 1− q · ε over seed← {0, 1}r.

Proof. We say a location i ∈ [ℓ] of the proof oracle is bad if π[i] ̸= π′[i]. Let Bj be the event
that the j-th query of VPCPP probes a bad location in the proof. By the smoothness, we know
that

Pr
seed←{0,1}r,j←[q]

[Bj ] ≤ ε.

By a union bound, we can see that

Pr
seed←{0,1}r

[∃j ∈ [q], Bj ] ≤
∑

j∈[q]

Pr
seed←{0,1}r

[Bj ] ≤ q · ε. (2.1)

Denote E to be the event that there exists a j ∈ [q] such that Bj happens. Then it follows that

Pr
seed←{0,1}r

[
VPCPPx◦π′(seed) rejects

]

≤ Pr
seed←{0,1}r

[
VPCPPx◦π′(seed) rejects | ¬E

]
+ Pr

seed←{0,1}r
[E]

≤ 0 + q · e
= q · e,

where the second inequality follows from (2.1) and the perfect completeness of VPCPP.

Note that smoothness can be defined for rectangular PCPPs, in which case each location in
the proof matrix is probed with equal probability. This further means that each row (resp. col-
umn) index is queried by the row (resp. column) verifier with equal probability.

Remark 2.5.9. A stronger definition of smoothness is as follows: for every fixed i ∈ [q], condition on
the i-th query probing the proof oracle, the i-th query is uniformly random over the proof oracle.
By randomly permuting the q queries, we can make a smooth PCPP satisfy this stronger definition
of smoothness. In particular, if we have a smooth and rectangular PCPP, we can make it satisfy this
stronger definition of smoothness by adding O(q log q) bits in the shared randomness for a random
permutation over the q queries.

2.5.4 Our Constructions

In this thesis, we provide two new constructions of rectangular PCPPs. For solving the Range
Avoidance problem and constructing worst-case hard partial truth tables, we need a rectangular
PCPP with query complexity 3 or 2 (depending whether perfect completeness is required); for
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solving the Remote Point problem and constructing average-case hard partial truth tables, we
need a smooth and rectangular PCPP with query complexity O(1).2 These rectangular PCPPs
are constructed in Chapter 5.

Theorem 2.5.10 (3-Query and 2-Query Rectangular PCPPs). For every constant δ ∈ (0, 1),
there are constants s3 ∈ (0, 1) and 0 < s2 < c2 < 1 such that the following holds. Let m = m(n),
T (n), wproof(n), winput(n) be good functions such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤
2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤ log n. Then there are good functions h3qproof(n),
h2qproof(n), and hinput(n) satisfying

h3qproof(n), h
2q
proof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) = ⌈log n⌉ − winput(n),

such that the following holds.
Suppose that wproof , h

3q
proof , h

2q
proof ≥ (5/m) log T (n), and for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

h3qproof(n)
,
hinput(n)

h2qproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), H3q
proof(n) := 2h

3q
proof(n), H2q

proof(n) := 2h
2q
proof(n), Winput(n) := 2winput(n),

and Hinput(n) := 2hinput(n). Then NTIME[T (n)] has:

• a rectangular PCP of proximity V3q with perfect completeness, soundness error s3, an
H3q

proof(n)×Wproof(n) proof matrix and an Hinput(n)×Winput(n) input matrix;

• a rectangular PCP of proximity V2q with completeness error 1− c2, soundness error s2, an
H2q

proof(n)×Wproof(n) proof matrix and an Hinput(n)×Winput(n) input matrix.

Other parameters of V3q and V2q are specified in Table 2.1.
Furthermore, given the randomness seed ∈ {0, 1}r, the total number of queries and parity-

check bits is at most 3 for V 3q and 2 for V 2q, and the decision predicate VDec← Vdec(seed.shared)

of the rectangular PCPP verifier is an OR of the input bits (including queries and parity-check
bits) or their negations for every seed.shared. Also, the query indices of V3q and V2q can be
computed by projections.

Theorem 2.5.11 (Smooth and Rectangular PCPP). For all constants δ ∈ (0, 1) and s ∈ (0, 1),
there is a constant q ≥ 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n)

be good functions such that 1 ≤ m(n) ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n),
and winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) := ⌈log n⌉ − winput(n),

such that the following holds.
2Unfortunately, our smooth PCPP requires a large (although constant) number of queries, because of the

arguments in Section 5.1.4.
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PCPP Verifier V 3q V 2q

Completeness error 0 1− c2
Soundness error s3 s2

Proximity parameter δ

Row randomness h3qproof−(5/m) log T (n) h2qproof−(5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
3 2Parity check complexity

Decision complexity poly(log log T )

Table 2.1: Parameters of the PCPPs constructed in Theorem 2.5.10.

Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm2 log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) :=

2hinput(n). Then NTIME[T (n)] has a smooth and rectangular PCP of proximity with an Hinput(n)×
Winput(n) input matrix and an Hproof(n)×Wproof(n) proof matrix, with query indices computable
by projections, and whose other parameters are specified in Table 2.2.

Soundness error s

Proximity parameter δ

Row randomness rrow := hproof − (5/m) log T (n)

Column randomness rcol := wproof − (5/m) log T (n)

Shared randomness rshared := (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
q = Os,δ(1)Parity check complexity

Decision complexity poly(T (n)1/m)

Table 2.2: Parameters of the PCPP constructed in Theorem 2.5.11.

Remark 2.5.12 (Comparison with [BHPT24]). Our rectangular PCP of proximity differs from the
rectangular PCP in [BHPT24] in the following ways.

• The biggest difference is that our construction is a smooth PCP of proximity. As a result, the
input is also treated as a matrix, and its query pattern is also rectangular.

• The input matrix size and the proof matrix size in our rectangular PCPP are flexible, while
the proof matrix in [BHPT24] is

√
m×√m. It is easy to make the proof matrix size flexible,

but more care needs to be taken for the input matrix. (See Section 5.1.2 where we artificially
define a bijection called binHm .) This is quite important as in our application, we need the
input matrix width to be as small as possible!
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Chapter 3

Range Avoidance via Satisfying-Pairs

3.1 Introduction

3.1.1 The Algorithmic Method

Building on his previous work [Wil13a], Williams [Wil14] famously proved that NEXP ̸⊆
ACC0, the first non-uniform lower bound against the circuit class ACC0. This lower bound is
proved by designing a “non-trivial” satisfiability algorithm for ACC0 circuits and then showing
that such algorithms imply lower bounds against ACC0. Indeed, the only property of ACC0

that Williams uses is that ACC0-SAT has a non-trivial algorithm; the algorithm-to-lower-bound
connection works for any circuit class satisfying some mild technical conditions.

Let C be a circuit class and ε(n) ∈ (0, 1) be a parameter. Given as input a C circuit
C : {0, 1}n → {0, 1}, we consider the following circuit-analysis problems:

Circuit-Analysis Problems
• (C -SAT) decide whether there is an input x ∈ {0, 1}n such that C(x) = 1;
• (C -GapUNSATε) distinguish between the case that Prx←{0,1}n [C(x) = 1] ≥ ε(n) and that C

is unsatisfiable;
• (C -#SAT) count the number of satisfying assignments of C;
• (C -CAPPε) estimate the quantity Prx←{0,1}n [C(x) = 1] within additive error ε.a

aCAPP stands for “circuit acceptance probability problem.”

Clearly, all problems above can be solved in deterministic 2n · poly(|C|) time by brute force.
We say a deterministic algorithm for these problems is non-trivial if its time complexity is
2n/nω(1), i.e., slightly less than the brute-force time bound. The Algorithmic Method states
that such algorithms imply circuit lower bounds against C :

Theorem 3.1.1 (Informal; see [Wil14]). Let C be a “nice” circuit class. If C -SAT admits a
deterministic algorithm running in 2n/nω(1) time, then NEXP ̸⊆ C .

Since there exists a deterministic algorithm for ACC0-SAT running in 2n−n
Ω(1) time [Wil14],

it follows that NEXP ̸⊆ ACC0.
There has been a long line of subsequent developments of the Algorithmic Method, both

improving the algorithms and tightening the connection between algorithms and circuit lower
bounds [SW13,BV14,Wil16,Wil18c,COS18,MW20,Wil18b,Che19,CW19b,VW20,Vio20,CR22,
CLW20,CL21,CLLO21,Che23]. A recent highlight is the following result proved in [CLW20]:
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Theorem 3.1.2 ([CLW20], Informal). There is a language in ENP that does not have subexpo-
nential size ACC0 circuits on almost every input length.

Thinking of circuit lower bounds as explicit construction problems, [CLW20] gave an FPNP-
explicit construction of hard truth tables against subexponential size ACC0 circuits. When
formulated in the language of Range Avoidance, Theorem 3.1.2 becomes:

Theorem 3.1.3 (Theorem 3.1.2, Reformulated as Range Avoidance). Let s(n) := 2n
o(1) and

TTACC0 : {0, 1}O(s(n) log s(n)) → {0, 1}2n be the circuit that takes as input the description of a
size-s(n) ACC0 circuit and outputs its truth table. Then, there is an FPNP algorithm for solving
Avoid on the instance TTACC0.

Recently, the Algorithmic Method has found applications to another problem: constructing
rigid matrices. Alman and Chen [AC19] showed how to construct rigid matrices in FPNP with
parameters much better than previously known constructions; their results were later improved
by [BHPT24,CLW20,HV21,CL21]. The key insight in [AC19] is to treat low-rank matrices as
a special type of circuit class; thus, the task of constructing rigid matrices reduces to proving
average-case circuit lower bounds against this class.

Given the success of the Algorithmic Method, it is natural to ask the following question:

Question 3.1.4. Under which conditions can the Algorithmic Method be used to solve general
explicit construction problems, such as Avoid?

3.1.2 An Algorithmic Method for Range Avoidance

In this chapter, we present a version of the Algorithmic Method for solving Avoid. This
method requires a non-trivial algorithm for the Satisfying Pairs problem:1

Problem 3.1.5 (C -Satisfying-Pairs). LetN,M, s, n be parameters. Given as inputsN C circuits
C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s each and M strings x1, x2, . . . , xM ∈ {0, 1}n, compute or
estimate

Pr
i←[M ],j←[N ]

[Cj(xi) = 1]. (3.1)

Analogous to the circuit-analysis problems such as SAT and CAPP defined in Section 3.1.1,
we define the decisional and counting versions of the Satisfying Pairs problem as follows:

Satisfying Pairs Problems
• (C -Satisfying-Pairs) decide whether (3.1) > 0;
• (Gapε-C -Satisfying-Pairs) distinguish between (3.1) = 0 and (3.1) > ε;
• (#C -Satisfying-Pairs) compute (3.1) exactly;
• (Approxε-C -Satisfying-Pairs) estimate (3.1) within additive error ε.

1We remark that our definition of C -Satisfying-Pairs is different from the fine-grained complexity literature
(e.g., [AHWW16, CW19a]). The input of the C -Satisfying-Pairs problem defined in [AHWW16, CW19a]
consists of a circuit C(−,−) and two sets of input strings {ai} and {bj}, and one wants to compute or approximate
the number of pairs (i, j) such that C(ai, bj) = 1; in our C -Satisfying-Pairs problem, we receive as input a
list of circuits {Ci} and a list of inputs {xj}, and we want to compute or approximate the number of pairs (i, j)
such that Ci(xj) = 1. The new definition fits our purpose better. We also remark that for circuit classes that
can “evaluate themselves” (such as AC0,ACC0, and TC0), these two definitions are computationally equivalent.
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We consider the regime where the input length n and the circuit size s are much smaller
than N and M . In such case, a deterministic algorithm for C -Satisfying-Pairs is said to be
non-trivial if it runs in time NM/ logω(1)(NM).

Remark 3.1.6. The circuit-analysis problems that arise in the Algorithmic Method are special
cases of Satisfying Pairs problems. For instance, we can solve #SAT of the circuit C by solving
#Satisfying-Pairs with N = 2n/2 and M = 2n/2, where the inputs (x1, x2, . . . , xM ) consists of all
strings of length n/2, and the circuits are {Cy : y ∈ {0, 1}n/2}, where Cy(x) := C(x◦y). This reduc-
tion shows that a non-trivial algorithm for Satisfying Pairs problem implies a non-trivial algorithm
for the corresponding circuit-analysis problem.

Satisfying Pairs with PNP preprocessing. In fact, our results also hold for Satisfying Pairs
algorithms with PNP preprocessing on circuits. Such an algorithm consists of two phases: First,
the algorithm receives N C circuits C1, C2, . . . , CN , is allowed to preprocess them in some fixed
polynomial T = NO(1) time deterministically with an NP oracle and produce a “data structure”
DS of length at most T . Then the algorithm receives M inputs x1, x2, . . . , xM and needs to
output an estimation of (3.1) in non-trivial (i.e., MN/ logω(1)(MN)) time, with the aid of DS.

Remark 3.1.7. The preprocessing phase might seem strange at first sight (especially since it is
allowed to use an NP oracle), so we provide an example to motivate it. Suppose that N ≫ n (i.e.,
the number of circuits is much larger than the input length of these circuits) and we want to solve
Approxε-Satisfying-Pairs. It is easy to show (using a Chernoff bound and a union bound) that
there is a subset S ⊆ [N ] of size |S| = O(nε−2) such that for every x ∈ {0, 1}n,

∣∣∣∣ Pr
i←[N ]

[Ci(x) = 1]− Pr
i←S

[Ci(x) = 1]

∣∣∣∣ ≤ ε.

If for some polynomial T , such a subset S can be found in deterministic time T (n) with an NP

oracle, then there is a non-trivial algorithm for Approxε-Satisfying-Pairs with PNP preprocessing:
In the preprocessing phase, given C circuits C1, C2, . . . , CN , we simply calculate S; in the query
phase, given inputs x1, x2, . . . , xM ∈ {0, 1}n, we calculate

Pr
i←S,j←[M ]

[Ci(xj) = 1].

Since this algorithm takes O(nMε−2) time, it is non-trivial as long as N ≫ (nε−2)1+Ω(1). In fact, a
similar example will play an important role in Chapter 4 and characterise the “complete” Algorithmic
Method for proving circuit lower bounds.

The main result of this chapter is that non-trivial algorithms for Satisfying Pairs imply FPNP

algorithms for Avoid. Furthermore, this is true even if the Satisfying Pairs algorithm has a PNP

preprocessing phase.

Theorem 3.1.8 (Theorem 3.4.2, Informal). Let C be a typical circuit class and C ′ := OR2 ◦
C .2 Suppose that for every constant ε > 0 there is a non-trivial algorithm for Approxε-C ′-
Satisfying-Pairs with PNP preprocessing, then C -Avoid with certain parameters can be solved
in FPNP.

2Here, ORd ◦C refers to the composition of a single fan-in-d OR gate being the output gate of the circuit and
(at most) d C circuits feeding the top OR gate.
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A note on the stretch functions. The above informal statement omitted the stretch of
the C circuits for simplicity. Actually, even assuming the best possible algorithms for Satisfying
Pairs, Theorem 3.1.8 could only solve the Range Avoidance problem for C circuits with stretch
ℓ(n) = n1+ε. We refer to Theorem 3.4.2 for the precise statement.

3.1.3 Extension: The Remote Point Problem

The Algorithmic Method is extremely good at proving average-case circuit lower bounds
[CR22, CLW20, CL21]. In this subsection, we define the Remote Point problem, which is an
“average-case” analogue of the Range Avoidance problem, and present an Algorithmic Method
for it. Here, for two strings x, y ∈ {0, 1}n, their relative Hamming distance is defined as the
fraction of indices where x and y differ, formally δ(x, y) := 1

n |{i ∈ [n] : xi ̸= yi}|.

Problem 3.1.9 (Remote Point Problem (C -Remote-Point)). Given the description of a circuit
C : {0, 1}n → {0, 1}ℓ and a parameter δ > 0, where each output bit of C is a C circuit, output any
string y ∈ {0, 1}ℓ that is δ-far from the range of C. That is, for every x ∈ {0, 1}n, δ(C(x), y) ≥ δ.

By Chernoff bound, if δ < 1/2 − c
√
n/ℓ for some absolute constant c > 0, then a random

length-ℓ string is a valid solution for Remote-Point with high probability. Therefore, the
challenge is to find deterministic algorithms for Remote-Point.

It is not hard to see that C -Remote-Point for the truth table generator TT corresponds
to average-case circuit lower bounds. In particular, the regime where δ is a small constant
corresponds to proving “weak” average-case lower bounds (e.g. [COS18,Che19]), and the regime
where δ is close to 1/2 (say, δ = 1/2− 1/n) corresponds to proving “strong” average-case lower
bounds (e.g. [CR22,CLW20]).3

The remote point problem was also discussed in [KKMP21]. Indeed, an important special
case of the problem has been studied by Alon, Panigrahy, and Yekhanin [APY09], namely the
case that C is a linear transformation over GF(2). In other words, we are given a linear code
C : {0, 1}n → {0, 1}ℓ and we want to find a string that is far from every codeword. They
introduced this problem as an intermediate step towards constructing rigid matrices.

It is already quite hard to solve this special case deterministically. Alon, Panigrahy, and
Yekhanin [APY09] designed a polynomial-time algorithm for XOR-Remote-Point when ℓ > 2n

and δ = O(log n/n). For slightly larger δ, say δ = 0.1, no deterministic algorithm is known
even with an NP oracle. Arvind and Srinivasan [AS10] showed that for certain parameters, a
polynomial-time algorithm for XOR-Remote-Point implies a polynomial-time algorithm for
AC0-Partial-Hard (defined later in Section 3.1.4).

In this chapter, we also extend our Algorithmic Method to the Remote Point problem.
(Below, recall that a circuit class is typical if it contains the identity circuit and is closed under
negations and projections.)

Theorem 3.1.10 (Theorem 3.5.1, Informal). Let C be a typical circuit class and C ′ := ANDO(1)◦
C . Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for every

3Typically, a strong average-case lower bound states that certain problems cannot be (1/2+1/s)-approximated
by size-s circuits. Suppose TT : {0, 1}n → {0, 1}ℓ is the truth table generator, then n is roughly the size of the
circuit (i.e., n ≈ s). In this regard, strong average-case circuit lower bounds correspond to Remote-Point where
δ = 1/2− 1/n.
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constant ε > 0, then C -Remote-Point with certain parameters can be solved in FPNP.
In particular, suppose for every constant ε > 0, there is a non-trivial algorithm for Approxε-C ′-

Satisfying-Pairs for N = quasi-poly(n) C ′-circuits of size O(s) and M = quasi-poly(n) in-
puts of length n · polylog(n); then for some stretch function ℓ = quasi-poly(n), there is an FPNP

algorithm for C -Remote-Point that takes as input a circuit C : {0, 1}n → {0, 1}ℓ where each
output bit of C is a C -circuit of size s, and outputs a y that is 0.49-far from Range(C).

Our framework provides Remote-Point algorithms for the regime corresponding to “strong
average-case lower bounds” [CR22], i.e., the distance between the output y and Range(C) is
close to 1/2. In fact, the distance can be as large as 1/2 − 1/poly(n) given an Approx-C -
Satisfying-Pairs algorithm with a small enough error. (see Theorem 3.5.1 for details).

The stretch of circuits for which we can solve Remote-Point via Theorem 3.1.10 is worse
than that for Theorem 3.1.8: Even assuming the best possible Satisfying Pairs algorithms, we
could only solve Remote-Point for circuits with quasi-polynomial stretch. This is because we
use an approximate list-decodable code with linear-sum decoders in [CLW20] which has a quasi-
polynomial rate. It is an interesting open problem to improve the stretch of Remote-Point

that can be solved by our framework, possibly by designing new linear-sum decodable codes
with a better rate; see, e.g., [CL21].

3.1.4 Extension: Hard Partial Truth Tables

Besides Avoid and Remote-Point, we also consider the following problem that generalises
the task of proving circuit lower bounds (in a different way):

Problem 3.1.11 (Hard Partial Truth Tables against C (C -Partial-Hard)). Given a list of input
strings z1, z2, . . . , zℓ ∈ {0, 1}n and a parameter s, find a list of output bits b1, b2, . . . , bℓ ∈ {0, 1} such
that the partial function defined by {(zi, bi)}i∈[ℓ] cannot be computed by C circuits of size s. In
other words, for every size-s C circuit C, there exists an index i ∈ [ℓ] such that C(zi) ̸= bi.

It is easy to see that C -Partial-Hard generalises the problem of proving circuit lower
bounds against C . Indeed, if we take ℓ := 2n and z1, z2, . . . , zℓ be an enumeration of length-n
strings, then C -Partial-Hard becomes exactly the problem of proving circuit lower bounds
against C . It is also easy to see that when ℓ > O(s log s), this problem reduces to Avoid: given
the input (z1, z2, . . . , zℓ), we can construct a circuit TT′ : {0, 1}O(s log s) → {0, 1}ℓ which takes the
description of a C circuit C as input, and outputs the concatenation of C(z1), C(z2), . . . , C(zℓ).
Finding a non-output of TT′ is equivalent to finding a solution of C -Partial-Hard.

This problem was introduced by Arvind and Srinivasan [AS10] under the name “circuit lower
bounds with help functions.” Let h1, h2, . . . , hn : {0, 1}m → {0, 1} denote a sequence of help
functions, C be a circuit class, and s ∈ N be a size parameter. The goal is to construct the truth
table of a function f : {0, 1}m → {0, 1} that is hard to compute for size-s C circuits, even when
the circuit has access to these help functions. Formally, for any size-s circuit C : {0, 1}n → {0, 1},
there exists an input x ∈ {0, 1}m such that

C(h1(x), h2(x), . . . , hn(x)) ̸= f(x).

This problem is equivalent to Partial-Hard with ℓ = 2m inputs of length n, namely for every
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x ∈ {0, 1}m, there is an input h1(x)◦h2(x)◦· · ·◦hn(x) ∈ {0, 1}n in the Partial-Hard instance.
This problem appears to be very hard. Neither [AS10] nor we are aware of an efficient de-

terministic solution for C = AC0 with (say) ℓ, s ∈ quasi-poly(n). That is, although exponential-
size lower bounds against AC0 are known [Ajt83,FSS84,Yao85,Hås89], we do not have any idea
about how to prove such a lower bound for partial functions. Even when C is the class of
polynomial-size DNF, to the best of our knowledge, there is no known deterministic algorithm
for C -Partial-Hard.

Besides being a natural problem itself, C -Partial-Hard also arises when we study the
closure of non-uniform complexity classes (under reductions). Recall that AC0 denotes the class
of languages computable by a non-uniform family of polynomial-size constant-depth circuits; in
particular, AC0 contains undecidable languages such as unary versions of the halting problem. A
language L Turing-reduces to some language in AC0 if and only if L ∈ P/poly [Pip79], thus proving
EXP ̸≤p

T AC0 is likely beyond current techniques. But what about mapping reducibility? Can we
show that EXP ̸≤p

m AC0? It turns out that a deterministic algorithm for AC0-Partial-Hard

implies that EXP ̸≤p
m AC0 [AS10, Theorem 5]. Of course, there is nothing special with AC0, and

it can be replaced by other non-uniform classes. Therefore, C -Partial-Hard sheds light on
ruling out many-one reducibility of EXP (and other complexity classes) to non-uniform classes.

We also define the average-case version of C -Partial-Hard, which requires us to construct
partial functions that are average-case hard against C :

Problem 3.1.12 (Average-Case Hard Partial Truth Tables against C (C -Partial-AvgHard)).
Given a list of input strings z1, z2, . . . , zℓ ∈ {0, 1}n and parameters s, δ, find a list of output bits
b1, b2, . . . , bℓ ∈ {0, 1} such that the partial function defined by {(zi, bi)}i∈[ℓ] is δ-far from being
computable by C circuits of size s. In other words, for every size-s C circuit C, there are at least
δℓ indices i ∈ [ℓ] such that C(zi) ̸= bi.

Similar to the frameworks for Avoid and Remote-Point, we can solve Partial-Hard and
Partial-AvgHard via non-trivial algorithms for Satisfying-Pairs.

Theorem 3.1.13 (Informal). Let C be a typical circuit class.
• Suppose that there is a non-trivial algorithm for Approxε-C ′-Satisfying-Pairs for every
ε > 0 and C ′ := OR2 ◦ C , then C -Partial-Hard with certain parameters can be solved
in FPNP.

• Suppose that there is a non-trivial algorithm for Approxε-C ′′-Satisfying-Pairs for every
ε > 0 and C ′′ := ANDO(1) ◦ C , then C -Partial-AvgHard with certain parameters can
be solved in FPNP.

These results are proved using essentially the same approach as the framework for Avoid

and Remote-Point; consequently, the trade-off between parameters for Satisfying-Pairs and
Partial-Hard (resp. Partial-AvgHard) is similar to that for Avoid (resp Remote-Point).
We omit the details and refer the readers to Theorem 3.6.2 and Theorem 3.7.1.

Remark 3.1.14. It is not surprising to have a unified framework for Avoid and Partial-Hard
(and their average-case analogues Remote-Point and Partial-AvgHard), since Avoid and
Partial-Hard can be considered as the dual problem of each other. Let Eval : {0, 1}O(s log s) ×
{0, 1}n → {0, 1} be the circuit-evaluation function that takes a circuit C of size s and an input of
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length n, and outputs C(x). We can interpret Avoid and Partial-Hard as follows:
• (Avoid). Given size-s circuits C1, C2, . . . , Cℓ, find y1, y2, . . . , yℓ ∈ {0, 1} such that for every
x ∈ {0, 1}n, there is an i ∈ [ℓ] such that Eval(Ci, x) ̸= yi.

• (Partial-Hard). Given inputs x1, x2, . . . , xℓ ∈ {0, 1}n, find y1, y2, . . . , yℓ ∈ {0, 1} such
that for every size-s circuit C, there is an i ∈ [ℓ] such that Eval(C, xi) ̸= yi.

Clearly, Avoid and Partial-Hard are essentially the same problem on the table Eval(·, ·) with the
rows and columns being exchanged.

3.1.5 Unconditional Results

By slightly adapting the technique introduced by Williams [Wil18c] to design non-trivial
#SAT algorithms for ACC0 circuits (which uses an earlier quasi-polynomial size simulation of
SYM ◦ ACC0 circuits by SYM ◦ AND circuits [BT94,AG91]), we obtain a non-trivial algorithm
for #ACC0-Satisfying-Pairs:

Theorem 3.1.15. For every constants m, ℓ, c, there is a constant ε ∈ (0, 1) such that the
following holds. Let n := 2log

ε N and s := 2log
c n. There is a deterministic algorithm run-

ning in Õ((N/n)2) time that given N strings x1, x2, . . . , xN ∈ {0, 1}n and N AC0
ℓ [m] circuits

C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s, outputs the number of pairs (i, j) ∈ [N ] × [N ] such
that Ci(xj) = 1.

The FPNP algorithm for ACC0-Remote-Point and ACC0-Partial-AvgHard follows from
this algorithm together with Theorem 3.1.10 and Theorem 3.1.13.

Theorem 3.1.16 (ACC0-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that for
every constant d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that takes as input

a circuit C : {0, 1}n → {0, 1}ℓ, where each output bit of C is computed by an AC0
d[m] circuit of

size s, and outputs a string y that is (1/2− ε)-far from Range(C).

Theorem 3.1.17 (ACC0-Partial-AvgHard ∈ FPNP). There is a constant cu ≥ 1 such that
for every constants d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following
holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that given inputs

x1, . . . , xℓ ∈ {0, 1}n, it outputs a string y ∈ {0, 1}ℓ such that for any s(n)-size AC0
d[m] circuit C,

y is (1/2− ε)-far from C(x1) ◦ · · · ◦ C(xℓ).

It is worth noting that the ACC0-Remote-Point algorithm here recovers the best known
almost-everywhere average-case circuit lower bounds against ACC0 [CLW20]. This is done
by considering the special case where the input circuit is the truth table generator TT :

{0, 1}O(s log s) → {0, 1}2n that prints the truth table of a given ACC0 circuit (see Section 3.8.2).

Corollary 3.1.18. For every constants d,m ≥ 1, there is an ε > 0 and a language L ∈ ENP such
that Ln cannot be (1/2 + 2−n

ε
)-approximated by AC0

d[m] circuits of size 2n
ε, for all sufficiently

large n.
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Following the observation of Arvind and Srinivasan [AS10], the FPNP algorithm for ACC0-
Partial-AvgHard can be used to prove unconditionally that ENP cannot be mapping reduced
to languages decidable by small-size non-uniform families of ACC0 circuits.4 To the best of our
knowledge, this is the first unconditional result ruling out the mapping reducibility from uniform
classes to non-trivial non-uniform classes.

Corollary 3.1.19. Let d,m ∈ N be constants, AC0
d[m] denote the class of languages computable

by a non-uniform family of polynomial-size AC0
d[m] circuits. Then, there is a language Lhard ∈

ENP that does not have polynomial-time mapping reductions to any language in AC0
d[m].

3.2 Technical Overview

In this subsection, we present an overview of the proof of Theorem 3.1.8.
It would be helpful to review the Algorithmic Method for proving ENP lower bounds. Let

Lhard ∈ NTIME[2n]\NTIME[o(2n)] be a hard language constructed by the nondeterministic time
hierarchy theorem [Zák83]. Let V be the PCP verifier of [BGH+06]; here V is an oracle circuit
V (−) : {0, 1}r → {0, 1}. This oracle circuit takes PCP randomness as input (so the input length
is r := n+O(log n)) and receives the PCP proof as the oracle.

For a proof oracle π : {0, 1}r → {0, 1}, denote pacc(π) := Prseed←{0,1}r [V
π(seed) accepts].

The PCP theorem guarantees that for every input x ∈ {0, 1}⋆:

• If x ∈ Lhard, then there is a proof oracle π such that pacc(π) = 1.

• If x ̸∈ Lhard, then for every proof oracle π, we have pacc(π) ≤ 0.01.

Now, suppose that for every input x ∈ Lhard, there is a proof oracle π such that pacc(π) = 1,
and in addition, π can be computed by a C circuit. (Call this assumption the “easy-witness as-
sumption”.) Moreover, suppose that the GapUNSAT problem for V C can be solved in 2r/rω(1) <

o(2n) time. Then there is a faster nondeterministic algorithm for Lhard as follows. Given an
input x, we first guess a circuit C that computes a valid proof oracle π, and use the GapUNSAT

algorithm to distinguish between the case that pacc(π) = 1 and that pacc(π) ≤ 0.01.
By the nondeterministic time hierarchy theorem, the above speed-up algorithm has to be

incorrect. Therefore, our “easy-witness assumption” has to be false, i.e., there is an input x ∈
Lhard which does not have valid PCP proofs computable by a small C circuit.

A naïve attempt. Given a circuit C : {0, 1}n → {0, 1}ℓ, our goal is to find a non-output of
C in FPNP. Again, let Lhard ∈ NTIME[ℓ] \NTIME[o(ℓ)] be the hard language constructed by the
nondeterministic time hierarchy.5 Our “easy-witness” assumption now becomes:

Assumption 3.2.1. For every x ∈ Lhard, there is a PCP proof for x that is in the range of C.

Now we design a faster nondeterministic algorithm Mfast that tries to solve Lhard. For every
PCP randomness seed ∈ {0, 1}r, let Qseed : {0, 1}ℓ → {0, 1} be the circuit that takes a PCP

4In fact, it suffices to have an FPNP algorithm for ACC0-Partial-Hard (which is a trivial consequence of an
FPNP algorithm for ACC0-Partial-AvgHard) for this application.

5Note that we have not specified the input length for Lhard. We only know that Lhard is in non-deterministic ℓ
time on this input length. This important issue will be discussed later.
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proof π ∈ {0, 1}ℓ as input6 and outputs whether the verifier accepts π when given seed as the
randomness. Suppose we guess w ∈ {0, 1}n such that C(w) is the PCP proof for x ∈ Lhard, then
it suffices to estimate Prseed[Q

seed(C(w)) = 1] to verify this PCP proof.
However, there is a serious problem with this approach: The description length of C is

already Ω(ℓ), therefore it is impossible to estimate Pr[Qseed(C(w)) = 1] in o(ℓ) time.

Idea 1: Making copies. Our first idea is simple but crucial: we pick a large enough number
H = poly(ℓ) and make H copies of C. That is, instead of the Range Avoidance problem for C,
we consider the Range Avoidance problem for the circuit

CH(x1, x2, . . . , xH) = (C(x1), C(x2), . . . , C(xH)).

There is a simple FPNP reduction from avoiding C to avoiding CH . Suppose y = (y1, . . . , yH)

is not in the range of CH , then we can use the NP oracle to check whether each yi is in the range
of C and pick the first yi that is not. Hence, it suffices to solve the Range Avoidance problem
for CH .

Now, let Lhard ∈ NTIME[H · ℓ]\NTIME[o(H · ℓ)]. Let Qseed : {0, 1}H·ℓ → {0, 1} be the circuit
that accepts a PCP proof π ∈ {0, 1}H·ℓ if and only if the PCP verifier accepts it given seed as the
PCP randomness. After guessing w ∈ {0, 1}nH (which corresponds to the PCP proof CH(w)),
It suffices to estimate pest := Prseed[Q

seed(CH(w)) = 1]. The good news is that we only need
≈ ℓ ≪ H · ℓ bits to describe the circuit CH , thus, at least in principle, it could be possible to
estimate pest in less than H · ℓ time.

But how do we actually estimate pest? It seems likely that we need to exploit some special
properties of the PCP verifier. What property should our PCP have?

Idea 2: Rectangular PCP. Our second idea is to use rectangular PCPs [BHPT24]. In this
overview, let us assume the PCP is perfectly rectangular, which means that the PCP proof π
is formatted as an H × ℓ matrix and the PCP randomness seed is partitioned into two parts:
seed.row and seed.col. More importantly, the row index of each query only depends on seed.row

and the column index of each query only depends on seed.col. Correspondingly, our easy-witness
assumption becomes that every row of π is in the range of C.

Suppose the easy-witness assumption holds and there are strings w1, w2, . . . , wH such that
the i-th row of π is equal to C(wi). Each seed.row corresponds to q rows r1, r2, . . . , rq such
that V π(seed.row,−) will only access these rows of π. Hence, we define the following input
corresponding to seed.row:

Inputseed.row := (wr1 , wr2 , . . . , wrq).

Similarly, each seed.col corresponds to q columns c1, c2, . . . , cq such that V π(−, seed.col) will
only access these columns of π. Let Qseed.col : {0, 1}qℓ → {0, 1} be the circuit that takes the q
rows (determined by seed.row) of π as inputs and outputs whether the verifier accepts when the

6The length of the PCP proofs is slightly larger than ℓ; using efficient PCPs [BGH+05,BS08,Din07], one can
achieve PCP proof length ℓ · polylog(ℓ). In this informal exposition, we do not distinguish between the time
complexity of Lhard and the length of its PCP proofs.
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column randomness is seed.col. We define the circuit

Cseed.col(w1, w2, . . . , wq) := Qseed.col(C(w1), C(w2), . . . , C(wq)).

After guessing w1, w2, . . . , wH ∈ {0, 1}n such that the i-th row of π is equal to C(wi), we
need to test whether the verifier accepts. Note that for each seed = (seed.row, seed.col), V π(seed)

accepts if and only if Cseed.col(Input
seed.col) = 1. Therefore, it suffices to solve an instance of

Satisfying Pairs with 2|seed.row| many inputs and 2|seed.col| many circuits. The time complexity of
Mfast is

2|seed.row| · 2|seed.col|/(|seed.row| · |seed.col|)ω(1) ≤ (Hℓ)/ logω(1)(Hℓ).

The “right” time hierarchy theorem. The above Range Avoidance algorithm is only correct
on infinitely many input lengths. This is because the nondeterministic time hierarchy in [Zák83]
only works infinitely often, i.e., for any NTIME[o(Hℓ)] machine M , Lhard and M only disagree
on infinitely many input lengths.

To obtain an almost-everywhere algorithm, we follow the ideas of [CLW20]. The crucial
observation is that Mfast does not guess too many nondeterministic bits. (In the case of the
Algorithmic Method, it only guesses a small circuit encoding the PCP proof; in our case, it only
guesses Hn≪ Hℓ bits.) There is an almost-everywhere nondeterministic time hierarchy against
such machines [FS16]. Let NTIMEGUESS[T (N), g(N)] denote the class of languages decidable
by a nondeterministic machine running in T (N) time and guessing g(N) bits. Then:

Theorem 3.2.2 ([FS16]). Let T (N) be a time-constructible function such that N ≤ T (N) ≤
2poly(N). There is a language Lhard ∈ NTIME[T (N)] \ i.o.-NTIMEGUESS[o(T (N)), N/10].

Since we need to guess Hn bits, we set the input length to be N := 10Hn. We also set T (N)

to be a slightly super-linear function such that T (10Hn) ≈ Hℓ.
There is a small issue: Mfast needs to access the circuit C. More generally, if our Satisfying

Pairs algorithm has PNP preprocessing, then Mfast needs to access the “data structure” DS

produced in the preprocessing phase. Fortunately, the above NTIME hierarchy theorem also
holds against machines with N/10 advice bits, and we can hardwire C or DS as nonuniform
advice.

Theorem 3.2.3. Let T (N) be a time-constructible function such that N ≤ T (N) ≤ 2poly(N).
There is a language Lhard ∈ NTIME[T (N)] \ i.o.-NTIMEGUESS[o(T (N)), N/10]/(N/10).

Our FPNP algorithm needs one more ingredient from [CLW20]: a refuter for Theorem 3.2.3.
Given 1N and the code of the machine Mfast that attempts to compute Lhard, as well as the
N/10 advice bits, if Mfast runs in o(T (N)) time and uses at most N/10 nondeterministic bits,
then the refuter finds an input x ∈ {0, 1}N such that Mfast(x) ̸= Lhard(x). The refuter runs in
polynomial time with access to an NP oracle.

Our FPNP algorithm for Avoid works as follows. We first compute (the code of) the machine
Mfast; recall that it is a machine in NTIMEGUESS[o(T (N)), N/10]/(N/10). (This includes running
the PNP preprocessing phase of our Satisfying Pairs algorithm if there is one, and hardwiring
the circuit C and the DS it produces into the code of Mfast.) Then we use the refuter to find
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an input xhard ∈ {0, 1}N such that Mfast(xhard) ̸= Lhard(xhard). It follows that in any valid proof
matrix of xhard ∈ Lhard, there is some row that is not in the range of C. We can then simply use
the NP oracle to pick the first such row.

Rectangular PCP of proximity. There is another issue: the PCP verifier depends on the
input xhard. As xhard might depend on DS (recall that xhard is found by the refuter, which takes
the code of Mfast as input, and Mfast needs to hardcode DS), we cannot preprocess the circuits
{Cseed.col} before we know xhard.

Our solution is to use a rectangular PCP of proximity (henceforth rectangular PCPP). Recall
that a PCPP verifier can only query a small number of bits in both the proof oracle and the
input oracle. (As it does not even have time to read the whole input, its query pattern does not
depend on it.) In a rectangular PCPP, the input oracle is also accessed in a rectangular fashion.
There are three predicates Vtype, Vrow, and Vcol:7

• Vtype, without looking at seed, outputs q symbols, where each symbol is either input or
proof.

• Vrow reads seed.row and outputs q row indices r1, r2, . . . , rq.

• Vcol reads seed.col and outputs q column indices c1, c2, . . . , cq.

• For each query i ∈ [q], if the i-th symbol is input, then the i-th query asks the (ri, ci)-th
entry of the input matrix; if the i-th symbol is proof, then the i-th query asks the (ri, ci)-th
entry of the proof matrix.

We now revise our speed-up algorithm Mfast for Lhard using rectangular PCPPs. Given an
input x ∈ {0, 1}N ,8 we still guess w1, w2, . . . , wH and construct the PCPP proof matrix π whose
i-th row is C(wi). Also, the input is treated as an H ′×W ′ matrix9; let xi be the i-th row of the
input matrix. Now we estimate the probability that V x,π(seed) accepts, where V is the PCPP
verifier with oracle access to x and π.

• Each seed.row corresponds to qproof rows in the proof matrix and qinput rows in the input
matrix, where qproof + qinput = q, and the output of V x,π(seed.row,−) only depends on
these rows. Let these indices be i1, . . . , iq, we define

Inputseed.row := (wi1 , . . . , wiqproof
, xiqproof+1 , . . . , xiq).

• For each seed.col, let Qseed.col : {0, 1}qproof ·ℓ+qinput·W ′ → {0, 1} be the circuit that takes these
rows as inputs and outputs whether the verifier accepts them when the column randomness

7Note that we consider perfect rectangularity here for simplicity. In an almost rectangular PCPP, the ran-
domness also contains a short part denoted as seed.shared that is read by every predicate. In particular, Vtype

depends on seed.shared, Vrow depends on seed.row and seed.shared, and Vcol depends on seed.col and seed.shared.
8Note that a PCPP could only distinguish between x ∈ L and x being far from L. Thus, we need to apply

an error-correcting code to the input. For simplicity, we still use x to denote the encoded input.
9A technicality here is that we want to set W ′ to be as small as possible, as the size of C′seed.col is proportional

to W ′. It turns out that we can achieve W ′ = n · polylog(ℓ).
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is seed.col.10 We define

Cseed.col(w1, . . . , wqproof , x1, . . . , xqinput) = Qseed.col(C(w1), . . . , C(wqproof ), x1, . . . , xqinput).

Note that the description of Cseed.col itself does not depend on xhard now.

It follows that

Pr
seed

[V x,π(seed) = 1] = Pr
seed.row

[
Pr

seed.col

[
Cseed.col(Inputseed.row) = 1

]]
,

which, by our Satisfying Pairs algorithms, can be estimated in time

2|seed.row| · 2|seed.col|/(|seed.row| · |seed.col|)ω(1) < Hℓ/ logω(1)(Hℓ).

Finally, our FPNP avoidance algorithm is the same as before, except that we use the rectan-
gular PCPP in the code of Mfast.

3.2.1 Extensions to Remote Point and Hard Partial Truth Tables

Remote Point Problem. Our start point is the following reduction from Remote-Point

to Avoid. Suppose that C : {0, 1}n → {0, 1}ℓ is the input circuit. Let Enc : {0, 1}ℓ′ → {0, 1}ℓ
be the encoding procedure of an error-correcting code, and Dec : {0, 1}ℓ → {0, 1}ℓ′ be the
corresponding decoding procedure, where Dec can correct a δ fraction of errors. Define the
circuit C ′(x) := Dec(C(x)), and let z be any string not in the range of C ′, then Enc(z) is (1−δ)-
far from Range(C). To see this, assume for contradiction that Enc(z) is (1 − δ)-close to some
C(x), then Dec(C(x)) should return exactly z, contradicting that z is a non-output of C ′.

Suppose that the function Dec can be implemented in the circuit class CDec, then this is a
reduction from C -Remote-Point to (CDec◦C )-Avoid. Therefore, we would like the complexity
of CDec to be as small as possible. There are decoders that tolerate a small constant fraction
of errors in AC0 [GGH+07], so it might be possible to implement CDec in AC0. However, when
δ is very close to 1/2 (say δ = 1/2 − ε), we enter the list-decoding regime where CDec seems
to need the power of majority [GR08]. Can we solve C -Remote-Point without invoking any
circuit-analysis algorithms for MAJ ◦ C ?

Fortunately, the required techniques already appeared in previous works on the Algorithmic
Method for proving strong average-case circuit lower bounds. In [CLW20], they provided an
error-correcting code that corrects a 1/2 − ε fraction of errors, where the decoder DecCLW can
be implemented as a linear sum, i.e., each output is a linear combination of the input bits.11

Intuitively, this means that we can reduce C -Remote-Point to (Sum ◦ C )-Avoid, where Sum

denotes the layer of DecCLW. Using the framework for Range Avoidance established above,
it suffices to solve the Satisfying-Pairs problem for Sum ◦ C circuits.12 But it is easy to

10Actually, Qseed.col also depends on O(q) parity-check bits. We ignore this technical detail in the overview.
11[CLW20] stated this result as a non-standard XOR lemma in their Appendix A. We re-prove it in the form

of error-correcting codes in Section 3.3.2.
12We made a simplification here. Actually, we need to solve Satisfying-Pairs for NC0 ◦ Sum ◦ C circuits.

Using the distributive property, we can push the NC0 circuits below the Sum layer, thus it suffices to solve
Satisfying-Pairs for Sum ◦NC0 ◦C circuits. In this informal exposition, we may assume that C is closed under
top NC0 gates, which means that a Satisfying-Pairs algorithm for Sum ◦ C now suffices.
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see that Satisfying-Pairs for Sum ◦ C circuits directly reduces to Satisfying-Pairs for C

circuits! Therefore, the error-correcting code in [CLW20] allows us to use an algorithm for
C -Satisfying-Pairs to directly solve C -Remote-Point, with little or no circuit complexity
overhead.

The above discussion omitted several important technical details:

• It turns out that DecCLW is only an approximate list-decoding algorithm: given a corrupted
codeword that is (1/2 − ε)-close to the correct codeword, we can only recover a message
that is δ-close to the correct message (instead of perfectly recovering the correct message).

This drawback is handled by smooth PCPPs [Par21], which has the property that any
slightly corrupted version of a correct proof is still accepted with good probability. In fact,
we actually need a smooth and rectangular PCPP, which we construct in Section 5.1. We
remark that [CLW20] also encountered this difficulty; they got around it by combining a
PCP and a PCPP for Circuit-Eval. It is not clear how to generalise this strategy to our
case.

• Another technical complication is that DecCLW outputs real values instead of Boolean
values. It is only guaranteed that the decoded message is close to the original message in
ℓ1-norm. Consequently, after guessing the PCPP proof, we also need to verify that it is
“close to Boolean”, This difficulty also appears in [CLW20]; however, we need to carefully
define what it means by “close to Boolean” in our case.

• Since DecCLW works in the list-decoding regime, it also receives an advice string (specifying
the index of the codeword in the list). In the above discussion, we omitted the advice
string to highlight the main ideas. It turns out that the dependency of the decoder on the
advice string cannot be captured by linear sums. This is why we define an ad-hoc “linear
sum” circuit class (see Section 3.3.2) that receives both an input and an advice string and
computes a linear combination over the input, where the “linear combination” depends
on the advice. It turns out that we need the dependency on the advice to be local (see
Section 3.3.2 for details), which is fortunately satisfied by the XOR-Lemma-based code in
[CLW20].

Another reduction via succinct dictionaries. We mention that there is another reduc-
tion from Remote-Point to Avoid which appears in [Kor21,GLW22]. Let C : {0, 1}n → {0, 1}ℓ
be a circuit, y ∈ {0, 1}ℓ be a string that is not δ-far from Range(C). Then we can find a string
x ∈ {0, 1}n and a “noise” string e ∈ {0, 1}m of relative Hamming weight at most δ such that
y = C(x)⊕e, where ⊕ refers to bit-wise XOR. Consider the circuit C ′(x, e) := C(x)⊕e. To solve
the remote point problem for C, it suffices to solve the Range Avoidance problem for C ′. Using
a “succincter” dictionary to represent e [Pǎt08], [GLW22] managed to show that this reduction
also preserves circuit complexity, and in particular reduces NC1-Remote-Point to NC1-Avoid.

A drawback of this approach is that it only reduces Remote-Point to Range Avoidance
instances with a small stretch. Indeed, suppose C ′ is a circuit from n′ inputs to ℓ outputs, and
δ = Ω(1), then

n′ ≥ |Π(e)| ≥ log

(
ℓ

δℓ

)
= Ω(ℓ).
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In contrast, our algorithmic method could not solve Range Avoidance instances with such
a small stretch (ℓ = c · n for some constant c), even with the best possible algorithms for
Satisfying-Pairs. Therefore, we do not use this approach here.

Hard Partial Truth Tables. There is a simple reduction from Partial-Hard to Avoid.
Suppose we are given strings x1, x2, . . . , xN . Let TT′ be the circuit that receives a size-s circuit
C as input, and outputs the concatenation of C(x1), C(x2), . . . , C(xN ). If N > O(s log s), then
the circuit TT′ is stretching. It is also easy to see that solving the Range Avoidance of TT′ is
equivalent to solving the Partial-Hard problem.

In Section 3.6, we essentially combine this reduction with the frameworks in Section 3.4. In
other words, we could have reduced Partial-Hard to Avoid in a black-box way and derived
the main results in Section 3.6. However, this reduction only reduces C -Partial-Hard to
C ′-Avoid, where C ′ is any circuit class that can solve C -Eval in the following sense: for every
fixed input x, there is a C ′ circuit C ′ that takes as input the description of a C circuit C, and
outputs C(x). For most circuit classes of interest (e.g., C ∈ {AC0,ACC0,NC1,P/poly}), we could
simply let C ′ = C ; however, this is not necessarily true for more refined circuit classes (such as
C = ACC ◦ THR). We choose to derive the main results in Section 3.6 from scratch instead of
reducing it to Section 3.4, partly because we also want our framework to hold for these more
refined circuit classes.

3.3 Preliminaries

3.3.1 An Almost-Everywhere NTIME Hierarchy with a Refuter

We need the almost-everywhere NTIME hierarchy against bounded nondeterminism [FS16],
which has an FPNP refuter as shown in [CLW20]. Let T (n), G(n) be good functions, we define
NTIME[T (n)] to be the class of languages decidable by nondeterministic Turing machines in
T (n) time, and NTIMEGUESSRAM[T (n), G(n)] to be the class of languages decidable by nonde-
terministic Random-Access Turing Machines (RAMs) in T (n) time with G(n) nondeterministic
bits.

Theorem 3.3.1 ([FS16, CLW20]). Let c be a large universal constant, T : N → N be a good
function such that n logc+1 n ≤ T (n) ≤ 2poly(n). There is a language

Lhard ∈ NTIME[T (n)] \ i.o.-NTIMEGUESSRAM[T (n)/ logc T (n), n/10]/(n/10).

Moreover, there is an algorithm R (the “refuter”) such that the following holds.

(Input) R receives three inputs (1n,M, α), where M is a nondeterministic RAM and α ∈
{0, 1}n/10 is an advice string. It is guaranteed that M runs in T (n)/ logc T (n) time and
uses at most n/10 nondeterministic bits; moreover, the description length of M is O(1).

(Output) For every fixed M , every sufficiently large n, and every advice α ∈ {0, 1}n/10,
R(1n,M, α) outputs a string x ∈ {0, 1}n such that M(x;α) ̸= Lhard(x).

(Complexity) R runs in poly(T (n)) time with adaptive access to an NP oracle.
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We provide a proof of Theorem 3.3.1 here for completeness; in particular, we show that the
time hierarchy and the refuter could also deal with N/10 advice bits. (This essentially follows
from the original proofs in [FS16,CLW20].)

We need the following binary search algorithm.

Lemma 3.3.2 ([CLW20, Lemma 4.4]). There is an algorithm A satisfying the following.

• Input. A is given an explicit integer n ≥ 2 (written in binary form) as input, together
with oracle access to a list (a1, a2, . . . , an) ∈ {0, 1}n such that a1 ̸= an.

• Output. An index p ∈ [1, n− 1] such that ap ̸= ap+1.

• Efficiency. A runs in O(log n) time and makes at most O(log n) queries to the list.

Proof of Theorem 3.3.1. We first define Lhard. Let x ∈ {0, 1}n be the input of Lhard, we parse
it into x := (⟨M⟩, α, w, xrest). Here, ⟨M⟩ is the description of a nondeterministic RAM M ,
α ∈ {0, 1}n/10 is the advice string for M , w ∈ {0, 1}n/10 is a witness of M , and xrest denotes
the rest input bits. We interpret M as a nondeterministic RAM that guesses at most n/10
nondeterministic bits and runs in at most T ′ := T/ logc T time; if the nondeterminism or time
complexity exceeds the corresponding bounds, we force M to reject.

(i) IfM accepts the input (⟨M⟩, α, 0n/10, xrest) with witness w and advice α, then Lhard(x) = 0.

(ii) Otherwise, if w = 1n/10, then Lhard(x) = 1.

(iii) Otherwise, let w + 1 be the lexicographically next string after w, Lhard(x) = 1 if and only
if M accepts (⟨M⟩, α, w + 1, xrest) with advice α.

Since a nondeterministic RAM of time complexity T ′ = T/ logc T can be simulated by a
nondeterministic TM of time complexity o(T ), it follows that Lhard ∈ NTIMETM[T (n)].

Before describing the refuter, it is instructive to understand why Lhard does not admit a
nondeterministic RAM algorithm with time T ′, n/10 nondeterministic bits, and n/10 advice
bits. Let M be such an algorithm and α ∈ {0, 1}n/10 be the corresponding advice string. For
the sake of contradiction, suppose M computes Lhard. Fix an arbitrary xrest. For a witness string
w ∈ {0, 1}n/10, denote xw := (⟨M⟩, α, w, xrest). Abusing notation, for an integer 0 ≤ i < 2n/10,
let wi be the (i+1)-th lexicographically smallest string (with w0 = 0n/10 and w2n/10−1 = 1n/10),
we also denote xi := xwi .

• Suppose M(x0) accepts. Let w be the lexicographically smallest witness w such that M
accepts x0 on witness string w. It follows from (i) that Lhard(xw) = 0. However, for every
w′ < w, since M does not accept xw′ , by (iii) we have that

Lhard(xw′) =M(xw′+1) = Lhard(xw′+1).

It follows that 1 =M(x0) = Lhard(x0) = Lhard(xw) = 0, a contradiction.

• Suppose M(x0) rejects. Then M rejects x0 on every possible witness, which means (i)
never happens. It follows from (iii) that for every w ∈ {0, 1}n/10 \ {1n/10},

Lhard(xw) =M(xw+1) = Lhard(xw+1).
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This is a contradiction as Lhard(x0) = 0 but Lhard(x1n/10) = 1.

Now we describe our refuter. On input (1n,M, α), our refuter R first uses the NP oracle to
decide if M(x0) accepts.

• If M(x0) accepts, then it uses the NP oracle to find the lexicographically smallest w such
that M accepts x0 on witness string w. Consider the list

1 =M(x0),M(x1), . . . ,M(xw), L
hard(xw) = 0.

We use Lemma 3.3.2 to find two adjacent entries in the list that are different. This takes
O(log(2n)) = O(n) time with random access to the list. As random access to the list can
be simulated by an NP oracle, this pair of entries can be found in polynomial time with
an NP oracle. Now there are two cases:

– (Case I) Suppose the two entries are M(xw) and Lhard(xw). The refuter simply
outputs xw.

– (Case II) Suppose the two entries are M(xw′) and M(xw′+1) where w′ < w. Since M
does not accept x0 on witness string w′ and w′ < 1n/10, (iii) applies to w′. Therefore
Lhard(xw′) =M(xw′+1) ̸=M(xw′), and the refuter can output xw′ .

• If M(x0) rejects, then consider the list

0 =M(x0),M(x1), . . . ,M(x1n/10), Lhard(x1n/10) = 1.

Again, we use Lemma 3.3.2 to find two adjacent entries in the list that are different, in
polynomial time with an NP oracle. There are two cases:

– (Case I) Suppose the two entries are M(x1n/10) and Lhard(x1n/10). The refuter simply
outputs x1n/10 .

– (Case II) Suppose the two entries are M(xw) and M(xw+1) for some w ∈ {0, 1}n/10 \
{1n/10}. Since M does not accept x0 (at all) and w < 1n/10, (iii) applies to w.
Therefore Lhard(xw) =M(xw+1) ̸=M(xw), and the refuter can output xw.

3.3.2 Linear Sum Circuits and Hardness Amplification with Them

We need an XOR lemma with “linear sum” decoders: given a corrupted codeword f̃ that is
(1/2− ε)-close to Amp(f), there is an affine transformation A such that A(f̃) is δ-close to f .

The actual definition of linear sum circuits is more involved for the following reason. Our
XOR lemma works in the list-decoding regime, therefore it also receives an advice string α (i.e.,
the index in the list) and outputs the α-th decoded message in the list. When α is fixed, A(f̃ ;α)
is simply an affine function over f̃ ; but the dependence on α can be more complicated. It turns
out that we need an upper bound on the locality of the dependence on α, defined as follows.

Definition 3.3.3 (Linear Sum Circuits). Let x ∈ {0, 1}n and α ∈ {0, 1}a be two inputs. A
linear sum circuit on input x with advice α is a function C : {0, 1}n × {0, 1}a → Rm of the
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following form:
C(x, α)i =

∑

k∈[A]

coeffk(α) · xidxk(α,i).

Here, A is the fan-in of C. The circuit is described by two functions coeffk(α) and idxk(α, i);
note that coeffk(α) does not depend on i. For technical convenience, we will also allow idxk(α, i)

to take special values ZERO and ONE, where xZERO is always 0 and xONE is always 1.
Besides the fan-in A, the following complexity measures of C will also be important:

• We say the coefficient sum of C is at most U , if for every advice α, we have

∑

k∈[A]

|coeffk(α)| ≤ U.

• We say that C has locality l, if for every fixed k, there is a subset Sk of l bits of α such
that the functions coeffk(α) and idxk(α, i) only depends on α|Sk

.

Example 3.3.4. Consider the following example (simplified from the proof of Theorem 3.3.5).
Suppose the advice α consists of a list of strings (α1, α2, . . . , αa′) where a′ ≈ 1/ε2; given an index k,
coeffk(α) only depends in αk, and idxk(α, i) only depends on αk and i. Suppose each αk has length
l, then regardless of the number a′, the linear sum has locality l.

We need the following XOR lemma with linear sum decoders. The XOR lemma was proved
in [Lev87,GNW11], and it was shown in [CLW20, Section A] to admit linear sum decoders. For
completeness, we provide a proof below and verify the locality of the linear sum. Note that the
XOR lemma is stated below as an approximately locally list-decodable code.

Theorem 3.3.5. Let N ∈ N, 0 < ε, δ < 1/10, k := O(log(1/ε)/δ), Ñ := Nk, and a :=

O(log2N/(εδ)2). There is an algorithm Amp : {0, 1}N → {0, 1}Ñ computable in deterministic
poly(Ñ) time, and a linear sum circuit C : {0, 1}Ñ ×{0, 1}a → RN such that the following hold.

(List-decoding) For every string f̃ ∈ {0, 1}Ñ that is (1/2−ε)-close to Amp(f) for some hidden
string f , there is an advice α ∈ {0, 1}a, such that (1) for every i ∈ [N ], C(f̃ , α)i ∈ [0, 1];
and (2) ∥C(f̃ , α)− f∥1 ≤ δ.

(Complexity) The fan-in, coefficient sum, and locality of C are at most O(logN/(εδ)2),
O(1/ε), and log Ñ respectively.

Proof. For simplicity, we identify a string f of length N and a Boolean function f : [N ]→ {0, 1},
where f(x) outputs the x-th bit of f . For a string f ∈ {0, 1}N , denote f⊕k to be the following
string of length Nk. For each (x1, x2, . . . , xk) ∈ [N ]k, we have

f⊕k(x1, x2, . . . , xk) :=
k⊕

i=1

f(xi) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk),

where ⊕ denotes bitwise XOR. We simply let Amp(f) := f⊕k.
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The decoder. For a length-k vector v⃗⊥ ∈ ([N ] ∪ {⊥})k and i ∈ [N ], let v⃗i denote the vector
where each ⊥ in v⃗⊥ is replaced by i. (In the decoder, we will only need the case where each v⃗⊥

contains exactly one ⊥, so v⃗i simply replaces that single ⊥ by i.)
Let f̃ : [N ]k → {0, 1} be a codeword (treated as a Boolean function). We set A′ :=

O(logN/(εδ)2) and r := (2+δ)ε
1−δ . Our decoder will take a list of vectors v⃗⊥1 , v⃗

⊥
2 , . . . , v⃗

⊥
A′ ∈

([N ] ∪ {⊥})k and a list of signs σ1, σ2, . . . , σA′ ∈ {0, 1} as advice. Intuitively, v⃗⊥i denotes a
segment of f̃ that has noticeable correlation with f , and σi denotes whether the correlation is
positive or negative; our linear sum decoder uses the average of f̃(v⃗ij)⊕ σj as a prediction of fi.

More formally, given an input i ∈ [N ], the decoder outputs 13

dec(f̃)i :=
1

r
E

j←[A′]

[
(f̃(v⃗ij)⊕ σj)− 1/2

]
+ 1/2. (3.2)

Correctness. We establish the correctness of this decoder by the following lemma.

Lemma 3.3.6. Let k ≥ 1, δ ∈ (0, 1/10), ε := (1−δ)k−1(1/2−δ), and A′ := O(logN/(εδ)2). For
every string f̃ ∈ {0, 1}Nk that is (1/2−ε)-close to f⊕k for some hidden string f ∈ {0, 1}N , there
is a list of A′ vectors v⃗⊥1 , v⃗

⊥
2 , . . . , v⃗

⊥
A′ ⊆ ([N ]∪ {⊥})k, and a list of signs σ1, σ2, . . . , σA′ ∈ {0, 1},

such that (1) for every i ∈ [N ], dec(f̃)i ∈ [0, 1]; and (2) ∥dec(f̃)− f∥1 ≤ δ.

Proof. We use induction on k. Suppose k = 1, then one can verify by direct calculation that
the lemma holds by setting v⃗⊥1 = (⊥) and σ1 = 0. Now suppose k > 1 and the lemma holds for
k − 1.

Fix i ∈ [N ] and let v⃗⊥ ∈ ([N ] ∪ {⊥})k denote some vector whose first coordinate is ⊥ and
other coordinates are from [N ]. Think of every coordinate of v⃗⊥, except the first, is drawn
independently and uniformly from [N ]. Define

pi := Pr
v⃗⊥←{⊥}×[N ]k−1

[
f̃(v⃗i) = f⊕k(v⃗i)

]
.

Case I: Suppose there is some i0 ∈ [N ] such that |pi0 − 1/2| > ε/(1 − δ). Let b ∈ {0, 1} be
a bit, consider the sub-string f̃ ′ ∈ {0, 1}Nk−1 such that f̃ ′(v⃗⊥) = f̃(v⃗i0) ⊕ b. Then, for some
b ∈ {0, 1}, f̃ ′ is (1/2− ε/(1− δ))-close to f⊕(k−1).

By the induction hypothesis, there is a list of A′ vectors u⃗⊥1 , . . . , u⃗⊥A′ ⊆ ([N − 1]∪ {⊥}k) and
a list of signs σ′1, . . . , σ′A′ ∈ {0, 1} such that the vector dec′ satisfies the conclusion of the lemma,
where

dec′i :=
1

r
E

j←[A′]

[
(f̃ ′(u⃗ij)⊕ σ′j)− 1/2

]
+ 1/2.

For each j, let v⃗⊥j be the concatenation of i0 and u⃗⊥j , and let σj = σ′j ⊕ b. We have that dec(f̃)i
is exactly dec′i and we are done.

13(3.2) is perhaps easier to understand when we change the basis from {0, 1} to {1,−1}; we choose the basis
{0, 1} only to be consistent with other parts of this chapter. When we change the basis to {1,−1}, XOR becomes
multiplication and the assertion “a = b” becomes simply a · b. Thus (3.2) becomes

dec(f̃)i =
1

r
E

j←[A′]

[
f̃(v⃗ij) · σj

]
,

which is simply the average of all A′ predictions, amplified by a factor of 1/r.
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Case II: Suppose for every i ∈ [N ], we have |pi − 1/2| ≤ ε/(1 − δ). Note that, since f̃ is
(1/2− ε)-close to f⊕k, we have

E
i←[N ]

[pi] ≥ 1/2 + ε.

We sample each v⃗⊥j ← {⊥} × [N ]k−1 independently at random. Let

p̃i := Pr
j←[A′]

[
f̃(v⃗ij) = f⊕k(v⃗ij)

]
.

Let η := εδ
2(1−δ) . By a Chernoff bound, w.p. 1 − Ne−2η

2t > 0, for every i ∈ [N ], we have

|pi − p̃i| ≤ η. Let σj := f⊕(k−1)((v⃗⊥j )2∼k) =
⊕k

l=2 f((v⃗
⊥
j )l), then we have

p̃i = Pr
j←[t]

[
fi = f̃(v⃗ij)⊕ σj

]
.

Note that

dec(f̃)i =
1

r
(p̃i · (fi − 1/2) + (1− p̃i) · (1/2− fi)) + 1/2

=
(fi − 1/2)(2p̃i − 1)

r
+ 1/2.

We first show that for every i ∈ [N ], dec(f̃)i ∈ [0, 1]. In fact,

|dec(f̃)i − 1/2| = 1

r
|(fi − 1/2)(2p̃i − 1)|

=
1

r
|p̃i − 1/2|

≤ 1− δ
(2 + δ)ε

(
ε

1− δ + η

)

=1/2.

Then we show that
∥dec(f̃)− f∥1 = E

i←[N ]
[|dec(f̃)i − fi|] ≤ δ.

This is because

E
i←[N ]

[|dec(f̃)i − fi|]

= E
i←[N ]

[∣∣∣∣
(fi − 1/2)(2p̃i − 1)

r
+ 1/2− fi

∣∣∣∣
]

= E
i←[N ]

[∣∣∣∣
p̃i − 1/2

r
− 1/2

∣∣∣∣
]

=1/2−
Ei←[N ][p̃i]− 1/2

r
(3.3)

≤ 1/2− ε− η
r
≤ δ,

where (3.3) is because 1
r |p̃i − 1/2| ≤ 1/2 for every i. The lemma follows. ⋄
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Complexity. It remains to determine the complexity of the decoder defined in (3.2). The
advice string α contains the vectors v⃗⊥1 , v⃗⊥2 , . . . , v⃗⊥A′ and the signs σ1, σ2, . . . , σA′ . It is clear that
the fan-in is at most A′ + 1 = O(logN/(εδ)2). The coefficient sum is O(1/r) = O(ε−1). Since
the k-th term is

coeffk(α) = (−1)σj/(A′r), and idxk(α, i) = v⃗ik,

it follows that each term only depends on log Ñ bits of α.

We will also use the notation decα(f) to denote C(f, α), emphasising that decα is an affine
transformation that depends on α.

3.3.3 A Stretch Reduction for Remote-Point and Partial-AvgHard

In our framework for solving Remote-Point (Section 3.5), for technical convenience, we
only consider circuits C : {0, 1}n → {0, 1}ℓ(n), where ℓ(n) is a certain stretch function. (For
example, it might be the case that ℓ(n) is rounded to a power of 2 for every n.) In this section, we
show that such an algorithm can also solve Remote-Point for circuits of larger stretches (such
as 3

2ℓ(n)). This justifies that it is without loss of generality to only consider stretch functions
that are equal to ℓ(n).

Lemma 3.3.7 (Stretch Reduction for Remote-Point). Let C be a typical circuit class and
s be a size parameter. Suppose that C [s]-Remote-Point with stretch ℓ′(n) and distance pa-
rameter 1/2 − ε′(n) admits an FPNP algorithm. Then for any stretch ℓ = ℓ(n) ≥ ℓ′(n + 1)/2,
C [s]-Remote-Point with stretch ℓ(n) and distance parameter 1/2− ε(n) also admits an FPNP

algorithm, where ε(n) := 2 · ε′(n+ 1).

Proof. Denote ℓ′ := ℓ′(n + 1), ε′ := ε′(n + 1), ℓ := ℓ(n), and ε := ε(n), and let C : {0, 1}n →
{0, 1}ℓ be an input circuit. If ℓ is a multiple of ℓ′, we can split the ℓ-bit output of C into blocks of
size ℓ′ and add a dummy input bit to construct m := ℓ/ℓ′ circuits C1, C2, . . . , Cm : {0, 1}n+1 →
{0, 1}ℓ′(n+1) such that for every x ∈ {0, 1}n and b ∈ {0, 1},

C(x) = C1(x, b) ◦ C2(x, b) ◦ · · · ◦ Cm(x, b).

Using the FPNP algorithm for C -Remote-Point with stretch ℓ′(n + 1) and error parameter
ε′(n + 1), we can construct y1, y2, . . . , ym ∈ {0, 1}ℓ′ such that each yi is (1/2 − ε′)-far from
Range(Ci). It then follows that the concatenation y1 ◦ y2 ◦ · · · ◦ ym is (1/2 − ε′)-far from
Range(C).

We now consider the case where ℓ is not a multiple of ℓ′. Let I : {0, 1}n+1 → {0, 1} be
defined as the projection I(x) = xn+1, that is, it always outputs the last bit. For any t, let I⊗t :
{0, 1}n+1 → {0, 1}t denote the concatenation of t copies of I. Therefore, Range(I⊗t) = {0t, 1t}.
Since C is typical, we have I⊗t ∈ C .

Let M = k ·ℓ′ be the smallest multiple of ℓ′ larger than ℓ, and ℓ̄ :=M−ℓ. For a multi-output
C circuit C, we define C̃ : {0, 1}n+1 → {0, 1}M as

C̃(x, b) = C(x) ◦ I⊗ℓ̄(x, b),
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where x ∈ {0, 1}n and b ∈ {0, 1}. Since C̃ is of input length n + 1 and output length being
a multiple of ℓ′, we can get a remote point s ∈ {0, 1}M in FPNP that is (1/2 − ε′)-far from
Range(C̃).

Let s = s1 ◦ s2, where s1 and s2 has length ℓ and ℓ̄, respectively. We then prove that s1 is
(1/2−ε) far from Range(C). Towards a contradiction, we assume that s1 is not (1/2−ε)-far from
Range(C). In other words, there is an x ∈ {0, 1}n such that δ(C(x), s1) < 1/2−ε. By considering
the Hamming weight of s2 we know that there is a b ∈ {0, 1} such that δ(I⊗ℓ̄(x, b), s2) ≤ 1/2.
It then follows that

δ(s, C̃(x, b)) = δ(s1 ◦ s2, C(x) ◦ I⊗ℓ̄(x, b)))

≤ ℓ

ℓ+ ℓ̄
·
(
1

2
− ε(n)

)
+

ℓ̄

ℓ+ ℓ̄
· 1
2

≤ 1

2
− ℓ

ℓ+ ℓ̄
· ε(n)

<
1

2
− ε′(n+ 1).

This leads to a contradiction as s is (1/2− ε′(n+ 1))-far from Range(C̃).

Similar to Remote-Point, another average-case problem Partial-AvgHard can also be
reduced to the instances with smaller stretch in the same way.

Lemma 3.3.8 (Stretch Reduction for Partial-AvgHard). Let C be a typical circuit class
and s be a size parameter. Suppose that NC0

2 ◦ (C [s])-Partial-AvgHard with stretch ℓ′(n)

and distance parameter 1/2− ε′(n) admits an FPNP algorithm, then for any stretch ℓ = ℓ(n) ≥
ℓ′(n+1)/2, C [s]-Partial-AvgHard with stretch ℓ(n) and distance parameter 1/2−ε(n) admits
an FPNP algorithm, where ε(n) := 2 · ε′(n+ 1).

Proof Sketch. The proof of this lemma is similar to that of Lemma 3.3.7. Here we use the same
notation as the proof of Lemma 3.3.7.

Let X = {x1, . . . , xℓ} denote input strings, and let yi := xi ◦ 0. We create ℓ̄ copies of 0n ◦ 1
and use yℓ+1, . . . , yM to denote these copies.

we solve NC0
2 ◦ C -Partial-AvgHard on {y1, . . . , yM} and get an average-case hard partial

truth table s = s1 ◦ s2 that is (1/2 − ε′(n + 1))-far from any truth table of NC0
2 ◦ C circuit,

where s1 and s2 has length ℓ and ℓ̄. Then we prove s1 is a solution to the original problem.
For some C circuit C, if s1 is not (1/2 − ε(n)) far from partial truth table of C on X, we can
define C̃1, C̃2 : {0, 1}n × {0, 1} → {0, 1} as C̃1(x; b) := C(x) ∨ b, C̃2(x; b) := C(x) ∧ (¬b). Then
one of C̃1 and C̃2 has partial truth table on Y := {y1, . . . , yM} not (1/2 − ε′(n + 1)) far from
s, which leads to a contradiction. Therefore, s1 has to be a solution. The analysis is similar to
Lemma 3.3.7.

3.3.4 Satisfying Pairs for NC0
d ◦ C

We show that satisfying pairs for NC0
d ◦ C circuits can be reduced to the satisfying pairs of

AND0
d ◦ C , XOR0

d ◦ C , or OR0
d ◦ C via standard Fourier analysis (see, e.g., [CW19b, Section 4]).

This will be beneficial for the unconditional results for weak circuit classes.
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Theorem 3.3.9. For every constants δ ∈ [0, 1] and d ≥ 1, there is a constant δ′ such that the fol-
lowing holds. Let N = N(n),M =M(n), n, s = s(n) be parameters, Cd ∈ {ANDd,ORd,XORd}.

Then #(NC0
d ◦ C )-Satisfying-Pairs (resp. Approxδ-(NC

0
d ◦ C )-Satisfying-Pairs) with

parameters (N,M,n, s) is Õ(n)-time Turing-reducible to #(Cd ◦ C )-Satisfying-Pairs (resp.
Approxδ′-(Cd ◦ C )-Satisfying-Pairs) with parameters (Θ(N),M, n, s), as long as each input
circuit of the #(NC0

d◦C )-Satisfying-Pairs (resp. Approxδ-(NC
0
d◦C )-Satisfying-Pairs) prob-

lem are given explicitly as a top NC0
d circuit Ctop together with d circuits C1, C2, . . . , Cd ∈ C

feeding Ctop.
Moreover, the oracle algorithm for #(NC0

d ◦C )-Satisfying-Pairs (resp. Approxδ-(NC
0
d ◦C )-

Satisfying-Pairs) only makes O(1) non-adaptive queries to the #(Cd ◦C )-Satisfying-Pairs

(resp. Approxδ′-(Cd ◦ C )-Satisfying-Pairs) oracle.

Proof. Let N,M,n, s be the parameters. Suppose that we are given C1, C2, . . . , CN ∈ C [s] and
x1, x2, . . . , xM ∈ {0, 1}n as input. We assume that C1, C2, . . . , CN share the same upper NC0

d

function computing f : {0, 1}d → {0, 1}, that is for every i ∈ [N ], Ci ≡ f ◦ Di for some d-
output C circuit Di of size at most s. This is without loss of generality since there are at most
22

d
= O(1) different NC0

d functions and we can (approximately) count the number of satisfying
pairs for each of these cases separately.

We first consider the case for Cd = ANDd. We use the basis {0, 1} ⊆ R for Boolean values
and write f as

f(x) =
∑

S⊆[d]

αS ·
∏

i∈S
xi,

where each coefficient αS ∈ [−2d, 2d] ∩ Z. Note that we can compute the coefficients by writing
the truth table of f in the canonical disjunctive normal form, represent x by x, ¬x by 1− x, ∧
by multiplication, and (disjoint) ∨ by addition, and then expanding the multi-linear polynomial
using a brute-force algorithm in O(1) time.

Let χS(x) :=
∏

i∈S xi for S ⊆ [d]. Then the number of (i, j) ∈ [N ]×[M ] such that Ci(xj) = 1

is

∑

i∈[N ]

∑

j∈[M ]

f(Di(xj))

=
∑

i∈[N ]

∑

j∈[M ]

∑

S⊆[d]

αS · χS(Di(xj))

=
∑

S⊆[d]

αS ·


∑

i∈[N ]

∑

j∈[M ]

χS(Di(xj))




=
∑

S⊆[d]

αS ·


∑

i∈[N ]

∑

j∈[M ]

AND|S| ◦Di|S(xj)


 ,

where Di|S : {0, 1}|S| → {0, 1} representing the circuit obtained from Di by restricting to the
output bits in S. Then our algorithm is as follows: We enumerate all S ⊆ [d] and count (resp.
approximately count) the number AS of satisfying pairs for circuits AND|S| ◦D1|S , . . . ,AND|S| ◦
DN |S and inputs x1, . . . , xM , then we output the answer

∑
S⊆[d] αS ·AS .
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For Cd = XORd and Cd = ORd, we only need to write f as

f(x) =
∑

S⊆[d]

α′S ·
⊕

i∈S
xi, (3.4)

f(x) =
∑

S⊆[d]

α′′S ·
∨

i∈S
xi, (3.5)

where α′S , α
′′
S ≤ 2O(d). Note that (3.4) can be obtained using the basis {true := −1, false := 1}

and (3.5) can be obtained using the basis {true := 0, false := 1}.

3.4 Range Avoidance

Definition 3.4.1 (Algorithms for Satisfying-Pairs with PNP Preprocessing on Circuits). Let
P be one of C -Satisfying-Pairs, #C -Satisfying-Pairs, Approxδ-C -Satisfying-Pairs, and
Gapδ-C -Satisfying-Pairs. A t-time algorithm for P with PNP preprocessing of an ℓ-size data
structure on circuits is a pair of algorithms (A1, A2) that solves P in two phases:

1. Given the circuits C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s, the polynomial-time algo-
rithm A1 with oracle access to a SAT oracle computes a string DS ∈ {0, 1}ℓ.

2. Given the inputs x1, x2, . . . , xM ∈ {0, 1}n and the string DS ∈ {0, 1}ℓ, the algorithm A2

solves P on the instance (C1, . . . , CN , x1, . . . , xM ) in time t.

In this subsection, we establish the connection between the Avoid and Satisfying-Pairs.
The main result is the following theorem.

Theorem 3.4.2. There are constants ε > 0 and c0 ≥ 1 such that the following holds. Let
0 < η < 1/2 be a constant, ℓ(n) > n1+4η be a good function. Let C [s] be a typical circuit class
where s = s(n) is a size parameter, and C ′[2s] := OR2 ◦ C [s] (i.e. a C ′ circuit of size 2s refers
to the OR of at most two C circuits of size s).

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logc0(NM))-time algo-
rithm for Approxε-C ′-Satisfying-Pairs with N := ℓ1−η · polylog(ℓ) circuits of size 2s(n)

and M := ℓc+1−η · polylog(ℓ) inputs of length n · polylog(ℓ), allowing a PNP preprocessing
of an N c-size data structure on circuits.

Conclusion: Then there is an FPNP algorithm for C [s]-Avoid with stretch ℓ(n).

3.4.1 Proof of Theorem 3.4.2

Proof. Suppose that we are given a C circuit C : {0, 1}n → {0, 1}ℓ. Without loss of generality,
we may assume ℓ is a power of 2 and c ≥ 2. We set the following parameters:

m := 5(c+ 2)/η = O(1),

wproof := log ℓ, Wproof := 2wproof = ℓ,

hproof := (c+ 1) log ℓ, Hproof := 2hproof = ℓc+1,

nhard := 10Hproof · n · polylog(ℓ),
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T :=Hproof ·Wproof/ log
ctm(ℓ).

The constants ε, c0, and ctm will be determined later.
Let Lhard be the hard language constructed in Theorem 3.3.1. We use nhard and T to denote

the input length and the time complexity of Lhard, respectively, i.e.

Lhard ∈ NTIMETM[T ] \ i.o.-NTIMEGUESSRAM[T/ logchard(T ), nhard/10]/(nhard/10),

where chard is some large universal constant. Note that since T = ℓc+2/polylog(ℓ), nhard =

O(ℓc+1 · n), ℓ > n1+4η, we can see that n1+Ω(1)
hard ≤ T ≤ n2hard, which satisfies the technical

condition of Theorem 3.3.1.
We describe a nondeterministic RAM MPCPP that runs in T/ logchard(T ) time, uses nhard/10

advice bits, guesses nhard/10 nondeterministic bits, and attempts to solve Lhard on nhard-bit
inputs. By the definition of Lhard, MPCPP has to fail on some input x ∈ {0, 1}nhard when nhard is
sufficiently large. Our goal is to design such an algorithm MPCPP that (1) rejects every x ̸∈ Lhard,
and (2) accepts every x ∈ Lhard with an easy witness. Thus, if MPCPP fails on some input x,
then x ∈ Lhard and it has only “hard witnesses”, which will be exploited for finding a non-output
of C.

Here, to define the inputs x “with an easy witness”, we will need the 2-query rectangular
PCPP in Theorem 2.5.10 for the following language

Lenc := {Encode(x) : x ∈ Lhard},

where we fix an error-correcting code (Encode,Decode) as in Theorem 2.4.1. Let δcode be the
distance of the code. Suppose a string of length nhard is encoded (via Encode) into a string of
length ñhard := O(nhard). We set the following parameters:

hinput :=

(
1− Θ(log log T )

log T

)
hproof , Hinput := 2hinput =Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput =n · polylog(ℓ).

We assume without loss of generality that ñhard = Hinput ·Winput. (This can always be done
by adding at most Winput ≪ ñhard dummy bits into the codeword of the error-correcting code,
where the resulting code is still of constant rate and distance.)

We apply Theorem 2.5.10 to obtain a 2-query rectangular PCPP for Lenc with an Hinput ×
Winput input matrix and an Ĥproof ×Wproof proof matrix, where

ĥproof := log T (n) + Θ(m log log T (n))− wproof = (c+ 1) log ℓ+Θ(m log log ℓ),

Ĥproof := 2ĥproof = ℓc+1 · polylog(ℓ).

We can check that the technical conditions of Theorem 2.5.10 for the 2-query rectangular
PCPP construction holds:

• wproof ≥ (5/m) log T : because m·wproof

5 log T ≥ 1/η ≥ 1.
• ĥproof ≥ (5/m) log T : because hproof > wproof .
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• hinput

ĥproof
≤ 1− Cm log log T

log T : because hinput

hproof
= 1− Θ(log log T )

log T and hproof ≤ ĥproof .
• winput

wproof
≤ 1−Cm log log T

log T : Note that hinput = hproof−Θ(log log T )hproof

log T ≥ (c+1) log ℓ−O(log log ℓ).

We have winput

wproof
=
⌈log ñhard⌉−hinput

log ℓ ≤ (c+1)ℓ+logn+O(log log ℓ)−hinput

log ℓ ≤ logn+O(log log ℓ)
log ℓ ≤ 1−Ω(1).

By Theorem 2.5.10, there is a PCPP verifier VPCPP for Lenc with oracle access to Π :=

Enc(x) ◦π, where the input Enc(x) is treated as a matrix of size Hinput×Winput, and the proof π
is treated as a matrix of size Ĥproof ×Wproof . The PCPP verifier has the following parameters:

◦ completeness error = 1− cpcp,
◦ soundness error = spcp,

◦ proximity parameter = δcode/3,

◦ query complexity ≤ 2,

◦ parity-check bits ≤ 2,

◦ total randomness = r := log T +O(log log T +m logm),

◦ row randomness = rrow := ĥproof − (5/m) log T = (c+ 1− η) log ℓ+O(log log ℓ),

◦ column randomness = rcol := wproof − (5/m) log T = (1− η) log ℓ+O(log log ℓ),

◦ shared randomness = rshared := (10/m) log T +O(log log T ) = 2η log ℓ+O(log log ℓ).

Moreover, the total number of parity-check bits and queries is at most 2, and the decision
predicate VDec ← Vdec(seed.shared), which takes the parity-check bits and the answers to the
queries as the input, is an OR of its input bits or their negations.

For an input x ∈ Lhard ∩ {0, 1}nhard , we say that x has an easy witness if there is a proof
matrix π for the statement “Encode(x) ∈ Lenc” such that:

(completeness) Prseed←{0,1}r [VPCPP
Encode(x)◦π(seed) accepts] ≥ cpcp; and

(easiness) for every row πi of π, there exists a string wi such that πi = C(wi).

Description of MPCPP. Now we define MPCPP, which is a non-deterministic algorithm that
runs in T/ logchard T time and takes at most ℓc+1 ≤ nhard/10 bits of advice. The goal of MPCPP is
to reject every x /∈ Lhard and accept every x ∈ Lhard with easy witness when appropriate advice
is given.

On input x ∈ {0, 1}nhard , we guess Ĥproof strings w1, w2, . . . , wĤproof
∈ {0, 1}n. Let π be the

Ĥproof ×Wproof proof matrix where for each i ∈ [Ĥproof ], the i-th row of π is equal to C(wi).
Let pacc be the acceptance probability of the PCPP verifier VPCPP for Lenc given the input
Encode(x) and the proof π, i.e.,

pacc := Pr
seed←{0,1}r

[VPCPPEncode(x)◦π(seed) accepts].

We need to distinguish between the case that pacc ≥ cpcp and the case that pacc ≤ spcp. We set
ε := (cpcp− spcp)/4 so that this can be done by estimating pacc with an additive error at most ε,
which will be done by applying the Approxε-C ′-Satisfying-Pairs algorithm in the assumption.
(Recall that cpcp and spcp are absolute constants that only depend on δcode, which means that
ε is also an absolute constant.)
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In what follows, we reduce the problem of estimating pacc to 2rshared instances of Approxε-C ′-
Satisfying-Pairs, where each instance consists of 2rcol = ℓ1−η · polylog(ℓ) circuits and 2rrow =

ℓc+1−η · polylog(ℓ) inputs. Then we will use the algorithm for Approxε-C ′-Satisfying-Pairs to
estimate pacc, where the data structure in the preprocessing phase will be treated as an advice
of MPCPP.

For the simplicity of presentation, we define the notation:

(itype[1], . . . , itype[q])←Vtype(seed.shared),

(irow[1], . . . , irow[q])←Vrow(seed.shared, seed.row),

(icol[1], . . . , icol[q])←Vcol(seed.shared, seed.col), and

(pc1, . . . , pcp)←Vpc(seed.shared),

where p = p(seed.shared), q = q(seed.shared), p + q ≤ 2, and pci : {0, 1}rrow+rcol → {0, 1} is an
XOR of (some of) its input bits (i.e. a GF(2)-linear function) for every i ∈ [p].

Reduction to Satisfying Pairs. The input strings in the Approxε-C ′-Satisfying-Pairs

instance will be of the form (a1, . . . , aq, pc
row
1 , . . . , pcrowp ). For each j ∈ [q], the meaning of aj is

as follows:

• if itype[j] = input, then aj is interpreted as a row of the input matrix, and we use (aj)col

to denote the col-th bit of aj ;

• if itype[j] = proof, then aj is interpreted as a “seed” such that C(aj) is a row of the proof
matrix, and we use (aj)col to denote the col-th bit of C(aj). (NOT the col-th bit of aj !)

For each j ∈ [p], pcrowj is a bit representing the contribution of seed.row in the j-th parity-check
bit, i.e. pcrowj := pcj(seed.row, 0

|seed.col|).
We first enumerate seed.shared ∈ {0, 1}rshared . For each seed.shared, we create an instance

I := Iseed.shared of Approxε-C ′-Satisfying-Pairs as follows. Let x̃j be the j-th row of Encode(x)
(viewed as an Hinput×Winput matrix). For each seed.row ∈ {0, 1}rrow , we add the following input
to I:

Inputseed.shared,seed.row = (a1, . . . , aq, pc
row
1 , . . . , pcrowp ),

where for every j ∈ [q],

aj :=




x̃irow[j] if itype[j] = input,

wirow[j] if itype[j] = proof,

and pcrowj is the contribution of seed.row to the j-th parity-check bit as defined above. Note
that since ñhard = Hinput ·Winput, x̃irow[j] ∈ {0, 1}Winput when itype[j] = input, i.e., x̃irow[j] will not
contain ⊥ (see Definition 2.5.4). The length of aj is at most max{Winput, n} ≤ n · polylog(ℓ),
thus the total length of Inputseed.shared,seed.row is also bounded by n · polylog(ℓ).

Then, for every seed.col ∈ {0, 1}rcol , we define a circuit Cseed.shared,seed.col as follows. On input

(a1, . . . , aq, pc
row
1 , . . . , pcrowp ),
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it outputs
VDec

(
(a1)icol[1], . . . , (aq)icol[q], pc

row
1 ⊕ pccol1 , . . . , pcrowp ⊕ pccolp

)
.

Here, VDec ← Vdec(seed.shared) is the decision predicate of VPCPP and pccoli represents the
contribution of seed.col to the i-th parity-check bit, i.e., pccoli := pci(0

|seed.row|, seed.col). Note
that by definition, pci(seed.row, seed.col) = pcrowi ⊕ pccoli . Also note that Cseed.shared,seed.col is
indeed an OR2 ◦ C circuit, since VDec is always the OR of its two input bits or their negation.

C

a1 a2

C(a1)

VDec

Cseed.shared,seed.col

C

a1

C(a1)

VDec

Cseed.shared,seed.col

pc1

Figure 3.1: Examples of the circuit Cseed.shared,seed.col. In the left example, there are two
queries and no parity-check bits, the first query has type proof, and the second query has
type input. In the right example, there are one query with type proof and one parity-check
bit.

Now, our instance I contains M := 2rrow inputs and N := 2rcol circuits. By definition,

VPCPPEncode(x)◦π(seed) = Cseed.shared,seed.col(Inputseed.shared,seed.row).

Since M = ℓc+1−η · polylog(ℓ) and N = ℓ1−η · polylog(ℓ), there is a non-trivial algorithm for
Approxε-C ′-Satisfying-Pairs with N circuits of size s and M inputs of length n ·polylog(ℓ). In
particular, we can estimate pacc(seed.shared) using this algorithm on Iseed.shared up to an additive
error ε, where

pacc(seed.shared) := Pr
seed.row,seed.col

[
VPCPPEncode(x)◦π(seed)

]
.

In other words, we can obtain a p′acc(seed.shared) ∈ pacc(seed.shared)±ε. The overall acceptance
probability of VPCPP on the input Encode(x) and proof π is

pacc := Pr
seed←{0,1}r

[
VPCPPEncode(x)◦π(seed)

]
.

= E
seed.shared

[
Pr

seed.row,seed.col

[
VPCPPEnc(x)◦π(seed)

]]

= E
seed.shared

[pacc(seed.shared)]

∈ E
seed.shared

[
p′acc(seed.shared)

]
± ε.

Hence we can estimate pacc up to an additive error ε by taking average over all p′acc(seed.shared)
obtained by the Approxε-C ′-Satisfying-Pairs algorithm over Iseed.shared.

To summarise, our algorithm MPCPP works as follows. It first computes Encode(x) in O(n)

time. Then, it enumerates seed.shared, produces the instance Iseed.shared, and feeds it to the
algorithm for Approxε-C ′-Satisfying-Pairs to obtain p′acc(seed.shared). Let p′acc be the average
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of p′acc(seed.shared) over all seed.shared ∈ {0, 1}rshared . It accepts if and only if p′acc ≥ cpcp − ε.

Correctness of MPCPP. For every x ∈ {0, 1}nhard , we know by the discussion above that:

• If x /∈ Lhard, we know that Encode(x) is δcode far from being in Lenc. By the soundness of
VPCPP, pacc ≤ spcp, which further means that p′acc ≤ pacc + ε < cpcp − ε, hence MPCPP

will reject x.

• If x ∈ Lhard has an easy witness, we can see by the definition of easiness that there is a
proof π of Encode(x) ∈ Lenc such that for every row πi ∈ {0, 1}Wproof of π, there is a string
wi ∈ {0, 1}n such that πi = C(wi). These wi can be found by non-deterministic guessing
at the beginning of MPCPP. In such case, we know by the completeness of VPCPP that
pacc ≥ cpcp, which further means that p′acc ≥ pacc − ε ≥ cpcp − ε. Therefore MPCPP will
accept x.

Complexity of MPCPP. Each instance I of Approxε-C ′-Satisfying-Pairs contains M :=

2rrow inputs and N := 2rcol circuits. Since each instance can be solved in NM/ logc0(NM) time,
the total time are

2rshared ·NM/ logc0(NM)

≤ 2rshared · 2rrow · 2rcol/rc0

≤ 2r/rc0 .

Recall that r = log T +O(log log T +m logm), where O(·) hides some absolute constant, we can
see that 2r/rc0 = T logO(1) T/ logc0 T . By setting c0 to be an sufficiently large absolute constant
depending on chard, we can make 2r/rc0 ≤ T/ logchard T . Also, we can compute Encode(x) in
O(nhard) time, and this is not the bottleneck. Therefore, the total running time of MPCPP is at
most T/ logchard T .

It then suffices to determine the advice and non-determinism complexity ofMPCPP. For every
seed.shared, the machine MPCPP needs the data structure DSseed.shared as advice to support the
algorithm for Satisfying Pairs. Since |DSseed.shared| ≤ N c = 2crcol by the assumption, the advice
complexity of MPCPP is

2crcol+rshared ≤ ℓc−cη+2η ≤ ℓc+1 ≤ nhard/10.

Also, the number of nondeterministic bits that MPCPP guesses is at most Ĥproof · n ≤ nhard/10.
Therefore, we can see that

MPCPP ∈ NTIMEGUESSRAM[T/ logchard(T ), nhard/10]/(nhard/10).

The final algorithm. Given a multi-output circuit C : {0, 1}n → {0, 1}ℓ, our algorithm for
finding a non-output of C works as follows. First, we construct the hard language Lhard and the
algorithm MPCPP. Since MPCPP is a nondeterministic algorithm that runs in T/ logchard(T ) time,
uses at most nhard/10 bits of nondeterminism and at most nhard/10 bits of advice, it follows that
there is an input xhard ∈ {0, 1}nhard such that MPCPP(xhard) ̸= Lhard(xhard). Moreover, let α be
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the advice string fed to MPCPP, i.e., the data structures DSseed.shared for each seed.shared. (Note
that we can obtain α since the avoidance algorithm has an NP oracle.) We can find such an
input xhard by running R(1nhard ,MPCPP, α), where R is the refuter guaranteed by Theorem 3.3.1.
Thus, we can find xhard in poly(T ) time with an NP oracle.

If xhard ̸∈ Lhard, then MPCPP also rejects xhard, which means MPCPP(xhard) = Lhard(xhard).
Thus, it has to be the case that xhard ∈ Lhard but MPCPP rejects xhard. Therefore, xhard does not
have an easy witness. We can then use the NP oracle to find the lexicographically first proof
matrix π such that

Pr
seed←{0,1}r

[VPCPPEncode(x)◦π(seed) accepts] ≥ cpcp.

Treating π as a matrix of dimension Ĥproof ×Wproof , there has to be a row that is not in the
range of C. We can pick such a row by using the NP oracle.

Remark 3.4.3. In Theorem 3.4.2, we assumed a non-trivial Satisfying-Pairs algorithm for the
circuit class OR2 ◦C . By Theorem 3.3.9, a non-trivial Satisfying-Pairs algorithm for AND2 ◦C or
XOR2 ◦ C also suffices. This property might be useful for some circuit classes with a better closure
property under top XOR2 gates (or AND2 gates).

By replacing the 2-query PCPP (with imperfect completeness) with the 3-query PCPP (with
perfect completeness) in Theorem 2.5.10, we can show that non-trivial algorithms for Gapε-C ′-
Satisfying-Pairs where C ′ = OR3 ◦ C also imply FPNP algorithms for C -Avoid.

Corollary 3.4.4. There are constants ε > 0 and c0 such that the following holds. Let 0 < η <

1/2 be a constant, ℓ(n) > n1+4η be a good function. Let s = s(n) be a size parameter, C [s] be
a typical circuit class where s is a size parameter, and C ′[3s] := OR3 ◦ C [s] (i.e. a C ′ circuit of
size 3s refers to an OR3 of at most two C circuits of size s).

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logc0(NM))-time algo-
rithm for Gapε-C ′-Satisfying-Pairs with N := ℓ1−η · polylog(ℓ) circuits of size s(n) and
M := ℓc+1−η ·polylog(ℓ) inputs of length n ·polylog(ℓ), allowing a PNP preprocessing of an
N c-size data structure.

Conclusion: Then there is an FPNP algorithm for C [s]-Avoid with stretch ℓ(n).

Proof Sketch. Compared to the proof of Theorem 3.4.2, the only difference is that the Gapε-C ′-
Satisfying-Pairs algorithm can only distinguish between the case that pacc(seed.shared) = 1

and that pacc(seed.shared) ≤ 1 − ε, and our algorithm MPCPP rejects immediately if there is a
seed.shared such that pacc(seed.shared) ̸= 1.

If the PCPP has perfect completeness, we can still distinguish between the case that x ̸∈ Lhard

and the case that x ∈ Lhard has an easy witness. Indeed, if x ̸∈ Lhard, then pacc ≤ 1−ε, hence by
an averaging argument there exists some seed.shared such that pacc(seed.shared) < 1− ε; on the
other hand, if x ∈ Lhard has an easy witness, then (on some nondeterministic guess of MPCPP)
we have that pacc(seed.shared) = 1 for every seed.shared.
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3.5 Remote Point

Theorem 3.5.1. There is a universal constant cu ≥ 1 such that the following holds. Let N :=

N(n) be a parameter such that 2log
cu n < N < 2n

0.99, ε := ε(n) > n−cu be the error parameter,
and ℓ := N cu log(1/ε). Let C [s] be a typical circuit class, where s := s(n) ≤ N is a size parameter,
and denote C ′[cus] := ANDcu ◦ C [s] (i.e. a C ′ circuit of size cus refers to the AND of at most
cu C circuits of size s).

Assumption: Let P := (logN)log(1/ε). Suppose there is a deterministic algorithm running in
time T alg := N2/P cu that, given as input a list of N C ′[cus] circuits {Ci} and a list of N
inputs {xj} with input length n ·polylog(ℓ), estimates Pri,j←[N ][Ci(xj)] with additive error
η := εcu . For some constant c, this algorithm is allowed to have a PNP preprocessing phase
on circuits that outputs a “data structure” of length ℓDS := N c.

Conclusion: Then there is an FPNP algorithm that takes as input a circuit C : {0, 1}n → {0, 1}ℓ,
where each output bit of C can be computed in C [s], and prints a string y that is (1/2−ε)-
far from Range(C).

The rest of this section is devoted to proving Theorem 3.5.1. Since the proof is quite technical
and consists of a few components, we give an overview below:

Overview of Section 3.5

• In Section 3.5.1, we define a circuit class called Prodd◦Sum◦C , and show that a Satisfying-Pairs
algorithm for ANDd ◦ C implies a Satisfying-Pairs algorithm for this class. This will be a
convenient tool for our subsequent arguments.

• To solve the remote point problem, we need to define a nondeterministic machine called MPCPP

trying to contradict the nondeterministic time hierarchy (Theorem 3.3.1). In Section 3.5.2, we
set the framework for this machine: it uses the PCPP theorem in Theorem 2.5.11, guesses a
“compressed” version of the PCPP proof, and verifies the validity of this PCPP proof without
decompressing it.

• The first problem we encounter is the “non-Booleanness” of the PCPP proof. As we use Theo-
rem 3.3.5, the decompressed proof consists of real numbers instead of Boolean values, and we need
to check whether the decompressed proof is “close to Boolean” (in a carefully defined technical
sense). This is done in Section 3.5.3 via the Satisfying-Pairs algorithm.

• In Section 3.5.4, we use the faster algorithm for Satisfying-Pairs to verify the PCPP proof.
This step is straightforward but tedious.

• After we obtain a non-trivial algorithm for verifying the PCPP proof, we conclude the machine
MPCPP in Section 3.5.5. Then we use this machine to build an FPNP algorithm for the remote
point problem in Section 3.5.6.

3.5.1 Satisfying-Pairs for Prodd ◦ Sum ◦ C Circuits

It turns out that as an intermediate step, we need a Satisfying-Pairs algorithm for the
following class of multi-output circuits that output real numbers. Let d ≥ 1 be a constant,
denote by Prodd ◦ Sum ◦ C the class of multi-output circuits which take two inputs x ∈ {0, 1}n
and α, and have the following components:
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C1 C2 C3

Sum Sum Sum
α α α

Sum
α

Sum
α
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Prod
. . . . . .

Prod ProdProd

Figure 3.2: Example of a Prodd ◦ Sum ◦ C circuit.

• Let ℓC denote the number of bottom C circuits. For each i ∈ [ℓC ], the i-th bottom circuit
is a C circuit computing a function Ci : {0, 1}n → {0, 1}.

• Let ℓSum denote the number of middle “linear sum” gates. For each i ∈ [ℓSum], the i-th
gate outputs a real number

Sumi(x, α) :=
∑

k∈[A]

coeffk(α) · Cidxk(α,i)(x).

(See Definition 3.3.3 for the definition of linear sum circuits, in particular the coefficient
sum and locality of a linear sum circuit. Note that this definition is different from the
definitions in [Wil18b,CW19b] and in Chapter 4.)

• Let ℓProd denote the number of output gates. Each output gate is a product (i.e., multi-
plication) gate of fan-in d and is connected to the q1(i), q2(i), . . . , qd(i)-th linear sum gate.
It outputs the real number

CProd
i (x, α) :=

d∏

t=1

Sumqt(i)(x, α).

Remark 3.5.2. The important complexity measures of a Prodd ◦ Sum ◦ C circuit are:
• the number of gates in each level (ℓC , ℓSum, ℓProd);
• the fan-in of the top Prod gates (d);
• the fan-in (A), coefficient sum (U), and locality (l) of the linear sum layer.

We show that a Satisfying Pairs algorithm for ANDd ◦ C circuits implies a “Satisfying Pairs
algorithm” for Prodd ◦ Sum ◦ C circuits that given a Prodd ◦ Sum ◦ C circuit and a list of input
strings, estimates the expected output value (as a real number) of a random output Prod gate
in the circuit on a random input string in the list.

Theorem 3.5.3. Let C be a typical circuit class and η ∈ (0, 1) be a parameter. Suppose there
is a deterministic algorithm running in time T alg = T alg(N,M) that, given as inputs a list of
N̂ ≤ N ANDd ◦ C circuits {Ci} and a list of M̂ ≤ M inputs {xj}, estimates the following
quantity with additive error η:

Pr
i←[N̂ ],j←[M̂ ]

[Ci(xj)].
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Then, there is a deterministic algorithm running in time Ad(2dl+M ′/M)·⌈ℓProd/N⌉·O(T alg)

that, given as input a Prodd ◦ Sum ◦ C circuit CProd with parameters specified in Remark 3.5.2,
and a list of M ′ inputs {(xj , αj)}, estimates the following quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (xj , αj)

]
.

Moreover, if the algorithm in the hypothesis requires a PNP preprocessing phase on the circuits
that outputs a “data structure” of length ℓDS, then the algorithm in the conclusion requires a PNP

preprocessing phase on CProd that outputs a “data structure” of length O(Ad2dl) · ⌈ℓProd/N⌉ · ℓDS.

Proof. For any fixed i and j, we know that

CProd
i (xj , αj) =

d∏

t=1

Sumqt(i)(xj , αj)

=

d∏

t=1

∑

k∈[A]

coeffk(αj) · Cidxk(αj ,qt(i))(xj)

=
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

d∏

t=1

(
coeffkt(αj) · Cidxkt (αj ,qt(i))(xj)

)
. (3.6)

As we can enumerate k1, k2, . . . , kd ∈ [A] in Ad time, it suffices to estimate

E
i←[ℓProd],j←[M ′]

[
d∏

t=1

(
coeffkt(αj) · Cidxkt (αj ,qt(i))(xj)

)]
. (3.7)

Fix k1, k2, . . . , kd ∈ [A]. Since CProd is of locality l, we can see that (3.7) only depends on dl

bits of αj . We partition j ∈ [M ′] into 2dl groups as follows: For each α ∈ {0, 1}dl, let Jα be the
set of j ∈ [M ′] such that the dl bits of αj (that (3.7) for this j depends on) equals to α. We will
estimate (3.7) by enumerating α ∈ {0, 1}dl, estimating it for j ← Jα (instead of j ← [M ′]), and
then taking the (weighted) average over all possible α.

Now we fix any α ∈ {0, 1}dl. We can rephrase the following two expressions as they no longer
depend on αj :

coeffkt(αj) =: coeff ′t;

Cidxkt (αj ,qt(i))(xj) =: Cidx′t(i)
(xj).

It then suffices to estimate

E
i←[ℓProd],j←Jα

[
d∏

t=1

coeff ′t · Cidx′t(i)
(xj)

]
=

(
d∏

t=1

coeff ′t

)
· E
i←[ℓProd],j←Jα

[
d∧

t=1

Cidx′t(i)
(xj)

]
. (3.8)

Each expression of the form Ei,j

[∧d
t=1Cidx′t(i)

(xj)
]

can be reduced to the Satisfying-Pairs

problem for ANDd ◦ C circuits. More precisely, we split Jα into blocks of size M , split [ℓProd]

into blocks of size N , and use the assumed algorithm (which works for N ANDd ◦C circuits and
M inputs) to estimate (3.8) within an additive error of

(
η ·∏d

t=1

∣∣coeff ′t
∣∣
)

in T alg · ⌈|Jα|/M⌉ ·
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⌈ℓProd/N⌉ time.14 We substitute this estimation in (3.7) and then in (3.6) to obtain our final
algorithm.

Running time. Consider the subroutine for estimating (3.7). This subroutine itself is reduced
to subroutines for each Jα, which takes T alg · ⌈|Jα|/M⌉ · ⌈ℓProd/N⌉ time. The time complexity
of this subroutine is

O(T alg) · ⌈ℓProd/N⌉ ·
∑

α

⌈|Jα|/M⌉ ≤ O(T alg) · (2dl +M ′/M) · ⌈ℓProd/N⌉.

We invoked this subroutine Ad times by enumerating k1, k2, . . . , kd ∈ [A] to estimate (3.6), so
the total time complexity of our algorithm is Ad(2dl +M ′/M)⌈ℓProd/N⌉O(T alg).

Additive error. Our estimation of (3.8) is within an additive error of
(
η ·∏d

t=1

∣∣coeff ′t
∣∣
)
.

Thus, our estimation of (3.7) is within an additive error of

η ·
∑

α∈{0,1}dl

|Jα|
M ′
·

d∏

i=1

|coeff ′t| = η · E
j

[
d∏

i=1

|coeffkt(αj)|
]
.

It follows that our estimation of (3.6) is within an additive error of

η ·
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

E
j

[
d∏

i=1

|coeffkt(αj)|
]

= η · E
j





∑

k∈[A]

|coeffk(αj)|




d



≤ η · Ud.

Preprocessing. Finally, suppose the assumed Satisfying-Pairs algorithm for ANDd ◦ C

circuits require a PNP preprocessing phase on the circuits. The PNP preprocessing phase for
our algorithm enumerates k1, k2, . . . , kd ∈ [A] and α ∈ {0, 1}dl. For each (k1, k2, . . . , kd, α), it
splits the ℓProd circuits {Cidx′t(i)

} into blocks of size N , invokes the preprocessing algorithm on
each block, and computes a “data structure” for this block. The final “data structure” outputted
by the preprocessing phase of our algorithm consists of the concatenation of all these “data
structures” computed, which has total length O(Ad2dl) · ⌈ℓProd/N⌉ · ℓDS.

3.5.2 Set Up

Suppose that we are given a C circuit C : {0, 1}n → {0, 1}ℓ as input. Let q, cm, ctm be
constants that will be determined later. Define

δ := (109q)−10q
2
,

m := cm log(1/ε)/δ,

14Note that at most one of the block may contain less than M inputs. However, the assumed algorithm works
for input number ≤ M as well, and this will not have any blow-up on the error factor.
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wproof := (300q/m) log ℓ, Wproof := 2wproof = ℓO(δ/ log(1/ε)),

hproof := (25q + 1) log ℓ, Hproof := 2hproof = ℓ25q+1,

nhard := 20Hproof · ncu · (1/ε)cu log log ℓ,

T :=Hproof ·Wproof/ log
ctm(ℓ).

Let Lhard be the hard language constructed in Theorem 3.3.1, i.e.,

Lhard ∈ NTIMETM[T ] \ i.o.-NTIMEGUESSRAM[T/ logchard(T ), nhard/10]/(nhard/10),

where nhard refers to the input length and chard is an absolute constant.
We now show that T ≥ nhard · polylog(nhard), which means that the technical condition of

Theorem 3.3.1 is satisfied. In fact, polylog(nhard) ≤ polylog(ℓ), hence it suffices to show that
Wproof ≥ (n·(1/ε)log log ℓ)ω(1), i.e., ℓ ≥ (n·(1/ε)log log ℓ)ω(log(1/ε)). This is true since ℓ = N cu log(1/ε)

and n, (1/ε)log log ℓ < 2O(log1/2 N).
Like in the proof of Theorem 3.4.2, we describe a nondeterministic RAM MPCPP that runs

in T/ logchard(T ) time, uses nhard/10 advice bits, guesses nhard/10 nondeterministic bits, and
attempts to solve Lhard. We will show that for every input x ∈ {0, 1}nhard , if x ̸∈ Lhard then
MPCPP(x) rejects; while if x ∈ Lhard and has an easy witness, then MPCPP(x) accepts. However,
to solve C -Remote-Point, we need a slightly different definition for “easy witness”.

Let VPCPP be the verifier for the smooth and rectangular PCPP (Theorem 2.5.11) for the
language

Lenc := {Encode(x) : x ∈ Lhard},

where we fix an error-correcting code (Encode,Decode) as in Theorem 2.4.1. Let δcode be the
(relative) distance of the error-correcting code. Suppose a string of length nhard is encoded (via
Encode) into a string of length ñhard := Θ(nhard). We set the following parameters:

hinput :=

(
1− Θ(m2 log log T )

log T

)
hproof , Hinput := 2hinput = Hproof/poly(2

m2
, log ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = poly(n, 2m
2
, log ℓ).

Again, we assume without loss of generality that ñhard = Hinput ·Winput.
We invoke Theorem 2.5.11 for Lenc to obtain a verifier VPCPP with proof size Ĥproof×Wproof

and input size Hinput ×Winput, where Ĥproof = 2ĥproof for some ĥproof = log T +Θ(m log log T )−
wproof . We can check the technical requirements of Theorem 2.5.11 as follows:

m =Θ(log n/δ) ≤ (log T )0.1,

wproof =(300q/m) log ℓ ≥ (5/m) log T,

ĥproof =hproof +Θ(log(1/ε) log log ℓ) ≥ (25q + 1) log ℓ ≥ (5/m) log T,

winput

wproof
=
O(m2 + log n+ log log ℓ)

(log ℓ)/m
< o(1).
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By Theorem 2.5.11, VPCPP has the following parameters:

◦ soundness error = 1/2,

◦ proximity parameter = δcode,

◦ query complexity = q := O(1),

◦ parity-check complexity = q := O(1),

◦ total randomness = r := wproof + ĥproof +O(log log T +m logm) = log T +O(m log log T ),

◦ row randomness = rrow := ĥproof − (5/m) log T = Θ(log ℓ),

◦ column randomness = rcol := wproof − (5/m) log T = Θ((log ℓ)/m),

◦ shared randomness = rshared := (10/m) log T +O(log log T +m logm) = Θ((log ℓ)/m).

Here, all the Θ(·) hides constants that may depend on q, cm, ctm. Moreover, as we choose the
soundness error and the proximity parameters to be absolute constants, the query complexity q
is also an absolute constant.

Note that if cu is large enough, then we have 2Ω(rcol) ≤ N ≤ 2rcol . (This is because rcol =
qcuδ/cm · Θ(logN).) Therefore, we can solve the Approxη-Satisfying-Pairs problem for 2rcol

inputs and 2rcol ANDcu ◦ C circuits, by partitioning the inputs and circuits into groups of size
N . The time complexity is still at most 22rcol/P cu , where P := (rcol)

log(1/ε). Without loss of
generality, we may assume N = 2rcol in what follows. It still holds that our Satisfying-Pairs

algorithm has a PNP preprocessing phase on circuits that outputs a “data structure” of length
ℓDS = N c.

We also fix the hardness amplification procedure Amp : {0, 1}Wproof → {0, 1}ℓ′ described in
Theorem 3.3.5 that amplifies hardness δ to hardness (1/2 − ε). Here, ℓ′ := W

O(log(1/ε)/δ)
proof =

ℓO(300q/cm). We set the parameter cm such that ℓ′ ≤ ℓ. By Lemma 3.3.7, we may assume that
ℓ′ = ℓ without loss of generality. Let (idx, coeff) be the family of linear sum circuit described in
Theorem 3.3.5, then (idx, coeff) has the following parameters:

advice complexity = a := O(log2Wproof/(εδ)
2) = O(log2 ℓ/ε2),

fan-in = A := O(logWproof/(εδ)
2) = O(log ℓ/ε2),

coefficient sum = U := O(1/ε),

locality = l := log ℓ.

We say an input x has an easy witness if there is a proof matrix π such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEncode(x)◦π(seed) accepts;

(approximate easiness) for every row πi of π, there exists an input wi ∈ {0, 1}n and an advice
αi ∈ {0, 1}a such that the decoding of C(wi) with advice αi is δ-close to πi with respect to
ℓ1-norm. (Recall that decα(x) denotes the decoding of x under advice α.) In particular:

1. for every j ∈ [Wproof ], (decαi(C(wi)))j ∈ [0, 1];

2. ∥decαi(C(wi))− πi∥1 ≤ δ.

Recall that P = (rcol)
log(1/ε). By our hypothesis, there is an algorithm that takes as input

a list of N = 2rcol AND4q ◦ C circuits {Ci} and a list of N inputs {xj}, runs in deterministic
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T alg := 22rcol/P cu time, and estimates Ei,j [Ci(xj)] within an additive error of η := εcu ≤ U−10q.
This algorithm is allowed to have a PNP preprocessing phase on the circuits {Ci} which outputs
a “data structure” of length ℓDS = N c.

3.5.3 Guessing and Verifying the PCPP

On input x ∈ {0, 1}nhard , we guess Ĥproof strings w1, w2, . . . , wĤproof
∈ {0, 1}n as well as Ĥproof

advice strings α1, α2, . . . , αĤproof
∈ {0, 1}a. Let πReali := decαi(C(wi)), and πBooli be the Boolean

string that is closest to πReali . We will think of the matrix πBool as the PCPP proof, although
our algorithm MPCPP will operate on πReal.

Therefore, before we proceed, we need to verify that πReal and πBool are “close”, so that it does
no harm to operate on πReal even if the correct PCPP proof should be πBool. This verification
phase also occurs in previous works proving lower bounds against linear combinations of circuits
[Wil18b, CW19b, CR22, CLW20]. Like in previous work, we only provide an “approximate”
verification algorithm: if the input has an easy witness, then the PCPP proof πReal corresponding
to this easy witness is accepted; on the other hand, we reject every πReal that is “too far” from
Boolean.

In what follows, denote

(itype[1], itype[2], . . . , itype[q])←Vtype(seed.shared),

(irow[1], irow[2], . . . , irow[q])←Vrow(seed.shared, seed.row), and

(icol[1], icol[2], . . . , icol[q])←Vcol(seed.shared, seed.col).

For each seed.shared ∈ {0, 1}rshared and each ι ∈ [q] such that itype[ι] = proof, we define the
following functions:

fBoolseed.shared,ι(seed.row, seed.col) =πBoolirow[ι],icol[ι] and

fRealseed.shared,ι(seed.row, seed.col) =πRealirow[ι],icol[ι].

We will talk about the ℓd-norms of the above functions. For example, let d ∈ N be a constant,
then

∥fBoolseed.shared,ι − fRealseed.shared,ι∥d = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∣∣∣πBoolirow[ι],icol[ι] − πRealirow[ι],icol[ι]

∣∣∣
d
]1/d

.

Lemma 3.5.4. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there is
an algorithm that takes as inputs a list of 2rcol AND2d ◦ C circuits {Ci} and a list of 2rcol inputs
{xj}, runs in deterministic T alg time, and estimates the following quantity with additive error
η:

Pr
i,j←[2rcol ]

[Ci(xj)].

Then there is an algorithm that takes (w1, w2, . . . , wĤproof
), (α1, α2, . . . , αĤproof

), and the cir-

cuit C as inputs, runs in deterministic O((3A)2dT alg) ·
(
22dl+rshared + T logO(m) T/22rcol

)
time,

and satisfies the following:
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(Completeness) If for every i ∈ [Ĥproof ], it holds that (1) for every j ∈ [Wproof ], πReali,j ∈ [0, 1];
(2) ∥πReali − πBooli ∥1 ≤ δ, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fRealseed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof ],j←[Wproof ]

[
|πReali,j − πBooli,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

Moreover, if the algorithm in the hypothesis requires a PNP preprocessing phase on the circuits
that outputs a “data structure” of length ℓDS, then the algorithm in the conclusion requires a PNP

preprocessing phase on C that outputs a “data structure” of length (3A)2d22dl+rshared · ℓDS.

Proof. Fix seed.shared and ι, we first estimate

∥fRealseed.shared,ι∥dd := E
seed.row,seed.col

[
|πRealirow[ι],icol[ι]|d

]
.

Recall that
πReali,j =

∑

k∈[A]

coeffk(αi) · Cidxk(αi,j)(wi).

Therefore, we can build a Prodd ◦ Sum ◦ C circuit Cnorm := Cnorm(seed.shared, ι) as follows.
Circuit Cnorm

(Inputs) The input consists of (w,α) with the intended meaning that w = wirow[ι] and α = αirow[ι].

(Bottom circuits) The bottom circuit is exactly C (taking input w). Thus, there are ℓ output
gates of C circuits with the i-th one being precisely the i-th output gate of C.

(Intermediate linear sum gates) There are 2rcol intermediate linear sum gates. For each seed.col,

Sumseed.col(w,α) =
∑

k∈[A]

coeffk(α) · Cidxk(α,icol[ι])(w).

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output
gate is simply

(Cnorm)seed.col(w,α) = (Sumseed.col(w,α))
d
.

Recall that this circuit Cnorm has parameters as follows:
• the number of gates in each layer: ℓC = ℓ, ℓSum = 2rcol , ℓProd = 2rcol ;
• the fan-in of the top Prod gates d;
• the fan-in A, coefficient sum U , and locality l of the linear sum layer.

We invoke Theorem 3.5.3 on the circuit Cnorm and M ′ := 2rrow inputs {(wirow[ι], αirow[ι])}seed.row.
We obtain an estimation ESTnorm = ESTnorm(seed.shared, ι) where

∣∣∣ESTnorm − ∥fRealseed.shared,ι∥dd
∣∣∣ ≤ η · Ud.

If ESTnorm > 1+ η ·Ud, then we reject the input. Otherwise, we proceed to verify that πReal

and πBool are close. Consider the polynomial P (z) := zd(1 − z)d, which intuitively measures
how close z is to Boolean. We will estimate

E
i←[Ĥproof ],j←[Wproof ]

[
P (πReali,j )

]
. (3.9)
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Similarly, we estimate (3.9) by building a Prod2d ◦ Sum ◦ C circuit Cdiff .
Circuit Cdiff

(Inputs and bottom circuits) The inputs and bottom circuits of Cdiff are exactly the same as
Cnorm.

(Intermediate linear sum gates) There are 2Wproof intermediate linear sum gates. Let j ∈
[Wproof ], then the 2j-th linear sum gate computes (πReal)j , and the (2j + 1)-th one computes
1− (πReal)j . That is,

Sum2j(w,α) =
∑

k∈[A]

coeffk(α) · Cidxk(α,j)(w); Sum2j+1(w,α) = 1− Sum2j(w,α).

Implementation of the linear sum layer: Since we did not allow coeffk(α) to depend on i (the
output index in [2Wproof ]), we need to be careful when implementing the linear sum layer.
The fan-in of this layer will be 2A+ 1 (instead of A). We identify [2A+ 1] with the disjoint
union of [A] × {0, 1} and {⋆} (where ⋆ denotes the constant term 1 in Sum2j+1(w,α)). Let
idx′ and coeff ′ be the idx and coeff functions of the intermediate linear sum gates of Cdiff :

(Function idx′k(α, i)) We write i = 2j + b where j ∈ [Wproof ] and b ∈ {0, 1}. If k = (k′, b′) ∈
[A] × {0, 1}, then idx′k(α, i) returns idxk′(α, j) if b = b′ and returns ZERO if b ̸= b′. If
k = ⋆ then idx′k(α, i) returns ZERO if b = 0 and returns ONE if b = 1.

(Function coeff ′k(α)) If k = (k′, b′) ∈ [A]×{0, 1}, then coeff ′k(α) = (−1)b′ ·coeffk′(α). If k = ⋆

then coeff ′k(α) = 1.

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes 2U + 1.

(Output product gates) There are Wproof product gates. For each j ∈ [Wproof ], the j-th output
gate is

Cdiff(w,α) = (Sum2j(w,α) · Sum2j+1(w,α))
d
.

The parameters of the circuit Cdiff are as follows:
• the number of gates in each layer: ℓC = ℓ, ℓSum = 2Wproof , ℓProd =Wproof ;
• the fan-in of the top Prod gates 2d;
• the fan-in 2A+ 1, coefficient sum 2U + 1, and locality l of the linear sum layer.
We invoke Theorem 3.5.3 on the circuit Cdiff and the M ′ := Ĥproof inputs {(wi, αi)}i∈[Ĥproof ]

,
and obtain an estimation ESTdiff where

|ESTdiff − (3.9)| ≤ η · (2U + 1)2d.

We then accept if and only if ESTdiff ≤ 2d · δ + η(2U + 1)2d.

Complexity. Our algorithm calls the algorithm in Theorem 3.5.3 as a subroutine on the
circuits Cnorm and Cdiff . It takes Ad(2dl + 2rrow/2rcol) · O(T alg) time to process each Cnorm.
Similarly, it takes (2A+1)2d(22dl + Ĥproof/2

rcol) · (Wproof/2
rcol) ·O(T alg) time to process Cdiff . It

follows that our algorithm runs in deterministic time

2rshared ·Ad(2dl + 2rrow/2rcol) ·O(T alg) + (2A+ 1)2d(22dl + Ĥproof/2
rcol) · (Wproof/2

rcol) ·O(T alg)

=O((3A)2dT alg) ·
(
2dl+rshared + 2r−2rcol + 22dl ·Wproof/2

rcol + Ĥproof ·Wproof/2
2rcol
)
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=O((3A)2dT alg) ·
(
22dl+rshared + T logO(m) T/22rcol

)
.

(Recall that since log(Wproof/2
rcol) = (5/m) log T , rshared ≥ (10/m) log T , we have Wproof/2

rcol ≤
2rshared . Also, from r = log T +O(m log log T ) we know that 2r−2rcol ≤ T logO(m) T/22rcol .)

Now it suffices to prove the completeness and soundness requirements. Before that, we need
the following fact regarding the polynomial P . Let z ∈ R, dbin(z) be the distance between z to
the closest Boolean value; namely dbin(z) := min{|z|, |1− z|}.

Fact 3.5.5. For every z ∈ R, dbin(z)d · 2−d ≤ P (z) ≤ dbin(z)d · (1 + dbin(z))
d. ⋄

Completeness. Suppose that for every i ∈ [Ĥproof ] and j ∈ [Wproof ], πReali,j ∈ [0, 1]. Then for
every ι ∈ [q] and seed.shared ∈ {0, 1}rshared , ∥fRealseed.shared,ι∥dd ≤ 1, and thus ESTnorm ≤ 1 + η · Ud.

Suppose in addition that for every i ∈ [Ĥproof ], ∥πReali − πBooli ∥1 ≤ δ. Then:

(3.9) ≤ E
i,j

[
dbin(π

Real
i,j )d · (1 + dbin(π

Real
i,j ))d

]

≤ 2d · E
i,j

[
dbin(π

Real
i,j )d

]

≤ 2d · δ.

Therefore, ESTdiff ≤ 2d · δ + η(2U + 1)2d and our algorithm accepts.

Soundness. Suppose our algorithm accepts.

1. For every seed.shared and ι, we have ESTnorm ≤ 1 + η · Ud and thus ∥fRealseed.shared,ι∥dd ≤
1 + 2η · Ud.

2. We have (3.9) ≤ 2d · δ + 2η(2U + 1)2d and

E
i←[Ĥproof ],j←[Wproof ]

[
|πReali,j − πBooli,j |d

]
= E

i,j

[
dbin(π

Real
i,j )d

]

≤ 2d · (3.9) (Fact 3.5.5)

≤ 4d · δ + 2d+1η(2U + 1)2d.

Preprocessing. Suppose the algorithm in the hypothesis requires a PNP preprocessing phase
on the circuits that outputs a “data structure” of length ℓDS. By Theorem 3.5.3, the PNP

preprocessing phase on each Cnorm(seed.shared, ι) outputs a “data structure” of length O(Ad2dl) ·
ℓDS and the PNP preprocessing phase on Cdiff outputs a “data structure” of length O((2A +

1)2d22dl) · (Wproof/2
rcol) · ℓDS. Since Cnorm and Cdiff only depend on C (not wi or αi), the

preprocessing phase of our algorithm also only depends on C. The total length of these “data
structures” is

O(Ad2dl2rshared + (2A+ 1)2d22dl(Wproof/2
rcol))ℓDS ≤ (3A)2d22dl+rshared · ℓDS.

We substitute d := 2q in the above lemma. If x has an easy witness, then there is some
(w1, w2, . . . , wĤproof

) and (α1, α2, . . . , αĤproof
) that passes the test; on the other hand, if the test

is passed, then both soundness properties in Lemma 3.5.4 hold:
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1. for every seed.shared and ι, ∥fRealseed.shared,ι∥
2q
2q ≤ 1 + 2η · U2q;

2. Ei←[Hproof ],j←[Wproof ]

[
|πReali,j − πBooli,j |2q

]
≤ 16q · δ + 128qηU4q.

Moreover, the output length of the PNP preprocessing phase is at most (3A)4q24ql+rsharedℓDS.

3.5.4 Estimating the Acceptance Probability

After checking that the PCPP proof is “close to Boolean”, the next step is to use it to speed
up Lhard. We estimate

pacc := Pr
seed←{0,1}r

[
VPCPPEncode(x)◦πBool

(seed) accepts
]
.

(Indeed, it suffices to distinguish between the case that pacc ≥ 5/6 and the case that pacc < 1/2

as we will explain later.)
We enumerate seed.shared. After fixing seed.shared, each itype[ι] is completely fixed, each

irow[ι] only depends on seed.row, and each icol[ι] only depends on seed.col. We now need to
estimate

pacc(seed.shared) := Pr
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
VPCPPEncode(x)◦πBool

(seed) accepts
]
.

If we also fix seed.row, then we know the q rows of the input matrix Encode(x) and the
proof matrix π that could influence the PCPP verifier, denoted as rowBool

1 , rowBool
2 , . . . , rowBool

q .
In particular, letting x̃i denote the i-th row of the matrix Encode(x), then for each ι ∈ [q]:

rowBool
ι =




x̃irow[ι] if itype[ι] = input,

πBoolirow[ι] if itype[ι] = proof.

We also let pc1, pc2, . . . , pcq ← Vpc(seed.shared) be the parity-check functions of the PCPP
verifier, where each pcι : {0, 1}rrow+rcol → {0, 1}. In particular, let pcrowι (resp. pccolι ) denote the
contribution of seed.row (resp. seed.col) to pcι, i.e.,

pcrowι (seed.row) := pcι(seed.row, 0
rcol), and pccolι (seed.col) := pcι(0

rrow , seed.col).

Then pcι(seed.row, seed.col) = pcrowι (seed.row) ⊕ pccolι (seed.col). For simplicity, we omit
seed.row and seed.col when they are clear from the context.

Let VDec be the decision predicate of the PCPP verifier; note that as seed.shared is fixed,
VDec← Vdec(seed.shared) is also fixed. The input of VDec includes the answers to the q queries
and the parity-check bits pc1, . . . , pcq. On seed.row and seed.col, the PCPP verifier outputs

VDec
(
(rowBool

1 )icol[1], (row
Bool
2 )icol[2], . . . , (row

Bool
q )icol[q], pc1, pc2, . . . , pcq

)
.

As every Boolean function over 2q bits can be written as a degree-2q polynomial over the

58



reals, we write

VDec(a1, a2, . . . , aq, pc1, pc2, . . . , pcq) =
∑

S⊆[q],S′⊆[q]

θS,S′

(∏

ι∈S
aι

)
·
(∏

ι∈S′
pcι

)
,

where θS,S′ ∈ [−22q, 22q]. Now, define

pacc(seed.shared, S, S
′) := E

seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowBool

ι )icol[ι] ·
∏

ι∈S′
pcι

]
.

We have
pacc(seed.shared) =

∑

S⊆[q],S′⊆[q]

θS,S′pacc(seed.shared, S, S
′),

thus it suffices to estimate each pacc(seed.shared, S, S′).
Fix S and S′. Since we only have access to a real proof matrix πReal instead of a Boolean

proof matrix, we use the following number as an estimation of pacc(seed.shared, S, S′), with the
only difference being πBooli being replaced by πReali :

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowReal

ι )icol[ι] ·
∏

ι∈S′
pcι

]
,

where

rowReal
ι =




x̃irow[ι] if itype[ι] = input,

πRealirow[ι] if itype[ι] = proof.

The following claim bounds the accuracy of the estimation given the ℓd-distance between the
functions fBoolseed.shared,ι and fRealseed.shared,ι. The proof is deferred to Section 3.5.7.

Claim 3.5.6. For every S, S′ ⊆ [q],

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)| ≤ (1 + δseed.shared)
2q−1 · δseed.shared.

Here,

δseed.shared :=
∑

ι:itype[ι]=proof

∥fBoolseed.shared,ι − fRealseed.shared,ι∥2q

(recall) =
∑

ι:itype[ι]=proof

E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∣∣∣πBoolirow[ι],icol[ι] − πRealirow[ι],icol[ι]

∣∣∣
2q
]1/(2q)

.

Now we fix S, S′ and estimate pRealacc (seed.shared, S, S′). Let dS := |S|, dS′ := |S′|, it is without
loss of generality to assume that S = {1, 2, . . . , dS} and S′ = {1, 2, . . . , dS′}. We construct a
ProddS+dS′ ◦Sum◦C circuit CProd := CProd

seed.shared,S,S′ , as well as a list of inputs (zseed.row, αseed.row),
such that

CProd
seed.col(zseed.row, αseed.row) =

∏

ι∈S
(rowReal

ι )icol[ι] ·
∏

ι∈S′
pcι. (3.10)
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C C

z1 z2 z3 zdS

. . .

C(zdS )C(z2)

. . . pc1 pcdS′

itype = input inputproof proof

COPY

z1

COPY

z3

COPY

. . .pc1 pcdS′

SumCOPY

z1 decα2(C(z2))

α2

COPY

z3

Sum

decαdS
(C(zdS ))

αdS

pc1 1− pc1 pcdS′ 1− pcdS′

CProd
seed.colCProd

0rcol CProd
1rcol

. . . . . .

Figure 3.3: Construction of the circuit CProd. Note that for convenience, we only drew the
“relevant” parts of this circuit, e.g., C(zi) when itype[i] = proof and the copying circuit for
zi when itype[i] = input.

Construction of CProd and inputs. For each seed.row and each ι ∈ S, define

(zseed.row)ι :=




x̃irow[ι] if itype[ι] = input,

wirow[ι] if itype[ι] = proof.

Then we concatenate each (zseed.row)ι and the (row-)parity-check bits to obtain

zseed.row :=
(
(zseed.row)1, (zseed.row)2, . . . , (zseed.row)dS , pc

row
1 , pcrow2 , . . . , pcrowdS′

)
.

It is easy to check that given seed.row (and seed.shared), we can compute zseed.row easily. We
also define

αseed.row :=
(
αirow[1], αirow[2], . . . , αirow[dS ]

)
.

Next, we define the circuit CProd that takes two inputs (z, α) and outputs 2|seed.col| real
numbers. Fix seed.col, we want that

CProd
seed.col(zseed.row, αseed.row)

=
∏

ι∈S
(rowReal

ι )icol[ι] ·
∏

ι∈S′
pcι

=
∏

ι∈Sproof

(decαirow[ι]
(C(wirow[ι])))icol[ι] ·

∏

ι∈Sinput

x̃irow[ι],icol[ι] ·
∏

ι∈S′
(pcrowι ⊕ pccolι ),

where
(decαirow[ι]

(C(wirow[ι])))icol[ι] =
∑

k∈[A]

coeffk(αirow[ι]) · Cidxk(αirow[ι],icol[ι])(wirow[ι])

denotes the icol[ι]-th bit of the string obtained by decoding C(wirow[ι]) with the advice αirow[ι]

using the decoder dec, Sproof := {i ∈ S : itype[i] = proof}, S input := {i ∈ S : itype[i] = input}.
This motivates the definition of the circuit CProd (see Figure 3.3 for an illustration and

Figure 3.4 for the detailed definition). The parameters of the circuit CProd are as follows.
• The number of gates: ℓC = dS(ℓ+Wproof) + dS′ , ℓSum =Wproof · dS + 2dS′ , ℓProd = 2rcol .
• The fan-in of the top Prod gates dS + dS′ ≤ 2q.
• The fan-in A′ := A ·dS+2, coefficient sum dS ·U +2, and locality l of the linear sum layer.
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Circuit CProd

(Inputs) The input z will have the form z = (z1, z2, . . . , zdS
, pc1, pc2, . . . , pcdS′ ) and the input α will

have the form α = (α1, α2, . . . , αdS
). The intended meanings are zi = (zseed.row)i, pci = pcrowi ,

and αi = αirow[i].

(Bottom circuits) We make dS copies to C, where the i-th copy is applied to the input zi. (The
i-th copy is useful only when itype[i] = proof, but we make all dS copies for convenience.) We
also add Wproof · dS + dS′ gates to copy the input.
Thus, there are ℓC := dS · ℓ+ dS ·Wproof + dS′ output gates; we identify [ℓC ] with the disjoint
union of {1} × [dS ]× [ℓ], {2} × [dS ]× [Wproof ], and {3} × [dS′ ].

– For each j ∈ [dS ] and i ∈ [ℓ], the (1, j, i)-th gate is C(1,j,i)(z) := C(zj)i.
– For each j ∈ [dS ] and i ∈ [Wproof ], the (2, j, i)-th gate is C(2,j,i)(z) := (zj)i.
– For each j ∈ [dS′ ], the (3, j)-th gate is C3,j(z) := pcj .

(Intermediate linear sum gates) There are ℓSum := Wproof · dS + 2dS′ linear sum gates and we
identify [ℓSum] with the disjoint union of [Wproof ]× [dS ] and [dS′ ]× {0, 1}.
Let i ∈ [Wproof ] and j ∈ [dS ]. If itype[j] = proof, then the (i, j)-th intermediate gate is

Sum(i,j)(z, α) =
∑

k∈[A]

coeffk(αj) · Cidxk(αj ,i)·dS+j(z).

It is easy to verify that

Sum(i,j)(zseed.row, αseed.row) = (decαirow[j]
(C(wirow[j])))i.

On the other hand, if itype[j] = input, then the (i, j)-th intermediate gate is Sum(i,j)(z, α) :=
(zj)i. (If i > Winput then we simply set Sum(i,j)(z, α) = 0 and this intermediate gate would
not be used.) Finally, for each i ∈ [dS′ ], we have two intermediate gates

Sum(i,0)(z, α) = pci, Sum(i,1)(z, α) = 1− pci.

Implementation of the linear sum layer: The linear sum has fan-in A′ := A · dS + 2 and we
identify [A′] with the disjoint union of [A] × [dS ] and {+,−}. Let idx′ and coeff ′ be the idx
and coeff functions of the linear sum layer of CProd, then

(Function idx′k(α, i)) Suppose i = (i′, j) ∈ [Wproof ] × [dS ]. If itype[j] = proof and k = (k′, j′)
where j = j′, then we return idx′k(α, i) = (1, j, idxk′(αj , i

′)); if itype[j] = input and k = +,
then idx′k(α, i) = (2, j, i′). Otherwise idx′k(α, i) = ZERO.
On the other hand, suppose i = (j, b) ∈ [dS′ ]×{0, 1}. If (b = 0 and k = +) or (b = 1 and
k = −) then idx′k(α, i) = (3, j). If b = 1 and k = + then idx′k(α, i) = ONE. Otherwise
idx′k(α, i) = ZERO.

(Function coeff ′k(α)) If k = + then coeff ′k(α) = 1; if k = − then coeff ′k(α) = −1; otherwise,
if k = (k′, j′) then coeff ′k(α) = coeffk′(αj′).

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes dS · U + 2.

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output
gate is

CProd
seed.col(z, α) =

∏

i∈S
Sumicol[i]·dS+i(z, α) ·

∏

i∈S′

SumWproof ·dS+2i+pccoli
(z, α).

Figure 3.4: Detailed definition of CProd.
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Given the above construction, it is easy to check that (3.10) holds for every seed.row and
seed.col. We can see that

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
CProd
seed.col(zseed.row, αseed.row)

]
.

Since dS ≤ q and dS′ ≤ q, by Theorem 3.5.3, we can estimate pRealacc (seed.shared, S, S′) with
additive error η · (qU + 2)2q in deterministic O((qA)2q(22ql + 2rrow/N) · T alg) time.

Analysis. First, the verification step takes

O((3A)4qT alg) ·
(
24ql+rshared + T logO(m) T/22rcol

)

≤O((3A)4q) · (T logO(m) T )/(rcol)
cu log(1/ε)

≤T (log T )O(m)−cu log(1/ε)/2

time, which is at most T/ logchard T if cu is a large enough constant.
Our algorithm estimates pRealacc (seed.shared, S, S′). By Claim 3.5.6, the same algorithm esti-

mates pacc(seed.shared, S, S′) within an additive error of η(qU + 2)2q + δ′seed.shared, where

δ′seed.shared := (1 + δseed.shared)
2q−1 · δseed.shared.

Running this algorithm for every possible (S, S′), we obtain an algorithm that runs in deter-
ministic (O(qA))2q(22ql +2rrow/M) ·T alg time and estimates pacc(seed.shared) within an additive
error of

≤ δ̄seed.shared := 4q ·
∑

S,S′

(η · (qU + 2)2q + δ′seed.shared)

≤ η · (4qU + 8)2q + 16q · δ′seed.shared.

Finally, running this algorithm for every seed.shared ∈ {0, 1}rshared , we obtain an algorithm that
runs in deterministic

O(qA)2q(22ql + 2rrow/N) · 2rshared ·O(T alg)

≤O(log2q ℓ/ε4q)2rrow/2rcol · 2rshared · 22rcol/(rcol)cu log(1/ε)

≤ 2r/ log0.5cu log(1/ε) ℓ < T/ logchard(T )

time that estimates pacc within an additive error of at most

E
seed.shared

[
δ̄seed.shared

]
≤ η · (4qU + 8)2q + 16q E

seed.shared
[δ′seed.shared].

Next, we upper bound the quantity Eseed.shared[δ
′
seed.shared]. We abstract this task in the

following lemma and defer the proof to Section 3.5.8.

Lemma 3.5.7. Let f : [N ]× [q]→ R≥0 be a function and d ≥ 1 be a constant. Suppose that
1. for every s ∈ [N ] and i ∈ [q], f(s, i) ≤ α (where α ≥ 1);
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2. Es,i[f(s, i)
d] ≤ δ.

Let f(s) :=
∑

i∈[q] f(s, i). Then

E
s
[(1 + f(s))d−1 · f(s)] ≤ qδ1/d(2qα)d−1.

To see how this lemma corresponds to our scenario: Let d = 2q and [N ] = {0, 1}rshared . For
seed.shared and ι, if itype[ι] = proof, then define f(seed.shared, ι) = ∥fBoolseed.shared,ι−fRealseed.shared,ι∥2q;
otherwise define f(seed.shared, ι) = 0. Since the verification algorithm did not reject πReal, we
have

1. For every seed.shared and ι,

f(seed.shared, ι) ≤ ∥fBoolseed.shared,ι∥2q + ∥fRealseed.shared,ι∥2q ≤ 2 + 2η · U2q.

2. Since the PCPP is smooth, the distribution of (irow[ι], icol[ι]) for random (seed, ι) (condi-
tioned on itype[ι] = proof) is the same as the uniform distribution over [Hproof ]× [Wproof ].
Therefore

E
seed.shared,ι

[f(seed.shared, ι)2q] = E
seed,ι:itype[ι]=proof

[|πBoolirow[ι],icol[ι] − πRealirow[ι],icol[ι]|2q]

= E
i,j
[|πBooli,j − πReali,j |2q]

≤ 16q · δ + 128qηU4q.

It follows from Lemma 3.5.7 that

E
seed.shared

[δ′seed.shared] ≤ q(16q · δ + 128qηU4q)1/2q(2q(2 + 2η · U2q))2q−1

≤ q(17q · δ)1/2q · (100q)2q < 100−q.

Therefore, the algorithm estimates pacc within an additive error of at most

η(4qU + 8)2q + 16q · 100−q < 1/6,

thus successfully distinguishes between the case that pacc > 5/6 and that pacc < 1/2.
Finally, since CProd only depends on C (but not the input x to MPCPP), the preprocessing

phase of our algorithm only needs to know C. It outputs a “data structure” of length

(3A)4q24ql+rsharedℓDS + 2rshared+4q((AdS + 2)2q22ql)⌈ℓProd/N⌉ℓDS ≤ (6A)4qℓ4q2rsharedℓDS,

which is at most ℓ10q · ℓDS since A = O(log ℓ/ε2) = ℓo(1) and 2rshared = 2O(log ℓ/m) = ℓo(1).

3.5.5 Wrap Up: Description of MPCPP

The machine MPCPP hardwires C and the data structure of length ℓ10q · ℓDS. This data
structure can be computed in PNP, hence the description of MPCPP can be computed in PNP.
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On input x, we consider the smooth and rectangular PCPP for the language

Lenc = {Encode(x) : x ∈ Lhard}.

(Recall that MPCPP aims to reject every x /∈ L and accepts every x ∈ L with easy witness.) We
guess (w1, . . . , wĤproof

) and (α1, . . . , αĤproof
), which implicitly defines the PCPP proof matrices

πBool and πReal. Then we verify πReal using Lemma 3.5.4 and reject immediately if πReal did not
pass the test. If πReal passes the test (which means that it is “close” to a Boolean proof πBool),
we use the algorithm described above to estimate pacc. We accept x if and only if our estimation
is above 2/3.

The correctness of MPCPP is easy to see:

Claim 3.5.8. For every input x, if x ̸∈ L then MPCPP rejects x; while if x ∈ L and x has an
easy witness then MPCPP accepts x.

Proof. If x /∈ L, then it always holds that pacc < 1/2, so MPCPP rejects. If x ∈ L and x has an
easy witness, then there exists a proof π, (w1, . . . , wĤproof

) and (α1, . . . , αĤproof
) such that

1. for every j ∈ [Wproof ], πReali,j ∈ [0, 1];

2. for every i ∈ [Wproof ], j ∈ [Ĥproof ], ∥πReali − πi∥1 ≤ δ.

Note that ∥πReali − πBooli ∥1 ≤ ∥πReali − πi∥1 ≤ δ since πBooli is the closest Boolean string to πReali ,
and thus ∥πi− πBooli ∥1 ≤ 2δ. Since the probability that VPCPP accepts π is 1, by Lemma 2.5.8,
pacc ≥ 1− q · 2δ > 5/6, so MPCPP accepts.

The machine MPCPP guesses Ĥproof(n + a) < nhard/10 bits of nondeterminism, and uses
Õ(sℓ) + ℓ10qℓDS < nhard/10 bits of advice. Thus

L(MPCPP) ∈ NTIMEGUESSRAM[T/ logchard(T ), nhard/10]/(nhard/10).

3.5.6 The FPNP Algorithm for Remote-Point

Let C : {0, 1}n → {0, 1}ℓ be the input circuit. We first construct the hard language Lhard

and the algorithm MPCPP. Since MPCPP is a nondeterministic RAM algorithm that runs in
T/ logchard(T ) time, uses at most nhard/10 nondeterministic bits and at most nhard/10 advice
bits, it follows that there is an input xhard ∈ {0, 1}nhard such that MPCPP(xhard) ̸= Lhard(xhard).
Moreover, the advice string fed to MPCPP is exactly our Remote-Point instance C. We can
find such an input xhard by running R(1nhard ,MPCPP, C), where R is the refuter guaranteed by
Theorem 3.3.1. Thus, we can find xhard in deterministic poly(T ) time with an NP oracle.

It follows from Claim 3.5.8 that xhard ∈ Lhard but xhard does not have an easy witness. Thus,
we can use the NP oracle to find the lexicographically first PCPP proof matrix π such that

Pr
seed←{0,1}r

[VPCPPEncode(x)◦π(seed) accepts] = 1.

Then, there must exist a row πi that is (1/2−ε)-far from Range(C). To see this, suppose that for
every i, the i-th row πi is (1/2− ε)-close to Range(C). Then there exists some wi ∈ {0, 1}n such
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that δ(Amp(πi), C(wi)) ≤ 1/2−ε. By Theorem 3.3.5, there is an advice αi such that decαi(C(wi))

satisfies (1) for every j ∈ [Wproof ], (decαi(C(wi)))j ∈ [0, 1]; (2) ∥decαi(C(wi)) − πi∥1 ≤ δ. It
follows that π is an easy witness for xhard, a contradiction.

Finally, we use the NP oracle to find the first row πi, such that Amp(πi) is (1/2− ε)-far from
Range(C). The overall procedure takes deterministic poly(T ) ≤ poly(ℓ) time with an NP oracle.

3.5.7 Proof of Claim 3.5.6

We need the following technical lemma (see [CW19b, Lemma 28]):

Lemma 3.5.9. Let d ≥ 2 be an integer, f1, f2, . . . , fd, g1, g2, . . . , gd : [N ]→ R be functions. For
all i ∈ [d], suppose that ∥fi∥d ≤ 1, and define ε :=

∑d
i=1 ∥fi − gi∥d. Then

∣∣∣∣∣ E
x←[N ]

[
d∏

i=1

fi(x)−
d∏

i=1

gi(x)

]∣∣∣∣∣ ≤ (1 + ε)d−1 · ε.

The above lemma is a consequence of the following generalisation of Hölder’s inequality:

Fact 3.5.10. Let f1, f2, . . . , fd : [N ] → R be functions, f : [N ] → R be their product, i.e.,
f(x) =

∏d
i=1 fi(x). Then ∥f∥1 ≤

∏d
i=1 ∥fi∥d.

Proof of Lemma 3.5.9. Let εi := ∥fi − gi∥d, then ε =
∑d

i=1 εi. Define

Hybi := E
x←[N ]




i∏

j=1

fj(x) ·
d∏

j=i+1

gj(x)


.

Then, for every 1 ≤ i ≤ d,

|Hybi − Hybi−1| ≤ E
x←[N ]



∣∣∣∣∣∣

i−1∏

j=1

fj(x) ·
d∏

j=i+1

gj(x) · (fi(x)− gi(x))

∣∣∣∣∣∣




≤
i−1∏

j=1

∥fj∥d ·
d∏

j=i+1

∥gj∥d · ∥fi − gi∥d (Fact 3.5.10)

≤
d∏

j=2

(1 + εj) · εi

≤ (1 + ε)d−1 · εi.

It follows that
∣∣∣∣∣ E
x←[N ]

[
d∏

i=1

fi(x)−
d∏

i=1

gi(x)

]∣∣∣∣∣ = |Hybd − Hyb0| ≤
d∑

i=1

|Hybi − Hybi−1| ≤ (1 + ε)d−1 · ε.

Recall that for S, S′ ⊆ [q], we define

pacc(seed.shared, S, S
′) := E

seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowBool

ι )icol[ι] ·
∏

ι∈S′
pcι

]
,
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pRealacc (seed.shared, S, S′) := E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
(rowReal

ι )icol[ι] ·
∏

ι∈S′
pcι

]
,

δseed.shared :=
∑

ι:itype[ι]=proof

∥fBoolseed.shared,ι − fRealseed.shared,ι∥2q.

Claim 3.5.6. For every S, S′ ⊆ [q],

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)| ≤ (1 + δseed.shared)
2q−1 · δseed.shared.

Proof. Define the following 2(|S| + |S′|) functions fBooli , gBoolj , fReali , gRealj , where i ∈ S and
j ∈ S′. Each function takes (seed.row, seed.col) as inputs, and:

fBooli := (rowBool
i )icol[i]; fReali := (rowReal

i )icol[i]; and gBoolj = gRealj := pcj .

(Note: for convenience, we omit the input (seed.row, seed.col).) It follows that ∥fBooli ∥2q ≤ 1

and ∥gBoolj ∥2q ≤ 1; for every j ∈ S′, ∥gBooli − gReali ∥2q = 0; and for every i ∈ S,

∥fBooli − fReali ∥2q =




0 if itype[i] = input;

∥fBoolseed.shared,i − fRealseed.shared,i∥2q if itype[i] = proof.

Therefore, by Lemma 3.5.9,

|pacc(seed.shared, S, S′)− pRealacc (seed.shared, S, S′)|

=

∣∣∣∣∣∣∣
E

seed.row←{0,1}rrow
seed.col←{0,1}rcol


∏

i∈S
fBooli ·

∏

j∈S′
gBoolj −

∏

i∈S
fReali ·

∏

j∈S′
gRealj




∣∣∣∣∣∣∣

≤(1 + δseed.shared)
2q−1 · δseed.shared.

3.5.8 Proof of Lemma 3.5.7

Lemma 3.5.7. Let f : [N ]× [q]→ R≥0 be a function and d ≥ 1 be a constant. Suppose that
1. for every s ∈ [N ] and i ∈ [q], f(s, i) ≤ α (where α ≥ 1);
2. Es,i[f(s, i)

d] ≤ δ.
Let f(s) :=

∑
i∈[q] f(s, i). Then

E
s
[(1 + f(s))d−1 · f(s)] ≤ qδ1/d(2qα)d−1.

Proof. By Jensen’s inequality,

E
s
[f(s)] = q E

s,i
[f(s, i)] ≤ qδ1/d.

It follows that for every k ≥ 1,

E
s
[f(s)k] ≤ E

s
[f(s)] ·max

s
{f(s)}k−1 ≤ qδ1/d · (qα)k−1.
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Finally, we have

E
s
[(1 + f(s))d−1 · f(s)] =

d−1∑

i=0

(
d− 1

i

)
· E
s
[f(s)i+1] ≤ qδ1/d(2qα)d−1.

3.6 Hard Partial Truth Tables

Instead of allowing a PNP preprocessing on the circuits, the algorithm for Satisfying-Pairs

used to solve Partial-Hard allows a PNP preprocessing on inputs, formally defined as follows.

Definition 3.6.1 (Algorithms for Satisfying-Pairs with PNP Preprocessing on Inputs). Let
P be one of C -Satisfying-Pairs, #C -Satisfying-Pairs, Approxδ-C -Satisfying-Pairs, and
Gapδ-C -Satisfying-Pairs. A t-time algorithm for P with PNP preprocessing of an ℓ-size data
structure on inputs is a pair of algorithms (A1, A2) that solves P in two phases:

1. Given the inputs x1, x2, . . . , xM ∈ {0, 1}n, the polynomial-time algorithm A1 with oracle
access to a SAT oracle computes a string DS ∈ {0, 1}ℓ.

2. Given the circuits C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s and the string DS, the
algorithm A2 solves P on the instance (C1, . . . , CN , x1, . . . , xM ) in time t.

Theorem 3.6.2. There are constants ε > 0 and c0 such that the following holds. Let 0 < η < 1/2

be a constant, C [s] be a typical and complete circuit class where s = s(n) > n is a size parameter,
and C ′[2s] := OR2 ◦ C [s]. Let ℓ(n) be a good function such that s(n)1+Ω(1) ≤ ℓ(n) ≤ 2n.

Assumption: Suppose that for some constant c ≥ 1, there is an (NM/ logc0(NM))-time al-
gorithm for Approxε-C ′-Satisfying-Pairs with N := ℓc+1−η · polylog(ℓ) circuits of size
poly(s(n)) and M := ℓ1−η ·polylog(ℓ) inputs of length 2n, allowing a PNP preprocessing of
an M c-size data structure on inputs.

Conclusion: There is an FPNP algorithm for C [s]-Partial-Hard with ℓ(n) input strings.
More precisely, given a list of inputs z1, z2, . . . , zℓ ∈ {0, 1}n, we can compute a list of
bits b1, b2, . . . , bℓ such that for every C circuit C : {0, 1}n → {0, 1} of size s, there exists
an i ∈ [ℓ] such that C(zi) ̸= bi.

Proof Sketch of Theorem 3.6.2. The proof is very similar to the proof of Theorem 3.4.2; in fact,
it is (nearly) equivalent to first reducing Partial-Hard to Avoid and then invoking Theo-
rem 3.4.2. Therefore, we only highlight the differences.

It is without loss of generality to assume ℓ is a power of 2 and c ≥ 2. We set the following
parameters:

m := 5(c+ 2)/η = O(1),

wproof := log ℓ, Wproof := 2wproof = ℓ,

hproof := (c+ 1) log ℓ, Hproof := 2hproof = ℓc+1,

nhard := 100Ĥproof · polylog(ℓ) · s log s,
T := Hproof ·Wproof/ log

ctm(ℓ),

hinput :=
(
1− Θ(log log T )

log T

)
hproof , Hinput := 2hinput = Hproof/polylog(ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = s log s · polylog(ℓ).
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Here ñhard = O(nhard) is the codeword length of a length-nhard string encoded via Encode where
(Encode,Decode) is a fixed error-correcting code in Theorem 2.4.1; and ctm is a sufficiently large
constant.

We can check the technical condition nhard
1+Ω(1) ≤ T ≤ 2poly(nhard), so it is valid to invoke

Theorem 3.3.1. Also, (5/m) log T ≤ wproof , so it is valid to invoke the 2-query rectangular PCPP
in Theorem 2.5.10. There are other checks for technical conditions that we omit here. The proof
matrix is of size Ĥproof ×Wproof , where Ĥproof = 2ĥproof and ĥproof = log T + Θ(m log log T ) −
wproof = (c+ 1) log ℓ+O(log log ℓ).

The first difference is the definition of “easy witness”. We say x has an easy witness if there
is a proof matrix π (of size Ĥproof ×Wproof) for the statement “Encode(x) ∈ Lenc” such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEncode(x)◦π(seed) accepts w.p. at least cpcp;

(easiness) for every row πj of π, there exists a size-s C circuit Cj : {0, 1}n → {0, 1} such that
for every i, πj,i = Cj(zi).

Then, our machine MPCPP guesses Ĥproof size-s C circuits C1, C2, . . . , CĤproof
: {0, 1}n →

{0, 1}. Let π be the Ĥproof × Wproof proof matrix where for each j ∈ [Ĥproof ], i ∈ [Wproof ],
πj,i = Cj(zi). We need to estimate

pacc := Pr
seed←{0,1}r

[VPCPPEncode(x)◦π(seed) accepts].

We reduce the problem of estimating pacc to 2rshared instances of Approxε-C ′-Satisfying-Pairs,
where ε := (cpcp−spcp)/4. However, now, each instance consists of N := 2rrow = 2ĥproof−(5/m) log T

circuits and M := 2rcol = 2wproof−(5/m) log T inputs.15

We enumerate seed.shared. For each seed.shared, we create an Approxε-C ′-Satisfying-Pairs

instance Iseed.shared corresponding to seed.shared, which contains an input Inputseed.shared,seed.col
for every seed.col and a circuit Cseed.shared,seed.row for every seed.row. We elaborate on how this
instance is constructed, as this is different from Theorem 3.4.2.

Each seed.col corresponds to an input Inputseed.shared,seed.col of the following form:

(a1, . . . , aq, pc
col
1 , . . . , pccolp ),

where p+ q ≤ 2, for each i ∈ [q],

ai :=




icol[i] if itype[i] = input;

zicol[i] if itype[i] = proof,

and pccoli represents the contribution of seed.col in the i-th parity-check bit.
The circuit Cseed.shared,seed.row corresponding to seed.row is as follows:

• It receives input (a1, . . . , aq, pc
col
1 , . . . , pccolp ).

15That is, the role of inputs and circuits are swapped as compared to Theorem 3.4.2.
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• For each j ∈ [q], let

ansj =




Encode(x)irow[j],aj if itype[j] = input

Cirow[j](aj) if itype[j] = proof
.

Note that since C is complete, we can compute a C circuit of size poly(Winput) = poly(s)

whose truth table is the irow[j]-th row of Encode(x). That is, we can compute a C circuit
of size poly(s) that on input aj , outputs ansj .

• For each j ∈ [q], let pcrowj be the contribution of seed.row in the j-th parity-check bit.

• It returns
VDec(ans1, . . . , ansq, pc

col
1 ⊕ pcrow1 , . . . , pccolp ⊕ pcrowp ).

Here, VDec is the decision predicate of VPCPP, and is an OR2 of its input bits or their nega-
tions. Since C is typical, C is a OR2 ◦ C circuit. And one can easily verify that for each
seed = (seed.shared, seed.row, seed.col), Cseed.shared,seed.row(Inputseed.shared,seed.col) = 1 if and only
if VPCPPEnc(x)◦π(seed) accepts. It follows that we can estimate pacc by solving the instances
Iseed.shared for every seed.shared.

To summarise, our algorithm MPCPP works as follows. It first computes Encode(x) and
guesses C1, C2, . . . , CĤproof

. Then, it enumerates seed.shared, produces the instances Iseed.shared,
and feeds them to the algorithm for Approxε-C -Satisfying-Pairs to obtain an estimation
p′acc(seed.shared). Let p′acc be the average of p′acc(seed.shared) over all seed.shared ∈ {0, 1}rshared .

We can still see that MPCPP rejects every x ̸∈ Lhard and accepts every x with an easy
witness. The machine MPCPP runs in T/ logchard T time, guesses Ĥproof · 5s log s < nhard/10

nondeterministic bits (since a size-s circuit can be encoded with at most 5s log s bits), and uses
at most ℓc+1 < nhard/10 advice bits. By Theorem 3.3.1, MPCPP cannot compute Lhard.

The hard partial truth tables algorithm. Given a list of inputs z1, z2, . . . , zℓ ∈ {0, 1}n, our
algorithm for finding a hard partial truth table ((z1, b1), (z2, b2), . . . , (zℓ, bℓ)) works as follows.
First, we construct the hard language Lhard and the algorithm MPCPP. Let α be the advice string
fed to MPCPP and R be the refuter in Theorem 3.3.1, we can use R(1nhard ,MPCPP, α) to find an
input xhard where MPCPP fails on xhard; in particular, MPCPP(xhard) = 0 but xhard ∈ Lhard. This
takes deterministic poly(Ĥproof) = poly(ℓ) time with an NP oracle.

Then we find the lexicographically first proof matrix π such that VPCPPEncode(xhard)◦π accepts
w.p. at least cpcp, using the NP oracle. There has to be some j ∈ [Ĥproof ] such that for every
size-s C circuit C, there exists i ∈ [Wproof ] such that C(zi) ̸= πj,i; moreover, the first such j can
be found in poly(Ĥproof) = poly(ℓ) time with an NP oracle. We can pick

((z1, πj,1), (z2, πj,2), . . . , (zWproof
, πj,Wproof

))

as the partial truth table that is hard for size-s C circuits.
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3.7 Average-Case Hard Partial Truth Tables

Theorem 3.7.1. There is a universal constant cu ≥ 1 such that the following holds. Let s =

s(n) > n be a circuit size parameter, N := N(n) be a parameter such that 2log
cu s < N < 2s

0.99,
ε := ε(n) > s−cu be the error parameter, and ℓ := N cu log(1/ε). Let C [s] be a typical and complete
circuit class, and denote C ′[cus] := ANDcu ◦C [s] (i.e. a C ′ circuit of size cus refers to the AND

of at most cu C circuits of size s).

Assumption: Let P := (logN)log(1/ε). Suppose there is a deterministic algorithm running in
time T alg := N2/P cu that, given as input a list of N C ′[cus] circuits {Ci} and a list of N
inputs {xj} with input length n · polylog(ℓ), estimates Pri,j←[N ][Ci(xj) = 1] with additive
error η := εcu.

Conclusion: There is an FPNP algorithm for C [s]-Partial-AvgHard with ℓ(n) input strings.
More precisely, given a list of inputs w1, w2, . . . , wℓ ∈ {0, 1}n, we can compute a list of bits
b1, b2, . . . , bℓ such that for every C circuit C : {0, 1}n → {0, 1} of size s,

Pr
i←[ℓ]

[C(wi) ̸= bi] ≥
1

2
− ε.

Proof Sketch of Theorem 3.7.1. The proof is similar to that of Theorem 3.5.1, so here we only
highlight the difference. Roughly speaking, the main difference is that we swap the role of inputs
and circuits.

For a circuit C and a list of inputs w = (w1, w2, . . . , wℓ), with slight abuse of notation, we
define C(w) := C(w1) ◦ C(w2) ◦ · · · ◦ C(wℓ).

Analysing Prod ◦ Sum circuits. Let d ≥ 1 be a constant. We use Prod ◦ Sum to denote
the class of multi-output circuits that take inputs y ∈ {0, 1}ℓy and α, and has the following
components:

• Let ℓSum denote the number of middle “linear sum” gates. For each i ∈ [ℓSum], the i-th
gate outputs

Sumi(y, α) :=
∑

k∈[A]

coeffk(α) · yidxk(α,i).

• Let ℓProd denote the number of output gates. The i-th output gate is a product gate of
fan-in d, and is connected to the q1(i), q2(i), . . . , qd(i)-th linear sum circuits. Its output is

CProd
i (y, α) :=

d∏

t=1

Sumqt(i)(y, α).

Remark 3.7.2. The important measures of a Prodd ◦ Sum circuit are:
• the number of gates in each level (ℓSum, ℓProd);
• the fan-in of the top Prod gates (d);
• the fan-in (A), coefficient sum (U), and locality (l) of the linear sum layer.

As an intermediate step, we need the following algorithm.
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Lemma 3.7.3. Let C be a typical circuit class, M ′ ≥ 1 and η ∈ (0, 1) be parameters. Suppose
there is a deterministic algorithm running in time T alg = T alg(N,M) that, given as inputs a list
of M̂ ≤ M ANDd ◦ C circuits {Ci} and a list of N̂ ≤ N inputs {xj} of length n · polylog(ℓ),
estimates the following quantity with additive error η:

Pr
i←[M̂ ],j←[N̂ ]

[Ci(xj)].

Then, for any constant ℓC > 0, there is a deterministic algorithm running in time Ad · (ℓdC +

ℓProd/N)·(2dl+M ′/M)·O(T alg) that, given as inputs a Prodd◦Sum circuit CProd with parameters
specified in Remark 3.7.2, a list of ℓx strings {xj} of length n · polylog(ℓ), a list of M ′ inputs
{αj}, and a list of M ′ C circuits {Ci} from {0, 1}n·polylog(ℓ) to {0, 1}ℓC , estimates the following
quantity with additive error η · Ud:

E
i←[ℓProd],j←[M ′]

[
CProd
i (Cj(x), αj)

]
.

Recall here that Cj(x) = Cj(x1) ◦ Cj(x2) ◦ · · · ◦ Cj(xℓx).

The proof is similar to that of Theorem 3.5.3 and we only provide a sketch here.

Proof Sketch of Lemma 3.7.3. We identify idxk(α, i) ∈ [ℓy] with (idxxk(α, i), idx
C
k (α, i)) ∈ [ℓx] ×

[ℓC ] (note that ℓy = ℓxℓC ). Then,

CProd
i (Cj(x), αj) =

d∏

t=1

Sumqt(i)(Cj(x), αj)

=
d∏

t=1

∑

k∈[A]

coeffk(αj) · (Cj)idxC
k (αj ,qt(i))

(xidxxk(αj ,qt(i)))

=
∑

k1∈[A]

∑

k2∈[A]

· · ·
∑

kd∈[A]

d∏

t=1

(
coeffkt(αj) · (Cj)idxC

kt
(αj ,qt(i))

(xidxxkt (αj ,qt(i)))
)
.

(3.11)

As we can enumerate k1, k2, . . . , kd ∈ [A] in Ad time, it suffices to estimate

E
i←[ℓProd],j←[M ′]

[
d∏

t=1

(
coeffkt(αj) · (Cj)idxC

kt
(αj ,qt(i))

(xidxxkt (αj ,qt(i)))
)]
. (3.12)

Fix k1, k2, . . . , kd ∈ [A]. Since CProd is of locality l, we can see that (3.12) only depends on dl

bits of αj . We partition j ∈ [M ′] into 2dl groups as follows: For each α ∈ {0, 1}dl, let Jα be the
set of j ∈ [M ′] such that the dl bits of αj (that (3.12) for this j depends on) equals to α. We
will estimate (3.12) by enumerating α ∈ {0, 1}dl, estimating it for j ← Jα (instead of j ← [M ′]),
and then taking the average over all possible α.

Now we fix any α ∈ {0, 1}dl. We can rephrase the following items as they no longer depend
on αj :

coeffkt(αj) =: coeff ′t;
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idxxkt(αj , qt(i)) =: idx′x,t(i);

idxC
kt(αj , qt(i)) =: idx′C ,t(i).

It then suffices to estimate

E
i←[ℓProd],j←Jα

[
d∏

t=1

coeff ′t · (Cj)idx′C ,t(i)

(
xidx′x,t(i)

)]

=

(
d∏

t=1

coeff ′t

)
· E
i←[ℓProd],j←Jα

[
d∧

t=1

(Cj)idx′C ,t(i)

(
xidx′x,t(i)

)]
. (3.13)

Now for β ∈ [ℓC ]
d, let Iβ := {i ∈ [ℓProd] : ∀t ∈ [d], idx′C ′,t(i) = βt}. We enumerate over β,

and now it suffices to estimate

E
i←Iβ ,j←Jα

[
d∧

t=1

(Cj)βt

(
xidx′x,t(i)

)]
. (3.14)

Each expression of the form Ei,j

[∧d
t=1(Cj)βt

(
xidx′x,t(i)

)]
reduces to the Satisfying-Pairs

problem for ANDd ◦ C circuits. More precisely, we split Iβ into blocks of size N and Jα into
blocks of size M , and use the assumed algorithm to estimate (3.14). By a similar argument as
in Theorem 3.5.3, the additive error of our algorithm is bounded by η · Ud.

Complexity. The subroutine for estimating (3.14) takes O(T alg)·⌈|Jα|/M⌉·⌈|Iβ|/N⌉ time.
Therefore, the subroutine for estimating (3.13) takes

∑

β∈[ℓC ]d

O(T alg) · ⌈|Jα|/M⌉ · ⌈|Iβ|/N⌉ = O(T alg) · ⌈|Jα|/M⌉ · (ℓdC + ℓProd/N)

time. It then follows that the subroutine for estimating (3.12) takes

∑

α∈{0,1}dl
O(T alg) · ⌈|Jα|/M⌉ · (ℓdC + ℓProd/N) = O(T alg) · (2dl +M ′/M) · (ℓdC + ℓProd/N)

time, and finally, estimating (3.11) takes

O(T alg) · (2dl +M ′/M) · (ℓdC + ℓProd/N) ·Ad

time, which is the total time complexity of our algorithm.

Set up. We set the parameters as follows.

δ := (109q)−10q
2
,

m := cm log(1/ε)/δ,

wproof := (300q/m) log ℓ, Wproof := 2wproof = ℓO(δ/ log(1/ε)),

hproof := (25q + 1) log ℓ, Hproof := 2hproof = ℓ25q+1,

nhard := 20Hproof · poly(s, ε− log log ℓ),
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T :=Hproof ·Wproof/ log
ctm(ℓ).

hinput :=

(
1− Θ(m2 log log T )

log T

)
hproof , Hinput := 2hinput = Hproof/poly(2

m2
, log ℓ),

winput := ⌈log ñhard⌉ − hinput, Winput := 2winput = poly(s, 2m
2
, log ℓ).

a :=O(log2Wproof/(εδ)
2) = O(log2 ℓ/ε2),

A :=O(logWproof/(εδ)
2) = O(log ℓ/ε2),

U :=O(1/ε),

l := log ℓ.

Here cm and ctm are sufficiently large constants, q is the query complexity of the smooth and
rectangular PCPP in Theorem 2.5.11, and ñhard = Θ(nhard) is the length of Enc(x) when the
length of x is nhard. Let Ĥproof be the number of rows of the PCPP proof in Theorem 2.5.11, and
let ĥproof = log Ĥproof , then ĥproof = log T +Θ(m log log T )− wproof . Also, let r, rshared, rcol, rrow
be the total, shared, column, row randomness in Theorem 2.5.11, respectively.

We use a different definition of “easy witness” as follows. We say x has an easy witness if
there is a proof matrix π such that:

(completeness) for every seed ∈ {0, 1}r, VPCPPEncode(x)◦π(seed) accepts;

(approximate easiness) for every row πi of π, there exists a size-s C circuit Ci : {0, 1}n → {0, 1}
and an advice αi ∈ {0, 1}a such that the decoding of the string Ci(w) with advice αi is
δ-close to πi with respect to ℓ1-norm. (Recall that w = (w1, w2, . . . , wℓ) is our input and
C(w) denotes the concatenation of C(w1), C(w2), . . . , C(wℓ).) In particular:

1. for every j ∈ [Wproof ], (decαi(Ci(w)))j ∈ [0, 1];

2. ∥decαi(Ci(w))− πi∥1 ≤ δ.

Our machine guesses Ĥproof size-s C circuits C1, C2, . . . , CĤproof
: {0, 1}n → {0, 1} as well as

Ĥproof advice strings α1, α2, . . . , αĤproof
. Let πReali := decαi(Ci(w)), and πBooli be the Boolean

string that is closest to πReali . For ι ∈ [q], we define

fBoolseed.shared,ι(seed.row, seed.col) =πBoolirow[ι],icol[ι] and

fRealseed.shared,ι(seed.row, seed.col) =πRealirow[ι],icol[ι].

Verifying closeness of πBool and πReal. The next lemma shows that we can verify whether
a Boolean proof πBool and a real proof πReal are close.

Lemma 3.7.4. Let C be a typical circuit class and d ≥ 2 be an even number. Suppose there
is an algorithm that takes as inputs a list of 2rcol AND2d ◦ C circuits {Ci} and a list of 2rcol

inputs {xj} of length n · polylog(ℓ), runs in deterministic T alg time, and estimates the following
quantity with additive error η:

Pr
i,j←[2rcol ]

[Ci(xj)].

Then there is an algorithm that takes the strings w1, w2, . . . , wℓ, circuits (C1, C2, . . . , CĤproof
),

and (α1, α2, . . . , αĤproof
) as inputs, runs in O((3A)2dT alg) · (22dl+rshared +T logO(m) T/22rcol)) time
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deterministically, and satisfies the following:

(Completeness) If for every i ∈ [Ĥproof ], it holds that (1) for every j ∈ [Wproof ], πReali,j ∈ [0, 1];
(2) ∥πReali − πBooli ∥1 ≤ δ, then the algorithm accepts.

(Soundness) If the algorithm accepts, then it holds that

1. for every seed.shared ∈ {0, 1}rshared and ι ∈ [q], ∥fRealseed.shared,ι∥dd ≤ 1 + 2η · Ud;

2. Ei←[Ĥproof ],j←[Wproof ]

[
|πReali,j − πBooli,j |d

]
≤ 4d · δ + 2d+1η(2U + 1)2d.

Proof Sketch. We first estimate ∥fRealseed.shared,ι∥dd for fixed seed.shared and ι. Recall that

πReali,j =
∑

k∈[A]

coeffk(αi) · Ci(widxk(αi,j)).

We build a Prodd ◦ Sum circuit Cnorm := Cnorm(seed.shared, ι) as follows.
Circuit Cnorm

(Inputs) The input consists of (y, α) with the intended meaning that y = (y1, y2, . . . , yℓ) where
yi = Cirow[ι](wi), and α = αirow[ι].

(Linear sum gates) There are 2rcol linear sum gates. For each seed.col,

Sumseed.col(y, α) =
∑

k∈[A]

coeffk(α) · yidxk(α,icol[ι]).

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output
gate is simply

(Cnorm)seed.col(y, α) = (Sumseed.col(y, α))
d
.

Recall that this circuit Cnorm has parameters as follows:
• the number of gates in each layer: ℓSum = 2rcol , ℓProd = 2rcol ;
• the fan-in of the top Prod gates d;
• the fan-in A, coefficient sum U , and locality l of the linear sum layer.

We invoke Lemma 3.7.3 on the circuit Cnorm, strings w1, w2, . . . , wℓ, 2rrow inputs {αirow[ι]}seed.row,
and 2rrow size-s C circuits {Cirow[ι]}seed.row. Here ℓC = 1. We thus obtain an estimation ESTnorm =

ESTnorm(seed.shared, ι) where
∣∣∣ESTnorm − ∥fRealseed.shared,ι∥dd

∣∣∣ ≤ η · Ud.

If ESTnorm > 1+ η ·Ud, then we reject the input. Otherwise, we proceed to verify that πReal

and πBool are close. Consider the polynomial P (z) := zd(1− z)d. We will estimate

E
i←[Ĥproof ],j←[Wproof ]

[
P (πReali,j )

]
. (3.15)

Similarly, we estimate (3.15) by building a Prod2d ◦ Sum circuit Cdiff .
Circuit Cdiff

(Inputs) The inputs are exactly the same as Cnorm.
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(Linear sum gates) There are 2Wproof linear sum gates. Let j ∈ [Wproof ], then the 2j-th linear
sum gate computes (πReal)j , and the (2j + 1)-th one computes 1− (πReal)j . That is,

Sum2j(y, α) =
∑

k∈[A]

coeffk(α) · yidxk(α,j); Sum2j+1(y, α) = 1− Sum2j(y, α).

The implementation of the linear sum layer is the same as in Lemma 3.5.4, and we omit it
here.

(Output product gates) There are Wproof product gates. For each j ∈ [Wproof ], the j-th output
gate is

Cdiff(y, α) = (Sum2j(y, α) · Sum2j+1(y, α))
d
.

The parameters of the circuit Cdiff are as follows:
• the number of gates in each layer: ℓSum = 2Wproof , ℓProd =Wproof ;
• the fan-in of the top Prod gates 2d;
• the fan-in 2A+ 1, coefficient sum 2U + 1, and locality l of the linear sum layer.
We invoke Lemma 3.7.3 on the circuit Cdiff , strings w1, w2, . . . , wℓ, a list of Ĥproof inputs

{αi}, and a list of Ĥproof size-s C circuits {Ci}. Here ℓC = 1. We obtain an estimation ESTdiff

where
|ESTdiff − (3.15)| ≤ η · (2U + 1)2d.

We accept if and only if ESTdiff ≤ 2d · δ + η(2U + 1)2d.
The correctness and complexity are analysed in the same way as in Lemma 3.5.4, so we omit

it here. ⋄

Estimating pacc. Now we verified that πReal is close to πBool using Lemma 3.7.4, with param-
eter d = 2q. After that, the next step is to use it to speed up Lhard. We estimate

pacc := Pr
seed←{0,1}r

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

Actually, it suffices to distinguish between the case that pacc > 5/6 and the case that pacc < 1/2.
We still enumerate seed.shared, and we now need to estimate

pacc(seed.shared) := Pr
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
VPCPPEnc(x)◦πBool

(seed) accepts
]
.

Let pc1, pc2, . . . , pcq ← Vpc(seed.shared) be the parity-check bits of the PCPP verifier, and
let pcrowι (resp. pccolι ) denote the contribution of seed.row (resp. seed.col) to pcι, then pcι =

pcrowι ⊕ pccolι .
As in the proof of Theorem 3.5.1, here it suffices to estimate for every S, S′ ⊆ [q]

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[∏

ι∈S
aRealι ·

∏

ι∈S′
pcι

]
,

where

aRealι :=




x̃irow[ι],icol[ι] itype[ι] = input,

πRealirow[ι],icol[ι] itype[ι] = proof.
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We want to invoke Lemma 3.7.3 to estimate this, so we want to construct a 2rcol-output Prod◦Sum
circuit CProd, 2rrow circuits {Cseed.row} and 2rrow strings {αseed.row} such that

CProd
seed.col(Cseed.row(w), αseed.row)

=
∏

ι∈S
aRealι ·

∏

ι∈S′
pcι

=
∏

ι∈Sproof


∑

k∈[A]

coeffk(αirow[ι]) · Cirow[ι]

(
widxk(αirow[ι],icol[ι])

)

 ·

∏

ι∈Sinput

x̃irow[ι],icol[ι] ·
∏

ι∈S′
(pcrowι ⊕ pccolι )

(3.16)

where Sproof = {ι ∈ S : itype[ι] = proof} and S input = {ι ∈ S : itype[ι] = input}. This motivates
the following definitions.

For i ∈ [ℓ], let zi ∈ {0, 1}n+winput be the string such that the first n bits of zi is wi, and the
last winput bit is (the binary expression of)




i if i ∈ [Winput],

1 if i /∈ [Winput].

Here we identify [Winput] with {0, 1}winput .
For any string v, define Ĉv : {0, 1}⌈log |v|⌉ → {0, 1} as the circuit that on input i ≤ |v|,

outputs vi. Since C is complete, Ĉv is an efficiently computable C circuit of size poly(|v|). Let
projinput : {0, 1}n+winput → {0, 1}winput be the circuit that outputs the last winput bits of its input,
and let projproof : {0, 1}n+winput → {0, 1}n be the circuit that outputs the first n bits of its input.

Now for fixed seed.row, define

Ca
ι :=




Ĉx̃irow[ι]

◦ projinput itype[ι] = input

Cirow[ι] ◦ projproof itype[ι] = proof

for ι ∈ S, and Cpc
ι be the circuit that outputs pcrowι for ι ∈ S′, regardless of its input. Let

Cseed.row := (Ca
1 , C

a
2 , . . . , C

a
dS
, Cpc

1 , C
pc
2 , . . . , C

pc
dS′

) where dS := |S| and dS′ := |S′|, that is,
Cseed.row is a circuit with dS + dS′ outputs and each of its outputs is a circuit Ca

ι or Cpc
ι .

Now we define the Prod ◦ Sum circuit CProd.
Circuit CProd

(Inputs) The input y has the form y = yseed.row = (y1, y2, . . . , yℓ) and the input α̂ has the form α̂ =

α̂seed.row = (α̂1, α̂2, . . . , α̂dS
). The intended meanings are yi = Cseed.row(zi), and α̂i = αirow[i].

For convenience, we will use the following labels to refer to bits of y, assuming the intended
meaning above:

– For j ∈ Sproof , i ∈ [ℓ], let (yi)j := Ca
j (zi) = Cirow[j](wi);

– For j ∈ S input, i ∈ [Winput], let (yi)j := Ca
j (zi) = Ĉx̃irow[j]

(i) = x̃irow[j],i;
– For j ∈ S′, let (yi)j+dS

:= Cpc
j (zi) = pcrowj .

(Linear sum gates) There are ℓSum := Wproof · dS + 2dS′ linear sum gates and we identify [ℓSum]

with the disjoint union of [Wproof ]× S and S′ × {0, 1}.
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Let i ∈ [Wproof ] and j ∈ S. If itype[j] = proof, then the (i, j)-th linear sum gate is

Sum(i,j)(y, α) =
∑

k∈[A]

coeffk(αj) · (yidxk(αj ,i))j .

It is easy to verify that

Sum(i,j)(y, α) = (decαirow[j]
(Cirow[j](w)))i.

On the other hand, if itype[j] = input, then the (i, j)-th linear sum gate is Sum(i,j)(y, α) :=

(yi)j . (If i > Winput then we simply set Sum(i,j)(y, α) = 0 and this gate would not be used.)

Finally, for each j ∈ S′, we have two intermediate gates

Sum(j,0)(y, α) = (y1)j+dS
, Sum(j,1)(y, α) = 1− (y1)j+dS

.

Implementation of the linear sum layer: The linear sum has fan-in A′ := A · dS + 2 and we
identify [A′] with the disjoint union of [A] × S and {+,−}. Also, the length of y is ℓy :=

ℓ · (dS + dS′), and we identify [ℓy] with [ℓ]× (S ∪· S′). Let idx′ and coeff ′ be the idx and coeff

functions of the linear sum layer of CProd, then

(Function idx′k(α, i)) Suppose i = (i′, j) ∈ [Wproof ] × S. If itype[j] = proof and k = (k′, j′)

where j = j′, then we return idx′k(α, i) = (idxk′(αj , i
′), j); if itype[j] = input and i′ ∈

[Winput] and k = +, then idx′k(α, i) = (i′, j). Otherwise idx′k(α, i) = ZERO.

On the other hand, suppose i = (j, b) ∈ S′ × {0, 1}. If (b = 0 and k = +) or (b = 1 and
k = −) then idx′k(α, i) = (1, j). If b = 1 and k = + then idx′k(α, i) = ONE. Otherwise
idx′k(α, i) = ZERO.

(Function coeff ′k(α)) If k = + then coeff ′k(α) = 1; if k = − then coeff ′k(α) = −1; otherwise,
if k = (k′, j′) then coeff ′k(α) = coeffk′(αj′).

The locality of (idx′, coeff ′) is still l. The coefficient sum becomes dS · U + 2.

(Output product gates) There are 2rcol product gates. For each seed.col, the seed.col-th output
gate is

CProd
seed.col(y, α) =

∏

j∈S
Sum(icol[j],j)(y, α) ·

∏

j∈S′

Sum(j,pccolj )(y, α).

To summarise, the parameters of the circuit CProd are as follows.
• The number of gates in each layer: ℓSum =Wproof · dS + 2dS′ , ℓProd = 2rcol .
• The length of input y: ℓy = ℓ(dS + dS′);
• The fan-in of the top Prod gates: dS + dS′ ≤ 2q.
• The fan-in A′ := A ·dS+2, coefficient sum dS ·U +2, and locality l of the linear sum layer.
Given the above construction, it is easy to see that (3.16) holds for every seed.row and

seed.col. We can thus see that

pRealacc (seed.shared, S, S′) = E
seed.row←{0,1}rrow
seed.col←{0,1}rcol

[
CProd
seed.col(Cseed.row(w), αseed.row)

]
.

Since dS ≤ q, dS′ ≤ q and ℓC ≤ dS + dS′ ≤ 2q, we can estimate pRealacc (seed.shared, S, S′) using
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Lemma 3.7.3 within an additive error of η · (qU + 2)2q in deterministic time

(A · dS + 2)2q · ((2q)2q + 2rcol/N) · (22ql + 2rrow/N) ·O(T alg)

Analysis. First, the verification step takes

O((3A)4qT alg) ·
(
24ql+rshared + T logO(m) T/22rcol

)

≤O((3A)4q) · (T logO(m) T )/(rcol)
cu log(1/ε)

≤T (log T )O(m)−cu log(1/ε)/2

time, which is at most T/(4 logchard T ) if cu is a large enough constant.
Then, the algorithm of Lemma 3.7.3 on CProd runs for every seed.shared, S, S′, and in total

takes time

(A · dS + 2)2q · ((2q)2q + 2rcol/N) · (22ql + 2rrow/N) ·O(T alg) · 22q · 2rshared

≤ O(log2q ℓ/ε4q) ·O(2rcol/N) ·O(2rrow/N) ·O(N2/ logcu log(1/ε)N) · 2rshared

≤ 2r/ logΩ(cu) ℓ < T/(4 logchard T ),

when cu is sufficiently large. Therefore, the whole algorithm runs in T/ logchard T time.
Besides, by the same argument as in the proof of Theorem 3.5.1, which we omit here, the

algorithm estimates pacc within an additive error of at most

η(4qU + 8)2q + 16q · 100−q < 1/6,

thus successfully distinguishes between the case that pacc > 5/6 and that pacc < 1/2.

Description of MPCPP. We summarise the algorithm MPCPP. On input x, we consider the
smooth and rectangular PCPP for the language Lenc = {Encode(x) : x ∈ Lhard}. (Recall that
MPCPP aims to reject every x /∈ L and accepts every x ∈ L with easy witness.) We guess
(C1, . . . , CHproof

) and (α1, . . . , αHproof
), which implicitly defines the PCPP proof matrices πBool

and πReal. Then we verify πReal using Lemma 3.5.4 and reject immediately if πReal did not pass
the test. If πReal passes the test (which means that it is “close” to a Boolean proof πBool), we
use the algorithm described above to estimate pacc. We accept x if and only if our estimation is
above 2/3.

The correctness of MPCPP is easy to see (and is exactly the same as Claim 3.5.8):

Claim 3.7.5. For every input x, if x ̸∈ L then MPCPP rejects x; while if x ∈ L and x has an
easy witness then MPCPP accepts x.

The machine MPCPP guesses Ĥproof(5s log s + a) < nhard/10 bits of nondeterminism (the
number of size-s C circuits is at most 25s log s), and uses ℓ4q < nhard/10 bits of advice. Thus it
computes a language in NTIMEGUESSRAM[T/ logchard(T ), nhard/10]/(nhard/10).

The FPNP algorithm for average-case hard partial truth tables. Let w1, w2, . . . , wℓ ∈
{0, 1}n be the input. We first construct the hard language Lhard and the algorithm MPCPP.
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Since MPCPP is a nondeterministic RAM algorithm that runs in T/ logchard(T ) time, uses at
most nhard/10 nondeterministic bits and at most nhard/10 advice bits, it follows that there is
an input xhard ∈ {0, 1}nhard such that MPCPP(xhard) ̸= Lhard(xhard). Moreover, let α be the
advice string fed to MPCPP, i.e., the circuit C. We can find such an input xhard by running
R(1nhard ,MPCPP, α), where R is the refuter guaranteed by Theorem 3.3.1. Thus, we can find
xhard in deterministic poly(T ) time with an NP oracle.

It follows from Claim 3.7.5 that xhard ∈ Lhard but xhard does not have an easy witness. Thus,
we can use the NP oracle to find the lexicographically first PCPP proof matrix π such that

Pr
seed←{0,1}r

[VPCPPEncode(x)◦π(seed) accepts] = 1.

Then, there must exist a row πi such that Amp(πi) is (1/2 − ε)-far from C(w) = C(w1) ◦ · · · ◦
C(wℓ) for any size-s C circuit C. To see this, suppose that for every i, there exists a size-s
C circuit Ci such that Amp(πi) is (1/2 − ε)-close to Ci(w). By Theorem 3.3.5, there is an
advice αi such that decαi(Ci(w)) satisfies (1) for every j ∈ [Wproof ], (decαi(Ci(w)))j ∈ [0, 1]; (2)
∥decαi(Ci(w))− πi∥1 ≤ δ. It follows that π is an easy witness for xhard, a contradiction.

Finally, we use the NP oracle to find the first row πi, such that Amp(πi) is (1/2− ε)-far from
C(w) for any size-s C circuit C, and output Amp(πi). The overall procedure takes deterministic
poly(T ) ≤ poly(ℓ) time with an NP oracle.

3.8 Unconditional Algorithms for Range Avoidance

In this section, we apply the frameworks above to obtain unconditional results for ACC0-
Remote-Point and ACC0-Partial-AvgHard.

3.8.1 An Algorithm for #ACC0-Satisfying-Pairs

We first present a non-trivial algorithm for #ACC0-Satisfying-Pairs. This algorithm
utilises a quasi-polynomial simulation of SYM ◦ ACC0 circuits by SYM ◦ AND circuits.

We need the following algorithm for the batch evaluation of low-degree polynomials via fast
rectangular matrix multiplication. This algorithm has been extensively used in previous works
on the polynomial method and circuit complexity (see, e.g., [Wil14, Wil18a]). We provide a
proof for completeness.

Theorem 3.8.1. Let x1, x2, . . . , xN ∈ {0, 1}n be N input strings, and p1, p2, . . . , pN : {0, 1}n →
N be N integer polynomials of degree at most d. Suppose that n20d ≤ N . Then there is a
deterministic algorithm running in Õ(N2) time that outputs the table of pj(xi) for every i, j ∈
[N ].

Theorem 3.8.2 ([Cop82]; see also [Wil18a, Appendix C]). There is a (deterministic) algorithm
for multiplying an N ×N0.1 matrix and an N0.1×N matrix using Õ(N2) arithmetic operations.

Proof of Theorem 3.8.1. There are m :=
∑d

i=0

(
n
i

)
≤ (en/d)d ≤ N0.1 monomials of degree at

most d. We number these monomials from 1 to m. Let Sj denote the set of indices in the j-th
monomial. That is, the j-th monomial is

∏
k∈Sj

xk.
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We construct two matrices M1 ∈ ZN×m and M2 ∈ Zm×N . For each i ∈ [N ] and j ∈ [m],
M1[i, j] is the evaluation of the j-th monomial on input xi. (That is, M1[i, j] =

∏
k∈Sj

(xi)k.)
For each j ∈ [m] and k ∈ [N ], M2[j, k] is the coefficient of the j-th monomial in pk.

Let M :=M1 ·M2. It follows that for every i, j ∈ [N ], M [i, j] = pj(xi). Since m ≤ N0.1, we
can compute M in Õ(N2) time using Theorem 3.8.2.

Theorem 3.8.3 (From SYM ◦ ACC0 to SYM ◦ AND [BT94, AG91, Wil18c]). Let m, ℓ be any
constants, there exists an integer c′ such that every SYM◦AC0

ℓ [m] circuit of size s can be simulated
by a SYM ◦ AND circuit of 2(log s)c

′
size. Moreover, the AND gates of the final circuit have only

(log s)c
′ fan-in, the final circuit can be constructed from the original one in 2O((log s)c

′
) time, and

the final symmetric function at the output can be computed in 2O((log s)c
′
) time.

Combining Theorem 3.8.3 with Theorem 3.8.1, we can derive the #ACC0-Satisfying-Pairs

algorithm in non-trivial time as follows.

Theorem 3.1.15. For every constants m, ℓ, c, there is a constant ε ∈ (0, 1) such that the
following holds. Let n := 2log

ε N and s := 2log
c n. There is a deterministic algorithm run-

ning in Õ((N/n)2) time that given N strings x1, x2, . . . , xN ∈ {0, 1}n and N AC0
ℓ [m] circuits

C1, C2, . . . , CN : {0, 1}n → {0, 1} of size s, outputs the number of pairs (i, j) ∈ [N ] × [N ] such
that Ci(xj) = 1.

Proof. Let ε be a constant to be determined. We divide C1, C2, . . . , CN into N/n groups where
each group has size n. Let Cij denote the j-th circuit in the i-th group. We also partition the
inputs x1, x2, . . . , xN into N/n groups of size n and define xij similarly. Let Xi := xi1 ◦ xi2 ◦
· · · ◦ xin.

For each group i, we can construct g := ⌈2 log n⌉ SYM ◦ AC0
ℓ [m] circuits Di1, Di2, . . . , Dig :

{0, 1}n2 → {0, 1}, each of size s′ := O(n2 · s), such that for any group j, we have:

n∑

i′=1

n∑

j′=1

Cii′(xjj′) =

g∑

k=0

2kDik(Xj).

That is, Dik(Xj) computes the k-th bit of the number of satisfying pairs between the i-th group
of circuits and the j-th group of inputs.

Let c′ be the constant in Theorem 3.8.3 depending on ℓ and m. We can transform each
SYM ◦ AC0

ℓ [m] circuit Dij into a SYM ◦ AND circuit D′ij of size 2(log s
′)c
′

such that each AND

gate has fan-in at most d := (log s′)c
′ . We can write each D′ij(x) as fij(pij(x)), where pij(x) :

{0, 1}n2 → {0, 1, . . . , 2(log s′)c
′
} is a polynomial of degree at most d that only outputs integers

upper bounded by 2(log s
′)c
′
on Boolean inputs, and fij is some function that can be evaluated in

2O((log s′)c
′
) time. We can construct the polynomials pij and (the truth tables of) the functions

fij in (N/n)g2O((log s′)c
′
) time. Let ε := 1/(10cc′) (and recall n = 2log

ε N and s = 2log
c n), this

time bound is at most (N/n)2.
Then, for each k = 1, 2, . . . , g, since (n2)20d ≤ N/n, we can compute the table of pik(Xj)

for every i, j ∈ [N/n] in Õ((N/n)2) time by invoking Theorem 3.8.1. In fact, by checking the
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truth-tables of fij , we actually get the table for D′ik(Xj) = Dik(Xj). Finally, it follows that:

N∑

i=1

N∑

j=1

Ci(xj) =

N/n∑

i=1

N/n∑

j=1

n∑

i′=1

n∑

j′=1

Cii′(xjj′) =

N/n∑

i=1

N/n∑

j=1

g∑

k=0

2kDik(Xj).

The total run-time is bounded by 2(N/n)2 + gÕ((N/n)2) = Õ((N/n)2).

3.8.2 Remote Point for ACC0

Theorem 3.1.16 (ACC0-Remote-Point ∈ FPNP). There is a constant cu ≥ 1 such that for
every constant d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that takes as input

a circuit C : {0, 1}n → {0, 1}ℓ, where each output bit of C is computed by an AC0
d[m] circuit of

size s, and outputs a string y that is (1/2− ε)-far from Range(C).

Proof. Let cu be the constant from Theorem 3.5.1, and cstr be a constant to be determined later.
We then set parameters for invoking Theorem 3.5.1.

We set nsat := max{2logcu+2 n, 2log
cu+1 s}. Then we can invoke Theorem 3.1.15 with input

length nsat and size parameter also nsat to get a #AC0
d+1[m]-Satisfying-Pairs algorithm for

N circuits and N inputs, where N := N(n) = 2log
1/εsat nsat for some constant εsat ∈ (0, 1). This

algorithm runs in time T = Õ((N/nsat)
2).

Set cstr := (cu + 2)/εsat + 3. Let ε′ := ε′(n) ≥ n−cu be the error parameter and ℓ′ :=

ℓ′(n) = N cu log (1/ε′) be the stretch, then we can check these parameters satisfy the requirements
of Theorem 3.5.1 as follows.

2log
cu n ≤ N ≤ 2n

0.99

ℓ′(n) = N cu log (1/ε′) ≥ cus
T ≤ N2/2log

cu+2 n ≤ N2/nc
2
u logcu n ≤ N2/(logN)c

2
u logcu n ≤ N2/P cu

(That is, we use the aforementioned algorithm to solve Satisfying-Pairs with N circuits of
size s and N inputs of length n by padding nsat − n dummy bits to each input, and then apply
Theorem 3.5.1). By Theorem 3.5.1, we get an FPNP algorithm for ACC0-Remote-Point with
error ε′(n) > n−cu , and stretch ℓ′(n) = N cu log (1/ε). We can check that both ℓ(n) > ℓ′(n + 1)

and ε(n) > 2ε′(n+1) hold, so we can invoke Lemma 3.3.7 and get a desired FPNP algorithm for
remote point with the original parameters.

We can easily recover the state-of-the-art almost-everywhere average-case lower bounds
against ACC0 [CLW20] by giving the truth table generator as the input.

Corollary 3.1.18. For every constants d,m ≥ 1, there is an ε > 0 and a language L ∈ ENP such
that Ln cannot be (1/2 + 2−n

ε
)-approximated by AC0

d[m] circuits of size 2n
ε, for all sufficiently

large n.

Proof Sketch. Let TTs : {0, 1}O(s log s) → {0, 1}2n be the truth table generator of AC0
d[m] circuits,

where s = 2n
ε for some constant ε to be determined later. Each output bit of TTs is computable
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by an AC0
d′ [m] circuit of size s′ = poly(s) for some d′ = O(1).

For clarity we define ntt = O(s log s) to be the input length of TTs, stt(ntt) := s′ and
dtt := d′ to be the size and depth of TTs, respectively. Let cu and cstr := cstr(dtt,m) be the
constants in Theorem 3.1.16. Then there is an FPNP algorithm Ahard that takes as input a
circuit C : {0, 1}ntt → {0, 1}ℓtt and outputs a string y that is (1/2 − εtt)-far from Range(C),
where ℓtt ≥ 2log

cstr stt and εtt := 2n−cutt . By choosing ε to be a sufficiently small constant, we can
make

2n ≥ 2log
cstr stt and 2−n

ε
> εtt.

We then fix the input of the FPNP algorithm Ahard above to be TTs to obtain an FPNP algorithm
A that takes 12

n as input and produces a truth table of length 2n that cannot be (1/2 + 2−n
ε
)-

approximated by any size-s circuits. The required hard language is then defined as

L :=
{
x ∈ {0, 1}n : n ∈ N, tt← A(12

n
) ∈ {0, 1}2n , ttx = 1

}
.

3.8.3 Hard Partial Truth Tables for ACC0

Theorem 3.1.17 (ACC0-Partial-AvgHard ∈ FPNP). There is a constant cu ≥ 1 such that
for every constants d,m ≥ 1, there is a constant cstr := cstr(d,m) ≥ 1, such that the following
holds.

Let n < s(n) ≤ 2n
o(1) be a size parameter, ε := ε(n) ≥ 2n−cu be an error parameter and

ℓ := ℓ(n) ≥ 2log
cstr s be a stretch function, then there is an FPNP algorithm that given inputs

x1, . . . , xℓ ∈ {0, 1}n, it outputs a string y ∈ {0, 1}ℓ such that for any s(n)-size AC0
d[m] circuit C,

y is (1/2− ε)-far from C(x1) ◦ · · · ◦ C(xℓ).

Proof Sketch. The proof is similar to Theorem 3.1.16, so we only sketch the proof.
Let cu be the constant from Theorem 3.7.1, and then we set the values16 of cstr, nsat, N , εsat,

T , ε′(n) and ℓ′(n) in the same way as proof Theorem 3.1.16.
Since parameter constraints of Theorem 3.7.1 are similar to those of Theorem 3.5.1, These

parameter settings can be used to invoke Theorem 3.7.1 and get an FPNP algorithm for O(s(n))-
size ACd+O(1)[m]-Partial-AvgHard with stretch ℓ′(n) and error ε′(n). We can check that both
ℓ(n) > ℓ′(n + 1)/2 and ε(n) > 2ε′(n + 1) hold, so it is valid to invoke Lemma 3.3.8 and get a
desired FPNP algorithm for average-case hard partial truth tables with the original parameters.

Alternatively, we can reduce ACC0-Partial-AvgHard to ACC0-Remote-Point (see Sec-
tion 3.2) and simply apply Theorem 3.1.16, since the evaluation of ACC0 circuits can be imple-
mented in ACC0.

As a consequence, we show (following the observation in [AS10]) that there is no efficient
mapping reduction from ENP to any language decidable by small-size non-uniform ACC0 circuits.

Corollary 3.1.19. Let d,m ∈ N be constants, AC0
d[m] denote the class of languages computable

by a non-uniform family of polynomial-size AC0
d[m] circuits. Then, there is a language Lhard ∈

ENP that does not have polynomial-time mapping reductions to any language in AC0
d[m].

16In order to invoke Lemma 3.3.8, we actually use s′(n) = O(s(n)) as size function and d′ := d+O(1) as depth.
These are rather minor changes, so we can still use the same parameter settings strategy.
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Proof. Our ENP language Lhard receives two inputs: a Turing machine R and a string y. Here,
the lengths of ⟨R⟩ (the encoding of R) and y are ⌈n/2⌉ and n′ := ⌊n/2⌋ respectively, thus
Lhard receives n-bit strings as inputs. The machine R is interpreted as a reduction that runs in
T (n) := nlogn time (which we diagonalise against).

We run R on all inputs of the form (⟨R⟩, x′), where |x′| = n′. Let x1, x2, . . . , x2n′ be an
enumeration of length-n′ strings, and zi := R(⟨R⟩, xi) be a string of length at most T (n). Note
that the strings zi may not be of the same length, but the length of each zi is at most T (n).
By an averaging argument, there is an ℓ ≤ T (n) such that there are at least 2n

′
/T (n) ≥ 2n

0.99

strings zi with length exactly ℓ. Let N be the number of strings zi with length exactly ℓ and
denote these strings to be zi1 , zi2 , . . . , ziN . We can check the technical constraints and invoke
Theorem 3.1.17 to get an FPNP algorithm for solving the AC0

d[m]-Partial-Hard problem on
inputs zi1 , zi2 , . . . , ziN . We obtain a sequence of bits yi1 , yi2 , . . . , yiN ∈ {0, 1} such that for every
size-ℓlog ℓ AC0

d[m] circuit C, there is some j ∈ [N ] such that C(zij ) ̸= yij . This can be done in
deterministic 2O(n) time with an NP oracle. Finally, we define Lhard as follows: suppose x is the
i-th string of length n′ (i.e., x = xi), then x ∈ Lhard if and only if |zi| = ℓ and yi = 1.

Clearly, Lhard runs in deterministic 2O(n) time with an NP oracle. We still need to show that
for every language L ∈ AC0

d[m], there is no polynomial time reduction from Lhard to L. Suppose,
for the sake of contradiction, that there is a polynomial-time reduction R from Lhard to L. Let n
be a sufficiently large number such that n/2 > ⟨R⟩ and T (n) = nlogn is larger than the running
time of R. Consider running R on inputs of the form (⟨R⟩, x) where |x| = ⌊n/2⌋. Let xi, yi,
zi, ℓ, and N be defined as above, and C be an AC0

d[m] circuit that decides L on input length ℓ.
Since the size of C is at most poly(ℓ) ≤ ℓlog ℓ, there is some j ≤ N such that C(zij ) ̸= yij . In
other words,

∃i ∈ N,C(R(⟨R⟩, xi)) ̸= Lhard(⟨R⟩, xi).

It follows that R is not a correct reduction from Lhard to L.
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Chapter 4

The “Complete” Algorithmic Method

4.1 Overview

In this chapter, we show that circuit lower bounds for ENP and CAPP algorithms with ENP

preprocessing are equivalent. By slightly modifying the proof of Theorem 3.4.2 we can see that
a non-trivial GapUNSAT algorithm for C , even with ENP preprocessing, would imply ENP ̸⊆ C .
(A precise definition can be seen at Definition 4.3.1.) We show that for powerful enough circuit
classes C (e.g., TC0, NC1, or P/poly), the converse is also true:

Theorem 4.1.1 (Informal). Let C ∈ {TC0,NC1,P/poly}. The following are equivalent:

• ENP cannot be computed by polynomial-size C circuits on almost every input length.

• There is a non-trivial GapUNSAT algorithm for C circuits with ENP preprocessing.

For circuit classes C that are less powerful (i.e., that might not be able to efficiently com-
pute MAJORITY), we show that strong average-case circuit lower bounds against C and CAPP

algorithms for C with inverse-circuit-size error are equivalent:

Theorem 4.1.2 (Main Results 2.2, Informal). Let C be a “weak” circuit class under some mild
closure properties. The following are equivalent:

• ENP cannot be (1/2+1/poly(n))-approximated by C circuits on almost every input length.

• There is a non-trivial CAPP algorithm for C circuits with ENP preprocessing and inverse-
circuit-size error.

Actually, we can show equivalences among a lot of notions, including strong average-case
lower bounds for ENP, non-trivial CAPP algorithms with ENP preprocessing, subexponential-
time CAPP algorithms with ENP preprocessing, and ENP-computable PRGs. See Theorem 4.6.1
and Theorem 4.6.3 for details.

One advantage of our equivalence is that it also holds for larger size bounds and the case of
infinitely-often lower bounds:

Theorem 4.1.3 (Informal). Let C be a “weak” circuit class under some mild closure properties.
The following are equivalent:
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• ENP cannot be (1/2 + 1/2n
o(1)

)-approximated by C circuits of size 2n
o(1).

• There is a CAPP algorithm for C circuits of size 2n
o(1) with 2n−n

Ω(1) query time, ENP

preprocessing, and inverse-circuit-size error, that works for infinitely many n.

Remark 4.1.4 (Equivalences between Derandomisation and Lower Bounds).
Equivalences between derandomisation and lower bounds are known in many settings.

• Impagliazzo, Kabanets, and Wigderson [IKW02] showed that NEXP ̸⊆ P/poly if and only if
there is a non-deterministic subexponential-time algorithm for CAPP with no(1) bits of advice
and error 1/6 that works infinitely often.

• Korten’s result [Kor21] can also be interpreted as an equivalence between derandomisation and
lower bounds: A full derandomisation of the trivial FZPPNP algorithm for Avoid is equivalent
to both ENP ̸⊆ SIZE[20.1n] and ENP ̸⊆ SIZE[2n/3n].

• Equivalences between derandomisation and uniform lower bounds are also known. Impagli-
azzo and Wigderson [IW01] showed that EXP ̸= BPP is equivalent to an infinitely-often,
subexponential time derandomisation of BPP on average (BPP ⊆ i.o.-heurDTIME[2n

o(1)

]).
Williams [Wil16] showed that NEXP ̸= BPP is equivalent to an infinitely-often, subexpo-
nential time nondeterministic derandomisation of BPP on average, with no(1) bits of advice
(BPP ⊆ i.o.-heurNTIME[2n

o(1)

]/no(1)).

In our opinion, compared to the above equivalences, our results have the following features that
make them particularly attractive:

• First, they work in both infinitely-often and almost-everywhere settings; in contrast, [IW01]
and [Wil16] only hold for infinitely-often lower bounds.

• Second, they scale better with large circuit size bounds (such as 2n
o(1)

); no similar equivalences
to [IKW02] for NEXP ̸⊆ SIZE[2n

o(1)

] or to [IW01] for EXP ̸⊆ BPTIME[2n
o(1)

] are known.

• Third, they are also true for weaker circuit classes such as formulas or ACC0 circuits; in
contrast, the arguments in [Kor21] do not seem to yield any characterisation of, e.g., the
lower bound ENP ̸⊆ Formula[20.1n].

• Finally, our equivalences include both subexponential-time derandomisation and non-trivial
derandomisation; none of the equivalences above are known to include non-trivial derandomi-
sation.

An interesting corollary of Theorem 4.1.1 and Theorem 4.1.2 is the following “speed-up”
result for derandomisation with ENP preprocessing:

Corollary 4.1.5 (Informal). The following are true:

• If there is a non-trivial GapUNSAT algorithm for TC0 circuits with ENP preprocessing, then
there is a subexponential-time CAPP algorithm for TC0 circuits with ENP preprocessing.

• Let C be a “weak” circuit class under some mild closure properties. If there is a non-trivial
CAPP algorithm for C circuits with ENP preprocessing and inverse-circuit-size error, then
there is a subexponential-time CAPP algorithm for C circuits with ENP preprocessing and
inverse-circuit-size error.
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Remark 4.1.6 (Comparison with Other Speed-Ups in Complexity Theory).
Williams [Wil13a] showed that if CAPP has a nondeterministic algorithm with non-trivial run-

ning time, then CAPP also has a nondeterministic subexponential time algorithm. One caveat of
this result is that the speed-up algorithm is only infinitely-often correct and requires nε bits of
advice. Therefore, the speed-up algorithm does not imply the non-trivial algorithm. In contrast, in
Corollary 4.1.5, the speed-up algorithms always imply the non-trivial algorithms.

Oliveira and Santhanam [OS17a] showed a similar speed-up result in learning theory: a typical
circuit class is “non-trivially learnable” if and only if it is learnable in subexponential time. Their
result is proved using the connection between natural proofs and learning [RR97, CIKK16], while
our result is a strengthening of the Algorithmic Method.

4.2 Preliminaries

4.2.1 Pseudorandom Generators

Let C be a circuit class, ε > 0, and r(n) < n be a good function. A pseudorandom generator
(PRG) with seed length r(n) that ε-fools C is a function G : {0, 1}r → {0, 1}n such that for
every circuit C ∈ C ,

∣∣∣∣ Pr
x←{0,1}n

[C(x) = 1]− Pr
seed←{0,1}r

[C(G(seed)) = 1]

∣∣∣∣ ≤ ε.

We also say G is an i.o. PRG if the above condition holds for infinitely many lengths n.
In this chapter, we will mostly consider ENP-computable PRGs, where G is computable

in 2O(r) time with access to an NP oracle. (It is without loss of generality to assume that
r ≥ Ω(log n).)

We need the classical construction of PRGs from average-case lower bounds [NW94]. Let
Juntak be the class of k-juntas, i.e., functions that only depend on k input bits. We have:

Theorem 4.2.1 ([NW94], see also [CR22, Theorem 6.4]). Let m, ℓ, a be integers such that a ≤ ℓ,
and let t := O(ℓ2 ·m1/a/a). Let C be a circuit class closed under negation. There is a function
G : {0, 1}2ℓ × {0, 1}t → {0, 1}m computable in deterministic poly(m, 2t) time such that the
following holds.

For any function Y : {0, 1}ℓ → {0, 1} represented as a length-2ℓ truth table, if Y cannot be
(1/2 + ε/m)-approximated by C [S] ◦ Juntaa circuits (i.e., the top C circuit has size S), then
G(Y,−) is a PRG that ε-fools every C [S] circuit. That is, for any circuit C ∈ C [S],

∣∣∣∣ Pr
s←{0,1}t

[C(G(Y, s)) = 1]− Pr
x←{0,1}m

[C(x) = 1]

∣∣∣∣ ≤ ε.

4.2.2 Elementary Properties of Norm and Inner Product

We discuss some properties of norms and the inner product of functions on Boolean cubes,
which will be useful for us. For a function f : {0, 1}n → R, we define its ℓp-norm as

∥f∥p :=
(

E
x←{0,1}n

[|f(x)|p]
)1/p
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In particular, the ℓ∞-norm is defined as the maximum absolute value of f .

∥f∥∞ := max
x∈{0,1}n

{|f(x)|}.

For m ≥ 2 and functions f1, f2, . . . , fd : {0, 1}n → R, define their inner product as:

⟨f1, f2, . . . , fd⟩ := E
x←{0,1}n

[
d∏

i=1

fi(x)

]
.

We need the following generalisation of Hölder’s inequality:

Fact 4.2.2. Let d be an integer. For functions f1, f2, . . . , fd : {0, 1}n → R we have that

∥∥∥∥∥
d∏

i=1

fi

∥∥∥∥∥
1

≤
d∏

i=1

∥fi∥d

We need the following simple lemma.

Lemma 4.2.3 (a generalisation of [CW19b, Lemma 28]). For any integer d ≥ 2 and functions
f1, f2, . . . , fd and g1, g2, . . . , gd from {0, 1}n → R and ε, α > 0, suppose for all i ∈ [d] we have:

• ∥fi∥d ≤ α and ∥gi∥d ≤ α,

• ∥fi − gi∥d ≤ ε.

Then |⟨f1, f2, . . . , fd⟩ − ⟨g1, g2, . . . , gd⟩| ≤ d · αd−1 · ε.

Proof. We have

|⟨f1, . . . , fd⟩ − ⟨g1, . . . , gd⟩| ≤
d∑

i=1

|⟨f1, . . . , fi, gi+1, . . . , gd⟩ − ⟨f1, . . . , fi−1, gi, . . . , gd⟩|

≤
d∑

i=1

|⟨f1, . . . , fi − gi, gi+1, . . . , gd⟩|

≤ d · αd−1 · ε (by Fact 4.2.2).

4.2.3 Linear Sum of Circuits

Sum ◦ C circuits. Let C be a circuit class. A Sum ◦ C circuit C : {0, 1}n → R ([Wil18b]) is a
circuit of the following form:

C(x) =
ℓ∑

i=1

αiCi(x),

where each αi ∈ R and each Ci is a C circuit. We say that C has complexity at most s, denoted
as complexity(C) ≤ s, if all of the following holds:

• the total size of all bottom C circuits Ci is at most s;

•
∑ℓ

i=1 |αi| ≤ s;
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• the bit-complexity of each αi is at most s, i.e., one can write the rational number αi as a
fraction ui/vi where ui, vi are integers and log(|ui|) + log(|vi|) ≤ s.

The definition of “complexity” in [CR22, CLW20] only required the first two bullets above
(i.e., complexity(C) = max{∑ℓ

i=1 |αi|,
∑ℓ

i=1 |Ci|}). However, it is easy to see that the linear
sum circuits produced by the decoders—[CR22, Lemma 3.1] and [CLW20, Lemma 3.8] (which
is Theorem 4.2.9 in this thesis)—also satisfy the third bullet.

If C(x) ∈ [0, 1] for every input x ∈ {0, 1}n, then we say C is a [0, 1]-Sum◦C circuit ([CLW20]).
Recall that the ℓ1-distance between a Sum ◦ C circuit C and a function f is

∥C − f∥1 = E
x←{0,1}n

[|C(x)− f(x)|].

We define binC as the Boolean function that is closest to C. That is, for every x ∈ {0, 1}n,
if C(x) ≤ 0.5 then binC(x) = 0, otherwise binC(x) = 1.

S̃um ◦ C circuits. Let δ ∈ [0, 0.5). A Sum ◦ C circuit C is said to be a S̃umδ ◦ C circuit
([CW19b,CR22]), if for every input x ∈ {0, 1}n, either |L(x) − 1| ≤ δ or |L(x)| < δ. We say
C(x) = 1 if |L(x)− 1| ≤ δ, and C(x) = 0 otherwise.

4.2.4 Algorithms for Linear Sum of Circuits

In the context of the Algorithmic Method, one advantage of Sum ◦ C circuits is that they
preserve algorithms: circuit analysis algorithms for C often imply circuit analysis algorithms for
Sum ◦ C . Below are a few examples that will be useful for us.

PRGs fooling C also fools S̃um ◦ C . Suppose that G is a PRG that fools C circuits, we
show that it also fools S̃um ◦ C circuits.

Lemma 4.2.4. Let ε, δ > 0, C be a circuit class, s(n) be a good function, and G : {0, 1}r →
{0, 1}n be a PRG that ε-fools C circuits of size s(n). For ε′ := 2δ + ε · s(n), G also ε′-fools
S̃umδ ◦ C circuits of complexity s(n).

Proof. Let C be a S̃umδ ◦ C circuit where the underlying (real-valued) Sum ◦ C circuit is

C̃ :=
ℓ∑

i=1

αi · Ci.

Let Un denote the uniform distribution over {0, 1}n; we abuse notation and let Gn denote
the distribution of Gn(y) for a uniformly random y ∈ {0, 1}r. From the definition of S̃umδ gates,
we have ∣∣∣E[C(Un)]− E[C̃(Un)]

∣∣∣ ≤ δ and
∣∣∣E[C(Gn)]− E[C̃(Gn)]

∣∣∣ ≤ δ.
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Using the property of Gn, we have

∣∣∣E[C̃(Un)]− E[C̃(Gn)]
∣∣∣ =

∣∣∣∣∣E
[

ℓ∑

i=1

αi · Ci(Un)
]
− E

[
ℓ∑

i=1

αi · Ci(Gn)

]∣∣∣∣∣

=

∣∣∣∣∣
ℓ∑

i=1

αi · (E[Ci(Un)]− E[Ci(Gn)])

∣∣∣∣∣

≤
(

ℓ
max
i=1
|E[Ci(Un)]− E[Ci(Gn)]|

)
·
(

ℓ∑

i=1

|αi|
)

≤ ε · s(n).

Therefore,

|E[C(Un)]− E[C(Gn)]| ≤
∣∣∣E[C(Un)]− E[C̃(Un)]

∣∣∣+
∣∣∣E[C̃(Un)]− E[C̃(Gn)]

∣∣∣

+
∣∣∣E[C̃(Gn)]− E[C(Gn)]

∣∣∣

≤ 2δ + ε · s(n) = ε′.

Average-of-Product of Sum◦C circuits. Let d ≥ 2 be a constant. The Average-of-Product
problem for d Sum ◦C circuits [Wil18b,CW19b,CR22,CLW20] is the following problem: Given
d Sum ◦ C circuits C1, C2, . . . , Cd : {0, 1}n → R, the task is to estimate Ex←{0,1}n [

∏d
i=1Ci(x)].

It is not hard to reduce this problem to CAPP for ANDd ◦ C circuits:

Theorem 4.2.5. Let C be a typical circuit class. Suppose there is an oracle solving CAPP on
ANDd ◦ C circuits of size S(n) and n inputs within an additive error of ε(n). Then there is an
algorithm that given d Sum ◦ C circuits C1, C2, . . . , Cd of complexity at most S(n), outputs an
estimation of Ex←{0,1}n [

∏d
i=1Ci(x)] within additive error S(n)d ·ε(n) in deterministic S(n)d+O(1)

time with O(S(n)d) oracle calls to the CAPP oracle.

Proof. Lemma 6.2 of [CLW20] proved this theorem for d = 4, but it is easy to see that the proof
generalises to arbitrary d. We provide a full proof here for completeness.

It is without loss of generality to assume that each Ci contains exactly S(n) C sub-circuits.
For each i ∈ [d], write Ci =

∑S(n)
j=1 αi,jCi,j , where αi,j ∈ R and Ci,j is a C circuit of size at most

S(n). Moreover, for each i ∈ [d], we have that
∑S(n)

j=1 |αi,j | ≤ S(n). Then we have

E
x←{0,1}n

[
d∏

i=1

Ci(x)

]
= E

x←{0,1}n




d∏

i=1

S(n)∑

j=1

αi,jCi,j(x)




= E
x←{0,1}n


 ∑

j1,...,jd∈[S(n)]

d∏

i=1

αi,jiCi,ji(x)




=
∑

j1,...,jd∈[S(n)]

(
d∏

i=1

αi,ji

)
· E
x←{0,1}n

[
d∧

i=1

Ci,ji(x)

]
. (4.1)

We enumerate j1, . . . , jd ∈ [S(n)] and use the CAPP oracle for ANDd ◦ C circuits to estimate
Ex←{0,1}n [

∧d
i=1Ci,ji(x)] within additive error ε(n). This gives us an estimation of (4.1) within
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an additive error of at most

∑

j1,...,jd∈[S(n)]

∣∣∣∣∣
d∏

i=1

αi,ji

∣∣∣∣∣ · ε(n) ≤ S(n)
d · ε(n).

Clearly, our algorithm runs in deterministic S(n)d+O(1) time and makes O(S(n)d) calls to the
oracle.

Verification of Sum◦C circuits. We need the following lemma for testing whether a Sum◦C
circuit has low ℓd-distance to its closest Boolean function. The lemma has a similar proof to
[CR22, Lemma 5.3].

Lemma 4.2.6. Let d ≥ 2 be an even number. Suppose we are given a Sum ◦ C circuit C :

{0, 1}n → R of complexity S(n) and a parameter δ < 0.01/d. Let ε := δd

2·3d·(S+1)2d
. Suppose

there is an oracle that solves the CAPP problem for AND2d ◦ C with error ε. Then there is an
algorithm A running in deterministic S2d+O(1) time and making O(S2d) queries to the oracle
such that:

• If one of the following conditions holds, then A always accepts;

– ∥C − binC∥∞ ≤ δ/3
– ∥C − binC∥1 ≤ (δ/3)d and C(x) ∈ [0, 1] for any x ∈ {0, 1}n

• if ∥C − binC∥d ≥ δ, then A always rejects;

• otherwise, A can output anything.

Proof. We define a polynomial P (z) = zd(1 − z)d. We also define dbin(z) := min{|z|, |z − 1|}.
Recall from Fact 3.5.5 that dbin(z)d/2d ≤ P (z) ≤ dbin(z)d · (1 + dbin(z))

d.
We need the following properties of P (C(x)):

1. When dbin(z) ≤ δ/3, we have P (z) ≤ (δ/3)d · (1 + δ/3)d. Hence if ∥C − binC∥∞ ≤ δ/3,
then

E
x←{0,1}n

[P (C(x))] ≤ (δ/3)d · (1 + δ/3)d ≤ (δ/3)d · (1 + 0.01/d)d ≤ (δ/3)d · e0.01.

2. If z ∈ [0, 1], then P (z) ≤ dbin(z). Hence, if C(x) ∈ [0, 1] holds for every x ∈ {0, 1}n and if
∥C − binC∥1 ≤ (δ/3)d, then we have

E
x←{0,1}n

[P (C(x))] ≤ ∥C − binC∥1 ≤ (δ/3)d.

3. If ∥C − binC∥d ≥ δ, then by definition we have

E
x←{0,1}n

[
dbin(C(x))

d
]
≥ δd.

Since d ≥ 2, we have

E
x←{0,1}n

[P (C(x))] ≥ (δ/2)d ≥ (9/4) · (δ/3)d.
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Given the above properties, we can see that it suffices to compute

E
x←{0,1}n

[P (C(x))] (4.2)

within error (δ/3)d/2 to distinguish between these two cases in the lemma. Clearly, this reduces
to the Average-of-Product of 2d Sum ◦ C circuits of complexity at most S + 1. Hence, by
Theorem 4.2.5, (4.2) can be approximated within additive error (S + 1)2d · ε in deterministic
S2d+O(1) time with O(S2d) oracle calls to the CAPP oracle. Since (S + 1)2d · ε ≤ (δ/3)d/2, this
finishes the proof.

4.2.5 Worst-Case Hardness from PRGs

The following simple fact states that PRGs imply worst-case hardness.

Fact 4.2.7 ([CLLO21, Proposition 9]). Let C be a circuit class and r = r(n) be a good function.
Suppose there is an ENP-computable PRG (i.o. PRG respectively) G : {0, 1}r → {0, 1}n that
ε-fools C , where ε < 1− 2r−n. Then there is a language L ∈ ENP that cannot be computed by C

circuits on almost every input length (infinitely many input lengths respectively).

4.2.6 Hardness Amplification

Hardness amplification with a TC0 decoder. We need the following result.

Theorem 4.2.8 ([GR08]). Let ε > 2−c
√
n for some absolute constant c. There are two algorithms

Amp and Dec such that:

• For some constant d > 1, Amp takes as input the truth table of a function f : {0, 1}n →
{0, 1} and outputs the truth table of a function Amp(f) : {0, 1}dn → {0, 1}.

• Dec(−) receives an oracle h, an input x ∈ {0, 1}n, an advice string α ∈ {0, 1}O(log ε−1), as
well as two random strings r1, r2, and outputs a bit b.

• For every function h : {0, 1}dn → {0, 1} that (1/2 + ε)-approximates Amp(f),

Pr
r1

[
∃α ∈ {0, 1}O(log ε−1) s.t. ∀x ∈ {0, 1}n,Pr

r2
[Dech(α, x, r1, r2) = f(x)] > 9/10

]
> 99/100.

• Amp runs in deterministic 2O(n) time and Dec is a TC0 oracle circuit of size poly(n, ε−1).

A non-standard XOR lemma. For a function f : {0, 1}n → {0, 1} and an integer k, we
define the function f⊕k to take k inputs x1, x2, . . . , xk ∈ {0, 1}n and compute

f⊕k(x1, x2, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk).

We need the following XOR lemma with a linear sum corrector.

Theorem 4.2.9 ([Lev87], [CLW20, Lemma 3.8]). Let C be a circuit class that is closed under
negation and projection. Let δ < 1/2, k ∈ N be a parameter, and

εk := (1− δ)k−1(1/2− δ).
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For any function f : {0, 1}n → {0, 1}, if f cannot be (1 − δ)-approximated in ℓ1-distance by
[0, 1]-Sum ◦C circuits of complexity O

(
ns

(δ·εk)2

)
, then f⊕k cannot be (1/2 + εk)-approximated by

C circuits of size s.

(Theorem 4.2.9 is just a more familiar version of Theorem 3.3.5 stated in the language of
hardness amplification instead of local list decoding.)

4.3 Derandomisation with Preprocessing Implies Circuit Lower
Bounds

Let C be a circuit class, we define the circuit-analysis problems for C with ENP preprocessing :

Definition 4.3.1. Let Prep be a preprocessing algorithm, Query be a query algorithm, C be a
circuit class, s(n) be a size parameter, and ε > 0. We say (Prep,Query) is a CAPP data structure
for C [s(n)] with ENP preprocessing and error ε, if the following are true:

• Prep(1n) runs in deterministic 2O(n) time with access to an NP oracle, and produces a
string DS of length 2O(n).

• Let C be a C circuit with n inputs and size s(n). Query(⟨C⟩) runs in deterministic 2n/nω(1)

time with random access to DS and outputs an estimation of Prx←{0,1}n [C(x) = 1] within
an additive error of ε.

If the requirement for Query(·) is replaced by the following, then we say (Prep,Query) is a
GapUNSAT data structure for C [s(n)] with ENP preprocessing and error 1− ε:

• If C is unsatisfiable, then Query(⟨C⟩) outputs 0; if Prx←{0,1}n [C(x) = 1] ≥ 1 − ε, then
Query(⟨C⟩) outputs 1.

If the requirement for Query(·) is replaced by the following, then we say (Prep,Query) is a
CAPP data structure for C [s(n)] with ENP preprocessing and inverse-circuit-size error :

• Query(⟨C⟩) outputs an estimation of Prx←{0,1}n [C(x) = 1] within an additive error of
1/s(n).

Finally, if the data structure is correct only for infinitely many numbers n, then we say the
data structure is an i.o. CAPP (or i.o. GapUNSAT) data structure.

Theorem 4.3.2. Let C be a circuit class and poly(n) ≤ s(n) ≤ 20.01n be a good function such
that the following technical conditions hold:

(C is complete) For every truth table of length 2k, there is a C circuit of size poly(2k) that
computes this truth table; moreover, the description of such a C circuit can be computed
in deterministic poly(2k) time from the truth table.

(C computes PARITY) The PARITY function can be computed by a C circuit of size poly(n).

There is a constant ε ∈ (0, 1) such that the following holds. If there is a GapUNSAT data
structure for NC0

3 ◦ C circuits of size poly(s(n)) with ENP preprocessing, query time 2n/nω(1),
and error 1− ε, then ENP does not have size-s(n) C circuits on almost every input length.
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Proof of Theorem 4.3.2. Let c ≥ 1 be a constant such that Prep(1n) always outputs a data
structure of length at most 2cn. Suppose that any C circuit of size s(n) can be described in
bit-length ℓ ≤ O(s(n)2). In this proof, we set the following parameters (where K ≥ 1 is a large
enough constant):

m := 10(c+ 1),

wproof :=n, Wproof := 2wproof =2n,

hproof := cn, Hproof := 2hproof =2cn,

winput := log ℓ+K log n, Winput := 2winput = ℓ · poly(n),
N := 10Hproof · ℓ = 10 · 2cnℓ,
T :=Hproof ·Wproof/poly(n) = 2(c+1)n/poly(n).

Our goal is to find, in DTIME[2O(n)]NP, a truth table of length Wproof that does not have
size-s(n) C circuits. Let Lhard be the language constructed in Theorem 3.3.1, i.e.,

Lhard ∈ NTIMETM[T ] \ i.o.-NTIMEGUESSRAM[T/polylog(T ), N/10]/(N/10).

(Note that T ≥ N1+Ω(1), so the technical conditions for applying Theorem 3.3.1 are satisfied.)
Now we construct a nondeterministic RAM MPCPP that attempts to solve Lhard. Let Lenc :=

{Encode(x) : x ∈ Lhard} where Encode is the error-correcting code specified in Theorem 2.4.1.
Suppose that the encodings of length-N strings have length Ñ = O(N) and let δcode > 0 be the
relative Hamming distance of Encode. Let VPCPP be the rectangular PCPP verifier for Lenc

with proximity δcode, perfect completeness, and soundness error 1−ε specified in Theorem 2.5.10,
where ε ∈ (0, 1) is an absolute constant. The proof oracle π is an Ĥproof ×Wproof matrix and
the input oracle is an Hinput ×Winput matrix, where

ĥproof = log T +Θ(m log log T )− wproof = cn+O(log n) Ĥproof := 2ĥproof =2cn · poly(n)
hinput = ⌈logN⌉ − winput = cn−O(log n) Hinput := 2hinput =2cn/poly(n).

We verify the technical conditions of Theorem 2.5.10 hold:
• Clearly, wproof ≤ log T and winput ≤ log Ñ .
• wproof ≥ (5/m) log T : this is because (5/m) log T ≤ 5

10(c+1) · (c+ 1)n = n/2.

• ĥproof ≥ (5/m) log T : this is because (5/m) log T ≤ n/2 < cn.
• winput

wproof
≤ 1− Cm log log T

log T : this is because winput

wproof
= log ℓ+K logn

n < 0.9.

• hinput

ĥproof
≤ 1− Cm log log T

log T : this is because 1− hinput

ĥproof
≥ 1− cn−K logn

cn+O(logn) ≥
K logn
(c+1)n ≥

Cm log log T
log T .

The number of column randomness is rcol = wproof − (5/m) log T = n/2 +O(log n).
The speed-up machine MPCPP assumes that every row of the proof oracle is the truth table

of some circuit in C [s(n)]. It guesses Ĥproof size-s(n) C circuits C1, C2, . . . , CĤproof
such that the

i-th row of the proof matrix π is the truth table of Ci. Now it remains to estimate

pacc := Pr
seed

[VPCPPEncode(x)◦Π(seed) accepts].

We first enumerate seed.shared and seed.row. Suppose VDec takes as inputs q query answers
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and p parity-check bits, then p + q = 3. (Note that p and q might depend on seed.shared but
not seed.row or seed.col.) Define

(itype[1], . . . , itype[q]) :=Vtype(seed.shared),

(irow[1], . . . , irow[q]) :=Vrow(seed.row, seed.shared), and

(icol[1], . . . , icol[q]) :=Vcol(seed.col, seed.shared).

(Note that as we only enumerated seed.shared and seed.row, for each ι ∈ [q], itype[ι] and irow[ι]

are already fixed, but icol[ι] are functions of seed.col.) We need to estimate

pacc(seed.row, seed.shared) := Pr
seed.col

[VPCPPEncode(x)◦Π(seed) accepts]. (4.3)

Now, we create the following circuit C ′ := C ′seed.row,seed.shared that takes seed.col as input and
accepts if and only if VPCPPEncode(x)◦Π(seed) accepts. For every ι ∈ [q]:

• Suppose itype[ι] = proof. Let Dι be the circuit such that Dι(seed.col) = Cirow[ι](icol[ι]).
Since icol[ι] is a projection over seed.col and C is closed under projections, Dι can be
computed by a C circuit of size poly(ℓ).

• Suppose itype[ι] = input. Let D′irow[ι] be the C circuit whose truth table is the irow[ι]-th
row of the input matrix Encode(x). Since C is complete, the size of D′irow[ι] is at most
poly(Winput) ≤ poly(n, ℓ) and the description of D′irow[ι] can be computed efficiently. Let
Dι be the circuit such that Dι(seed.col) := D′irow[ι](icol[ι]), then Dι can also be computed
by a C circuit of size poly(n, ℓ).

We also construct a circuit PCι(seed.col) to compute the ι-th parity-check bit. In particular,
as we have already fixed seed.row and seed.shared, the ι-th parity-check bit is simply the XOR

of a subset of indices in seed.col. Since PARITY can be computed by a C circuit of polynomial
size1, it follows that PCi is also a C circuit of size poly(rcol) ≤ poly(n).

Let VDec be the decision predicate of VPCPP. The circuit C ′ is simply

C ′(seed.col) := VDec(D1(seed.col), . . . , Dq(seed.col), PC1(seed.col), . . . , PCq(seed.col)).

We can see that C ′ is an NC0
3 ◦ C circuit of size poly(s(n)). Therefore, we can use the

GapUNSAT data structure to distinguish between the case that pacc(seed.row, seed.shared) = 1

and the case that pacc(seed.row, seed.shared) ≤ 1 − ε, in time 2rcol/(rcol)
ω(1). Since rcol ≥ Ω(n),

this is also in time 2rcol/nω(1). If the overall acceptance probability pacc is at most 1 − ε, then
at least one of pacc(seed.row, seed.shared) should be at most 1 − ε; if pacc = 1, then every
pacc(seed.row, seed.shared) should be equal to 1. Therefore, we can also distinguish between
pacc = 1 and pacc ≤ 1− ε.

The total running time of MPCPP is thus 2|seed|/nω(1) < T/ logω(1) T . The number of nonde-
terministic bits that MPCPP guesses is Hproof · ℓ ≤ N/10. The number of advice bits that MPCPP

1Actually, we do not need the small C circuit for computing PARITY to be efficiently computable (i.e.,
uniform) here, since we can guess-and-check a C circuit computing PARITY during the preprocessing phase in
DTIME[2O(n)]NP.
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itype = input proof proof input. . .

Figure 4.1: The circuit C ′. It is easy to see that C ′ ∈ NC0
d ◦ C .

uses is 2cn ≤ N/10. Therefore, MPCPP decides a language in

NTIMEGUESSRAM[T/ logω(1) T,N/10]/(N/10).

It follows from the definition of Lhard that MPCPP fails to compute Lhard on some input
of length N , for every large enough N . We use the PNP refuter in Theorem 3.3.1 to find an
input xhard where Lhard(xhard) ̸= MPCPP(xhard). By the construction of MPCPP, it has to be
the case that xhard ∈ Lhard but MPCPP(xhard) = 0. In this case, for any valid PCPP proof π of
“Encode(xhard) ∈ Lenc”, if we treat π as an Ĥproof ×Wproof matrix, then there has to be some
row of π which is not the truth table of any size-s(n) C circuit. We simply find a valid PCPP
proof π and output the row of π that does not have size-s(n) C circuits. This can be done in
TIME[2O(n)]NP.

Remark 4.3.3. We remark that the hypothesis about GapUNSAT data structure in Theorem 4.3.2
can be replaced by the following: There is a constant ε ∈ (0, 1) such that for every constant d ≥ 1,
there is a GapUNSAT data structure for NC0

d ◦ C circuits of size poly(s(n)) with ENP preprocessing
and error 1 − ε. (For comparison, in Theorem 4.3.2 we assumed a GapUNSAT data structure with
good accuracy, but only for NC0

3 ◦ C ; here we assume a GapUNSAT data structure with potentially
bad accuracy but handles NC0

d◦C for every constant d ≥ 1.) Using a rectangular PCPP with smaller
soundness error and larger query complexity (e.g., by parallel repetition) in the proof, we can still
show that ENP cannot be computed by size-s(n) C circuits on almost every input length.

To show equivalences in Section 4.6, we also need an infinitely-often version of the above
theorem.

Corollary 4.3.4. Let C be a circuit class that is complete and computes PARITY. Let poly(n) ≤
s(n) ≤ 20.01n be a good function, then there is a constant ε ∈ (0, 1) such that the following holds.
If there is an i.o. GapUNSAT data structure for NC0

3 ◦ C circuits of size poly(s(n)) with ENP

preprocessing, query time 2n/nω(1), and error 1−ε, then ENP does not have size-s(n) C circuits.

Proof Sketch. As the proof is almost the same as the proof of Theorem 4.3.2, we will only sketch
the differences here.

We define MPCPP in the same way as Theorem 4.3.2. Then, MPCPP fails to compute Lhard

on all large enough input lengths. Note that the correctness of MPCPP on input length n

only depends on the correctness of the (i.o.) GapUNSAT data structure on input length rcol =
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n/2 + O(log n). For every integer rcol such that the i.o. GapUNSAT data structure is correct,
the “easy-witness” assumption fails when n = 2rcol − O(log rcol). That is, for such integers n,
any valid PCPP proof π for xhard ∈ {0, 1}n contains some row that is not the truth table of any
size-s(n) circuit.

Remark 4.3.5 (Comparison with [BV14]). Both [BV14] and our Theorem 4.3.2 need to use PCP with
projection queries to reduce the circuit complexity overhead of the Algorithmic Method. To achieve
this, [BV14] constructed PCPs where the query indices are computable by a projection over seed.
To achieve this property, [BV14] needed to use the PCP in [BS08]. Unfortunately, this PCP requires
polylog(n) queries; even worse, the “projection” property is broken when we use PCP composition
to reduce query complexity to O(1).

However, if we allow the queries to depend arbitrarily on a small portion of seed (namely
seed.shared), but have to be a projection over the rest of the bits, then this is also achievable
using the PCP in [BGH+06]. The [BGH+06] PCP has the advantage of being almost rectangular.
We are also able to compose PCPs now, by simply adding the (very short) randomness of the inner
PCP into seed.shared. Thus, the query complexity can be reduced to O(1). Having such a small
portion (i.e., seed.shared) does not hurt the Algorithmic Method at all.

4.4 Strong Average-Case Circuit Lower Bounds

We strengthen Theorem 4.3.2 to the case of strong average-case lower bounds. We first show
that non-trivial CAPP algorithms with ENP preprocessing implies (weak average-case) lower
bounds against [0, 1]-Sum ◦ C circuits:

Theorem 4.4.1. Let C be a circuit class and poly(n) ≤ s(n) ≤ 20.01n be a good function that
is monotone, such that the following technical conditions hold:

(C is complete) For every truth table of length 2k, there is a C circuit of size O(210k) that
computes this truth table; moreover, the description of such a C circuit can be computed
in deterministic poly(2k) time from the truth table.

(C computes PARITY) The PARITY function can be computed by a C circuit of size poly(n).

There are absolute constants δ > 0 and d ≥ 2 such that the following holds. Suppose that for
every constant k ≥ 1, there is a CAPP data structure for ANDd ◦C circuits of size s(2r)k and r
inputs in 2r/s(2r)k query time with ENP preprocessing and inverse-circuit-size error, then there
is a language in ENP that has ℓ1-distance at least δ from [0, 1]-Sum ◦ C circuits of complexity
s(n) on almost every input length.

Proof. Let c ≥ 1 be a constant such that Prep(1n) always outputs a data structure of length at
most 2cn. Let ℓ ≤ O(s(n)10) be such that any Sum ◦ C circuit of complexity O(s(n)) can be
described in bit-length ℓ. We set the following parameters (where K is a large enough universal
constant):

m := 10(c+ 1),

wproof :=n, Wproof := 2wproof =2n,

hproof := cn, Hproof := 2hproof =2cn,
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winput := log ℓ+K · log n, Winput := 2winput = ℓ · poly(n),
N := 10Hproof · ℓ · poly(nK) = 10 · 2cnpoly(n)ℓ,
T :=Hproof ·Wproof/poly(n) = 2(c+1)n/poly(n).

Let Lhard be the language constructed in Theorem 3.3.1, i.e.,

Lhard ∈ NTIMETM[T ] \ i.o.-NTIMEGUESSRAM[T/polylog(T ), N/10]/(N/10).

Now we construct a nondeterministic RAM MPCPP that attempts to solve Lhard. Let Lenc :=

{Encode(x) : x ∈ Lhard} where Encode is the error-correcting code specified in Theorem 2.4.1.
Suppose that the encodings of length-N strings have length Ñ = O(N). By Theorem 2.5.11,
there are good functions ĥproof and hinput satisfying:

ĥproof = log T +Θ(m log log T )− wproof = cn+O(log n), Ĥproof =2hproof = 2cn · poly(n), and

hinput = ⌈log Ñ⌉ − winput = cn− Ω(K log n), Hinput =2hinput = 2cn/poly(n),

such that Lhard has a smooth and rectangular PCPP with an Hinput ×Winput input matrix and
an Ĥproof ×Wproof proof matrix, and has the following parameters:

• soundness error = 1/2,
• proximity parameter = δcode (which is the relative distance of Encode),
• query complexity = q := O(1),
• parity-check complexity = q = O(1),
• total randomness = r := log T +O(m log log T ) = (c+ 1)n+O(log n),
• row randomness = rrow := hproof − (5/m) log T ,
• column randomness = rcol := wproof − (5/m) log T = n/2 +O(log n),
• shared randomness = rshared := (10/m) log T +O(log log T +m logm).
Of course, we need to check that the technical conditions of Theorem 2.5.11 are satisfied:
• wproof ≥ (5/m) log T : in fact, wproof ·m

5 log T ≥
10n(c+1)

5n(c+1)−O(logn) ≥ 2.
• hproof ≥ (5/m) log T : since hproof > wproof , this follows easily.
• winput

wproof
≤ 1− Cm2 log log T

log T : because winput

wproof
≤ log ℓ+O(logn)

n ≤ 10 log s+O(logn)
n and s ≤ 20.01n.

• hinput

ĥproof
≤ 1 − Cm2 log log T

log T : because hinput

ĥproof
= 1 − Ω(K logn)

cn+O(logn) ≤ 1 − Cm2 logn
(c+1) logn if K is a large

enough constant compared to C.
We remark that q only depends on the soundness error (which is 1/2) and the proximity

parameter (which is δcode), both of which are absolute constants; hence q is also an absolute
constant. We set δ := 0.110q

4
/q, which is also an absolute constant.

By our hypothesis, for rcol = n/2 +O(log n), there is a CAPP data structure for AND4q ◦ C

circuits of size s(n)K′ and rcol inputs in T alg := 2rcol/s(n)K
′ query time with ENP preprocessing

and additive error εalg := s(n)−K
′ , where K ′ is a large enough constant.

The speed-up machine MPCPP receives an input x ∈ {0, 1}N . If x ∈ Lhard, then there is an
Ĥproof ×Wproof PCPP proof Π such that VPCPPEncode(x),Π(seed) accepts with probability 1. We
say that x has easy witness, if furthermore, every row of this PCPP proof Π is the truth table of
a function πi : {0, 1}wproof → {0, 1} that is δ-close to a [0, 1]-Sum ◦ C circuit of complexity s(n)
in ℓ1-distance. Assuming that x has easy witness, we nondeterministically guess Ĥproof Sum ◦C
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circuits C1, C2, . . . , CĤproof
, each of complexity s(n), hoping that for every i ∈ [Ĥproof ], Ci is a

[0, 1]-Sum ◦ C circuit that (1 − δ)-approximates πi in ℓ1-distance. Then, for each i ∈ [Ĥproof ],
we define Bi := binCi to be the Boolean function closest to Ci. Note that Bi might be different
from πi. However, in the case that x ∈ Lhard and x has easy witness, we have

∥πi −Bi∥1 ≤ ∥πi − Ci∥1 + ∥Ci −Bi∥1 ≤ 2δ.

Since both πi and Bi are Boolean, the relative Hamming distance between πi and Bi is at most
2δ. Let ΠB be the Ĥproof ×Wproof matrix where the i-th row is the truth table of Bi. Since
VPCPP is smooth, it follows from Lemma 2.5.8 that VPCPP accepts the proof ΠB w.p. at least
1 − 2qδ ≥ 0.98. On the other hand, if x ̸∈ Lhard, then VPCPP accepts ΠB (in fact any proof)
w.p. at most 1/2. From now on, we forget Π and our goal becomes to estimate

Pr
seed

[VPCPPEncode(x),ΠB (seed) accepts] (4.4)

within an additive error of 0.1.
For every seed = (seed.row, seed.col, seed.shared), define

(itype[1], itype[2], . . . , itype[q]) :=Vtype(seed.shared),

(irow[1], irow[2], . . . , irow[q]) :=Vrow(seed.row, seed.shared), and

(icol[1], icol[2], . . . , icol[q]) :=Vcol(seed.col, seed.shared).

For now, let us think of seed.shared and seed.row as fixed and seed.col as variables. Then, for
each ι ∈ [q], itype[ι] and irow[ι] are also fixed, and icol[ι] is a function of seed.col. Moreover, each
icol[ι] can be computed by a projection over seed.col, and the description of this projection can
be computed in polynomial time given seed.shared.

Let VDec be the decision predicate of VPCPP (which depends on seed.shared), then VDec

takes 2q input bits where the first q input bits correspond to the query answers and the last q
bits correspond to parity check bits. Our goal is to estimate

Pr
seed

[VDec(D1(seed.col), D2(seed.col), . . . , D2q(seed.col)) = 1].

Here, for each ι ∈ [2q], Dι is a Boolean function over seed.col (which depends on seed.shared and
seed.row) specified as follows.

• If ι corresponds to a query and itype[ι] = proof, then Dι(seed.col) = Birow[ι](icol[ι]).

• If ι corresponds to a query and itype[ι] = input, then Dι(seed.col) = Encode(x)irow[ι],icol[ι].

• If ι corresponds to a parity check bit, then Dι(seed.col) is the appropriate parity function
over seed.col.

Since every Boolean function over 2q bits is equivalent to a degree-2q polynomial over the
reals, we can write

VDec(a1, a2, . . . , a2q) =
∑

S⊆[2q]

θS
∏

ι∈S
aι,
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where θS ∈ [−22q, 22q]. For each S ⊆ [2q], we will estimate

E
seed.col

[∏

ι∈S
Dι(seed.col)

]
. (4.5)

We define the Sum ◦ C circuits D̃ι as follows. If ι corresponds to a query bit such that
itype[ι] = proof, then D̃ι(seed.col) = Cirow[ι](icol[ι]); otherwise D̃ι = Dι. We will actually use

E
seed.col

[∏

ι∈S
D̃ι(seed.col)

]
(4.6)

as an estimation of (4.5). Intuitively, we need to estimate the accept probability of VPCPP when
given ΠB as the oracle, but since we do not have direct access to ΠB, we use the “real-valued
proof” encoded by {Ci} instead. We note that since VPCPP has projection queries (i.e., icol[ι]
is computable by a projection over seed.col), each D̃ι is indeed a Sum ◦ C circuit over seed.col

whose description can be computed efficiently given seed.shared and seed.row. The complexity
of each D̃ι is at most ŝ := max{s(n),poly(Winput)} ≤ poly(s(n)).

Testing each Ci. It is not guaranteed that our guessed circuits Ci will satisfy the [0, 1]-Sum
promise and will be δ-close to Bi in ℓ1 norm. Hence, we also need to test whether each Ci

satisfies these promises. Like in [CLW20] and in Chapter 3, our verification algorithm will be
approximate: If each Ci satisfies the [0, 1]-Sum promise and is δ-close to Bi, then we will accept
them; on the other hand, if we accept the circuits Ci, then they are “somewhat close” to Bi.

More precisely, we perform the following verification:

1. First, we apply Lemma 4.2.6 on each Ci with parameter d := 2q and δ′ := 3δ1/d. If any
Ci is rejected by the test, then we reject. This takes Ĥproof · T alg ·O(ŝ4q) time in total.

If Ci is a [0, 1]-Sum◦C circuit and ∥Ci−Bi∥1 ≤ δ, then the test accepts; if the test accepts,
then ∥Ci −Bi∥2q ≤ δ′.

2. Then, we enumerate seed.shared and seed.row. For each (seed.shared, seed.row) and each
ι ∈ [2q] such that ι corresponds to a query with itype[ι] = proof, we apply Theorem 4.2.5
to estimate Eseed.col[(D̃ι(seed.col))

2q]. Note that since seed.shared and seed.row are fixed,
each D̃ι is a Sum ◦ C circuit over the input seed.col, hence we can apply Theorem 4.2.5
on D̃ι. This takes 2r−rcolqŝ2q+O(1) · T alg time and provides an estimation within additive
error ŝ2q · εalg. If the estimation exceeds 1 + ŝ2q · εalg then we reject immediately.

Clearly, if every Ci is a [0, 1]-Sum◦C circuit, then Eseed.col[(D̃ι(seed.col))
2q] ≤ 1 and our test

always accepts. If the test accepts, then for every combination of (seed.shared, seed.row, ι),
we have Eseed.col[(D̃ι(seed.col))

2q] ≤ 1 + 2ŝ2q · εalg.

If the Sum ◦ C circuits {Ci} pass both tests above, then we proceed to estimate (4.6). We
enumerate seed.shared, seed.row, and S, which determines the circuits D̃ι and the coefficient θS .
Then we apply Theorem 4.2.5 on the circuits {D̃ι}ι∈S , which allows us to obtain an estimation
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of (4.6) within additive error ŝ2q · εalg. Finally, we output the estimation of

E
seed.shared
seed.row


 ∑

S⊆[2q]

θS,seed.shared · E
seed.col

[∏

ι∈S
D̃ι(seed.col)

]
, (4.7)

within an additive error of 4q · ŝ2q · εalg < 0.001. (Recall that θS depends on not only S but also
seed.shared.) Overall, this takes (2r−rcol + Ĥproof) · 22q · ŝ4q · T alg time.

Estimating the acceptance probability. Next, we show that if the tests above are passed,
then (4.7) is a good estimation of (4.4). For ease of notation, let us denote seed.col :=

(seed.shared, seed.row). Fixing seed.col, we can treat Dι and D̃ι as functions over seed.col and
talk about their norms (we alert the reader again that Dι and D̃ι depend on seed.col). In
particular, we define

f(seed.col, ι) := ∥Dι − D̃ι∥2q,
which by definition = E

seed.col
[(Dι(seed.col)− D̃ι(seed.col))

2q]1/(2q).

Since each Dι is Boolean, we have that ∥Dι∥2q ≤ 1. By triangle inequality, ∥D̃ι∥2q ≤ 1 +

f(seed.col, ι). Define f(seed.col) :=
∑

ι∈[2q] f(seed.col, ι), then by Lemma 4.2.3,

|(4.7)− (4.4)|

≤ E
seed.col


 ∑

S⊆[2q]

θS,seed.shared ·
∣∣∣∣∣ E
seed.col

[∏

ι∈S
Dι(seed.col)

]
− E

seed.col

[∏

ι∈S
D̃ι(seed.col)

]∣∣∣∣∣




≤ 16q · E
seed.col

[(2q) · (1 + f(seed.col))2q−1 · f(seed.col)]. (4.8)

We can bound (4.8) using Lemma 3.5.7 which we restate here for convenience:

Lemma 3.5.7. Let f : [N ]× [q]→ R≥0 be a function and d ≥ 1 be a constant. Suppose that
1. for every s ∈ [N ] and i ∈ [q], f(s, i) ≤ α (where α ≥ 1);
2. Es,i[f(s, i)

d] ≤ δ.
Let f(s) :=

∑
i∈[q] f(s, i). Then

E
s
[(1 + f(s))d−1 · f(s)] ≤ qδ1/d(2qα)d−1.

Since {Ci} passes the above tests, by triangle inequality, for every seed.col we have

f(seed.col, ι) ≤ 2 + 2ŝ2q · εalg ≤ 3.

We also have that

E
seed.col,ι

[f(seed.col, ι)2q]

= E
seed,ι

[(Dι(seed.col)− D̃ι(seed.col))
2q]
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≤ E
i←[Ĥproof ],j←[Wproof ]

[(Bi(j)− Ci(j))
2q] (4.9)

≤ E
i←[Ĥproof ]

[∥Bi − Ci∥2q2q] = (δ′)2q.

Here, (4.9) is because of the smoothness of VPCPP: the distribution over (irow[ι], icol[ι]) condi-
tioned on ι corresponds to a query to the proof oracle is equal to the uniform distribution over
[ĥproof ]× [Wproof ].

It follows from Lemma 3.5.7 that

(4.8) ≤ 16q · 2q · (2q)δ′(6q)2q−1 ≤ 0.001,

hence we can estimate (4.4) within additive error 0.002. This suffices for distinguishing between
the case that VPCPP accepts ΠB with probability at least 0.98 and the case that any PCPP
proof is accepted w.p. at most 1/2.

Clearly, MPCPP runs in at most (2r−rcol + Ĥproof) ·O(ŝ)4q · T alg ≤ T/polylog(T ) time. Also,
MPCPP needs to guess Ĥproof many Sum ◦ C circuits of complexity s. Since each such circuit
can be described in ℓ bits, MPCPP only guesses ℓ · Ĥproof < N/10 many nondeterministic bits.
Also, MPCPP takes the output of Prep(1n) as non-uniform advice, which has length at most
Hproof < N/10. It follows that MPCPP computes a language in

NTIMEGUESSRAM[T/polylog(T ), N/10]/(N/10).

Wrap up. We design the following algorithm that on input 1n, runs in deterministic poly(2n)

time with an NP oracle, and outputs the truth table of a function f : {0, 1}n → {0, 1} that is
δ-far in ℓ1-distance from any [0, 1]-Sum ◦ C circuit of complexity s. The algorithm first runs
Prep(1n) and computes the description of the machine MPCPP as well as its advice α. Then it
computes xhard := R(1n,MPCPP, α) where R is the refuter algorithm specified in Theorem 3.3.1.
It follows that MPCPP(xhard) ̸= Lhard(xhard). The only possibility is that xhard ∈ Lhard but does
not have an easy witness. Let Π be the PCPP proof for xhard ∈ Lhard (which can be computed
in TIME[poly(N)]NP). Then there exists a row i ∈ [Ĥproof ] such that, denoting πi as the i-th
row of Π, then πi : {0, 1}n → {0, 1} is a Boolean function that has ℓ1 distance at least δ with
every Sum◦C circuit of size at most s(n). Whether a truth table possesses such hardness can be
decided in TIME[2O(n)]NP, hence we can find such a truth table in TIME[2O(n)]NP. This proves
the desired lower bound for ENP.

As a consequence, non-trivial CAPP algorithms with ENP preprocessing also imply that ENP

is strongly average-case hard against C circuits.

Theorem 4.4.2. Let C be a circuit class satisfying the technical conditions in Theorem 4.4.1,
and d ≥ 2 be the absolute constant in Theorem 4.4.1. For every constant ε > 0, there exists a
constant ε′ > 0 such that: If there is a CAPP data structure for ANDd ◦ C circuits of size 2n

ε

and n inputs in 2n−n
ε query time with ENP preprocessing and inverse-circuit-size error, then ENP

cannot be (1/2 + 2−n
ε′
)-approximated by C circuits of 2nε′ size on almost every input length.

Proof. This follows from Theorem 4.4.1 and Theorem 4.2.9. In fact, it follows from Theorem 4.4.1
that there is a constant ε′′ > 0 and a language L ∈ ENP that has ℓ1-distance at least δ from
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[0, 1]-Sum ◦ C circuits of complexity 2n
ε′′ on almost every input length, where δ > 0 is the

absolute constant in Theorem 4.4.1. Let ε′ := ε′′/2, k(n) := O(nε
′
), then by Theorem 4.2.9, the

language L⊕k(n) ∈ ENP cannot be (1/2 + 2−n
ε′
)-approximated by C circuits of size 2n

ε′ .

4.5 Applications

We present two applications of the result that non-trivial circuit-analysis problems imply
circuit lower bounds, even with ENP preprocessing.

4.5.1 Shaving Logs Implies Lower Bounds, Even with Preprocessing

As a direct corollary of Theorem 4.3.2, we tighten the connections between circuit lower
bounds and non-trivial speed-ups for certain problems in fine-grained complexity. Typically,
such a connection states that certain algorithms that are slightly better than brute force implies
breakthrough circuit lower bounds: For certain well-studied problems L where an Õ(n2)-time
algorithm is already known, if we could solve L in n2/ logω(1) n time (i.e., “shaving all logs”),
then breakthrough circuit lower bounds follow.

Theorem 4.3.2 implies that we could still obtain the breakthrough lower bounds even if we
allow a preprocessing phase of time n100 with an NP oracle before we receive the input of L.
For an optimist, this can be seen as an improved approach to prove such lower bounds: Now,
we can rely on the power of PNP preprocessing to solve L, and we (still) only need to obtain a
modest improvement over the naïve algorithms.

There are many such connections in the literature, but for illustration, we only consider the
following examples:

• LCS (Longest Common Subsequence) over alphabet Σ: Given two sequences a, b ∈ ΣN ,
find the length of their longest common subsequence.

Abboud and Bringmann [AB18], improving on [AHWW16], showed that the SAT problem
for formulas of size s and n inputs can be reduced to an instance of LCS with two sequences
of length N := 2n/2 · s1+O(1/ log log σ) over alphabet [σ] in O(N) time.

• Closest-LCS-Pair: Given two sets of N length-D strings A,B, find (or approximate) the
maximum length of the longest common subsequence among all pairs (a, b) ∈ A× B.

Chen, Goldwasser, Lyu, Rothblum, and Rubinstein [CGL+19] showed that for every con-
stant c ≥ 1, the SAT problem for formulas of size s and n inputs can be reduced to an
instance of c-approximate Closest-LCS-Pair with N := 2n/2 and D := 2polylog(n).

Proof Sketch in [CGL+19]. We use Barrington’s theorem [Bar89] to transform the formula
into a width-5 branching program of size poly(s). Then we reduce its SAT problem to the fol-
lowing problem (called BP-Satisfying-Pair in [CGL+19]): Given a size-poly(s) width-5 branch-
ing program P on n Boolean inputs, and a set of N := 2n/2 strings A,B ⊆ {0, 1}n, determine
if there is a pair (a, b) ∈ A×B such that P (a, b) = 1. The next step is to invoke [CGL+19, The-
orem 5.6] to reduce BP-Satisfying-Pair to a problem called ε-Gap-Max-TropSim, whose input
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consists of two sets of N tensors of size D := 2O(log2 n log logn). Finally, this problem reduces
to O(1)-approximate Closest-LCS-Pair over N length-D strings.

• Z-OV (Hopcroft’s Problem): Given N points v⃗1, v⃗2, . . . , v⃗N ∈ ZD, find an orthogonal pair,
i.e., two vectors v⃗a and v⃗b such that

D∑

i=1

vai · vbi = 0.

Chen [Che18] showed that the SAT problem on THR◦THR circuits of size s and n inputs can
be reduced to poly(s) Z-OV instances on N := 2n/2 vectors of dimension D := poly(s).

Proof Sketch in [Che18]. Given a THR ◦ THR circuit of size s, we use [Che18, Theorem 1.6]
to transform it into an OR◦THR◦MAJ circuit of size poly(s), then use [HP10] to transform it
into an OR ◦ETHR ◦MAJ circuit of size poly(s). Here, ETHR denotes “exact threshold gates”,
which outputs 1 if a certain linear combination of its input is exactly equal to its threshold
parameter, and outputs 0 otherwise; the transformation can be performed in deterministic
poly(s) time. Finally, we reduce the satisfiability of each bottom ETHR ◦ MAJ circuit to
Z-OV.

The naïve algorithms for LCS, Closest-LCS-Pair, and Z-OV run in O(N2), O(N2D2), and
O(N2D) time respectively. The above reductions show that a modest improvement of these
quadratic-time algorithms (i.e., “shaving all logs”) would imply new SAT algorithms for frontier
circuit classes, e.g., NC1 or THR ◦ THR. By the Algorithmic Method [Wil13a, CW19b], these
SAT algorithms imply long-standing circuit lower bounds for these classes.

To state our corollary, we need the following definition of solving a problem with PNP pre-
processing.

Definition 4.5.1. We say that a problem L can be solved in T (n) time with PNP preprocessing
if there are two algorithms (Prep,Query) such that the following holds:

• Prep receives an input 1n, runs in time poly(n) with access to an NP oracle, and outputs
a string DS of length poly(n).

• Query receives an input x of L, has random access to DS, runs in time T (n), and correctly
decides whether x ∈ L.

Now we present the following corollary of Theorem 4.3.2, which states that even if we allow
a PNP preprocessing phase (which runs in arbitrary polynomial time in N but does not see the
input), such a modest improvement would still imply breakthrough circuit lower bounds:

Corollary 4.5.2. The following are true:

• Suppose LCS of length-N strings over any O(1)-size alphabet can be solved in N2/ logω(1)N

time, even with PNP preprocessing, then ENP ̸⊆ NC1.

• Suppose there is a constant c ≥ 1 such that for any D = 2poly(log logN), Closest-LCS-Pair of
N length-D strings can be c-approximated in N2/ logω(1)N time, even with PNP prepro-
cessing, then ENP ̸⊆ NC1.
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• Suppose for any D = polylog(N), Z-OV for N points in ZD can be solved in N2/ logω(1)N

time, even with PNP preprocessing, then ENP ̸⊆ THR ◦ THR.

Remark 4.5.3. Since NC1 satisfies all technical conditions in Theorem 4.3.2 (NC1 is complete, com-
putes PARITY efficiently, and is closed under adding NC0 circuits at the top), the first two items of
Corollary 4.5.2 are straightforward. For THR ◦ THR:

• Since THR ◦ THR contains CNF (i.e., AND ◦ OR), it is clearly complete.

• There is a polynomial-size THR ◦ THR circuit that computes PARITY [Mur71,PS94].

• Finally, for d = O(1), the SAT problem (thus, the GapUNSAT problem) for NC0
d ◦THR ◦THR

reduces to poly(nd) instances of the SAT problem for THR ◦ THR.

More precisely, since THR◦THR is closed under negation, the SAT problem for NC0
d◦THR◦THR

reduces to the SAT problem for 2O(d) instances of ANDd ◦ THR ◦ THR. Using the fact that
THR ⊆ OR◦ETHR [HP10], we reduce the problem to the SAT problem for ANDd◦OR◦ETHR◦
THR. Enumerating the set of d bottom ETHR ◦THR circuits that are satisfied, we reduce the
problem to poly(n)d ≤ poly(n) instances of the SAT problem for ANDd ◦ETHR◦THR circuits.
Since AND ◦ ETHR ⊆ ETHR and ETHR ◦ THR = ETHR ◦ ETHR ⊆ THR ◦ THR [HP10], every
ANDd ◦ ETHR ◦ THR circuit is equivalent to a THR ◦ THR circuit. Finally, notice that every
transformation mentioned above can be implemented in deterministic polynomial time.

4.5.2 The Complexity of Adleman’s Argument

Theorem 4.3.2 has an interesting application to the complexity of the following problem,
denoted as Adleman. Adleman [Adl78] showed that BPP ⊆ P/poly; in particular, for every
n, s ∈ N, there exists a non-uniform algorithm2 of time complexity poly(n, s) that solves CAPP

for n-input size-s circuits. What is the complexity of finding such a non-uniform algorithm?

Definition 4.5.4. Let n ≤ s1(n) ≤ s2(n), Adlemans1,s2 is the following (unary) total search
problem: Given 1n, 1s1(n), and 1s2(n), the goal is to output the description of a non-uniform
algorithm A of size at most s2(n) that solves CAPP for n-input size-s1(n) circuits. Namely, for
every size-s1(n) circuit C : {0, 1}n → {0, 1}, A(C) outputs a rational number that is 1/6-close
to Prx←{0,1}n [C(x) = 1].

Note that we are also interested in the case when s2(n) is super-polynomial in n and we want
to find a non-uniform algorithm for CAPP in poly(s2(n)) time. Hence in the above definition,
besides 1n, we also provide 1s1(n) and 1s2(n) as inputs of Adlemans1,s2 .

Adleman’s argument [Adl78] shows that Adlemans1,s2 is a total search problem as long as
s2(n) ≥ s1(n)

c for some absolute constant c. In fact, one can also show that Adlemans1,s2 is
in APEPP (i.e., Adlemans1,s2 reduces to Avoid):3

2Non-uniform circuits and non-uniform algorithms are equivalent computational models. However, to avoid
confusion, in this subsection we use “non-uniform algorithms” to refer to non-uniform algorithms solving CAPP
and use “circuits” to refer to inputs of CAPP.

3A subtlety is that it is unclear whether Adleman is in TFΣ2P, i.e., whether it is possible to verify in PNP

that a non-uniform algorithm A indeed solves CAPP. The class APEPP, as defined in [KKMP21], consists of
all total functions that are polynomial-time reducible to Avoid (there is no requirement that the total function
itself should be in TFΣ2P). Hence it makes sense to say that Adleman is in APEPP or even APEPP-complete
without knowing whether Adleman is in TFΣ2P.
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Proposition 4.5.5. Let s2(n) ≥ s1(n)
7. Then there is a polynomial-time reduction from

Adlemans1,s2 to Avoid.

Proof. Let PRG be the following problem: Given 1N , output a sequence (x1, x2, . . . , xN6) such
that for every N -input circuit C of size N ,

∣∣∣∣ Pr
i←[N6]

[C(xi) = 1]− Pr
y←{0,1}N

[C(y) = 1]

∣∣∣∣ ≤ 1/6.

Korten [Kor21] showed that PRG reduces to Avoid. It is easy to see that Adlemans1,s2 reduces
to PRG: Let (x1, . . . , xs1(n)6) be a valid output of PRG on input 1s1(n). one can construct a
non-uniform algorithm A that given a size-s1(n) circuit C as an input, outputs the fraction of
indices i ∈ [s1(n)

6] such that C(xi) = 1. This algorithm is a valid output of Adlemans1,s2 .

An interesting corollary of Theorem 4.3.2 is that Adleman is, in fact, APEPP-complete
under PNP reductions! Moreover, this is true even in a restricted parameter setting, where
s1(n) = 2δn and s2(n) = 2(1−δ)n for some constant δ > 0.

Theorem 4.5.6. Let δ > 0 be a constant, s1(n) = 2δn and s2(n) = 2(1−δ)n, then Adlemans1,s2

is APEPP-complete under PNP reductions.

Proof Sketch. Let ε > 0, ε-Hard be the following problem: Given 1N where N = 2n, output
the truth table of a Boolean function f : {0, 1}n → {0, 1} that has circuit complexity at least
2εn. Korten [Kor21] showed that for every constant ε > 0, ε-Hard is APEPP-hard under PNP

reductions. Therefore, it suffices to design a PNP reduction from ε-Hard to Adleman2δn,2(1−δ)n .
This is essentially circuit lower bounds from circuit-analysis algorithms!

Let ε ∈ (0, 0.01) be a constant such that, via Theorem 4.3.2, a GapUNSAT data structure
for size-2δn circuits implies a circuit lower bound of size s(n) := 2εn. Let A be a solution to
Adleman2δn,2(1−δ)n . Then A is a non-uniform algorithm that runs in 2(1−δ)n time and solves
CAPP on circuits C : {0, 1}n → {0, 1} of size s(n) := 2δn. We follow the same proof of
Theorem 4.3.2 with C being the class of (general) circuits; the only difference is that MPCPP

uses A to estimate the accept probability of the PCPP verifier. The running time of MPCPP

and the number of nondeterministic bits guessed by MPCPP remain unchanged; MPCPP takes
the description of A as advice, so its advice complexity is at most 2n (i.e., c = 1 in the proof of
Theorem 4.3.2).

Our PNP reduction from ε-Hard to Adleman2δn,2(1−δ)n works as follows. We first compute
the description of MPCPP from the description of A in polynomial time. Then we feed MPCPP to
the PNP refuter in Theorem 3.3.1 to obtain an input xhard such that Lhard(xhard) ̸=MPCPP(xhard).
It has to be the case that xhard ∈ Lhard, but any PCPP proof for xhard (treated as a matrix)
contains a row whose circuit complexity is at least 2εn. We can find such a row in deterministic
poly(2n) time with an NP oracle, and this gives us a solution for ε-Hard.
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4.6 Equivalences between Circuit Lower Bounds and Derandomi-
sation with Preprocessing

We show that circuit lower bounds for ENP are actually equivalent to derandomisation with
ENP preprocessing.

Our first theorem shows that if C is a “strong enough” circuit class, then the worst-case
lower bound ENP ̸⊆ C is equivalent to non-trivial derandomisation of C circuits with ENP

preprocessing. For simplicity, we only consider a few typical circuit classes (TC0, NC1, and
P/poly), but it is clear from the argument that we only rely on a few closure properties of C .

Theorem 4.6.1. Let C ∈ {TC0,NC1,P/poly}. The following are equivalent:

1. For every constant k ≥ 1, there is a language L ∈ ENP that cannot be (1/2 + 1/nk)-
approximated by i.o.-C [nk].

2. For every constant k ≥ 1, there is a language L ∈ ENP such that L ̸∈ i.o.-C [nk].

3. For every constant k ≥ 1, there is a GapUNSAT algorithm for C [nk] with ENP preprocessing,
error 1− 0.01, and 2n/nω(1) query time.

4. For every constant δ > 0 and every good function s = s(n), there is a CAPP algorithm for
C [s] circuits with TIME[exp(sδ)]NP preprocessing, exp(sδ) query time, and inverse-circuit-
size error.

5. For every constant k ≥ 1, there is an ENP-computable PRG with seed length n − 1 that
(1/3)-fools C [nk] circuits.

6. For every constant k ≥ 1, there is an ENP-computable PRG with seed length n1/k that
(1/nk)-fools C [nk] circuits.

Proof. (4) =⇒ (3) and (6) =⇒ (5) are trivial.
(3) =⇒ (2) follows from Theorem 4.3.2, Remark 4.3.3, and the fact that C is “typical”. In

particular, C is complete (any Boolean function can be computed by C circuits of large enough
size), PARITY has polynomial-size C circuits, and C is closed under composition of an NC0

circuit at the top.
(2) =⇒ (1) follows from the locally list-decodable code of [GR08] with TC0 decoders.

In particular, let ε := 1/nk+1, and (Amp,Dec) be the locally list-decodable code specified in
Theorem 4.2.8. Let f : {0, 1}n → {0, 1} be a hard function in ENP \ i.o.-C [nO(k)], and ttf ∈
{0, 1}2n be its truth table. Let ttf ′ := Amp(ttf ), then for some constant d > 1, ttf ′ is the truth
table of a function f ′ : {0, 1}dn → {0, 1} which is computable in ENP.

We claim that f ′ cannot be (1/2 + 1/nk+1)-approximated by C circuits of size nk+1 (thus
cannot be (1/2+1/(dn)k)-approximated by C circuits of (dn)k). Suppose for contradiction that
there is a circuit C ∈ C [nk+1] that (1/2 + 1/nk+1)-approximates f ′. Fix a good r1, then there
is a string α ∈ {0, 1}O(log ε−1) such that for every x ∈ {0, 1}n,

Pr
r2
[DecC(α, x, r1, r2) = f(x)] > 9/10.
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By Adleman’s argument [Adl78] over r2, and recall that Dec(−) is a TC0 oracle circuit, it follows
that f can be computed by a C circuit of size nO(k). This contradicts the worst-case hardness
of f .

(1) =⇒ (6) follows from the Nisan–Wigderson generator (Theorem 4.2.1). In particular,
we set the following parameters:

ℓ := n1/3k,m := n, a := log n, t := O(ℓ2 ·m1/a/a) := O(ℓ2) ≤ n1/k.

Let f : {0, 1}ℓ → {0, 1} be a function in ENP that cannot be (1/2 + 1/nk+1)-approximated
by C circuits of size nk · poly(2a) ≤ poly(n). Then it cannot be (1/2 + 1/nk+1)-approximated
by C ◦Juntaa circuits where the top C circuit has size nk. By Theorem 4.2.1, there is a function
G : {0, 1}2ℓ × {0, 1}t → {0, 1}m computable in poly(m, 2t) ≤ 2O(t) time, such that G(tt(f),Ut)
(1/nk)-fools every C [nk] circuit. Since f ∈ ENP, the generator G(tt(f), ·) is computable in ENP.

(6) =⇒ (4): Let G : {0, 1}sδ/2 → {0, 1}s be the ENP-computable PRG that (1/s)-fools
C [2s] circuits with s inputs. (Given a C [s] circuit C with n inputs, we can pad some dummy
inputs to C so that C becomes a C circuit of size 2s with s inputs; C only depends on the first
n inputs.)

In the ENP preprocessing phase, we compute the whole PRG (i.e., G(x) for every x ∈
{0, 1}sδ/2). Given a circuit C ∈ C [s] as a CAPP query, we simply compute

Pr
x←{0,1}sδ/2

[C(G(x)) = 1],

which estimates the accept probability of C within additive error 1/s. The query algorithm runs
in poly(s) · exp(sδ/2) < exp(sδ) time.

(5) =⇒ (2) follows from Fact 4.2.7. In particular, suppose there is an ENP-computable
PRG G : {0, 1}n−1 → {0, 1}n that (1/3)-fools C [nk] circuits. Since 1/3 < 2(n−1)−n = 1/2, it
follows from Fact 4.2.7 that ENP cannot be computed by C [nk] circuits on almost every input
length.

Our equivalence also holds in the high-end regime (e.g., for subexponential-size circuit lower
bounds) and in the infinitely-often setting:

Theorem 4.6.2. Let C ∈ {TC0,NC1,P/poly}. The following are equivalent:

1. There is a constant ε > 0 and a language L ∈ ENP such that L ̸∈ C [2n
ε
].

2. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be (1/2 + 1/2n
ε
)-

approximated by C [2n
ε
].

3. There is a constant ε > 0 and an i.o. GapUNSAT algorithm for C [2n
ε
] with ENP prepro-

cessing, error 1− 0.01, and 2n/nω(1) query time.

4. There is a constant k ≥ 1 such that for every good function s = s(n), there is an
i.o. CAPP algorithm for C [s] with TIME[2log

k s]NP preprocessing, 2log
k s query time, and

inverse-circuit-size error.
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5. There is a constant c ≥ 1 and an ENP-computable i.o. PRG with seed length logc n that
(1/n)-fools C circuits of size n.

Proof Sketch. (3) =⇒ (1) follows from Corollary 4.3.4.
(1) =⇒ (2) follows from Theorem 4.2.8.
(2) =⇒ (5) follows from Theorem 4.2.1.
(5) =⇒ (4) follows by simply applying the i.o. PRG to fool the input circuit.
(4) =⇒ (3) is trivial.

For weaker circuit classes, we also get an equivalence by considering strong average-case lower
bounds: hard functions that cannot be (1/2+1/poly(n))-approximated by C , non-trivial CAPP
data structures for C with inverse-circuit-size error, and PRGs fooling C with very small error
are all equivalent. Note that the following equivalence only holds in the low-end regime (i.e., for
polynomial size but not for subexponential size) and only holds for infinitely-often lower bounds.
The reason is that we need to use a win-win argument in [CR22,CLLO21]: if a certain NC1-hard
problem (called DCMD in [CR22]) can be approximated by C circuits, we proceed in one way;
if not, we proceed in another way. The reader is referred to the discussion in [CLW20, Section
2.2.2] for more details on the limitation of this win-win argument.

Below we list the properties of the weak circuit class C that we need:

(C is typical) C is closed under negation and projection.

(C is complete) For every truth table of length 2k, there is a C circuit of size poly(2k) that
computes this truth table; moreover, the description of such a C circuit can be computed
in deterministic poly(2k) time from the truth table.

(C computes PARITY) The PARITY function can be computed by a C circuit of size poly(n).

(C is closed under bottom juntas) For every constant d ≥ 1, every C ◦ Juntad circuit can
be computed by a polynomially-larger C circuit.

(C is closed under top NC0 circuits) For every constant d ≥ 1, every NC0
d ◦ C circuit can

be computed by a polynomially-larger C circuit.

Theorem 4.6.3. Let C be a circuit class that satisfies the properties above. If C ⊆ NC1, then
the following are equivalent:

1. For every constant k ≥ 1, there is a language L ∈ ENP that cannot be
(
1/2 + 1/nk

)
-

approximated by C [nk].

2. For every constant k ≥ 1, there is a language L ∈ ENP such that L ̸∈ MAJ ◦ C [nk].

3. There is δ ≥ 1/poly(n) such that for every constant k ≥ 1, there is a language L ∈ ENP

such that L ̸∈ S̃umδ ◦ C [nk].

4. For every constant k ≥ 1, there is a language L ∈ ENP such that L ̸∈ S̃um1/3 ◦ C [nk].

5. For every constant k ≥ 1, there is a language L ∈ ENP such that L has ℓ1-distance at least
δ from any [0, 1]-Sum ◦C circuit of complexity nk, where δ > 0 is the absolute constant in
Theorem 4.4.1.
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6. For every constant k ≥ 1, there is an infinitely-often CAPP algorithm for C [nk] with ENP

preprocessing, 2n/nω(1) query time, and inverse-circuit-size error.

7. For every constant δ > 0 and every good function s = s(n), there is an infinitely-often
CAPP algorithm for C [s] circuits with TIME[exp(sδ)]NP preprocessing, exp(sδ) query time,
and inverse-circuit-size error.

8. For every constant k ≥ 1, there is an ENP-computable i.o. PRG with seed length n− 1 that(
1/nk

)
-fools C [nk] circuits.

9. For every constant k ≥ 1, there is an ENP-computable i.o. PRG with seed length n1/k that(
1/nk

)
-fools C [nk] circuits.

Proof. (9) =⇒ (8), (7) =⇒ (6), and (4) =⇒ (3) are trivial. (2) =⇒ (4) follows from the
fact that

⋃
k∈N S̃um1/3 ◦ C [nk] ∈ ⋃k∈NMAJ ◦ C [nk].

(5) =⇒ (3) is because every language in S̃umδ ◦ C is also close to a [0, 1]-Sum ◦ C circuit
of similar complexity. In particular, let f : {0, 1}n → {0, 1} be computed by a S̃umδ ◦ C circuit
C(x) :=

∑ℓ
i=1 αiCi(x) of complexity s. Consider the circuit C ′(x) := (C(x) + δ)/(1 + 2δ), then

C ′ is a [0, 1]-Sum ◦ C circuit of complexity poly(s), and

∥C ′ − f∥1 = E
x←{0,1}n

[|C ′(x)− f(x)|]

≤ E
x←{0,1}n

[∣∣∣∣
C(x)− f(x) + δ

1 + 2δ

∣∣∣∣
]
+ 2δ ≤ 4δ.

Hence, if L ∈ ENP has ℓ1-distance at least δ from any [0, 1]-Sum ◦C circuit of complexity nk,
then L ̸∈ S̃umδ/4 ◦ C [nk−1].

(9) =⇒ (7): The proof is exactly the same as (6) =⇒ (4) in Theorem 4.6.1. That is, we
apply the PRG to solve CAPP.

(8) =⇒ (3): From Lemma 4.2.4, a PRG fooling C is also a PRG fooling S̃um ◦ C . Then,
from Fact 4.2.7, a PRG fooling S̃um ◦ C implies a lower bound for it. Details follow.

For any fixed constant k, let Gn : {0, 1}n−1 → {0, 1}n be an ENP-computable i.o. PRG that(
1/nk+1

)
-fools C [nk+1] circuits. Then, by Lemma 4.2.4, G is also an i.o. PRG that ε′-fools

S̃um1/n ◦ C circuits of complexity nk, where ε′ := 2 · (1/n) + nk/nk+1 ≤ 3/n. By Fact 4.2.7,
there is a language in ENP that is not computable in S̃um1/n ◦ C [nk].

(6) =⇒ (5) follows from Theorem 4.4.1 and the hypotheses that C is typical, complete,
computes PARITY, and is closed under top NC0 circuits.

(3) =⇒ (1) follows from the proof of (2) =⇒ (6) in [CLLO21, Theorem 1]; for com-
pleteness we provide a sketch here. If a certain problem called DCMD, which is in P, cannot
be (1/2 + 1/nk)-approximated by C [nk] for every constant k, then (1) follows directly. Oth-
erwise, by [CR22, Lemma 3.1], NC1 ⊆ S̃umδ ◦ C . Let L be a language in ENP that does not
have S̃umδ ◦ C [nO(k)] circuits, then L does not have NC1 circuits of size nO(k). By standard
hardness amplification (with NC1 decoders) such as Theorem 4.2.8, it follows that L cannot be
(1/2 + 1/nk)-approximated by NC1 circuits of size nO(k). Since C ⊆ NC1, (1) is true.

(1) =⇒ (2) follows from the discriminator lemma [HMP+93]. For any function f ∈ MAJ◦C
where the top MAJ gate has fan-in s, f can be (1/2+1/O(s)) approximated by C . This implies
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the contrapositive of (1) =⇒ (2).
(1) =⇒ (9) follows from the Nisan–Wigderson generator [NW94]. We use the following

parameters in Theorem 4.2.1:

ℓ := n1/3k,m := n, a := 4k, t := O(ℓ2 ·m1/a/a) ≤ n1/k.

We use a hard truth table of length 2ℓ that is not (1/2 + 1/nk+1)-approximated by C ◦ Juntaa
circuits, where the top C circuits have size nk. As any C ◦ Juntaa can be computed by a
polynomially larger C , the same proof applies.

We also present a characterisation of ENP lower bounds against weak circuit classes that
holds both in the high-end regime and almost everywhere. Note that it is unclear whether this
equivalence extends to lower bounds against S̃um ◦ C circuits.

Theorem 4.6.4. Let C be a circuit class satisfying the above properties. Moreover, suppose the
property that C is closed under bottom juntas is strengthened to:

(C is closed under bottom juntas) Every C ◦ Juntalogn circuit can be computed by a poly-
nomially large C circuit.

Then the following are equivalent:

1. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be (1/2 + 1/2n
ε
)-

approximated by C [2n
ε
] circuits on almost every input length.

2. There is a constant ε > 0 and a language L ∈ ENP such that L cannot be approximated by
[0, 1]-Sum ◦ C [2n

ε
] circuits within ℓ1-distance δ on almost every input length, where δ > 0

is the absolute constant in Theorem 4.4.1.

3. There is a constant ε > 0 and a CAPP algorithm for C [2n
ε
] with ENP preprocessing, 2n−nε

query time, and inverse-circuit-size error.

4. There is a constant c ≥ 1 such that for every good function s(n), there is a CAPP algorithm
for C [s] circuits with ENP preprocessing, 2log

c s query time, and inverse-circuit-size error.

5. There is a constant ε > 0 and an ENP-computable PRG with seed length n−1 that (1/2nε
)-

fools C circuits of size 2n
ε .

6. There is a constant c ≥ 1 and an ENP-computable PRG with seed length logc n that (1/n)-
fools C circuits of size n.

Proof. (4) =⇒ (3) is trivial.
(6) =⇒ (5) can be proved by padding the circuit with dummy inputs.
(6) =⇒ (4): The proof is the same as (6) =⇒ (4) in Theorem 4.6.1.
(5) =⇒ (3): Let G : {0, 1}n−1 → {0, 1}n be an ENP-computable PRG that (1/2n

ε
)-fools C

circuits of size 2n
ε . Let k := nε/2, it can be shown using a hybrid argument that

G′(s1, s2, . . . , sk) = G(s1)G(s2) . . . G(sk)
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is a PRG that (k/2n
ε
)-fools C circuits of size 2n

ε and nk inputs. The desired CAPP algorithm
works as follows: Prep(1N ) calculates n := N1/(1+ε/2), and uses its NP oracle to compute the
entire range of G({0, 1}n−1). Then, given a C circuit C : {0, 1}N → {0, 1} of size 2N

ε/4
< 2n

ε ,
it uses G′ to derandomise C in 2N−n

ε/2 · 2Nε/4 ≤ 2N−N
ε/6 time, within additive error k/2nε ≤

2−N
ε/6 . That is, (3) holds for ε′ := ε/6.
(3) =⇒ (2) follows from Theorem 4.4.1 and the hypothesis that C is typical, complete,

computes PARITY, and is closed under top NC0 circuits.
(2) =⇒ (1) follows from the XOR lemma in [CLW20]. In particular, suppose that L ∈ ENP

cannot be approximated by [0, 1]-Sum ◦ C [2n
ε
] circuits within ℓ1-distance 1/3 on almost every

input length. Let δ := 1/3, k := O(nε/2), and

εk := (1− δ)k−1(1/2− δ) < 2−n
ε/2
.

By Theorem 4.2.9, L⊕k cannot be (1/2 + εk)-approximated by C circuits of size 2n
ε/2 . Since

L ∈ ENP, we also have L⊕k ∈ ENP. Note that L⊕k is a function on ℓ := kn = O(n1+ε/2) input
bits. Therefore, for ε′ := 0.49ε/(1+ε), L⊕k cannot be (1/2+1/2ℓ

ε′
)-approximated by C circuits

of size 2ℓ
ε′ .

(1) =⇒ (6): Let L ∈ ENP be a language that cannot be (1/2 + 1/2n
ε
)-approximated by

C [2n
ε
] circuits on almost every input length. Let c ≥ 2 be a large enough constant such that

C ◦ Juntaa circuits, where the top C circuit has size n, can be simulated by C circuits of size
nc. We apply the Nisan–Wigderson generator [NW94] with the following parameters:

ℓ := logc/ε n,m := n, a := log n, t := O(ℓ2 ·m1/a/a) := O(ℓ2) ≤ log3c/ε n.

From (1) we have that there exists a function f : {0, 1}ℓ → {0, 1} in ENP that cannot
be (1/2 + 1/2ℓ

ε
) = (1/2 + 1/nc)-approximated by C circuits of size nc. Then f cannot be

(1/2 + 1/nc)-approximated by C [n] ◦ Juntaa circuits. By Theorem 4.2.1, there is a function
G : {0, 1}2ℓ × {0, 1}t → {0, 1}m computable in poly(m, 2t) ≤ 2O(t) time, such that G(tt(f),−)
is a PRG that (1/nc−1)-fools every C [n] circuit. Since f ∈ ENP, the generator G(tt(f), ·) is
computable in ENP.
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Chapter 5

Constructions of Rectangular PCPs of
Proximity

5.1 Construction of Smooth and Rectangular PCPP

Recall that a PCPP verifier is smooth if every bit of the proof is equally likely to be queried,
i.e., the distribution of a random query position over a random seed is uniformly random. We
do not impose any smoothness requirement on the input oracle.

In this section, we construct a smooth and rectangular PCP of proximity. Our construction
follows closely from previous ones: Based on [BGH+06], [BHPT24] constructed a smooth and
rectangular PCP, and a careful inspection of their techniques reveals that a smooth and rect-
angular PCP of proximity can be constructed in a similar way. Still, we present an (almost)
self-contained proof of the construction here. As this section is quite technical, we give a brief
overview of the construction.

Overview of Section 5.1

• Instead of constructing a smooth PCPP verifier directly, we will construct a rectangular PCPP
verifier with rectangular neighbour listing (RNL) property, following [BHPT24]. We present the
definition of the RNL property in Section 5.1.1.

• In Section 5.1.2, we show that the PCPP verifier in [BGH+06] is a robust and rectangular PCPP
verifier with RNL property. Previously, a robust and rectangular PCP with RNL property was
constructed in [BHPT24]; we show that one can construct a PCPP with the same properties.

• The query complexity of the PCPP verifier in Section 5.1.2 is somewhat large and we need to
reduce it by PCPP composition. In Section 5.1.3, we prove such a composition theorem: we can
compose a robust and rectangular PCPP verifier for a language L (the outer PCPP verifier) and a
PCPP verifier for a variant of the circuit-evaluation problem (the inner PCPP verifier) to obtain
a rectangular PCPP verifier for L whose query complexity is at most the query complexity of the
inner PCPP verifier. Moreover, the composed PCPP verifier has the RNL property if the outer
PCPP verifier has the RNL property. A minor technicality is that this rectangular PCPP verifier
will also take some ROP parity-check bits (see Definition 2.5.4).

• In Section 5.1.4, we show how to smoothen a PCPP with RNL property. That is, given a PCPP
with RNL property, we construct another PCPP with similar parameters that is smooth.
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• The soundness error of the PCPP we constructed is only a large constant (i.e., close to 1). In
Section 5.1.5, we show that the soundness error can be reduced to an arbitrarily small constant
with an O(1) blow-up to the query complexity.

• We wrap all these components up and set the parameters in Section 5.1.6.

We remark that PCPP composition (Section 5.1.3) does not seem to preserve smoothness (if
the inner PCPP is not known to be smooth) and the soundness error reduction (Section 5.1.5)
does not seem to preserve the RNL property, hence we choose to apply our machinery in the
above specific order, i.e.:

The PCPP in [BGH+06] with RNL,
large soundness error,
and large query complexity

PCPP with RNL,
large soundness error,
and O(1) query complexity

Smooth PCPP with
large soundness error
and O(1) query complexity

Smooth PCPP with
small soundness error
and O(1) query complexity

Composition

Section 5.1.3

SmootheningSection 5.1.4

Soundness error reduction
Section 5.1.5

In this section, NTIME[T (n)] always refers to NTIMETM[T (n)], i.e., we only consider the
Turing machine model. Recall that a function f : N→ N is good if given the input n in binary,
we can compute f(n) (also in binary) in time poly(log n, log f(n)).

5.1.1 Rectangular Neighbour Listing

Definition 5.1.1. Let V be a rectangular PCPP verifier for some language L with randomness
complexity r and query complexity q. A configuration is defined as a pair (seed, k) ∈ {0, 1}r×[q].
It is said to be a proof (resp. input) configuration if the verifier with randomness seed will query
the proof (resp. input) oracle on the k-th query. Two configurations (seed1, k1) and (seed2, k2) are
said to be neighbours if the verifier will access the same bit of the same oracle with randomness
seed1 on the k1-th query, or with randomness seed2 on the k2-th query.

We define the notion of rectangular neighbour listing [BHPT24]. A minor difference between
our definition and the one from [BHPT24] is that we require a procedure Ashared that only sees
the shared randomness and outputs ℓ (the length of the neighbour list), self (the index of the
configuration in the neighbour list), and ki (the query indices of every neighbor). In [BHPT24],
both Arow (which only sees row-part randomness) and Acol (which only sees column-part ran-
domness) output these data, and it is required that the outputs of Arow and Acol are consistent.

Definition 5.1.2 (Rectangular Neighbour Listing). Let L be a language and V be a rectangular
PCPP verifier for L with row randomness complexity rrow, column randomness complexity rcol,
and shared randomness complexity rshared. We say V has tRNL(n)-time rectangular neighbour
listing property if there are three tRNL(n)-time algorithms Ashared, Arow, and Acol such that the
following conditions hold:

1. The shared randomness seed.shared ∈ {0, 1}rshared consists of seed.shared.row ∈ {0, 1}rshared/2
and seed.shared.col ∈ {0, 1}rshared/2, i.e., seed.shared = (seed.shared.row, seed.shared.col).
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2. Let (seed, k) = (seed.row, seed.col, seed.shared, k) be a configuration, where seed.shared =

(seed.shared.row, seed.shared.col). The algorithms Ashared, Arow, and Acol list all the neigh-
bours of (seed, k) in a “rectangular and synchronised” fashion:

• Given seed.shared and k, Ashared will output an ordered list NListshared(seed, k) := {ki}
and a number self(seed, k). Let ℓ(seed, k) denote the length of NListshared(seed, k).

• Given the row-part randomness (seed.row, seed.shared, k) as input, Arow will output
an ordered list NListrow(seed, k) := {(seedi.row, seedi.shared.row)}i∈[ℓ(seed,k)].

• Given the column-part randomness (seed.col, seed.shared, k) as input, Acol will output
an ordered list NListcol(seed, k) := {(seedi.col, seedi.shared.col)}i∈[ℓ(seed,k)].

• The “zipped” list of NListshared(seed, k), NListrow(seed, k), and NListcol(seed, k)

NList(seed, k) :=
{
(seedi.row, seedi.col, seedi.shared.row, seedi.shared.col, ki)

}
i∈[ℓ(seed,k)]

is a list of all the neighbours of (seed, k). Moreover, the self(seed, k)-th entry of
NList(seed, k) is the configuration (seed, k) itself.

• For every pair of neighbours (seed1, k1) and (seed2, k2), the two ordered lists NList(seed1, k1)
and NList(seed2, k2) are exactly the same.

3. Moreover, we say that the RNL can be computed by projections, if for every fixed seed.shared,
NListrow can be computed by a projection over seed.row, NListcol can be computed by a
projection over seed.col, and the descriptions of these two projections can be computed
efficiently given seed.shared.

5.1.2 A Rectangular PCPP with RNL Property

We start by reviewing the PCPP for NTIME[T (n)] constructed in [BGH+05,BGH+06]. We
verify that it is a rectangular PCPP with the rectangular neighbour listing property as in
[BHPT24]. We summarise its properties into the following theorem:

Theorem 5.1.3. For all constants δ > 0, there is a constant ρ ∈ (0, 1) such that the follow-
ing holds. Let m = m(n), T (n), wproof(n), winput(n) be good functions such that 1 ≤ m ≤
(log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and winput(n) ≤ log n. Then there are
good functions hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) = ⌈log n⌉ − winput(n).

such that the following holds.
Suppose that hproof , wproof ≥ (4/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) :=

2hinput(n). Then NTIME[T (n)] has a rectangular neighbour listable, robust, and rectangular PCP
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Soundness error 1− ρ
Proximity parameter δ

Robustness parameter ρ

Row randomness hproof − (4/m) log T (n)

Column randomness wproof − (4/m) log T (n)

Shared randomness (7/m) log T (n) +O(log log T (n) +m logm)

Query complexity
T (n)1/m · polylog(T (n))Decision complexity

RNL time complexity poly(log T (n),mm)

Table 5.1: Parameters of the PCPP constructed in Theorem 5.1.3.

of proximity with an Hproof(n)×Wproof(n) proof matrix and an Hinput(n)×Winput(n) input ma-
trix, whose other parameters are specified in Table 5.1. The query indices of this PCPP can be
computed by projections (in the sense of Definition 2.5.6) and the RNL can also be computed by
projections (in the sense of Definition 5.1.2).

We note that the query complexity of the PCPP in Theorem 5.1.3 is q ≈ T 1/m. Correspond-
ingly, the total amount of randomness it uses is roughly hproof+wproof−(1/m) log T ≈ log(|Π|/q)
where |Π| denotes the proof length. Looking ahead, in Section 5.1.3, we will compose this PCPP
with another “inner” PCPP [Mie09] to reduce the query complexity to a constant.

We need an efficient construction of small-biased sets. In particular, let λ > 0, m ∈ N, and
F be a finite field of characteristic 2, we need a λ-biased set Sλ ⊆ Fm. Besides being λ-biased,
Sλ should possess an additional property: for every element y⃗ ∈ Sλ, the first coordinate of y⃗ is
non-zero. It is claimed in [BHPT24] that (under suitable conditions) for any (λ/4)-biased set
Sλ/4, if we remove every element y⃗ ∈ Sλ/4 with y1 = 0, then the remaining set is still λ-biased.
For completeness, we provide a proof for this claim at the end of this subsection.

Lemma 5.1.4. Let λ < 0.1, q,m be integers such that q ≥ log 4
λ , and let F = GF(2q). There is

a deterministic polynomial-time algorithm that on input (1m, 1q, 1⌈1/λ⌉), outputs a λ-biased set
Sλ ⊆ (F \ {0})× Fm−1 of size O((qm/λ)2).

Let L ∈ NTIME[T (n)], we describe the PCPP verifier for L. The PCPP verifier receives two
oracles: the input oracle Πinput (consisting of the input in verbatim) and the proof oracle Πproof .

Set up. Let α be a universal constant as defined in the proof of [BGH+05, Theorem 6.4], c be
the universal constant in [BGH+06, Lemma 8.11]. We set the following parameters:

t := log T (n), h := ⌈(t+ 3)/m⌉, f := h+ α log2 t, λ := min{1/(ct), 1/(m2cm)}.

We work with the field F := GF(2f ). We treat F as a vector space of dimension f over
GF(2) and let e1, . . . , ef be its basis. Each element v ∈ F can then be written as v =

∑f
i=1 eibi

for bi ∈ GF(2), and we denote the binary representation of v as bin(v) = (b1b2 . . . bf ). Let H be
the vector space spanned by e1, e2, . . . , eh. We also define two bijections

binHm : Hm → {0, 1}hm and binFm : Fm → {0, 1}fm.
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The bijection binFm is the usual one: it maps (b1e1 + · · · + bfef , bf+1e1 + · · · + b2fef , . . . ,
b(m−1)f+1e1 + · · ·+ bmfef ) to (b1b2 . . . bmf ). We also treat binary strings as numbers where the
leftmost bit is the least significant one and the rightmost bit is the most significant one. That
is, the string (b1b2 . . . bmf ) is treated as

∑mf
i=1 bi2

i−1.
We postpone the definition of the bijection binHm as it is a bit technical. Roughly speaking,

the reason is that we want to map the input to a matrix of dimension Hinput ×Winput. More
specifically, the input string occupies positions [2t+1 + 1, 2t+1 + n], and we want to map this
portion into a subset of Hm which corresponds to a rectangle of dimensions Hinput ×Winput.

We use the following injection It : [n]→ Hm to project the input to Hm:

It(i) = bin−1Hm(2
t+1 + i). (5.1)

That is, the i-th input bit will be embedded into the position It(i) ∈ Hm. Define the set
I := {It(k) : k ≤ |Πinput|}, then the input will be stored on the index set I.

Remark 5.1.5. The definition of It (5.1) is derived from [BGH+05] as follows.

1. First, we reduce L to the Generalised de Bruijn Graph Coloring problem ([BGH+05, Definition
4.3]). The i-th bit of Πinput is mapped to the (2t+1 + i)-th node of the first layer.

2. Then, we reduce the above coloring problem to the Multivariate Algebraic Constraint Satis-
faction Problem ([BGH+05, Definition 6.4]). In this step, for every i, the i-th node in (the
first layer of) the de Bruijn graph is mapped to the vector bin−1Hm(i) ∈ Hm.

Combining the above two steps, it follows that the i-th bit of Πinput is mapped to It(i).

The PCPP proof will have length |F|m · ℓ for some ℓ = polylog(T ); we treat it as an oracle
Πproof : Fm → {0, 1}ℓ.1 Without loss of generality we may assume ℓ is a power of 2. The i-th
bit of the proof (viewed as a string of length |F|m · ℓ) is equal to the k-th bit of Πproof [bin

−1
Fm(j)],

where j := ⌊i/ℓ⌋ and k := i mod ℓ.

Lines. A line L over Fm is a set of the form {x⃗ + ty⃗ : t ∈ F}. Here x⃗ ∈ Fm is called the
intercept of L and y⃗ ∈ Fm is called the direction of L. The PCPP verifier will make queries
along the following two types of lines over Fm:

• A first-axis parallel line is a line where y⃗ = (1, 0, 0, . . . , 0) and x⃗ ∈ Fm. To sample a uniform
first-axis parallel line, it suffices to choose x⃗ from {0} × Fm−1 uniformly at random using
(m− 1) log(|F|) bits of randomness.

• Fix a λ-biased set Sλ ⊆ Fm constructed in Lemma 5.1.4. A pseudorandom line is a
line where x⃗ ∈ Fm and y⃗ ∈ Sλ. Each line has |F| different representations (since the
intercepts x⃗ + ty⃗ represent the same line for all t ∈ F). Therefore, we specify a canonical
representation for each line.

To sample a pseudorandom line in the canonical way, we first choose y⃗ from Sλ uniformly
at random, and then sample x⃗ from {0}×Fm−1 uniformly at random. (Note that the first

1Actually, in [BGH+05], each entry Πproof(x⃗) is an error-corrected version of a vector in Fpolylog(T ). The use
of error-correcting codes ensures that the PCPP verifier is robust.
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coordinate of y⃗ is always non-zero, therefore every pseudorandom line intersects {0} ×
Fm−1.) This uses log(|Sλ|) + (m− 1) log(|F|) bits of randomness.

Query pattern. To verify rectangularity (and RNL), it suffices to describe the query pattern
of the verifier, i.e., the entries of Πinput and Πproof that are queried for a given randomness.

Let seed be the randomness of the verifier, which has length log
(
|Sλ| · |F|m−1

)
. We partition

seed into
seed := (R2, R3, . . . , Rm, Ry),

where each Ri (2 ≤ i ≤ m) has length log |F| and corresponds to an element in F, and Ry has
length log |Sλ| and corresponds to an element in Sλ. Then seed determines a first-axis parallel
line L0 and a canonical pseudorandom line L1 as follows. The intercepts of both L0 and L1 are
x⃗ = (0, R2, R3, . . . , Rm); the direction of L0 is (1, 0, 0, . . . , 0) and the direction of L1 is the Ry-th
element of Sλ.

Let shift : Fm → Fm denote the cyclic shift one step to the left; i.e.,

shift(a1, a2, . . . , am) = (a2, a3, . . . , am, a1).

For a line L, shift(L) denotes the set {shift(x) : x ∈ L}.
The query pattern of the PCPP verifier is easy to describe:
• For every point x⃗ on L0, shift(L0), and L1, it makes a query to Πproof [x⃗].
• For every x⃗ ∈ L1 ∩ I, it also makes a query to Πinput[I

−1
t (x⃗)].

Remark 5.1.6. This query pattern is derived from [BGH+06] (see also [BHPT24, Section C]). In
particular:

• Robust Low-Degree Test makes queries to Πproof [L1];
• Robust Identity Test makes queries to Πproof [L0];
• Robust Edge-Consistency Test makes queries to Πproof [L0] and Πproof [shift(L0)];
• Robust Zero Propagation Test makes queries to Πproof [L0] and Πproof [shift(L0)];
• Robust Proximity Test makes queries to Πproof [L1] and Πinput[I

−1
t (L1 ∩ I)].

As Robust Proximity Test was not needed in and hence not described by [BHPT24] (since
they were constructing a PCP instead of a PCPP), we describe its details here. This test queries
Π on every point in L1 and unbundles the answers to obtain the values of A0 (a certain proof
polynomial in [BGH+05, Definition 6.3]) on L1. Then it queries Πinput on every point k ∈ L1 ∩ I
and checks whether Πinput[k] = f textract(A0[It(k)]) holds, where f textract is a certain function defined in
[BGH+05, Definition 6.3].

Rectangularity of the PCPP Verifier

Given the query pattern of the verifier described above, we are ready to show that the
verifier is rectangular. The verifier makes 3|F| queries to Πproof ; let us call them (⃗a1, . . . , a⃗|F|),
(⃗a|F|+1, . . . , a⃗2|F|), and (⃗a2|F|+1, . . . , a⃗3|F|), which are on L0, shift(L0), and L1 respectively. The
following lemma shows that for each 1 ≤ j ≤ m, the j-th coordinate of each query only depends
on Rj , Rj+1, and Ry.

Lemma 5.1.7. Fix the random string seed = (R2, R3, . . . , Rm, Ry), and for convenience define
R1 = Rm+1 = 0log |F|. Denote each a⃗i = (ai,1, . . . , ai,m) ∈ Fm. Then for every j ∈ [m],
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(a1,j , a2,j , . . . , a3|F|,j) only depends on Rj, Rj+1, and Ry.
Moreover, for any fixed Ry, (a1,j , a2,j , . . . , a3|F|,j) is a projection over (Rj , Rj+1).

Proof. Let h1, h2, . . . , h|F| be an enumeration of all the elements in F. Then

(a1,j , a2,j , . . . , a3|F|,j) = (Rj + h1y1,j , Rj + h2y1,j , . . . , Rj + h|F|y1,j ,

Rj+1 + h1y2,j , Rj+1 + h2y2,j , . . . , Rj+1 + h|F|y2,j ,

Rj + h1y3,j , Rj + h2y3,j , . . . , Rj + h|F|y3,j) (5.2)

where y⃗1, y⃗2, y⃗3 ∈ Fm is defined to be y⃗1 = (1, 0, 0, . . . , 0), y⃗2 = (0, 0, . . . , 0, 1) and y⃗3 is Ry-th
vector in Sλ.

It is easy to see that (5.2) only depends on Rj , Rj+1, and Ry. Moreover, each coordinate
ai,j is the sum of Rj or Rj+1 with an element of the form hkyl,j . Note that addition over
F = GF(2f ) is equivalent to bitwise XOR over {0, 1}f , it follows that (5.2) is indeed a projection
over (Rj , Rj+1).

Definition of binHm. Now we define binHm : Hm → {0, 1}hm. Roughly speaking, the goal of
this definition is to “shape” the input oracle as a rectangle of size Hinput ×Winput.

We treat every element inH as a binary string of length h. For a vector a⃗ = (a1, a2, . . . , am) ∈
Hm, the natural encoding of a⃗ is the concatenation of a1, a2, . . . , am (from the lowest bits to
the highest bits), where each ai is treated as an element in {0, 1}h. We denote this encoding as
bin◦ ∈ {0, 1}mh. Let k := ⌈(wproof − log ℓ) · (h/f)⌉, we define binHm (⃗a) to be the concatenation
of (from the lowest bits to the highest bits):

bin◦[1, winput], bin
◦[k + 1, k + hinput], bin

◦[winput + 1, k], and bin◦[k + hinput + 1, hm]. (5.3)

Some intuitions behind the definition of binHm are as follows. As we will show later, Vcol
can compute the lowest k bits of bin◦ and Vrow can compute the rest hm− k bits. To make the
input matrix size Hinput ×Winput, among the lowest ⌈log n⌉ bits, there needs to be winput bits
computed by Vcol and ⌈log n⌉−winput = hinput bits computed by Vrow. In our definition of binHm ,
we simply put the lowest winput bits computed by Vcol and the lowest hinput bits computed by
Vrow as the lower ⌈log n⌉ bits of binHm (⃗a), and put the rest bits as the higher bits of binHm (⃗a).

We define c1 := ⌈winput/h⌉, c2 := ⌈k/h⌉, c3 := ⌈(k + hinput)/h⌉. Then the winput-th bit of
bin◦ is in ac1 , the k-th bit of bin◦ is in ac2 , and the (k + hinput)-th bit of bin◦ is in ac3 .

a1 ac1−1 ac2+1 ac2ac3−1 ac1 ac1+1 am. . . . . . . . .

winput bits
︷ ︸︸ ︷

︸ ︷︷ ︸

col

hinput bits
︷ ︸︸ ︷

︸ ︷︷ ︸

col

a1 ac1 ac1+1 ac2 ac2+1 ac3 ac3+1 am. . . . . . . . . . . .bin
◦ =

binHm(~a) =

︸ ︷︷ ︸

col

︸ ︷︷ ︸

row

ac1 ac3 ac3 ac3+1 . . .

︸ ︷︷ ︸

row

︸ ︷︷ ︸

row

ac2

k bits
︷ ︸︸ ︷

Figure 5.1: The bit-string binHm(a1, a2, . . . , am). In this figure, the leftmost bits are the
least significant ones.
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Note that

winput ≤wproof(1−Θ(m log f)/f) ≤ k, and

k + hinput ≤ (wproof − log ℓ) · (h/f) + hproof · (h/f) ≤ hm. (5.4)

Here, (5.4) is because wproof+hproof = log |Πproof | = fm+log ℓ. Since winput ≤ k and k+hinput ≤
hm, (5.3) is well-defined.

Partition of the random seed. We partition seed into:

seed.col =(R3, R4, . . . , Rc2−1),

seed.row =(Rc2+2, Rc2+3, . . . , Rm−1), and

seed.shared =(R2, Rc2 , Rc2+1, Rm, Ry).

seed

︸ ︷︷ ︸

seed.col

︸ ︷︷ ︸

seed.row

seed.shared

2 3 . . . c2 − 1 c2 c2 + 1 c2 + 2 . . . m− 1 m y

Figure 5.2: The partition of the random seed.

By Lemma 5.1.7, knowing Rj , Rj+1, and Ry allows us to calculate (a1,j , a2,j , . . . , a3|F|,j).
Therefore, Vcol is able to calculate the 1, 2, . . . , c2-th coordinates of each query; Vrow is able to
calculate the c2, c2 +1, . . . ,m-th coordinates of each query. (We remark that for rectangularity,
it suffices to add Rc2 , Rc2+1, and Ry into seed.shared, but for the RNL property that we discuss
later, it will be crucial that R2 and Rm are also in seed.shared.)

In this partition, we have |seed.col| = (c2 − 3)f ≥ wproof − 4t/m and |seed.row| = (m− c2 −
2)f ≥ hproof − 4t/m. For technical convenience, we move some random bits into seed.shared so
that |seed.col| = wproof − 4t/m and |seed.row| = hproof − 4t/m; this means that

|seed.shared| = (m− 1)f + |Ry| − (wproof + hproof) + 8t/m

≤ (m− 1)f +O(log(fm/λ))− (log ℓ+mf) + 8t/m

≤ 8t/m+O(log t+m logm)− f
≤ 7t/m+O(log t+m logm).

The predicates Vtype, Vrow, and Vcol. Recall that we treat Πproof as an oracle whose entries
are length-ℓ strings and we make 3|F| queries to Πproof . This means that we actually make 3|F|ℓ
queries to the bit-string corresponding to Πproof . We also make |F| queries to Πinput.

It is easy to describe Vtype: the first 3|F|ℓ queries are to the proof oracle and the last |F|
queries are to the input oracle.

Now consider the i-th query where 1 ≤ i ≤ 3|F|ℓ; these are queries made to Πproof . Let
j := ⌊(i − 1)/ℓ⌋ and j′ := (i − 1) mod ℓ, then the i-th query probes the j′-th bit of Πproof [⃗aj ],
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where a⃗j ∈ Fm is defined above. We want to specify Vrow and Vcol such that the index of the
i-th query is

irow[i] ·Wproof + icol[i] = binFm (⃗aj) · ℓ+ j′.

j′ a1 a2 . . . ac2 . . . am−1 am
︸ ︷︷ ︸

wproof bits

︸ ︷︷ ︸

hproof bits

wproof − (c2 − 1)f − log ℓ bits c2f + log ℓ− wproof bits

Figure 5.3: The binary representation of the address binFm (⃗a) · ℓ + j′. In this figure, the
leftmost bits are the least significant ones. The lowest wproof bits are outputted by Vcol,
while the rest bits are outputted by Vrow.

Recall that Vcol can compute aj,1, aj,2, . . . , aj,c2 using Lemma 5.1.7. Then, it outputs icol[i]

as the concatenation of j′, aj,1, . . . , aj,c2−1 and the lowest wproof − (c2− 1)f − log ℓ bits of aj,c2 .2

Similarly, Vrow can compute aj,c2 , aj,c2+1, . . . , aj,m. It outputs irow[i] as the concatenation of the
highest c2f+log ℓ−wproof bits of aj,c2 , and aj,c2+1, aj,c2+2, . . . , aj,m. It follows from Lemma 5.1.7
that the first 3|F|ℓ entries of Vrow and Vcol are projections over seed.row and seed.col, computable
in polynomial time given seed.shared.

Finally, we consider the (i + 3|F|ℓ)-th query where 1 ≤ i ≤ |F|; these are queries made
to Πinput. In particular, recall that the canonical pseudorandom line L1 consists of vectors
a⃗2|F|+1, a⃗2|F|+2, . . . , a⃗3|F|. If a⃗2|F|+i ∈ I then we query the I−1t (⃗a2|F|+i)-th bit of Πinput, otherwise
we do nothing.

For notational convenience, we denote a⃗⋆ := a⃗2|F|+i and bin⋆ := binHm (⃗a⋆). Now our goal is
to specify Vrow and Vcol such that the index of the (i+ 3|F|ℓ)-th query is

irow
[
i+ 3|F|ℓ

]
·Winput + icol

[
i+ 3|F|ℓ

]
= I−1t (⃗a⋆) = bin⋆ − 2t+1.

If either Vrow or Vcol outputs ⊥, or bin⋆ − 2t+1 ̸∈ [0, n), then we do not make this query.

a1 ac1−1 ac2+1 ac2ac3−1 ac1 ac1+1 am. . . . . . . . .

winput bits︷ ︸︸ ︷

︸ ︷︷ ︸
col

hinput bits︷ ︸︸ ︷

︸ ︷︷ ︸
col

ac1 ac3 ac3 ac3+1 . . .
︸ ︷︷ ︸

row

︸ ︷︷ ︸
row

ac2

winput − (c1 − 1)h bits c2h− k bits hinput + k − (c3 − 1)h bits

Figure 5.4: The bit-string binHm (⃗a). Again, the leftmost bits are the least significant ones.

Recall that Vcol can compute a⋆1, a⋆2, . . . , a⋆c2 .
• If any of these elements are not in H, it outputs ⊥.
• If any of the elements a⋆c1+1, . . . , a

⋆
c2 are non-zero, then bin⋆−2t+1 is not in the range [0, n),

and it outputs ⊥.
• Otherwise, the concatenation of a⋆1, a⋆2, . . . , a⋆c1−1, and the lowest (winput − (c1 − 1)h) bits

2Note that c2 = ⌈(wproof − log ℓ)/f⌉, which means the “dividing point” between wproof and hproof is in ac2 .
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of a⋆c1 is equal to (bin⋆ modWinput). In this case, it outputs

icol
[
i+ 3|F|ℓ

]
= bin⋆ modWinput.

Also recall that Vrow can compute a⋆c2 , a
⋆
c2+1, . . . , a

⋆
m.

• If any of these elements are not in H, it outputs ⊥.
• If any of the elements a⋆c3+1, a⋆c3+2, . . . , a⋆m−1 is non-zero, or a⋆m ̸= 2t+1−(m−1)h, then bin

is not of the form 2t+1 + i (0 ≤ i < n), and it outputs ⊥.3

• Otherwise, the concatenation of the lowest (c2h − k) bits of a⋆c2 , and a⋆c2+1, a⋆c2+2, . . . ,
a⋆c3−1, and the lowest (hinput + k− (c3− 1)h) bits of a⋆c3 , is equal to ⌊(bin⋆− 2t+1)/Winput⌋.
In this case, it outputs

irow
[
i+ 3|F|ℓ

]
= ⌊(bin⋆ − 2t+1)/Winput⌋.

RNL of the PCPP Verifier

Neighbours of (seed, i). Recall that h1, h2, . . . , h|F| is an enumeration of elements in F. Let
seed = (R2, R3, . . . , Ry), i ∈ [3ℓ · |F|], j := ⌊(i − 1)/ℓ⌋ + 1, and j′ := (i − 1) mod ℓ. Then, the
i-th query on seed probes the j′-th bit of Πproof [⃗aj ], where a⃗j = (aj,1, aj,2, . . . , aj,m). We define
the canonical neighbour (seed1, i1) of (seed, i) as follows:

seed1 := (R1
2 := aj,2, R

1
3 := aj,3, . . . , R

1
m := aj,m, R

1
y := 0) (5.5)

i1 := (j1 − 1) · ℓ+ j′1 + 1 (5.6)

where j1 ∈ [1, |F|] such that hj1 = aj,1, and j′1 = j′. It is easy to see that the canonical neighbours
are the representative elements of the equivalence class induced by the neighbourhood relation.
Denote S as the set of canonical neighbours, then (seed, i) ∈ S if and only if i ∈ [1, ℓ|F|] and
Ry = 0.

To list all the neighbours of (seed, i), it suffices to find its canonical neighbour (seed1, i1)

and list all the neighbours of (seed1, i1). Let seed2 = (R2
2, R

2
3, . . . , R

2
m, R

2
y), i2 ∈ [3ℓ · |F|],

j2 := ⌊(i2− 1)/ℓ⌋+1, j′2 := (i2− 1) mod ℓ. Suppose that (seed2, i2) is a neighbour of (seed1, i1),
then they represent the queries to the same bit of the same entry of Πproof . This means that
j′1 = j′2, and one of the following conditions holds:

j2 ∈ [1, |F|] and (hj2 , R
2
2, R

2
3, . . . , R

2
m) = (hj1 , R

1
2, . . . , R

1
m−1, R

1
m) (5.7)

j2 ∈ [|F|+ 1, 2|F|] and (R2
2, R

2
3, . . . , R

2
m, hj2−|F|) = (hj1 , R

1
2, . . . , R

1
m−1, R

1
m); (5.8)

j2 ∈ [2|F|+ 1, 3|F|] and (h · y1, R2
2 + h · y2, . . . , R2

m + h · ym) = (hj1 , R
1
2, . . . , R

1
m)

where h := hj2−2|F|, (y1, y2, . . . , ym) := Sλ[R
2
y]. (5.9)

We will list the neighbours of (seed1, i1) in the following order: the |Sλ| configurations
satisfying (5.7) in the lexicographic order of R2

y (note that this includes (seed1, i1)), the |Sλ|
3Note that the (t+1)-st bit of binHm (⃗a⋆) is indeed located in a⋆

m, since hm− (t+1) ≤ (t+3)+m− (t+1) =
m+ 2 < h when t is large enough. Another minor detail is that if c1 = m, then the test that a⋆

m = 2t+1−(m−1)h

should be performed by Vcol instead of Vrow.
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configurations satisfying (5.8) in the lexicographic order of R2
y, and then the |Sλ| configurations

satisfying (5.9) in the lexicographic order of R2
y.4

Rectangular neighbour listing of S. Now we need to verify that the aforementioned listing
of the neighbours satisfies the rectangular neighbour listing property (Definition 5.1.2). To start
with, we consider the case when (seed, i) = (seed1, i1), i.e., (seed, i) ∈ S. Recall that

seed1.col = (R1
3, R

1
4, . . . , R

1
c2−1),

seed1.row = (R1
c2+2, R

1
c2+3, . . . , R

1
m−1),

seed1.shared = (R1
2, R

1
c2 , R

1
c2+1, R

1
m, R

1
y).

Let low(·) and high(·) denote the lower and higher halves of a Boolean string, respectively. We
partition seed.shared = (R1

2, R
1
c2 , R

1
c2+1, R

1
m, R

1
y) into two parts (seed.shared.row, seed.shared.col),

where seed.shared.col := (R1
2, R

1
c2 , low(R

1
y)) and seed.shared.row := (R1

c2+1, R
1
m, high(R

1
y)).

Given (seed1, i1), the algorithms Ashared, Acol, and Arow output NList(seed1, i1) as follows:

1. First, consider the |Sλ| neighbours (seed2, i2) satisfying (5.7), including (seed1, i1) itself.
We can see that i2 = i1, seed2.row = seed1.row, seed2.col = seed1.col, and seed2.shared =

(R1
2, R

1
c2 , R

1
c2+1, R

1
m, R

2
y), where R2

y enumerates over all |Sλ| possibilities in lexicographic
order. Clearly, i2 only depends on i1, seed2.col (seed2.row respectively) only depends on
seed.col and can be computed by a projection over seed.col (seed2.row respectively).

2. Consider the |Sλ| neighbours (seed2, i2) satisfying (5.8). We will enumerate all R2
y in

lexicographic order and output:

seed2.col = (R2
3 = R1

2, . . . , R
2
c2−1 = R1

c2−2),

seed2.shared.col = (R2
2 = hj1 , R

2
c2 = R1

c2−1, low(R
2
y)),

seed2.row = (R2
c2+2 = R1

c2+1, . . . , R
2
m−1 = R1

m−2),

seed2.shared.row = (R2
c2+1 = R1

c2 , R
2
m = R1

m−1, high(R
2
y)).

Let j2 := ⌊(i2− 1)/ℓ⌋+1 and j′2 := (i2− 1) mod ℓ, we can see that j′2 = j′1 and hj2 = R1
m,

hence i2 can be computed from seed.shared and i1 efficiently. Finally, it is easy to verify
that seed2.row and seed2.shared.row only depend on seed1.row and seed1.shared, and that
seed2.row can be computed by a projection over seed1.row. The same holds for the column
randomness.

3. Finally, consider the |Sλ| neighbours (seed2, i2) satisfying (5.9). We enumerate R2
y in

lexicographic order. Let (y1, y2, . . . , ym) = Sλ[R
2
y]. Denote h := y−11 ·hj1 , and let j2 be the

unique number in [2|F|+ 1, 3|F|] such that h = hj2−2|F|, we output:

i2 = (j2 − 1) · ℓ+ j′1 + 1,

seed2.col = (R2
3 = R1

3 − h · y3, . . . , R2
c2−1 = R1

c2−1 − h · yc2−1),
4Recall that for every (y1, y2, . . . , ym) = Sλ[R

2
y], y1 ̸= 0. Thus for every R2

y, there is exactly one j2 ∈
[2|F|+ 1, 3|F|] that satisfies (5.9), namely the j2 such that hj2−2|F| = y−1

1 · hj1 .
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seed2.shared.col = (R2
2 = R1

2 − h · y2, R2
c2 = R1

c2 − h · yc2 , low(R2
y)),

seed2.row = (R2
c2+2 = R1

c2+2 − h · yc2+2, . . . , R
2
m−1 = R1

m−1 − h · ym−1),
seed2.shared.row = (R2

c2+1 = R1
c2+1 − h · yc2+1, R

2
m = R1

m − h · ym, high(R2
y)).

Since j2 and j′1 only depends on i1, i2 also only depends on i1 (and not on seed). Since addi-
tion over F is just bitwise XOR and (h, y1, . . . , ym) can be computed from (seed1.shared, i1),
we have that seed2.col (seed2.row respectively) can be computed by a projection over
seed1.col (seed1.row respectively) computable from (seed1.shared, i1).

It is clear that the “zipped” list of NListrow and NListcol is the list of neighbours of (seed1, i1).
Since (seed1, i1) appears at the head of the list, Ashared simply outputs self = 1.

We also point out the exact dependence of Ashared, Arow, and Acol on seed.shared, as this will
be useful later. Instead of the full (seed.shared, i1), Ashared only needs to look at (R1

m, i1), Arow

only needs to look at (R1
c2 , R

1
c2+1, R

1
m, i1), and Acol only needs to look at (R1

2, R
1
c2 , i1).

Rectangular neighbour listing for S. For the general case when (seed, i) /∈ S, we first
find its canonical neighbour (seed1, i1) in a rectangular fashion. Let (seed1, i1) be the canonical
neighbour of (seed, i), it suffices to show that:

• (R1
m, i1) can be computed from (seed.shared, i), so that we can feed it into the above Ashared.

If j ∈ [1, |F|], then R1
m = Rm and i1 only depends on aj,1 = hj . If j ∈ [|F|+ 1, 2|F|], then

R1
m = hj−|F| and i1 only depends on aj,1 = R2. If j ∈ [2|F|+1, 3|F|], then R1

m = Rm + ym

and i1 only depends on aj,1 = hj + y1. It follows that (R1
m, i1) can be computed from

(R2, Rm, Ry, i), hence from (seed.shared, i).

• (seed1.row, R
1
c2 , R

1
c2+1, R

1
m) = (R1

c2 , . . . , R
1
m) can be computed from (seed.shared, seed.row),

so that we can feed it into the above Arow. Moreover, seed1.row can be computed by a
projection over seed.row given seed.shared.

If j ∈ [1, |F|], then R1
i = Ri for every c2 ≤ i ≤ m; if j ∈ [|F| + 1, 2|F|], then R1

i = Ri+1

for every c2 ≤ i < m and R1
m = hj−|F|; if j ∈ [2|F| + 1, 3|F|], then R1

i = Ri + yi for
every c2 ≤ i ≤ m. In all of the three cases above, (R1

c2 , . . . , R
1
m) can be computed

from (Rc2 , . . . , Rm, Ry), hence from (seed.shared, seed.row); moreover the computation of
seed1.row is indeed a projection over seed.row.

• (seed1.col, R
1
2, R

1
c2) = (R1

2, . . . , R
1
c2) can be computed from (seed.shared, seed.col), so that

we can feed it into the above Acol. Moreover, seed1.col can be computed by a projection
over seed.col given seed.shared.

If j ∈ [1, |F|], then R1
i = Ri for every 2 ≤ i ≤ c2; if j ∈ [|F|+ 1, 2|F|], then R1

i = Ri+1 for
every 2 ≤ i ≤ c2; if j ∈ [2|F| + 1, 3|F|], then R1

i = Ri + yi for every 2 ≤ i ≤ c2. In all
of the three cases above, (R1

2, . . . , R
1
c2) can be computed from (R2, . . . , Rc2+1, Ry), hence

from (seed, shared, seed.col); moreover the computation of seed1.col is indeed a projection
over seed.col.

Then, we can feed seed1 into the procedures for rectangular neighbour listing of S and obtain
rectangular neighbour listing of S.
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Finally, Ashared(seed.shared) needs to compute self, i.e., the position of (seed, i) in the list.
The list contains three parts: neighbours specified by (5.7), (5.8), and (5.9). The part that
(seed, i) belongs to only depends on ⌊(j − 1)/|F|⌋+ 1 ∈ {1, 2, 3}. The exact position of (seed, i)
in the corresponding part depends on the lexicographic order of Ry.

Complexity of Ashared, Arow, and Acol. Recall that log |F| = f = (log T (n) + 3)/m +

O(log log T (n)), |Sλ| = O((mf/λ)2) = poly(mm, log T (n)). It is then easy to check that the
running times of Ashared, Arow, and Acol are poly(mO(m), f, log T (n)) = poly(mm, log T (n)).

Robust Soundness

The PCPP described above only guarantees an expected version of robust soundness: the
expected fraction of bits that we need to flip in order to make the verifier accept is at least
ρ, where the expectation is over the choice of seed. (See [BGH+06, Lemma 8.11].) Here we
use a Markov bound to turn this into a standard robust soundness property, but only with
soundness error very close to 1. Since the robust soundness error reduction (Section 5.1.5)
preserves smoothness but does not seem to preserve RNL, we do not apply it here.

Let δproof(seed) (resp. δinput(seed)) be the fraction of bits of Πproof (resp. Πinput) read by the
verifier that we need to flip to make the verifier accept given the randomness seed. Let δ̂(seed)
be the fraction of bits (of both Πproof and Πinput) read by the verifier that we need to flip to make
the verifier accept given the randomness seed. By [BGH+06, Lemma 8.11],5 there is a constant
ρ0 ∈ (0, 1) such that for every constant δ ∈ (0, 1), if Πinput is δ-far from being in L, then for any
proof oracle Πproof , either Eseed[δproof(seed)] ≥ ρ0 or Eseed[δinput(seed)] ≥ δ/3.

Recall that the verifier makes |F| queries to Πinput and 3ℓ · |F| queries to Πproof . We repeat
each query to the input oracle for 9(ρ0/δ)ℓ times. If Πinput is δ-far from being in L, the fraction
of bits read by the verifier that we need to flip on expectation to make the verifier accept is

E
seed

[
δ̂(seed)

]
=

min{ρ0 · 3ℓ · |F|, (δ/3) · 9(ρ0/δ)ℓ · |F|}
3ℓ · |F|+ 9(ρ0/δ)ℓ · |F|

≥ 3ℓρ0
3ℓ+ 9(ρ0/δ)ℓ

≥ ρ0
1 + 3ρ0/δ

.

Let ρ := ρ0
2+6ρ0/δ

. By a Markov bound,

Pr
seed

[
δ̂(seed) ≤ ρ

]
≤ 1− ρ.

Thus, the PCPP verifier has robust soundness error 1 − ρ with robustness parameter ρ and
proximity parameter δ.

Proof of Lemma 5.1.4

Finally, we prove Lemma 5.1.4. For completeness, we define λ-biased sets:

Definition 5.1.8. For two strings x, y ∈ {0, 1}n, denote their inner product as IP(x, y) :=

(−1)
∑n

i=1 xiyi .

5Recall that we assume m ≤ (log T (n))0.1 and set λ = min{1/(ct), 1/m2cm}, so that mm ≤ T (n)1/m
2

and
λ ≤ min{1/(ct), 1/mcm}, which satisfies the technical requirement of [BGH+06, Lemma 8.11].
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Let λ > 0. A set S ⊆ {0, 1}n is a λ-biased set if for every string y ∈ {0, 1}n, if y is not the
all-zero string, then ∣∣∣∣∣

∑

x∈S
IP(x, y)

∣∣∣∣∣ ≤ λ|S|

Note that when F = GF(2q), the definition of λ-biased subsets of Fm in [BSVW03, Section
2] coincides with the above definition (of λ-biased subsets of {0, 1}mq).

We use the explicit construction of a λ-biased subset Sλ ⊆ Fm of size O((qm/λ)2) in
[AGHP92]. Recall that we also need the first coordinate of every element in Sλ to be nonzero.
Therefore, we first construct a (λ/4)-biased set Sλ/4 ⊆ Fm using [AGHP92], and then remove
every element y⃗ ∈ Sλ/4 with y1 = 0 to obtain the λ-biased set Sλ. In what follows, we prove
that this remaining set is indeed a λ-biased set.

Lemma 5.1.4. Let λ < 0.1, q,m be integers such that q ≥ log 4
λ , and let F = GF(2q). There is

a deterministic polynomial-time algorithm that on input (1m, 1q, 1⌈1/λ⌉), outputs a λ-biased set
Sλ ⊆ (F \ {0})× Fm−1 of size O((qm/λ)2).

Proof. We first use [AGHP92] to construct a λ/4-biased set Sλ/4 ⊆ Fm of size O((qm/λ)2). Let
S0 := {y ∈ Sλ/4 : y1 = 0} and Sλ := Sλ/4 \ S0, we will show that Sλ is a λ-biased set.

First, we show that |S0| ≤ (λ/2)|Sλ/4|, i.e., we only removed a small fraction of elements.
Let Y := {0, 1}q × {0(m−1)q} be the set of length-(mq) strings that is zero on all but the first q
input bits; each y ∈ Y corresponds to a linear test IP(·, y) that only depends on the first q input
bits. Abusing notation, we also use Y to denote the uniform distribution over Y. For every
x ∈ Sλ/4, if x ∈ S0 then IP(x, y) = 1 for every y ∈ Y; otherwise the expectation of IP(x, y) over
a random y ← Y is zero. It follows that

|S0|/|Sλ/4| = E
x←Sλ/4,y←Y

[IP(x, y)].

On the other hand, if y = 0mq then IP(x, y) = 1 for every possible x, while if y ̸= 0mq then
the expectation of IP(x, y) over a random x← Sλ/4 is between −λ/4 and λ/4. Therefore

E
x←Sλ/4,y←Y

[IP(x, y)] ≤ 1

2q
+ λ/4 ≤ λ/2.

Now we show that Sλ is a λ-biased set. Fix any binary string y ∈ {0, 1}mq \ {0mq}, we have
∣∣∣∣∣∣
∑

x∈Sλ

IP(x, y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

x∈Sλ/4

IP(x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

x∈S0

IP(x, y)

∣∣∣∣∣∣

≤ (λ/4)|Sλ/4|+ |S0|
≤ (3λ/4)|Sλ/4|.

On the other hand, we have |Sλ| ≥ (1− λ/2)|Sλ/4| ≥ 0.95|Sλ/4|. Therefore

∣∣∣∣ E
x←Sλ

[IP(x, y)]

∣∣∣∣ ≤
3λ

4 · 0.95 ≤ λ.

125



5.1.3 RNL-Preserving Composition Theorem

The PCPP verifier in Section 5.1.2 requires roughly T (n)1/m query complexity. In this
subsection, we compose it with an efficient inner PCPP to reduce its query complexity to O(1)

while preserving the RNL property. We assume familiarity with the composition theorem of
PCPs: a good reference for the basic composition theorem is [BGH+06, Section 2.4], and a
composition theorem that preserves RNL is proved in [BHPT24, Section 7].

Let Circuit-Eval⊥ denote the circuit value problem where the input alphabet of the circuit
is {0, 1,⊥}. Note that the input alphabet of the decision circuit of the PCPP constructed in
Section 5.1.2 is {0, 1,⊥} instead of {0, 1}. Therefore, we should use a PCPP for Circuit-Eval⊥

instead of Circuit-Eval for the inner PCPP.
The main result of this subsection is the following composition theorem.

Theorem 5.1.9. Let n ≤ T (n) ≤ 2poly(n). Suppose that NTIME[T (n)] has a robust and rectan-
gular PCPP verifier V out and Circuit-Eval⊥ has a (not necessarily rectangular) PCPP veri-
fier V in with parameters specified in Table 5.2. Moreover, assume that qin = O(1), ρout ≥ δin,
ℓin = 2r

in ,6 routcol ≤ logW out
proof ≤ routcol + routshared, H

out
proof · W out

proof ≤ 2r
out+rin , and Hout

proof , W
out
proof

are powers of 2. Then NTIME[T (n)] has a rectangular PCPP verifier V comp with parameters
specified in Table 5.2. Moreover:

• If the query indices of V out are computable by projections, then the query indices of V comp

are computable by projections as well.

• If V out has toutRNL(n)-time rectangular neighbour listing property, then V comp has tRNL(n)-
time rectangular neighbour listing property, where tRNL(n) := poly(toutRNL(n), ℓ

in, din). Fur-
thermore, if the RNL for V out can be computed by projections, then the RNL for V comp

can be computed by projections as well.

The composed PCPP verifier. Assume that we have a robust and rectangular PCPP verifier
V out for L ∈ NTIME[T (n)] and a PCPP verifier V in for Circuit-Eval⊥. We now describe the
composed PCPP verifier V comp for L. In a nutshell, we reduce the verification of the outer
PCPP V out to Circuit-Eval⊥, where the circuit represents the decision predicate of V out and
the input consists of the input of L and the proofs for the outer PCPP. As in [BHPT24], we
need to carefully arrange the proof matrix to maintain rectangularity.

Assume that Πout
input, Πout

proof , and seedout are the input matrix, the proof matrix, and the
random seed of V out, respectively. The input matrix of V comp is exactly the input matrix of
V out, denoted as Πinput. The proof of V comp is the concatenation of Πout

proof and Πin
proof(seed

out) for
every seedout ∈ {0, 1}rout , where each Πin

proof(seed
out) is a PCPP proof for “V in accepts seedout.”

(In fact, to make the query indices of V comp computable by projections, we need to arrange the
inner PCPP proofs before the outer PCPP proof.) The random seed is seed := seedout ◦ seedin.
The verifier V comp works as follows:

6This is without loss of generality, because ℓin ≤ 2r
in

· qin, and in our case qin will be a constant. We could
always add O(log qin) = O(1) dummy bits to the inner verifier’s randomness and pad the inner verifier’s proof
oracle to length 2r

in

.
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Verifier V out V in V comp

Soundness error 1− εout 1− εin 1− εout · εin
Proximity parameter δout δin δout

Robustness parameter ρout - -
Row randomness routrow - routrow

Column randomness routcol - routcol

Shared randomness routshared rin routshared + rin

Proof matrix height Hout
proof - Hout

proof + 2r
out+rin/W out

proof

Proof matrix width W out
proof - W out

proof

Query complexity qout qin qin

Parity check complexity - - qin

Decision complexity dout din din

Proof length ℓout ℓin Hout
proof ·W out

proof + 2r
out+rin

Table 5.2: The parameters of the PCPPs in the composition theorem. Here rout := routrow+ routcol +
routshared. Note that the input length of the inner PCPP is dout = dout(n), e.g., rin in the table
actually refers to rin(dout(n)).

1. Obtain the decision circuit Decout and the list of query indices Iout ← V out(seedout) of
V out.

2. Use the inner PCPP to verify the following Circuit-Eval⊥ instance (C,Πin
input(seed

out)):
the (explicit) circuit C : {0, 1,⊥}qout(n) × {0, 1}r̂out → {0, 1,⊥} and the (implicit) input
Πin

input(seed
out) ∈ {0, 1,⊥}qout(n) × {0, 1}r̂out are defined as follows:

C(u, v) :=Decout(u,Decode(v)),

Πin
input(seed

out) := ((Πinput ◦Πout
proof)|Iout ,Encode(seedout)),

where (Encode,Decode) is a linear-time encodable and decodable error-correcting code
such that Encode : {0, 1}rout → {0, 1}r̂out is linear over GF(2).7 Specifically:

(a) The decision circuit Deccomp of V comp is the same as the decision circuit Decin of V in.

(b) The queries are sampled using V in(seedin) for the Circuit-Eval instance defined
above with the proof Πin

proof(seed
out), i.e., we sample the queries I in ← V in(seedin) and

“redirect” them to the input oracle and the proof of the composed PCPP to obtain
Icomp.8

Rectangularity of V comp. We now verify the rectangularity of the composed PCPP verifier.
Recall that: the proof Πout

proof ∈ {0, 1}ℓ
out of V out is arranged as an Hout

proof ×W out
proof matrix, where

the i-th row and the j-th column Πout
proof [i, j] := Πout

proof [(i − 1) · W out
proof + j]; the inner proofs

Πin
proof(seed

out) are of length ℓin for every seedout ∈ {0, 1}rout .
7We apply an error-correcting code on the randomness because we want Decout to have robust soundness.

Let (Π′,Encode(seedout)) be the input of Decout, if given seedout, Π′ is far from being accepted by Decout, then
(Π′,Encode(seedout)) is also far from being accepted by Decout. This is not true if we do not encode seedout.

8In fact, there are three kinds of queries: the queries to (Πinput ◦ Πout
proof)|Iout , Enc(seedout), and Πin

proof(seed
out).

The queries of the first and the third kinds will be redirected as queries, and the second kind will be treated as
a parity-check bit, since Enc is a linear function over GF(2). More details can be found in the verification of the
rectangularity later.
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Let W in
proof := min{W out

proof/2
routcol , ℓin} and H in

proof := ℓin/W in
proof . Note that both W in

proof and
H in

proof are powers of 2 and W out
proof ≥ 2r

out
col . We arrange the proof matrix Πcomp

proof of V comp as
follows: First, the proof matrix contains a proof of the inner PCPP Πin

proof(seed
out) for each

seedout ∈ {0, 1}ℓin , sorted in lexicographic order of seedout. Each such inner proof is a rectangle
of size W in

proof ×H in
proof . Then we append the Hout

proof ×W out
proof proof matrix of the outer PCPP.

Clearly, the proof matrix height of the composed PCPP verifier is

ℓin · 2rout/W out
proof +Hout

proof = 2r
out+rin/W out

proof +Hout
proof .

Πout
proof

Πin
proof(0) Πin

proof(1) Πin
proof(2) Πin

proof(3)

Πin
proof(4) Πin

proof(5) Πin
proof(6) Πin

proof(7)

Πin
proof(8) Πin

proof(9) Πin
proof(10) Πin

proof(11)

Hout
proof

W out
proof

H in
proof

W in
proof

Figure 5.5: The layout of the proof matrix Πcomp of the composed PCPP.

Recall that the seed of the composed PCPP verifier is seed := (seedout, seedin). Assume that
the partition of random bits of V out is seedout = (seedout.row, seedout.col, seedout.shared). We
partition the random bits as follows:

seed.shared := (seedout.shared, seedin).

seed.row := seedout.row.

seed.col := seedout.col.

Now we describe the type predicate Vtype and rectangular verifiers V comp
row and V comp

col of the
composed PCPP.

The type predicate and the row/column verifier firstly obtain seedin in seed.shared and com-
pute the queries I in ← V in(seedin) of the inner PCPP for Circuit-Eval⊥. There can be three
cases for each query in I in:

1. It probes the i-th cell of Πin
input(seed

out) and i ≤ qout(n), i.e., it queries (Πinput ◦Πout
proof)|Iout .

• The type predicate invokes the type predicate of V out to compute the type of the
query, since it has seedout.shared and the index of the query in hand.

• The row/column verifier of the composed PCPP runs the row/column verifier of the
outer PCPP to obtain the row/column index of the query in (Πinput,Π

out
proof). If it is
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a query to the input matrix, then the row/column index of the composed verifier is
equal to the row/column index of the outer verifier. If it is a query to the (ioutrow, i

out
col )-

th entry to the proof matrix Πout, then it is the (ioutrow + 2r
out+rin/W out

proof , i
out
col )-th entry

to Πcomp. Clearly, after knowing seed.shared, V comp
row (resp. V comp

col ) can compute the
row index (resp. column index) of the query to Πcomp given seed.row (resp. seed.col).

• Furthermore, since 2r
out+rin/W out

proof ≥ Hout
proof > ioutrow and 2r

out+rin/W out
proof is a power

of 2, it follows that the new row index (ioutrow + 2r
out+rin/W out

proof) is a projection over
the old row index (ioutrow). The new column index is equal to the old column index.
Hence, if the query indices of V out are computable by projections, then so are the
new row/column indices in this case.

2. It probes the i-th cell of Πin
input(seed

out) and i > qout(n), i.e., it queries Enc(seedout). Instead
of making a query, we fix this input of Deccomp to be Enc(seedout)[i − qout(n)]. This bit
will be considered as a parity-check bit.

3. It probes the i-th cell of Πin
proof(seed

out). This is a query to the proof, so the type predicate
always outputs proof. Recall that Πin

proof(seed
out) is placed in some W in

proof × H in
proof size

block in the proof matrix. Let Nproof := W out
proof/W

in
proof , i.e., there are Nproof blocks of

inner PCPP proofs in a row of the proof matrix. Then we probe the cell at the irow-th row
and icol-th column, where

irow = ⌊seedout/Nproof⌋ ·H in
proof + ⌊i/W in

proof⌋ and

icol =(seedout mod Nproof) ·W in
proof + (i modW in

proof).

It is easy to see that the column (resp. row) index of the query depends on seedin and the
lowest logNproof bits (resp. the highest rout − logNproof bits) of seedout. Note that since

logNproof ≥ log
(
W out

proof/(W
out
proof/2

routcol )
)
≥ |seedout.col|,

logNproof ≤ logW out
proof ≤ |seedout.col|+ |seedout.shared|,

we can arrange
seedout := seedout.col ◦ seedout.shared ◦ seedout.row

such that the lowest logNproof bits (resp. the highest rout−logNproof bits) can be computed
by a projection over seedout.col (resp. seedout.row) given seedout.shared.

Parity-check complexity. How does the decision predicate of V comp depend on its ran-
domness? Note that Deccomp is equal to Decin except that in Item 2 above, we fix a certain
input bit of Deccomp to be a certain bit in Encode(seedout). Since Encode is a GF(2)-linear error
correcting code (Theorem 2.4.1), each bit of Encode(seedout) is the XOR of a subset of indices
in seedout. (This is the reason that we need parity-check bits in ROP.) Also, Decin only depends
on seed.shared, therefore Deccomp only depends on seed.shared and the qin parity-check bits over
seed.row and seed.col.
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Rectangular neighbour listing of V comp. Now we verify that the composed PCPP verifier
V comp has the rectangular neighbour listing property with tRNL(n) := poly(toutRNL(n), ℓ

in, din).
Moreover, we show that if the RNL for V out can be computed by projections, then the RNL for
V comp can be computed by projections as well.

Let (seed, k) be a configuration of V comp, where

seed = (seed.row := seedout.row, seed.col := seedout.col, seed.shared := (seedout.shared, seedin))

and k ∈ [qcomp]. Assume that the verifier probes the proof matrix Πcomp
proof on the k-th query given

the randomness seed. By the discussion above, we know that the k-th query of the composed
PCPP verifier can be one of the following two cases: a query to Πout

proof |Iout for Iout ← V out(seedout),
or a query to Πin

proof(seed
out).

Assume that the rectangular neighbour listing algorithm for V out partitions seedout.shared

into (seedout.shared.row, seedout.shared.col). We now partition seed.shared as follows:

seed.shared.row := (seedout.shared.row, low(seedin)),

seed.shared.col := (seedout.shared.col, high(seedin)).

The algorithms Ashared, Arow, and Acol for the RNL of V comp work as follows.

Case 1. Given the configuration (seed, k), the verifier V comp probes the i-th bit of Πout
proof |Iout ,

where the index i depends on the seedin. In other words, the composed PCPP verifier
probes the answer of the i-th query made by the outer PCPP verifier when it is “simulating”
the outer verifier using the inner PCPP verifier. A neighbour (seed′ = (seed′out, seed′in), k′)

of (seed, k) must be a query of the same type, i.e., it is a query to the i′-th bit of Πout
proof |I′out

where the index i′ depends on seed′in. Furthermore, the i-th query index in Iout must be
the same as the i′-th query index in I ′out. In such case, Ashared generate the following list:

1. We first run the inner PCPP verifier using seedin to obtain the index i defined above.

2. Then, we use Aout
shared to obtain the list NListoutshared. Let ℓ := |NListoutshared|, for each

j ∈ [ℓ], the j-th element ij in this list indicates that the j-th neighbour of (seed, k) is
the ij-th query made by V out on some (seedout)′.

3. For every ij , we enumerate (seed′in, k′) ∈ {0, 1}rin × [qin] in lexicographic order. If the
k′-th query of V in given seed′in as the seed probes exactly the ij-th bit of (Πinput ◦
Πout

proof)|I′out , then we append k′ into NListshared.

Similarly, Arow also performs the above three steps, but each time, instead of appending
k′ into NListshared, it appends

(seedoutj .row, seedoutj .shared.row, low(seed′in))

into NListrow, where (seedoutj .row, seedoutj .shared.row) is the corresponding row-part ran-
domness in NListoutrow. The behaviour of Acol is similar. It is easy to see that for fixed
(seedout.shared, seedin), NListrow and NListcol can be computed by a projection over NListoutrow

and NListoutcol respectively.
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Finally, the index of (seed, k) in NList (i.e., self) can be computed as follows: Whenever
we are considering the selfout-th element in NListout (where selfout is the self computed by
the RNL of V out) and we encounter seed′in = seedin and k′ = k, the current element in
NList is self. Clearly, this can be computed from selfout and seed.shared.

Case 2. Given the configuration (seed, k), the verifier V comp probes the i-th bit of Πin
proof(seed

out).
Recall that for every seedout ∈ {0, 1}rout , Πin

proof(seed
out) is arranged in a block of size

H in
proof ×W in

proof in the proof matrix. The neighbours of (seed, k) need to query the same
block, therefore the neighbours must have the same random seed for the outer PCPP
verifier. Hence, the RNL algorithms work as follows:

1. We first compute the list Lin := {(seedinj , kj) ∈ {0, 1}r
in(dout(n)) × [qcomp]} sorted in

lexicographic order such that the inner PCPP will query the i-th bit of the inner proof
on the kj-th query given seedinj as randomness. This can be done in poly(ℓin, din)-time
by enumerating all possible (seedinj , kj) and running the inner PCPP verifier.

2. We define the final list of neighbours as

L :=
{(

seedj := (seedout, seedinj , kj)
)
: (seedinj , kj) ∈ Lin

}
.

It is easy to check that the list satisfies the promises of the rectangular neighbour
listing property. To compute self, we only need to find the position of (seedin, k) in
Lin, which can be computed from seed.shared. Moreover, the row (column) part of L
can be computed by projections over seed.row (seed.col) given seed.shared.

Other properties. The soundness error and proximity parameter can be found in [BGH+06,
Section 2.4]. Also, V comp inherits the query complexity and decision complexity of V in. We
can see that the proof matrix of the composed PCPP verifier has width W comp

proof = W out
proof and

height Hcomp
proof = W out

proof + 2r
out(n)+rin(dout(n))/W out

proof (recall that ℓin = 2r
in). By the definitions

of the random seeds, we can see that: The row and column randomness complexity of V comp

is the same as the row and column randomness complexity of V out, respectively; the shared
randomness complexity of V comp is the sum of the shared randomness complexity of V out and
the randomness complexity of V in.

Remark 5.1.10. The composed PCPP verifier V comp will use the inner PCPP verifier V in to simulate
the outer PCPP verifier V out. This means that the total number of queries and parity-check functions
is at most the query complexity of the inner PCPP verifier. Moreover, the decision predicate of V comp

(after fixing the random seed) is the decision predicate of V in, where the input bits of the decision
circuit of V comp are the parity-check bits and the answers to the queries. For instance, if the decision
predicate of V in given seedin is an OR of the answers or their negations, then the decision predicate
of V comp given seed = (seedin, seedout) is also the same OR of its input bits (i.e. the answers to the
queries and the parity-check bits).

5.1.4 Smoothening a PCPP with RNL

By slightly generalising the technique of [BHPT24], we can smoothen a rectangular PCPP
with the rectangular neighbour listing property.
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Verifier V old V new

Soundness error s s+ µ

Proximity parameter δ δ

Row randomness rrow rrow
Column randomness rcol rcol
Shared randomness rshared rshared
Proof matrix height Hproof q · 2rrow+rshared/2

Proof matrix width Wproof 2rcol+rshared/2

Query complexity q poly(q/µ)

Parity check complexity p p

Decision complexity d poly(d, q/µ, tRNL(n))

Table 5.3: The parameters of the “smoothened” PCPP V new.

Theorem 5.1.11. Suppose that L has a rectangular PCPP verifier V old with ROP and tRNL(n)-
time RNL property whose parameters are specified in Table 5.3. Then for every µ ∈ (0, 1), L
has a smooth and rectangular PCPP verifier V new with ROP and the parameters specified in
Table 5.3. Moreover, if the RNL for V old can be computed by projections, then the query indices
of V new can be computed by projections as well.

Proof. Let Πold : {0, 1}ℓ → {0, 1} be the proof oracle of V old. Assume that V old(seed, i) outputs
the index of the i-th query of V old given the randomness seed ∈ {0, 1}r. The “smoothened”
verifier V new expects the proof Πnew : {0, 1}2r × [q]→ {0, 1} to be

Πnew(seed, i) := Πold[V old(seed, i)].

Concretely, V new works as follows: First, it checks that Πnew is (close to being) defined as above,
i.e., there is a proof matrix Πold such that Πnew(seed, i) and Πold[V old(seed, i)] are sufficiently
close. Then, it runs V old using Πnew as the proof oracle, i.e., the verifier randomly chooses
a seed ∈ {0, 1}r, queries Πnew(seed, 1),Πnew(seed, 2), . . . ,Πnew(seed, q), and decides whether to
accept using the decision predicate of V old. In fact, as in [BHPT24, Section 4.1], the first step
can be combined into the second step: we only need to check the consistency of Πnew on the fly
during the simulation of V old.

The verifier V new. For α ∈ (0, 1), we say a graph G = (V,E) is an α-sampler if for every
S ⊆ V ,

Pr
v←V

[∣∣∣∣
|S|
|V | −

Γ(v) ∩ S
Γ(v)

∣∣∣∣ > α

]
< α,

where Γ(v) is the set of neighbours of v in G. By [Gol11c], there is a poly(n)-time algorithm that
given n and α ∈ (0, 1), constructs a (4/α4)-regular graph on n vertices that is an α-sampler.

Let α := µ/(10q), ∆ := (4/α4) + 1, then there is an explicit construction of (∆− 1)-regular
α-sampler. Our new PCPP verifier works as follows:

• Let seed ∈ {0, 1}r be the random bits and i ∈ [q] be the index of a query. If V old(seed, i)

makes a query to the input oracle, it firstly makes the same query to the input oracle,
and then probes Πnew(seed, i) for ∆ times. The last ∆ queries to Πnew(seed, i) are for the
smoothness property.
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• Now we assume that V old(seed, i) makes a query to the proof oracle. Let NList :=

NList(seed, i) be the ordered list of neighbours of (seed, i) from the rectangular neigh-
bour listing property, m := |NList|, and self ∈ [m] be the index of (seed, i) in the list.
Let GNList be an explicit (∆ − 1)-regular α-sampler with m nodes from [Gol11c]. Let
j2, j3, . . . , j∆ ∈ [m] be the neighbours of self in GNList, and j1 := self. The verifier probes

Πnew(NList[j1]),Π
new(NList[j2]), . . . ,Π

new(NList[j∆]),

and rejects if the answers are not the same. Otherwise, the verifier treats this consistent
answer as the answer to the i-th query of V old and simulates V old.

Rectangularity. Recall that the proof oracle is Πnew : {0, 1}2r×[q]→ {0, 1}, where r = rrow+

rcol+rshared is the randomness complexity. By the rectangular neighbour listing property of V old,
we know that the shared randomness can be partitioned into (seed.shared.row, seed.shared.col) ∈
{0, 1}rshared/2 × {0, 1}rshared/2. We define W new := 2rcol+rshared/2, Hnew := q · 2rrow+rshared/2, and the
Hnew ×W new proof matrix

Πnew[u, v] := Πnew(seed, i);

where u := (seed.row, seed.shared.row, i) ∈ {0, 1}rrow+rshared/2+log q,

v := (seed.col, seed.shared.col) ∈ {0, 1}rcol+rshared/2,

seed := (seed.row, seed.col, seed.shared := (seed.shared.row, seed.shared.col)).

Now it suffices to construct the type predicate V new
type and the row and column verifiers V new

row and
V new
col . Recall that the new verifier V new simulates V old as follows: If V old makes a query to the

proof oracle, it makes ∆ queries to the proof oracle using the RNL property; otherwise, it makes
the same query to the input oracle and ∆ queries to the same bit of the proof oracle.

• The type predicate V new
type (given the shared randomness) calls the type predicate V old

type of
the old PCPP verifier, obtains the list of types of the queries, replaces each “proof” by ∆

continuous “proof” and replaces each “ input” by an “ input” and ∆ continuous “proof”.

• For a query of V old to the proof oracle, the row verifier V new
row (resp. the column verifier

V new
col ) calls the row verifier V old

row (resp. the column verifier V old
col ) of the old PCPP. By the

rectangular neighbour listing property, it can list the “row-part” (resp. the “column-part”)
of the neighbour list NList and also knows the index self in the list. It then constructs
the sampler, finds the ∆ selected neighbours of self (including itself), and outputs the
“row-parts” (resp. the “column-parts”) of them.

This also means that if the RNL for V old can be computed by projections, then the query
indices of V new can be computed by projections as well. This is because the row (column)
parts of the query indices can be computed by projections over NListrow (NListcol), which
(by our hypothesis on V old) can be computed by projections over seed.row (seed.col).

• For a query of V old to the input oracle, the row verifier V new
row (resp. the column verifier

V new
col ) calls the row verifier V old

row (resp. the column verifier V old
col ) of the old PCPP to obtain

the query to the input oracle rectangularly. It is easy to see that the remaining ∆ queries
to the proof oracle can be done rectangularly.
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Smoothness. We need to show that for uniformly random seed ← {0, 1}r and i ← [q · ∆],
each bit of the proof oracle Πnew is equally likely to be probed given randomness seed on the
i-th query. Let i1 := ⌊(i−1)/∆⌋+1 and i2 := (i−1) mod ∆+1. Let Ĝ = (V̂ , Ê) be the “union”
of all GNList, that is:

• V̂ := {0, 1}2r × [q].

• Let (seed, i1), (seed′, i′1) be two configurations given which V old will probe the proof oracle.
Then ((seed, i1), (seed

′, i′1)) ∈ Ê if and only if the configurations (seed, i1) and (seed′, i′1) are
neighbours, and there is an edge between them in GNList, where NList is the neighbourhood
containing these two configurations. We also add a self-loop on every node (seed, i1) on
which V old probes the proof oracle.

• For each (seed, i1) such that V old(seed, i1) probes the input oracle, we add ∆ self-loops on
the node (seed, i1) ∈ V̂ .

Assume that seed ∈ {0, 1}r and i ∈ [q ·∆] are uniformly chosen. The query pattern of V new

to the proof oracle is as follows: It firstly selects a node (seed, i1) ∈ V̂ uniformly, and then
chooses a uniform neighbour of it. It is easy to see that each bit of the proof oracle is probed
with probability

∆

2r · q ·∆ =
1

2r · q .

Soundness. The soundness of V old follows from [BHPT24, Appendix A.1] (which is for PCP
instead of PCPP); for completeness, we present a self-contained proof here. Assume that x is
δ-far from being in L and Πnew : {0, 1}2r× [q] is a proof, we need to show that the verifier accepts
with probability at most s+ µ. Let Πold : {0, 1}ℓ → {0, 1} be defined as follows:

Πold[j] := Majority
(seed,i)∈{0,1}r×[q]

{
Πnew(seed, i) : V old(seed, i) = j

}
,

By the soundness of V old, we know that V old will accept (x,Πold) with probability at most s.
Let idxi(seed) ∈ [ℓ] be the i-th query of V old given randomness seed. An index j ∈ [ℓ] is said

to be β-consistent if for at least β fraction of (seed, i) such that idxi(seed) = j, Πnew(seed, i) =

Πold[j]. We define the following events over the random variable seed:
• H is the event that for every i ∈ [q], idxi(seed) is (1 − 2α)-consistent (recall that α :=

µ/(10q) is the parameter of the sampler).
• M is the event that for every i ∈ [q], Πnew(seed, i) = Πold(idxi(seed)).
• A is the event that V new accepts (x,Πnew) on the randomness seed.
• Ci is the event that the ∆ queries made by V new corresponding to the i-th query of V old

returns the same answer (i.e. the “consistency check” passes on the simulation of the i-th
query of V old).

Claim 5.1.12. Pr[A ∧H] ≤ qα.

Claim 5.1.13. Pr[M ∧H] ≤ 2qα.

Claim 5.1.14. Pr[A ∧H] ≤ 2qα+ s.
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From the claims above, we can see that

Pr
seed←{0,1}r

[A] = Pr
seed←{0,1}r

[A ∧H] + Pr
seed←{0,1}r

[A ∧H]

≤ s+ qα+ 2qα

≤ s+ µ.

Proof of Claim 5.1.12. Let (seed, i) be a configuration, NList := NList(seed, i) be the list of all its
neighbours, GNList = (V,E) be the explicit sampler graph corresponding to the neighbourhood
NList (i.e. V contains the configurations in NList), and self be the node corresponding to (seed, i).
We say that a configuration (seed, i) is an error configuration if

∣∣∣∣
|S|
|V | −

|Γ(self) ∩ S|
|Γ(self)|

∣∣∣∣ > α,

where S := {(seed′, i′) ∈ V | Πnew(seed′, i′) ̸= Πnew(seed, i)}. Since GNList is an α-sampler, there
are at most α fraction of error configurations in each neighbourhood. Suppose H happens, then
there is some i such that idxi(seed) is not (1 − 2α)-consistent, which means that |S|/|V | ≥ 2α.
Suppose in addition that Ci happens (i.e., the “consistency check” on the i-th query passes),
then Γ(self) ∩ S = ∅, which means that (seed, i) is an error configuration.

Let Err be the set of error configurations. Then

Pr
seed←{0,1}r

[A ∧H] ≤ Pr
seed←{0,1}r

[
C1 ∧ · · · ∧ Cq ∧H

]

≤ Pr
seed←{0,1}r

[
∃i ∈ [q] (seed, i) ∈ Err ∧H

]

≤q · Pr
seed←{0,1}r

i←[q]

[(seed, i) ∈ Err ∧H]

≤q · α. ⋄

Proof of Claim 5.1.13. For every j ∈ [q], we denote by Hj the event that idxj(seed) is (1− 2α)-
consistent (and thus H =

∧
j∈[q]Hj). Let H⋆ be the event that idxi(seed) is (1− 2α)-consistent

over the random variable (seed, i) ∈ {0, 1}r × [q]. We can see that:

Pr
seed←{0,1}r

[
M ∧H

]
≤ q · Pr

(seed,i)←{0,1}r×[q]


Πnew(seed, i) ̸= Πold(idxi(seed)) ∧

∧

j∈[q]

Hj




≤ q · Pr
(seed,i)←{0,1}r×[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed)) ∧ Hi

]

= q · Pr
(seed,i)←{0,1}r×[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed)) ∧ H⋆

]
. (5.10)

Let N be the set of all neighbourhoods that contain a configuration (seed, i) ∈ H⋆ (i.e. idxi(seed)
is (1− 2α)-consistent). By the definition of H⋆ and the neighbours of configurations, we can see
that for each h ∈ N , all the configurations in h are also in H⋆. Thus, the uniform distribution
over H⋆ is identical to the following distribution: we first sample a neighbourhood h ∈ N (with
probability proportional to the size of h), then uniformly sample a configuration (seed, i) ∈ h.
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Thus, we have:

(5.10) ≤ q · Pr
(seed,i)←{0,1}r×[q]

[
Πnew(seed, i) ̸= Πold(idxi(seed))

∣∣∣ H⋆
]

= q · E
h←N

[
Pr

(seed,i)←h

[
Πnew(seed, i) ̸= Πold(idxi(seed))

]]

≤ q · E
h←N

[2α], (5.11)

≤ 2qα,

where N is some distribution over N , and (5.11) holds by the definition of (1− 2α)-consistency.
⋄

Proof of Claim 5.1.14. We can see that:

Pr
seed←{0,1}r

[A ∧H] ≤ Pr
seed←{0,1}r

[M ∧H] + Pr
seed←{0,1}r

[A ∧H ∧M ]

≤ 2qα+ Pr
seed←{0,1}r

[
V old accepts (x,Πold) ∧H ∧M

]

≤ 2qα+ Pr
seed←{0,1}r

[
V old accepts (x,Πold)

]

≤ 2qα+ s.

Note that the first inequality follows from the definition of V new and Πold. ⋄

Other Properties. The query complexity, parity-check complexity, and decision complexity
can be easily checked by definition.

5.1.5 Soundness Error Reduction

Recall that the above PCPPs we considered only satisfy robust soundness with a very large
soundness error 1 − ε. In this subsection, we reduce the soundness error to an arbitrarily
small value using expander walks. Take a constant-degree expander graph G = (V,E) where
V = {0, 1}r(n). Use r(n) + O(1) random bits to sample a random walk of length O(1) over G.
Then, for every vertex v ∈ {0, 1}r(n) in the random walk, run the old PCPP verifier with v as
randomness, reject if the old PCPP verifier rejects. If every invocation of the old PCPP verifier
accepts, then our new PCPP verifier also accepts.

However, we need to be careful when implementing this approach: To preserve the rectan-
gularity of the verifier, we take the tensor product of three expanders (one for row randomness,
one for column randomness, and one for shared randomness). To ensure that Vrow and Vcol are
(still) projections, we use the following family of 1-local expanders:

Lemma 5.1.15 ([VW18]). For every λ ∈ (0, 1), there is some d = poly(λ−1) such that the
following holds. For every n, there is an expander graph Gn = (Vn, En) with second largest
eigenvalue at most λ, where Vn := {0, 1}n. Moreover, there are d explicit projections (i.e., NC0

1

circuits) C1, C2, . . . , Cd : {0, 1}n → {0, 1}n such that for every x ∈ Vn, the d neighbours of x are
C1(x), C2(x), . . . , Cd(x).
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Verifier V old V new

Soundness error 1− ε µ

Proximity parameter δ δ

Row randomness rrow rrow
Column randomness rcol rcol
Shared randomness rshared rshared +O(ℓ log(1/ε))

Proof matrix height Hproof Hproof

Proof matrix width Wproof Wproof

Query complexity q O(qℓ)

Parity check complexity p O(pℓ)

Decision complexity d O(dℓ+ poly(rshared, rrow, rcol))

Table 5.4: The parameters of the soundness error reduction (where ℓ := (1/ε2) log(1/µ) and
O(·) hides absolute constants).

Lemma 5.1.16 (Expander Walk, [AB09, Theorem 21.12]). Let G = (V,E) be a d-regular graph
with second largest eigenvalue λ. For every S ⊆ V such that |S| ≤ β · |V | for some β ∈ (0, 1),
let (X1, X2, . . . , Xℓ) be a random walk in G with random starting point, then

Pr[∀i ∈ [ℓ], Xi ∈ S] ≤
(
(1− λ)

√
β + λ

)ℓ−1
.

Lemma 5.1.17 (Expander Chernoff Bound, [Vad12, Theorem 4.22]). Let G = (V,E) be a
d-regular graph with second largest eigenvalue λ, B ⊆ V be a set of size |B| = β|V |. Let
X1, X2, . . . , Xℓ be random variables denoting a length-ℓ random walk from a random starting
point. For every i ∈ [ℓ], we define Bi = 1 if Xi ∈ B and Bi = 0 otherwise. Then:

Pr

[∣∣∣∣∣
1

ℓ

ℓ∑

i=1

Bi − β
∣∣∣∣∣ ≥ 2λ

]
< 2 exp

(
−Ω(λ2ℓ)

)
.

Theorem 5.1.18. Suppose that L has a rectangular PCPP verifier V old (resp. a rectangular
PCPP verifier V old with ROP), where the parameters are specified in Table 5.4. For every
µ ∈ (0, 1), letting ℓ := (1/ε2) log(1/µ), then L has a rectangular PCPP verifier V new (resp. a
rectangular PCPP verifier with ROP), whose parameters are specified in Table 5.4. Moreover:

• If V old has robust soundness error (instead of plain soundness error) 1− ε with robustness
parameter ρ, then V old has robustness soundness error µ with robustness parameter ερ/3.

• If the query indices of V old can be computed by projections, then the query indices of V new

can be computed by projections as well.

• If V old is smooth, then V new is also smooth.

Proof. Let λ := ε/3 and r := rrow+rcol+rshared. For d = poly(1/λ), we construct the following d-
regular expander graphs with second largest eigenvalue λ by Lemma 5.1.15: Grow = (Vrow, Erow)

with Vrow := {0, 1}rrow , Gcol = (Vcol, Ecol) with Vcol := {0, 1}rcol , and Gshared = (Vshared, Eshared)

with Vshared := {0, 1}rshared . Let G = (V,E) be the tensor product of these expanders:

V := Vrow × Vcol × Vshared = {0, 1}rrow × {0, 1}rcol × {0, 1}rshared ;
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E := {((u, v, w), (u′, v′, w′)) : (u, u′) ∈ Erow, (v, v
′) ∈ Ecol, (w,w

′) ∈ Eshared}.

Note that G is a d3-regular graph with second largest eigenvalue λ (see [AB09, Lemma 21.17]).

The Construction of V new. The new verifier has the same proof matrix, row randomness,
and column randomness as the old verifier V old. The shared random seed of the new verifier
V new consists of the shared random seed seed.shared of V old and seed.walk, which is used to
sample a random walk in G of length ℓ := O(λ−2 log(µ−1)). Concretely:

• The random seed seed.walk will be used to sample σ1, σ2, . . . , σ3(ℓ−1) ∈ [d]. We can see
that

|seed.walk| = O(ℓ · log d) = O(λ−2 log(µ−1) log(λ−1)).

• Let u1 := seed.row, v1 := seed.col, and w1 := seed.shared. We use σ1, σ2, . . . , σℓ−1 to
specify a length-ℓ random walk (u1, u2, . . . , uℓ) in Grow. In particular, let C1, C2, . . . , Cd

be the projections in Lemma 5.1.15 for Grow. For every j ∈ {1, 2, . . . , ℓ − 1}, we define
uj+1 := Cσj (uj). Similarly, we can use the remaining 2(ℓ − 1) bits to specify a random
walk (v1, v2, . . . , vℓ) in Gcol and a random walk (w1, w2, . . . , wℓ) in Gshared.

The verifier V old will run the verifier V new for ℓ times with the seeds:

(u1, v1, w1), (u2, v2, w2), . . . , (uℓ, vℓ, wℓ),

and will accept the proof if V old accepts given all these ℓ seeds. Since seed.walk is in the shared
randomness of V new and G is obtained from the tensor product of Grow, Gcol, and Gshared, it is
easy to see that V new is still a rectangular PCPP verifier. The query complexity (and parity-
check complexity when V old has ROP) increases by an ℓ = O(ε−2 log(µ−1)) multiplicative factor.
Finally, it follows from Lemma 5.1.15 that each ui (resp. vi) can be computed by a projection
over seed.row (resp. seed.col), hence the query indices of V new can be computed by projections
if the query indices of V old can.

Smoothness. Let idx ∈ [Hproof · Wproof ] be an index in the proof. Denote as V new(seed, i)

(resp. V old(seed, i)) the index in the proof probed by V new (resp. V old) for the i-th query.

Pr
seed,seed.walk,i∈[qℓ]

[V new(seed ◦ seed.walk, i) = idx]

= E
j∈[ℓ]

[
Pr

seed,seed.walk,i∈[q]
[V new(seed ◦ seed.walk, (j − 1)ℓ+ i) = idx]

]
. (5.12)

Fix j ∈ [ℓ]. By the definition of V new, we know that V new(seed ◦ seed.walk, (j− 1)ℓ+ i) works as
follows: Let (u, v, w) := (seed.row, seed.col, seed.shared), and σ1, σ2, . . . , σ3ℓ be defined as above;
V new will choose the j-th node in the random walk on G seeded by seed.walk starting from
(u1 := u, v1 := v, w1 := w) as the seed for V old, and probe the proof according to the i-th query
of V old. Since the expander graph is regular, each seed ∈ {0, 1}r is equally likely to be selected
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from a random walk with a random starting point. Hence

Pr
seed,seed.walk,i∈[q]

[V new(seed ◦ seed.walk, (j − 1)ℓ+ i) = idx]

= Pr
seed,i∈[q]

[
V old(seed, i) = idx

]

=
1

Hproof ·Wproof
.

This means that (5.12) = 1
Hproof ·Wproof

, i.e., every bit in the proof is equally likely to be probed.

Soundness. Assume that x ∈ {0, 1}n is δ-far from being in L and let Π be an arbitrary proof.
We say a node (u, v, w) in the expander graph G = (V,E) is bad if V old accepts (x,Π) with the
random seed seed.row := u, seed.col := v, and seed.shared := w. Let B be the set of all bad
nodes, then |B| ≤ (1− ε) · |V |. Note that the new verifier accepts (x,Π) if and only if a length-ℓ
random walk on G from a random starting point only accesses bad nodes. By Lemma 5.1.16,
we can see that

Pr [V new accepts (x,Π)] ≤
(
(1− λ)

√
1− ε+ λ

)ℓ−1 ≤
(
1− ε

5

)ℓ−1
≤ exp

(
−ε(ℓ− 1)

5

)
≤ µ,

when ℓ ≥ 10 · ε−1 ln(µ−1).

Robust Soundness. Assume that the original PCPP verifier V old has robust soundness error
1 − ε with robustness parameter ρ, we show that V new has robust soundness error µ. Let
x ∈ {0, 1}n be δ-far from L and Π be an arbitrary proof. We say a node (u, v, w) in the expander
graph G = (V,E) is bad if given the randomness seed = (seed.row, seed.col, seed.shared) =

(u, v, w), the fraction of bits read by the old PCPP verifier that we need to change to make V old

accept (x,Π) is at most ρ.
Let B be the set of bad nodes and X1, X2, . . . , Xℓ be the random variables denoting a random

walk from a random starting point (equivalently, denoting the randomness V new used to simulate
V old). It follows from the robustness soundness of V old that |B| ≤ (1− ε) · |V |. Let Bi = 1 when
Xi ∈ B and 0 otherwise. By Lemma 5.1.17, we can see that

Pr

[
1

ℓ

ℓ∑

i=1

Bi ≥ 1− ε+ 2λ

]
≤ 2 exp(−Ω(λ2ℓ)) ≤ µ

when ℓ = O(λ−2 log(µ−1)). As a result, with probability as least 1− µ, the fraction of bits read
by V new that we need to change to make V new accepts (x,Π) is at least

(1− (1− ε+ 2λ))ρ ≥ ερ/3.

This satisfies the requirement of robust soundness µ with robustness parameter ερ/3.
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Soundness error s

Proximity parameter δ

Row randomness rrow := hproof − (5/m) log T (n)

Column randomness rcol := wproof − (5/m) log T (n)

Shared randomness rshared := (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity q

Parity check complexity q

Decision complexity poly(T (n)1/m)

Table 5.5: Parameters of the PCPP constructed in Theorem 2.5.11.

5.1.6 Final Construction

Theorem 5.1.19 ([Mie09]). Let L be a pair language in NTIME[T (n)] for some non-decreasing
function T : Z+ → Z+. For all constants s, δ > 0, L has a PCPP verifier with randomness com-
plexity log T (n) + O(log log T (n)), soundness error s, proximity parameter δ, query complexity
O(1), and decision complexity polylog(T (n)).

Theorem 2.5.11 (Smooth and Rectangular PCPP). For all constants δ ∈ (0, 1) and s ∈ (0, 1),
there is a constant q ≥ 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n)

be good functions such that 1 ≤ m(n) ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n),
and winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) := log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) := ⌈log n⌉ − winput(n),

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm2 log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) :=

2hinput(n). Then NTIME[T (n)] has a smooth and rectangular PCP of proximity with an Hinput(n)×
Winput(n) input matrix and an Hproof(n)×Wproof(n) proof matrix, with query indices computable
by projections, and whose other parameters are specified in Table 2.2.

Proof. The high-level roadmap of the proof is as follows.

1. From Theorem 5.1.3, we obtain a robust and rectangular PCPP verifier V out with RNL
property for tRNL = poly(log T (n),mm) and query complexity T (n)1/m · polylog(T (n)).

2. Let V in be the PCPP verifier for Circuit-Eval⊥ with constant query complexity in
Theorem 5.1.19. We compose V out and V in by Theorem 5.1.9 to obtain a rectangular
PCPP verifier V comp with RNL property.

3. We smoothen V comp by Theorem 5.1.11 to obtain a smooth and rectangular PCPP V smth

with constant query complexity, whose soundness error is some constant ssmth ∈ (0, 1).
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4. By Theorem 5.1.18, we reduce the soundness error to s while still maintaining the query
complexity to be a (larger) constant.

Robust and Rectangular PCPP. Let δ ∈ (0, 1) and s ∈ (0, 1) be some constants; q be a
large constant to be determined later that only depends on δ and s; C be a large constant; m =

m(n), T (n), winput(n), hinput(n), wproof(n), and hproof(n) be defined as above. Let wout
proof(n) :=

wproof(n)−O(log log T (n)+m logm) where the concrete value will be determined later. We will
set hproof(n) = houtproof(n) +O(log log T (n) +m logm) for some good function houtproof(n) (which is
actually the proof height parameter of the outer PCPP). We check the technical conditions of
Theorem 5.1.3 holds; in particular, we need to ensure that

Claim 5.1.20. For some constant C ′ that could be made large enough (depending on C),

winput

wout
proof

,
hinput
houtproof

≤ 1− C ′m log log T (n)

log T (n)
.

Proof. Since wproof ≥ (5/m) log T (n), and wproof −wout
proof ≤ α1(log log T (n) +m logm) for some

constant α1, it follows that

winput

wout
proof

≤ winput

wproof

(
1 +

α1(log log T (n) +m logm)

wproof − α1(log log T (n) +m logm)

)

≤ 1− Cm2 log log T (n)

log T (n)
+

Θ(m) · (log log T (n) +m logm)

log T (n)

≤ 1− C ′m log log T (n)

log T (n)
.

The same argument works for hinput

hout
proof

. ⋄

We also note that wout
proof , h

out
proof ≥ (4/m) log T (n). Hence, we can use Theorem 5.1.3 to obtain

a robust and rectangular PCPP verifier V out for L with RNL property and other parameters as
follows:

• Proximity parameter δout := δ.
• Robust soundness error sout := 1−ρout with robustness parameter ρout, where ρout ∈ (0, 1)

is some constant depending on δ.
• Proof matrix size Hout

proof(n)×W out
proof(n), where Hout

proof = 2h
out
proof , W out

proof = 2w
out
proof . The proof

height parameter houtproof , which is given by Theorem 5.1.3, satisfies

houtproof = log T (n) + Θ(m log log T (n))− wout
proof(n).

• Row randomness complexity routrow = houtproof − (4/m) log T (n).
• Column randomness complexity routcol = wout

proof − (4/m) log T (n).
• Shared randomness complexity routshared = (7/m) log T (n) +O(log log T (n) +m logm).
• Query complexity qout(n) = T (n)1/m · polylog(T (n)).
• Decision complexity dout(n) = T (n)1/m · polylog(T (n)).
• RNL time complexity toutRNL(n) = poly(log T (n),mm).

Finally, the RNL for V out can be computed by projections.
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Reducing the Query Complexity. By Theorem 5.1.19, we can construct a PCPP verifier
V in for Circuit-Eval⊥ with input length dout(n) and other parameters specified as follows.

• Randomness complexity rin(n) = log dout(n)+O(log log dout(n)) = 1
m log T (n)+O(log log T (n)).

• Soundness error sin := ρout/2.
• Proximity parameter δin := ρout/2.
• Query complexity qin = O(1) is a constant depends on sin and δin, which further means

that it only depends on δ.
• Decision complexity din(dout(n)) = polylog(T (n)).

Without loss of generality, we assume that the proof length ℓin(n) = 2r
in(n).

We now construct V comp by composing V out and V in by Theorem 5.1.9. We first check the
requirements of the composition theorem.

• qin = O(1), ρout ≥ δin = ρout/2, ℓin = 2r
in .

• logW out
proof = routcol + (4/m) log T (n) ≥ routcol .

• logW out
proof = routcol + (4/m) log T (n) ≤ routcol + routshared.

• Finally, since rout+rin = routrow+r
out
col +r

out
shared+r

in = houtproof+w
out
proof+O(log log T (n)+m logm),

it follows that Hout
proof ·W out

proof ≤ 2r
out+rin .

Hence, we can obtain a rectangular PCPP V comp with ROP that has the RNL property. The
parameters of the composed PCPP are as follows.

• Soundness error scomp := 1− (1− sout) · (1− sin) < 1 that only depends on δ.
• Proximity parameter δcomp := δout = δ.
• Row randomness complexity rcomp

row = routrow = houtproof − (4/m) log T (n).
• Column randomness complexity rcomp

col = routcol = wout
proof − (4/m) log T (n).

• Shared randomness complexity rcomp
shared = routshared + rin = (7/m) log T (n) + O(log log T (n) +

m logm)+(1/m) log T (n)+O(log log T (n)) = (8/m) log T (n)+O(log log T (n)+m logm).
• Proof matrix height Hcomp

proof = Hout
proof + 2r

out+rin/W out
proof .

• Proof matrix width W comp
proof =W out

proof .
• Query complexity qcomp = qin = O(1) that only depends on δ.
• ROP parity check complexity pcomp = qin = O(1).
• Decision complexity dcomp(n) = din(dout(n)) = polylog(T (n)).
• RNL time complexity tcomp

RNL (n) = poly(toutRNL(n), ℓ
in, din) = poly

(
T (n)1/m

)
, where poly(·)

hides some absolute constant on the exponent. Note that toutRNL(n) = poly(log T (n),mm) ≤
poly(T (n)1/m), since m ≤ (log T (n))0.1.

Since the RNL for V out can be computed by projections, the RNL for V comp can also be computed
by projections.

Smoothening via RNL. Now we apply Theorem 5.1.11 to obtain a smooth and rectangular
PCPP V smth with µ := (1− scomp)/2 and other parameters as follows.

• Soundness error ssmth := scomp + µ < 1 that only depends on δ.
• Proximity parameter δsmth := δcomp = δ.
• Row randomness complexity rsmth

row := rcomp
row = houtproof − (4/m) log T (n).

• Column randomness complexity rsmth
col := rcomp

col = wout
proof − (4/m) log T (n).

• Shared randomness complexity rsmth
shared = rcomp

shared = (8/m) log T (n)+O(log log T (n)+m logm).
• Proof matrix widthW smth

proof = 2r
comp
col +rcomp

shared/2 = 2w
out
proof ·poly(log T (n),mm). Note that here we
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set wout
proof carefully so that rcomp

col + rcomp
shared/2 = wout

proof +O(log log T (n) +m logm) = wproof .
This means that the proof matrix width is exactly 2wproof .

• Proof matrix height Hsmth
proof = qcomp · 2rcomp

row +rcomp
shared/2 = 2h

out
proof · poly(log T (n),mm). Since

qcomp = O(1), we can add O(1) dummy queries to the composed PCPP V comp so that
qcomp becomes a power of two. We then set

hproof = logHsmth
proof

=houtproof +O(log log T (n) +m logm)

= log T (n) + Θ(m log log T (n)) +O(log log T (n) +m logm)

− (wproof(n)−O(log log T (n) +m logm))

= log T (n) + Θ(m log log T (n))− wproof(n).

• Query complexity qsmth = poly(qcomp/µ) = O(1) that only depends on δ.
• ROP parity check complexity psmth = pcomp = O(1).
• Decision complexity dsmth(n) = poly(dcomp(n), qcomp/µ, tcomp

RNL (n)) = poly
(
T (n)1/m

)
, where

poly(·) hides some absolute constant on the exponent.
Since the RNL for V comp can be computed by projections, the query indices of V smth can be
computed by projections as well.

Reducing the Soundness Error. Finally, we reduce the soundness error of V smth to be s by
Theorem 5.1.18, to obtain a smooth and rectangular PCPP with parameters specified as follows.

• Soundness error s.
• Proximity parameter δ.
• Row randomness complexity houtproof − (4/m) log T (n) ≥ hproof − (5/m) log T (n).
• Column randomness complexity wout

proof − (4/m) log T (n) ≥ wproof − (5/m) log T (n).
• Shared randomness complexity (8/m) log T (n) +O(log log T (n) +m logm).
• Proof matrix height 2hproof and proof matrix width 2wproof .
• Query complexity q = poly(qsmth) = O(1) that depends on δ and s.
• ROP parity check complexity poly(psmth) = O(1) that depends on δ and s.
• Decision complexity poly(dsmth(n)) = poly(T (n)1/m).

We can move some bits from the row and column randomness to the shared randomness, so that
the row and column randomness complexity become exactly hproof−(5/m) log T (n) and wproof−
(5/m) log T (n), respectively, and the shared randomness complexity becomes (10/m) log T (n)+

O(log log T (n)+m logm). Finally, since the query indices of V smth can be computed by projec-
tions, the query indices of our final PCPP can also be computed by projections. This completes
the construction.

5.2 Construction of Rectangular PCPPs with Low Query Com-
plexity

Recall that in our framework for solving Range Avoidance and finding hard partial truth
tables, the query complexity of the PCPPs will affect the circuit class for which we need to con-
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struct satisfying-pair algorithms. Hence, we want (rectangular) PCPPs with query complexity
as small as possible. In this section, we construct a rectangular (but not necessarily smooth)
PCPP with query complexity 3 and perfect completeness. Furthermore, if we are willing to
sacrifice perfect completeness, we can construct a 2-query PCPP with a constant gap between
the completeness and soundness parameters.

5.2.1 A 3-Query PCPP

Theorem 5.2.1 ([CW19b], Lemma 24). For every constant δ > 0, there is a constant s ∈ (0, 1)

and a PCP of proximity for Circuit-Eval with proximity δ, soundness error s, randomness
complexity O(log n), query complexity q = 3, and decision complexity polylog(n). Moreover, the
decision predicate is an OR of the 3 answers to the queries or their negations.

We need the following standard composition theorem for PCP of Proximity from [BGH+06]
to construct 3-query PCPPs for any pair language in NTIME[T (n)].

Theorem 5.2.2 ([BGH+06]). Let rout, rin, dout, din, qin : N→ N and εout, εin, ρout, δin, δout : N→
[0, 1]. Suppose that:

• Language L has a robust PCPP verifier V out with randomness complexity rout(n), decision
complexity dout(n), robust soundness error 1− εout(n), robustness parameter ρout(n), and
proximity parameter δout(n).

• Circuit-Eval has a PCPP verifier V in with randomness complexity rin(n), query complex-
ity qin(n), decision complexity din(n), soundness error 1− εin(n), and proximity parameter
δin(n).

• δin(dout(n)) ≤ ρout(n) for every n.

Then L has a PCPP Verifier V comp with randomness complexity rout(n) + rin(dout(n)), query
complexity qin(dout(n)), decision complexity din(dout(n)), soundness error 1−εout(n)·εin(dout(n)),
and proximity parameter δout(n). Moreover, the decision predicate of V comp is the same as the
decision predicate of V in up to projections on the inputs.

Theorem 5.2.3. Let L be a pair language in NTIME[T (n)] for some non-decreasing function
T : Z+ → Z+. For every constant δ, there is a constant s ∈ (0, 1) and a PCP of proximity for L
with randomness complexity log T (n) + O(log log T (n)), decision complexity poly(log log T (n)),
soundness error s, proximity parameter δ, and query complexity q = 3. Moreover, the decision
predicate is an OR of the 3 answers to the queries or their negations.

Proof. Let L be a pair language in NTIME[T (n)] and δ > 0. We will compose the following two
PCPP verifiers using Theorem 5.2.2:

• By Theorem 5.2.1, for every δin > 0, there is a constant sin ∈ (0, 1) and a PCPP verifier V in

for Circuit-Eval with randomness complexity rin = O(log n), soundness error sin, prox-
imity parameter δin, query complexity qin = 3, and decision complexity din = polylog(n).
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• By Theorem 5.1.19, for all constants δout, sout > 0, there is a constant qout and a PCPP
V out for L with randomness complexity rout = log T (n) + O(log log T (n)), soundness er-
ror sout, proximity parameter δout, query complexity qout, and decision complexity dout =
polylog(T (n)). Since qout = O(1), V out is trivially a robust PCPP with robustness param-
eter ρout = 1/qout.

Fix δout = δ, sout = 0.5, δin = 1/(2qout), and s = 1− 0.5 · (1− sin). It is clear that δin(dout(n)) ≤
ρout(n). By Theorem 5.2.2, we can obtain a PCPP verifier V comp for L with the following
parameters:

• Randomness complexity rout + rin(dout(n)) = log T (n) +O(log log T (n)).
• Decision complexity din(dout(n)) = poly(log log T (n)).
• Soundness error 1− (1− sout(n)) · (1− sin(dout(n))) = s.
• Proximity parameter δout(n) = δ.
• Query complexity qin(dout(n)) = 3.

This satisfies our requirements.

5.2.2 A 3-Query Rectangular PCPP

Now we construct a 3-query rectangular PCPP by composing the PCPP constructions in
Theorem 5.1.3 and Theorem 5.2.3 using the composition theorem (see Theorem 5.1.9).

Theorem 5.2.4 (3-Query Rectangular PCPP). For every constant δ ∈ (0, 1), there is a constant
s ∈ (0, 1) such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be good
functions such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and
winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) = ⌈log n⌉ − winput(n).

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) :=

2hinput(n). Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n)×Wproof(n)

proof matrix and an Hinput(n)×Winput(n) input matrix, whose other parameters are specified in
Table 5.6.

Moreover, the total number of queries and parity-check bits is at most 3; and for every
seed.shared, the decision predicate VDec ← Vdec(seed.shared) of the rectangular PCPP verifier
is an OR of its 3 input bits or their negations, where each input is either a query answer or a
parity-check bit. Also, the query indices of this PCPP can be computed by projections (in the
sense of Definition 2.5.6).
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Soundness error s

Proximity parameter δ

Row randomness hproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
3Parity check complexity

Decision complexity poly(log log T (n))

Table 5.6: Parameters of the PCPP constructed in Theorem 5.2.4.

Proof. Let L ∈ NTIME[T (n)] and δ > 0 be a constant; m(n), T (n), wproof(n), hproof(n), winput(n),
hinput(n), and C be defined as above. In one sentence, we compose the robust and rectangu-
lar PCPP verifier (Theorem 5.1.3) with the 3-query PCPP verifier (Theorem 5.2.3) using the
rectangularity-preserving composition theorem (Theorem 5.1.9).

Outer PCPP. Let wout
proof(n) := wproof(n). By Theorem 5.1.3, we can construct a robust and

rectangular PCPP verifier V out for L with parameters as follows:
• Robust soundness error sout ∈ (0, 1) with robustness parameter ρout := 1− sout.
• Proximity parameter δout := δ.
• Proof matrix sizeHout

proof(n)×W out
proof(n), whereHout

proof = 2h
out
proof , W out

proof = 2wproof , and houtproof =

log T (n) + Θ(m log log T (n))− wproof(n).
• Row randomness complexity routrow = houtproof − (4/m) log T (n).
• Column randomness complexity routcol = wproof − (4/m) log T (n).
• Shared randomness complexity routshared = (7/m) log T (n) +O(log log T (n) +m logm).
• Query complexity qout(n) = T (n)1/m · polylog(T (n)).
• Decision complexity dout(n) = T (n)1/m · polylog(T (n)).

Moreover, the query indices of V out are computable by projections.

Inner PCPP. Let δin := ρout/2. By Theorem 5.2.3, there is a constant sin ∈ (0, 1) and a
PCPP verifier V in for Circuit-Eval⊥ on input length dout(n) with randomness complexity rin =

log dout(n)+O(log log dout(n)) = (1/m) log T (n)+O(log log T (n)), soundness error sin, proximity
parameter δin, query complexity q = 3, and decision complexity din = poly(log log dout(n)).
Without loss of generality, we assume that the proof length is ℓin = 2r

in .

Composition. We now compose V out with the inner PCPP V in by Theorem 5.1.9. We first
check that the technical conditions are satisfied.

• qin = 3 = O(1), ρout ≥ δin, ℓin = 2r
in .

• Since routcol = wout
proof − (4/m) log T (n) and routshared ≥ (7/m) log T (n), we have that routcol ≤

wout
proof ≤ routcol + routshared.

• Since rout + rin = routrow + routcol + routshared + rin = houtproof + wout
proof + O(log log T (n) +m logm),

we have that Hout
proof ·W out

proof ≤ 2r
out+rin .

By Theorem 5.1.9, we can obtain a rectangular PCPP V comp with ROP, whose parameters are
as follows:

• Soundness error scomp = 1− (1− sin) · (1− sout) < 1.
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• Proximity parameter δcomp = δout = δ.
• Query complexity and ROP parity checking complexity qcomp = qin = 3.
• Proof matrix width Wproof =W out

proof = 2wproof .
• Proof matrix height Hproof = Hout

proof + 2r
out+rin/W out

proof . Note that

Hout
proof = T (n) logΘ(m) T (n)/W out

proof ,

hence

Hproof =Hout
proof + 2h

out
proof+O(log log T (n)+m logm)

≤Hout
proof · (1 + poly(log T (n),mm))

≤T (n) logΘ(m) T (n)/W out
proof .

Without loss of generality, we assume that Hproof is a power of two. We then define

hproof := logHproof = log T (n) + Θ(m log log T (n))− wproof .

• Decision complexity din(dout(n)) = poly(log log T (n)).
Now we determine the randomness complexity of the composed PCPP verifier. Note that

rshared = routshared + rin

= (7/m) log T (n) +O(log log T (n) +m logm) + (1/m) log T (n) +O(log log T (n))

= (8/m) log T (n) +O(log log T (n) +m logm),

rrow = routrow = hproof − (4/m) log T (n)−Θ(m log log T (n)) ≥ hproof − (5/m) log T (n),

rcol = routcol = wproof − (4/m) log T (n).

Since we can always move some portion of seed.row or seed.col into seed.shared, we can sim-
ply assume that rrow = hproof − (5/m) log T (n), rcol = wproof − (5/m) log T (n), and rshared =

(10/m) log T (n) +O(log log T (n) +m logm).
By Remark 5.1.10 and the fact that the decision predicate of V in is an OR of the answers

or their negations (see Theorem 5.2.3), we know that the total number of queries and parity-
check bits of V comp is at most 3, and that for every seed.shared, the decision predicate VDec←
V comp
dec (seed.shared) of V comp is an OR of its input bits (i.e., query answers and parity-check bits)

or their negations. Moreover, the query indices of V comp are computable by projections.

5.2.3 A 2-Query Rectangular PCPP with Imperfect Completeness

Following the construction in [CW19b, Appendix A], we can also construct a 2-query rect-
angular PCPP with a constant gap between the completeness and soundness parameters, using
the following classical gadget due to [GJS76].

Lemma 5.2.5. Let x1, x2, x3 ∈ {0, 1} be Boolean variables. If x1 ∨ x2 ∨ x3, then there is a
y ∈ {0, 1} such that at least 7 of the following 10 constraints are satisfied:

x1, x2, x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3, y, x1 ∨ y, x2 ∨ y, x3 ∨ y. (5.13)
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Otherwise, at most 6 of the constraints in (5.13) are satisfied for any y ∈ {0, 1}. Moreover,
every x1, x2, x3, y ∈ {0, 1} satisfies at most 7 of the above 10 constraints.

Theorem 5.2.6 (2-Query Rectangular PCPP). For every constant δ ∈ (0, 1), there are constants
0 < s < c < 1 such that the following holds. Let m = m(n), T (n), wproof(n), winput(n) be good
functions such that 1 ≤ m ≤ (log T (n))0.1, n ≤ T (n) ≤ 2poly(n), wproof(n) ≤ log T (n), and
winput(n) ≤ log n. Then there are good functions hproof(n) and hinput(n) satisfying

hproof(n) = log T (n) + Θ(m log log T (n))− wproof(n), and

hinput(n) = ⌈log n⌉ − winput(n),

such that the following holds.
Suppose that wproof , hproof ≥ (5/m) log T (n), and that for some absolute constant C ≥ 1,

winput(n)

wproof(n)
,
hinput(n)

hproof(n)
≤ 1− Cm log log T (n)

log T (n)
.

Let Wproof(n) := 2wproof(n), Hproof(n) := 2hproof(n), Winput(n) := 2winput(n), and Hinput(n) :=

2hinput(n). Then NTIME[T (n)] has a rectangular PCP of proximity with an Hproof(n)×Wproof(n)

proof matrix and an Hinput(n)×Winput(n) input matrix, whose other parameters are specified in
Table 5.7.

Moreover, given the randomness seed ∈ {0, 1}r, the total number of queries and parity-check
bits is at most 2, and the decision predicate VDec← Vdec(seed.shared) of the rectangular PCPP
verifier is an OR of the 2 input bits (including queries and parity-check bits) or their negations
for every seed.shared. Also, the query indices of this PCPP can be computed by projections.

Completeness error 1− c
Soundness error s

Proximity parameter δ

Row randomness hproof − (5/m) log T (n)

Column randomness wproof − (5/m) log T (n)

Shared randomness (10/m) log T (n) +O(log log T (n) +m logm)

Query complexity
2Parity check complexity

Decision complexity poly(log log T (n))

Table 5.7: Parameters of the PCPP constructed in Theorem 5.2.6.

Proof. Let δ ∈ (0, 1) be arbitrary. By Theorem 5.2.4, there is a rectangular PCPP verifier V 3q

with perfect completeness and parameters:
• Soundness error s3q ∈ (0, 1).
• Proximity parameter δ.
• Query complexity and parity-check complexity 3.
• Proof matrix size H3q

proof ×W
3q
proof , where W 3q

proof = 2w
3q
proof , H3q

proof = 2h
3q
proof , w3q

proof = wproof ,
and h3qproof = log T (n) + Θ(m log log T (n))− wproof(n).9

9Note that the final matrix height is hproof ≤ h3q
proof + O(log log T (n)), hence the technical requirement
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• Shared randomness complexity rshared = (10/m) log T (n) +O(log log T (n) +m logm).
• Row randomness complexity rrow = h3qproof − (5/m) log T (n).
• Column randomness complexity rcol = w3q

proof − (5/m) log T (n).
• Decision complexity poly(log log T (n)).

Let r3q := rrow + rcol + rshared be the length of total randomness. Moreover, we know that the
total number of queries and parity-check bits is at most 3, and that the decision circuit of V is
an OR of its input bits (i.e. the answers to the queries and parity-check bits) or their negations
after fixing the random seed. We will now combine V 3q and the gadget in Lemma 5.2.5 to
construct a 2-query PCPP.

Suppose, for the simplicity of presentation, that the PCPP verifier V always probes 2 bits
of the input and proof oracles, and has 1 parity-check bit. (The other cases can be considered
similarly and we omit the details.) Then the decision predicate VDec ← Vdec(seed.shared) for
every fixed seed.shared ∈ {0, 1}rshared is a function of the form

VDec(ans1, ans2, pc1(seed)) := (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3).

where b1, b2, b3 ∈ {0, 1}. The new PCPP verifier V is defined as follows.
• The proof of the new PCPP verifier V is the concatenation of the proof for V 3q and an
y : {0, 1}r3q → {0, 1} of length 2r

3q used as the additional variable y in Lemma 5.2.5.
• The randomness of V is the concatenation of the randomness seed for V 3q and a j ∈ [10].

Queries and parity-check bits. Assume that (seed, j) ∈ {0, 1}r3q × [10] is given as the
randomness. The verifier V first generates the indices i1, i2 of the queries to the input and proof
oracles (denoted by a single oracle Π for simplicity) and the parity-check function pc1. Instead of
making all these queries and doing the parity-check, we identify ans1⊕ b1, ans2⊕ b2, pc1(seed)⊕
b3, y(seed) with x1, x2, x3, y in the gadget given by Lemma 5.2.5, respectively, and query the j-th
gadget. (For instance, if j = 5, the corresponding constraint is x1∨x3, so that we will query the
i1-th of Π and compute the parity-check pc1; if j = 8, the constraint is x1 ∨ y, so that we will
query the i1-th bit of Π and the entry y(seed).) The decision predicate will accept if and only if
either the j-th constraint is satisfied when identifying ans1⊕ b1, ans2⊕ b2, pc1(seed)⊕ b3, y(seed)
with x1, x2, x3, y, respectively.

Completeness. For every input x ∈ L, by the completeness of V 3q, there is a proof oracle
Π3q

proof such that V 3q accepts given the oracle x ◦Π3q
proof with probability 1, which means that for

every seed ∈ {0, 1}r3q , the answers ans1, ans2 to the queries and the parity-check bits pc1(seed)
satisfies

VDec(ans1, ans2, pc1(seed)) = (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3) = 1.

By Lemma 5.2.5, there is an yseed such that at least 7 of the 10 constraints in the gadgets are
satisfied. This means that given the proof oracle Π3q

proof ◦ yseed, the verifier will accept with
probability at least 1− c where c := 3/10.

hinput(n)/h
3q
proof ≤ 1 − C′ log log T (n)/ log T (n) for large C′ holds, given the assumption that hinput(n)/hproof ≤

1−C log log T (n)/ log T (n) for large C, hproof ≥ (5/m) log T (n), and m ≤ (log T (n))0.1, as shown in Claim 5.1.20.
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Soundness. Assume that x ∈ {0, 1}n that is δ-far from being in L, and Πproof = Π3q
proof ◦ y is

any proof, where Π3q
proof is a proof for V 3q and y : {0, 1}r3q → {0, 1}. By the soundness of V 3q,

we know that for at least 1− s3q fraction of seed ∈ {0, 1}n,

VDec(ans1, ans2, pc1(seed)) = (ans1 ⊕ b1) ∨ (ans2 ⊕ b2) ∨ (pc1(seed)⊕ b3) = 0.

By Lemma 5.2.5, we can see that for these seed, the accept probability of V is at most 6/10,
whereas in other cases the accept probability of V is at most 7/10. Thus the accept probability
of V is at most s := (7/10) · s3q + (6/10) · (1− s3q) < c.

Rectangularity. Since we only need to introduce O(1) bits of randomness representing j ←
[10], we can put it into the shared randomness. We only need to show that the new proof
Π3q

proof ◦ y can be arranged as a matrix so that the queries can be done rectangularly.
Note that r3q = h3qproof + w3q

proof + O(log log T + m logm). Let hproof := r3q − W 3q
proof + 1

and Hproof := 2hproof . The final proof matrix will be the concatenation of two matrices of size
(2r

3q
/W 3q

proof)×W
3q
proof each. The first matrix contains the original H3q

proof ×W
3q
proof proof of V 3q

(that is, only the firstH3q
proof rows of this matrix will be queried; note thatH3q

proof ≤ (2r
3q
/W 3q

proof)).
The second matrix contains the truth table of y : {0, 1}r3q → {0, 1}. Recall that there are two
kinds of queries to the proof oracle.

1. If the query is to the proof oracle Π3q
proof of V 3q or to the input oracle, we can use the row

and column verifier of V 3q to generate the queries rectangularly.

2. Otherwise, the query is to the proof y(seed) for the randomness seed ∈ {0, 1}r of V 3q.
Then the column (resp. row) index of this query only depends on the lowest wproof bits
(resp. the highest r − wproof bits) of the random seed of V . Recall that the random seed
of V is the concatenation of seed and a j ∈ [10]. If we arrange the randomness as

seed.col ◦ seed.shared ◦ j ◦ seed.row,

then the lowest wproof bits (resp. the highest r − wproof bits) of the random seed only
depends on the (seed.col, seed.shared) (resp. (seed.shared, j, seed.row)), since

rcol = wproof − (5/m) log T (n) ≤ wproof

rcol + rshared = wproof + (5/m) log T (n) +O(log log n+m logm) ≥ wproof .

As a result, the queries can be done rectangularly. Clearly, in both cases, the query indices can
be computed by a projection.
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Chapter 6

Polynomial-Time Pseudodeterministic
Constructions

6.1 Introduction

How hard is it to construct an n-bit prime1? This is a fundamental problem in number theory
and in complexity theory. Under reasonable assumptions, the problem is solvable in deterministic
polynomial time. In more detail, Cramér’s conjecture [Cra36] in number theory asserts that
the largest prime gap in any consecutive sequence of n-bit numbers is O(n2). Assuming this
conjecture, we can solve the prime construction problem efficiently by testing the first O(n2)

integers greater than 2n−1 for primality and outputting the first one, where the primality tests
are done efficiently using the algorithm of Agrawal, Kayal, and Saxena [AKS04]. An independent
source of evidence for the efficiency of prime construction is the complexity-theoretic conjecture
that DTIME(2O(n)) requires Boolean circuits of exponential size on almost all input lengths.
Under this conjecture, we can use the Impagliazzo–Wigderson pseudorandom generator [IW97]
to derandomise the simple randomised algorithm that outputs a random n-bit number, using the
facts that primality testing is in polynomial time and that an Ω(1/n) fraction of n-bit numbers
are prime.

However, we seem very far from either settling Cramér’s conjecture or proving strong com-
plexity lower bounds. The best upper bound we can prove on the gap between consecutive
n-bit primes is 2(0.525+o(1))n [BHP01], and no super-linear circuit lower bounds are known for
DTIME(2O(n)) [LY22]. Indeed, the best unconditional result we have so far is that deterministic
prime construction can be done in time 2(0.5+o(1))n [LO87], which is very far from the polynomial-
time bound we seek. The Polymath 4 project (see [TCH12]) sought to improve this upper bound
using number-theoretic techniques but did not achieve an unconditional improvement.

In contrast to the situation with deterministic prime construction, it is easy to generate an
n-bit prime randomly, as mentioned above: simply generate a random n-bit number, test it for
primality in polynomial time, and output it if it is a prime. This algorithm has success probability
Ω(1/n) by the Prime Number Theorem, and the success probability can be amplified to be
exponentially close to 1 by repeating the process poly(n) times independently, and outputting
the first of these poly(n) numbers that is verified to be prime, assuming that there is at least

1Recall that a positive integer q is an n-bit prime if q is a prime number and 2n−1 ≤ q ≤ 2n − 1.
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one.
Gat and Goldwasser [GG11] asked whether it is possible to generate primes efficiently by a

randomised process, such that the output is essentially independent of the randomness of the
algorithm. In other words, is there a polynomial-time randomised algorithm, which on input
1n, constructs a canonical prime of length n with high probability? They call such an algorithm
a pseudodeterministic algorithm, since the output of the algorithm is (almost) deterministic
even though the algorithm might use random bits in its operation. Note that the randomised
algorithm for prime generation we described in the previous paragraph is very far from being
pseudodeterministic, as different runs of the algorithm are unlikely to produce the same prime.
It is easy to see that a pseudodeterministic construction serves as an intermediate notion between
a randomised construction (which is trivial for primes) and a deterministic construction (where
little progress has been made so far).

[GG11] initiated a general theory of pseudodeterminism for search problems, motivated by
applications in cryptography and distributed computing. Since then, there have been a num-
ber of papers on pseudodeterminism, in various contexts, such as query complexity [GGR13,
GIPS21, CDM23], streaming algorithms [GGMW20, BKKS23], parallel computation [GG17,
GG21], learning algorithms [OS18], Kolmogorov complexity [Oli19,LOS21], space-bounded com-
putation [GL19], proof systems [GGH18, GGH19], number theory and computational algebra
[Gro15,OS17b], approximation algorithms [DPV18], and many other settings (see, e.g., [BB18,
Gol25,DPV21,DPWV22,WDP+22,CPW23]).

Despite all this progress, the main problem about pseudodeterminism posed in [GG11] has
remained open: Is there a pseudodeterministic polynomial-time algorithm for prime construc-
tion? They describe this problem as “the most intriguing” and “perhaps the most compelling
challenge for finding a unique output”.

Unlike in the case of deterministic construction, number-theoretic techniques have so far not
proven useful for the pseudodeterministic construction problem for primes. Using complexity-
theoretic techniques, Oliveira and Santhanam [OS17b] (see also [LOS21]) showed that for any
ε > 0, there is an algorithm that runs in time 2n

ε and succeeds on infinitely many input lengths.

6.1.1 Our Results

We design a significantly faster algorithm and provide an affirmative answer to the question
posed by Gat and Goldwasser in the infinitely-often regime. Our main result can be stated in
full generality as follows.

Theorem 6.1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let
Q ⊆ {0, 1}∗ be a language with the following properties:

(Density.) there is a constant ρ ≥ 1 such that for every n ∈ N≥1, Qn := Q ∩ {0, 1}n satisfies
|Qn| ≥ n−ρ · 2n; and

(Easiness.) there is a deterministic polynomial-time algorithm AQ that decides whether an
input x ∈ {0, 1}∗ belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {xn}n∈N≥1
of n-bit

strings in Q such that the following conditions hold:
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1. On every input length n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n.

2. On infinitely many input lengths n ∈ N≥1, PrB[B(1n) = xn] ≥ 1− 2−n.

Interestingly, our construction is “non-black-box”, in the sense that changing the code of the
algorithm AQ deciding property Q affects the canonical output of the corresponding algorithm
B. We will revisit this point when we discuss our techniques (see the remark at the end of
Section 6.1.3).

Letting Q be the set of prime numbers and noticing that Q is both dense (by the Prime
Number Theorem) and easy (by the AKS primality test [AKS04]), we immediately obtain the
following corollary of Theorem 6.1.1.

Corollary 6.1.2 (Infinitely-Often Polynomial-Time Pseudodeterministic Construction of Primes).
There is a randomised polynomial-time algorithm B such that, for infinitely many values of n,
B(1n) outputs a canonical n-bit prime pn with high probability.

Corollary 6.1.2 improves upon the subexponential-time infinitely-often pseudodeterministic
construction of primes from [OS17b] mentioned above. Note that the result for prime construc-
tion is a corollary of a far more general result about properties that are dense and easy. This is
evidence of the surprising power of complexity theory when applied to a problem which seems
to be about number theory (but where number-theoretic techniques have not so far been effec-
tive). The famous efficient primality testing algorithm of [AKS04] similarly applied complexity-
theoretic derandomisation ideas to solve a longstanding open problem in computational number
theory, though their argument does require more information about primes.

For a string w ∈ {0, 1}∗ and t : N → N, we let rKt(w) denote the length of the smallest
randomised program that runs for at most t(|w|) steps and outputs w with probability at least
2/3. (We refer to [LO22] for a formal definition and for an introduction to probabilistic no-
tions of time-bounded Kolmogorov complexity.) By encoding the (constant-size) randomised
polynomial-time algorithm B and each good input length n using O(1) + log n bits in total, the
following result holds.

Corollary 6.1.3 (Infinitely Many Primes with Efficient Succinct Descriptions). There is a
constant c ≥ 1 such that, for t(n) = nc, the following holds. For every m ≥ 1, there is n > m

and an n-bit prime pn such that rKt(pn) ≤ log(n) +O(1).

In other words, there are infinitely many primes that admit very short efficient descriptions.
The bound in Corollary 6.1.3 improves upon the sub-polynomial bound on rKpoly(pn) from
[LOS21].

In the next subsection, we describe at a high level the ideas in the proof of Theorem 6.1.1
and how they relate to previous work.

6.1.2 Proof Ideas

The proof of Theorem 6.1.1 relies on uniform hardness-randomness trade-offs [IW01,TV07].
For concreteness, assume that Q = {Qn}n∈N≥1

, with each Qn ⊆ {0, 1}n consisting of the set of
n-bit prime numbers. Let AQ be a deterministic polynomial-time algorithm that decides Q (e.g.,
AQ is the AKS primality test algorithm [AKS04]). Before we present our algorithm and the main
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ideas underlying our result, it is instructive to discuss the approach of [OS17b], which provides
a subexponential-time pseudodeterministic construction that succeeds on infinitely many input
lengths.

Subexponential-time constructions of [OS17b]. We first recall how uniform hardness-
randomness trade-offs work. Given a presumed hard language L, a uniform hardness-randomness
trade-off for L states that either L is easy for probabilistic polynomial-time algorithms, or else
we can build a pseudorandom set Gn ⊆ {0, 1}n computable in subexponential time (thus also has
subexponential size), which fools probabilistic polynomial-time algorithms on inputs of length
n (for infinitely many n). In particular, Trevisan and Vadhan [TV07] give a uniform hardness-
randomness trade-off for a PSPACE-complete language LTV they construct, which has certain
special properties tailored to uniform hardness-randomness trade-offs.2

The subexponential-time construction in [OS17b] uses a win-win argument to derive an
unconditional pseudodeterministic algorithm from the uniform hardness-randomness trade-off
of [TV07]. There are two cases: either LTV ∈ BPP, or it is not. If the former is the case, then
PSPACE ⊆ BPP by the PSPACE-completeness of LTV. Now, since we can in polynomial space test
all n-bit numbers using AQ until we find the lexicographic first prime number, we can also do it in
randomised polynomial time, i.e., there is a randomised algorithm B(1n) that runs in polynomial
time and outputs the lexicographically first n-bit prime with high probability. Thus, in this
case, the lexicographically first n-bit prime is the “canonical” output of the pseudodeterministic
algorithm, and the algorithm works on every input length n.

Suppose, on the other hand, that LTV ̸∈ BPP. Using the uniform hardness-randomness
trade-off of [TV07], we have that for each ε > 0, there is a pseudorandom set G = {Gn},
where each Gn ⊆ {0, 1}n is of size at most 2n

ε , such that for infinitely many n, Gn fools the
algorithm AQ on inputs of length n. Since AQ accepts an Ω(1/n) fraction of strings of length
n by the Prime Number Theorem, we have that the fraction of strings in Gn that are prime
is Ω(1/n) (by choosing the error parameter of the uniform hardness-randomness trade-off to
be small enough). In particular, there must exist an element of Gn that is prime. Since Gn is
computable in subexponential time, we can define a subexponential time deterministic algorithm
that enumerates elements of Gn and tests each one for primality until it finds and outputs one
that is prime. This algorithm is deterministic, but it runs in subexponential time, and is only
guaranteed to be correct for infinitely many n.

Thus, in either case, we have a pseudodeterministic algorithm for constructing primes that
runs in subexponential time and works infinitely often. Note that we do not know a priori which
of the two cases above holds, and therefore the argument is somewhat non-constructive. By
exploiting further properties of the uniform hardness-randomness trade-off, [OS17b] managed to
give an explicit construction algorithm that runs in subexponential time infinitely often.

Win-win arguments. The above argument gives a subexponential-time construction, but
the win-win structure of the argument seems incapable of giving an optimal polynomial-time
construction. Indeed, this is the case for many win-win arguments used in complexity theory:

2For the pseudorandomness experts, these special properties are downward self-reducibility and random self-
reducibility.
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• A win-win argument based on the Karp–Lipton theorem [KL80] gives that Σ2EXP re-
quires super-polynomial size Boolean circuits [Kan82], but seems incapable of giving truly
exponential (2Ω(n)) Boolean circuit lower bounds.3

• A win-win argument based on uniform hardness-randomness trade-offs gives that either
E ⊆ BPP or BPP can be simulated infinitely often in deterministic subexponential time
on average [IW01], but it remains unknown if such a trade-off holds at the “high end”, i.e.,
whether it is the case that either E is in probabilistic subexponential-time or else BPP can
be simulated infinitely often in deterministic polynomial time on average.

• A win-win argument based on the Easy Witness Lemma gives that if NEXP ⊆ SIZE(poly),
then NEXP = MA [IKW02], but it is unknown if any interesting uniform collapse follows
from the simulation of NEXP by subexponential-size Boolean circuits.

In each of these cases, the win-win argument seems to have inherent limitations that prevent us
from getting optimal lower bounds or trade-offs. Indeed, a paper by Miltersen, Vinodchandran,
and Watanabe [MVW99] studies the “fractional exponential” lower bounds that seem to be
the best provable using win-win arguments in the context of Boolean circuit lower bounds for
exponential-time classes.4

Thus, in order to obtain a polynomial-time pseudodeterministic algorithm for primality, it
seems that we need to go beyond win-win arguments. One natural idea is to apply uniform
hardness-randomness trade-offs recursively. However, this seems hard to do with the uniform
hardness-randomness trade-off of [TV07]. Their trade-off applies only to the special language
LTV. If we argue based on the hardness or other properties of LTV, then in the case where
LTV ∈ BPP, we get a pseudodeterministic polynomial-time algorithm for constructing primes,
but in the case where LTV ̸∈ BPP, we get a subexponential-time constructible pseudorandom
set, and it is unclear how to apply the uniform hardness-randomness trade-off to the algorithm
for constructing this set.

Recursive application of uniform hardness-randomness trade-offs. One of our main
ideas is to exploit very recent work on uniform hardness-randomness trade-offs [CT21a] which
applies to generic computations, as long as they satisfy certain mild properties. These trade-offs
yield hitting sets rather than pseudorandom sets based on hardness — a hitting set H ⊆ {0, 1}M
is a set that has non-empty intersection with every QM ⊆ {0, 1}M that is dense (i.e., accepts
at least a 1/poly(M) fraction of strings) and is efficiently computable. It turns out that for
our application to pseudodeterministic algorithms, uniform hardness-randomness trade-offs that
yield hitting sets are sufficient.

Specifically, Chen and Tell [CT21a] show that for any multi-output function f : {1n} →
{0, 1}n computed by uniform Boolean circuits of size T = T (n) and depth d = d(n), either there

3Partially inspired by our results, subsequent works [CHR24,Li24] proved near-maximum circuit lower bounds
for the classes Σ2E and S2E.

4For example, a function f : N → N is sub-half-exponential if f(f(n)c)c ≤ O(2n) for every constant c. (The
exact definition of sub-half-exponential functions may be different in different papers.) Functions such as nk

and 2log
k n are sub-half-exponential, while 2εn and 2n

ε

are not. It is known that Σ2EXP cannot be computed
by f(n)-size circuits for every sub-half-exponential f , but it remains open to show that Σ2EXP requires circuit
complexity 2n

ε

for any constant ε > 0.
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is a hitting set H ⊆ {0, 1}M computable in time poly(T ), or f(1n) can be computed with high
probability in time (d+n) ·poly(M) (which could be much less than T ). Note that this trade-off
is applicable to any multi-output function f given bounds on its uniform circuit complexity.

Our key idea is that this more generic uniform hardness-randomness trade-off can be applied
recursively. Indeed, we apply it to multi-output functions which capture the very task we are
trying to solve, i.e., constructing a prime! In our base case, we use the function f which does a
brute-force search over n-bit numbers and outputs the lexicographically first one that is prime.
This function can be computed by uniform Boolean circuits of size 2O(n) and depth poly(n),
and hence we can apply the Chen–Tell trade-off to it. We set M = nβ for some large enough
constant β > 1 in the trade-off. If we have that f(1n) is computable with high probability in
time (d + n) · poly(M), then we are done, since this gives us a pseudodeterministic algorithm
for primes at length n. If not, we have that there is a hitting set H ⊆ {0, 1}nβ computable in
time 2O(n). In particular, by iterating over the elements of H and outputting the first one that is
prime, we gain over the naïve brute-force search algorithm, since we are now outputting a prime
of length nβ in time 2O(n). Now this new algorithm can be captured by a multi-output function
with output length nβ to which we apply the Chen–Tell trade-off again. In each recursive step,
either we obtain a pseudodeterministic polynomial-time construction of primes, or we obtain a
significantly faster deterministic construction of primes (of a larger input length). Intuitively,
analyzing this process after O(log n) steps of recursion, we can hope to show that at least
one of the steps leads to a polynomial-time pseudodeterministic algorithm at the input length
considered at that step.

This doesn’t quite work as stated because the Chen–Tell trade-off uses the Nisan–Wigderson
generator [NW94], which is not known to have optimal parameters for all levels of hardness.5

Our recursive process explores essentially all possible levels of hardness for the uniform hardness-
randomness trade-off, since each recursive step corresponds to a different level of hardness. Using
the original Chen–Tell trade-off gives a quasi-polynomial-time pseudodeterministic construction,
but in order to get a polynomial-time pseudodeterministic construction, we need to work harder.

Another crucial idea for us is to optimise the Chen–Tell trade-off by using the Shaltiel–Umans
generator [SU05] rather than the Nisan–Wigderson generator. This idea comes with its own
implementation challenges, since the Shaltiel–Umans generator is not known to possess a crucial
learnability property required for the uniform hardness-randomness trade-off. We sidestep this
issue using a further win-win analysis, together with some other tricks; see Section 6.1.3 for
details. This enables us to achieve an optimal polynomial-time pseudodeterministic construction
on infinitely many input lengths, and thereby establish Theorem 6.1.1.6 We note that the
subexponential-time construction of [OS17b] also only works for infinitely many input lengths,
and it is still open even to get a subexponential-time construction that works on all input lengths.

The intuitive description here does not address several subtleties that arise in the proof, such
as maintaining the right uniformity and depth conditions when recursively applying the uniform
hardness-randomness trade-off. We refer to Section 6.1.3 for a more detailed discussion of such

5Informally speaking, given a “hard truth table” of length T , we want to construct a hitting set H ⊆ {0, 1}M

in poly(T ) time; however, the Nisan–Wigderson generator requires 2Θ(log2 T/ logM) time to construct.
6While we do not explore this direction in the current work, we believe that our improvement on the Chen-Tell

trade-off can be used to improve the trade-off from [CRT22, Theorem 5.2 and Theorem 5.3], thus getting a better
uniform hardness vs randomness connection in the low-end regime.
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matters.

6.1.3 Technical Overview

As explained above, we consider a chain of t = O(log n) recursively defined (candidate) HSGs
H0,H1, . . . ,Ht operating over different input lengths. These HSGs are obtained from the recent
construction by Chen and Tell [CT21a], which we informally describe next. Recall that we use
QM to denote the easy and dense property over inputs of length M .

The Chen–Tell [CT21a] targeted HSG (“ideal version”). Let c ≥ 1 be a large enough
constant, and let f : {1n} → {0, 1}n be a family of unary functions computed by (uniform)
Boolean circuits of size T = T (n) and depth d = d(n). Then, for every log T ≤M ≤ T there is
a set H ⊆ {0, 1}M computable in

time T̃ := T c and depth d̃ := d · log(T ) +M c

such that, if QM ⊆ {0, 1}M avoids H, (i.e., QM is dense but QM ∩H = ∅), then we can compute
f(1n) with high probability in time (d+ n) ·M c.

In other words, if f admits low-depth circuits, we can construct a candidate HSG H over
length-M inputs such that breaking the generator H allows us to compute f(1n) in poly(n, d,M)

time. For d,M ≪ T , this can be much faster than the original time T required to compute f .
The statement above differs from the results in [CT21a] (stated for unary functions) in two

important ways. First, the claimed upper bound on T̃ (the running time of the HSG) is not
obtained by [CT21a] for all choices of M . Secondly, we have not formally specified the uniformity
of the family of circuits computing f . While these are crucial points in [CT21a] and when proving
our result, for simplicity, we will assume for now that this upper bound can be achieved and
omit the discussion on uniformity.

Bootstrapping the win-win argument. We now review the idea discussed in Section 6.1.2,
using notations that will be more convenient for the remainder of this technical overview. Fix
an arbitrary n ∈ N≥1, and consider the corresponding property Qn ⊆ {0, 1}n decided by AQ(x)

on inputs of length n. Our initial H0 is trivial and set to {0, 1}n. (Intuitively, this corresponds
to the first case of the [OS17b] argument sketched above where LTV ∈ BPP.) Consider now a
“brute-force” algorithm BF(1n) that computes the first x ∈ H0 such that AQ(x) = 1. We let
f(1n) := BF(1n) in the Chen–Tell HSG. Note that f(1n) can be uniformly computed in time
T = 2O(n) and depth d = poly(n), since AQ(x) runs in polynomial time and all elements of H0

can be tested in parallel. We set M(n) := nβ , where β > 1 is a large enough constant. Let
H1 ⊆ {0, 1}M be the candidate HSG provided by Chen–Tell. Note that H1 can be computed in
time T̃ = 2O(n) and depth d̃ = poly(n).

Next, we consider a win-win argument based on whether QM avoids H1. If this is the case,
then Chen–Tell guarantees that we can compute f(1n) = BF(1n) ∈ Qn with high probability in
time (d+n) ·M c = poly(n). In other words, we can pseudodeterministically produce a string in
Qn in polynomial time. On the other hand, if H1 ∩QM ̸= ∅, we now have a set H1 of strings of
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length M = nβ that contains a string in QM and that can be deterministically computed in time
2O(n). That is, we are back to the former case, except that we can compute H1 (a set containing
at least one M -bit prime) in time much faster than 2O(M). Crucially, in contrast to the ap-
proach of [OS17b], the Chen–Tell HSG does not limit us to the use of the special language LTV,
effectively allowing us to reapply the same argument (with a speedup) over a larger input length.

In the next subsection, we discuss the “bootstrapping” and its parameters in more detail, and
explain how it yields a polynomial-time pseudodeterministic construction, assuming we have the
ideal version of [CT21a] described above.

Infinitely-Often Pseudodeterministic Polynomial-Time Constructions

Let n0 ∈ N be an “initial” input length, and t = O(log n0) be a parameter. For each 1 ≤ i ≤ t,
we define the i-th input length to be ni := nβi−1, for a large enough constant β > 1. Our goal
is to design a pseudodeterministic algorithm for finding elements in Q that will be correct on at
least one of the input lengths n0, n1, . . . , nt. On each input length ni we will have:

1. the property Qni that we want to hit;

2. a candidate hitting set generator Hi ⊆ {0, 1}ni ; and

3. the brute-force algorithm BFi : {1ni} → {0, 1}ni , which iterates through all elements in Hi

and outputs the first element that is in Qni .

Note that BFi is completely defined by Hi. Suppose that Hi can be computed (determin-
istically) in time Ti and depth di, then BFi can also be computed (deterministically) in time
T ′i := Ti · poly(ni) and depth d′i := di · poly(ni). As discussed above, initially, H0 := {0, 1}n0 is
the trivial hitting set generator, T0 := 2O(n0), and d0 := poly(n0).

For each 0 ≤ i < t, we let f(1ni) := BFi,M := ni+1, and invoke the Chen–Tell HSG to
obtain the HSG Hi+1 ⊆ {0, 1}ni+1 . Recall that Chen–Tell guarantees the following: Suppose
that QM = Qni+1 avoids the HSG Hi+1, then one can use Qni+1 to compute f(1ni) with high
probability in time poly(d′i, ni,M) ≤ poly(di, ni), by our choice of parameters. Recall that if Hi

indeed hits Qni , then f(1ni) implements the brute-force algorithm and outputs the first element
in Hi ∩ Qni (i.e., a canonical element in Qni). To reiterate, Chen–Tell gives us the following
win-win condition:

• either Qni+1 avoids Hi+1, in which case we obtain a probabilistic algorithm that outputs
a canonical element in Qni (thus a pseudodeterministic algorithm) in poly(di, ni) time;

• or Hi+1 hits Qni+1 , in which case we obtain a hitting set Hi+1 that hits Qni+1 , thereby
making progress on input length ni+1.

The HSG Hi+1 can be computed in time Ti+1 := (T ′i )
c and depth di+1 := d′i · log T ′i + nci+1.

Crucially, although T0 is exponential in n0, it is possible to show by picking a large enough
β > 1 that the sequence {ni}i∈N grows faster than the sequence {Ti}i∈N, and eventually when
i = t = O(log n0), it will be the case that Tt ≤ poly(nt) and we can apply the brute-force
algorithm to find the first element in Ht that is in Qnt in time polynomial in nt.
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A more precise treatment of the growth of the two sequences {ni} and {Ti} is as follows.
There is some absolute constant α ≥ 1 such that T0 ≤ 2αn0 and

Ti+1 ≤ Tα
i (for each 0 ≤ i < t).

We set β := 2α (recall that each ni+1 = nβi ). It follows from induction that for each 0 ≤ i ≤ t,

Ti+1 ≤ Tαi

0 = 2α
i+1n0 and ni+1 = nβi = nβ

i+1

0 = n
(2α)i+1

0 .

Since
log Tt
log nt

≤ αtn0
(2α)t log n0

=
n0

2t log n0
,

it follows that when t ≈ log(n0/ log n0), Tt will be comparable to nt (rather than 2nt). Similarly,
one can show that di ≤ poly(ni) for every i ≤ t.

Informal description of the algorithm and correctness. To wrap up, we arrive at the
following pseudodeterministic algorithm that is correct on at least one of the input lengths
n0, n1, . . . , nt. On input length ni, if i = t, then we use poly(Tt) ≤ poly(nt) time to find the
first string in Hi that is also in Qni (i.e., simulate BFi); otherwise, use Qni+1 as a distinguisher
for the Chen–Tell hitting set Hi and print the output of BFi in poly(ni, di) ≤ poly(ni) time. To
see that our algorithm succeeds on at least one ni, consider the following two cases:

1. Suppose that Ht indeed hits Qnt . Then, clearly, our algorithm succeeds on input length
nt.

2. On the other hand, suppose that Ht does not hit Qnt . Since our trivial HSG H0 hits Qn0 ,
there exists an index 0 ≤ i < t such that Hi hits Qni but Qni+1 avoids Hi+1.

Since Qni+1 avoids Hi+1, Chen–Tell guarantees that we can speed up the computation of
BFi using Qni+1 as an oracle. Since Hi hits Qni , the output of BFi is indeed a canonical
element in Qni . It follows that our algorithm succeeds on input length ni.

This completes the sketch of the algorithm and its correctness. We note that while this ex-
position explains how the second bullet of Theorem 6.1.1 is achieved, it does not address the
behavior of the algorithm on other input lengths (i.e., the first bullet in the same statement).
For simplicity, we omit this here and refer to the formal presentation in Section 6.3.7

While the aforementioned construction conveys the gist of our approach, there are two im-
portant issues with our presentation. Firstly, as explained before, the results of [CT21a] do not
achieve the ideal parameters of the HSG stated above. Secondly, we have only vaguely discussed
the circuit uniformity of the function f(1n). The uniformity of f is critical for the reconstruction
procedure of [CT21a] to run in time comparable to the circuit depth of f . On the other hand,
since our HSGs and functions f (corresponding to the algorithm BF) are recursively defined, the
circuit uniformity of the [CT21a] generator itself becomes another critical complexity measure
in the proof.

7Alternatively, the guarantee from the first bullet of Theorem 6.1.1 can always be achieved via a general
argument. We refer to [OS17b, Proposition 2] for the details.
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In the next subsection, we discuss the Chen–Tell generator in more detail and explain how
to obtain an improved generator construction satisfying our requirements.

Improving the Chen–Tell Targeted Hitting Set Generator

The uniform hardness-to-randomness framework of Chen–Tell builds on two important in-
gredients:8

1. A layered-polynomial representation of a shallow uniform circuit.

2. A hitting set generator with a uniform learning reconstruction algorithm.

Layered-polynomial representation. We now discuss the first ingredient. Let f : {0, 1}n →
{0, 1}n be a logspace-uniform circuit family of size T (n) and depth d(n).9 Let M : N → N be
the parameter for output length. Building on the doubly efficient interactive proof system
by [GKR15] (and its subsequent simplification by [Gol17]), for any z ∈ {0, 1}n, [CT21a] showed
that there is a sequence of polynomials {P z

i }i∈[d′] for d′ = d · polylog(T ) with the following nice
properties:

• (Arithmetic setting.) Let F be a finite field of size M c for a large universal constant
c > 1, and let m be of order log T

logM . All the P z
i map Fm to F and have total degree at most

M .

• (Base case.) There is an algorithm Base such that, given the input z ∈ {0, 1}n and
w⃗ ∈ Fm, computes P z

1 (w⃗) in poly(M) time.

• (Downward self-reducibility.) There is an oracle algorithm DSR that, given input
i ∈ {2, . . . , d′} and w⃗ ∈ Fm, together with the oracle access to P z

i−1(·), computes P z
i (w⃗) in

poly(M) time.

• (Faithful representation.) There is an oracle algorithm OUT that, given input i ∈ [n]

and oracle access to P z
d′ , outputs f(z)i in poly(M) time.

Intuitively, these polynomials form an encoded version of the computation of f in the sense
that they admit both downward self-reducibility and random self-reducibility : every P z

i has low
degree and hence admits error correction properties; downward self-reducibility follows from the
definition.

We note that the proof of this result depends in a crucial way on the logspace-uniformity
of the circuit family computing f . (This allows one to arithmetise a formula of bounded size
that computes the direct connection language of the circuit, while also controlling the circuit
uniformity of the resulting polynomials.)

8Below we will focus on the high-level picture of the Chen–Tell framework without diving into too many
details. Our presentation is also somewhat different from the original presentation in [CT21a].

9Intuitively, a circuit family is logspace-uniform if each circuit in the family can be printed by a fixed machine
that runs in space that is of logarithmic order in the size of the circuits. See Section 6.2.3 for the precise definition
of logspace-uniform circuits.
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Hitting set generators with a uniform learning reconstruction algorithm. The second
ingredient of [CT21a] is the Nisan–Wigderson generator combined with Reed–Muller codes [NW94,
STV01]. The most important property of this generator is that it supports a uniform learning
reconstruction algorithm. In more detail, for a polynomial P : Fm → F, the generator NWP takes
s = O

(
log2 T
logM

)
bits as seed, such that there is a uniform oracle algorithm R (for “reconstruction”)

where the following holds. Given oracle access to both P and an oracle D : {0, 1}M → {0, 1}
that distinguishes NWP (Us) from the uniform distribution, RP,D runs in poly(M) time and with
high probability outputs a polynomial-size D-oracle circuit that computes P .

Now, the hitting set Hf (z) is defined as

Hf (z) :=
⋃

i∈[d′]

NWP z
i .

The uniform reconstruction algorithm. One key observation here is that if a distinguisher
D : {0, 1}M → {0, 1} avoids Hf (z), meaning that D accepts a large fraction of inputs from
{0, 1}M but rejects all strings in Hf (z), then clearly D also distinguishes all NWP z

i (Us) from
the uniform distribution. Following [IW01], [CT21a] then shows that there is a uniform oracle
algorithm Rf that takes input z ∈ {0, 1}n and any “avoider” D of Hf (z) as oracle, and outputs
f(z) with high probability. In more detail, Rf works as follows:

1. It is given input z ∈ {0, 1}n and oracle access to an avoider D : {0, 1}M → {0, 1} of Hf (z).

2. For every i ∈ {2, . . . , d′}:

(a) The goal of the i-th step is to construct a poly(M)-size D-oracle circuit Ci that
computes P z

i .

(b) It runs the learning reconstruction algorithm RP z
i ,D to obtain a poly(M)-sizeD-oracle

circuit. To answer queries to P z
i , we first run the algorithm DSR to convert them into

queries to P z
i−1. Next, when i = 2, we answer these queries by calling Base directly,

and when i > 2, we answer these queries by evaluating our D-oracle circuit Ci−1.

3. For every i ∈ [n], output OUTCD
d′ (i).

Issue with the original Chen–Tell construction: Super-logarithmic seed length of
NW. The main issue with the construction above is that NWP z

i has seed length O
(
log2 T
logM

)
. In

particular, this means that when logM ≤ o(log T ), the hitting set Hf (z) has super-polynomial
size, and therefore cannot be computed in poly(T ) time as in the “ideal version” of [CT21a]
stated above.10 Hence, to improve the computation time of Hf (z) to poly(T ), we need an
HSG with seed length O(log T ) for all possible values of M , together with a uniform learning
reconstruction, when it is instantiated with polynomials. Jumping ahead, we will replace NW

with the Shaltiel–Umans Hitting Set Generator [SU05], obtaining an optimised version of the
Chen–Tell generator with better parameters. However, the original generator from [SU05] does

10Indeed, if we rely on the original Chen–Tell construction to implement the bootstrapping method described
above, we would only obtain a quasi-polynomial-time pseudodeterministic construction, instead of a polynomial-
time one.
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not provide a uniform learning reconstruction procedure. By using the classical construction
of a cryptographic pseudorandom generator from a one-way permutation and another idea, we
manage to modify their construction to allow a uniform learning reconstruction. See the next
subsection for more details.

Controlling the circuit uniformity of the optimised Chen–Tell generator. As stressed
above, in order to construct a layered-polynomial representation for f with the aforementioned
parameters, it is crucial that f admits a logspace-uniform circuit family. Since we will rely
on multiple applications of the generator, and each new function BF on which the result is
invoked contains as a subroutine the code of the previous generator, we must upper bound the
circuit uniformity of our optimised Chen–Tell generator. This turns out to require a delicate
manipulation of all circuits involved in the proof and of the Turing machines that produce
them, including the components of the Shaltiel–Umans generator. For this reason, whenever
we talk about a Boolean circuit in the actual proof, we also bound the description length
and space complexity of its corresponding machine. Additionally, as we manipulate a super-
constant number of circuits (and their corresponding machines) in our construction, we will also
consider the complexity of producing the code of a machine M2 encoding a circuit C2 from the
code of a machine M1 encoding a circuit C1 (see, e.g., the “Moreover” part in the statement of
Theorem 6.3.1). The details are quite tedious, but they are necessary for verifying the correctness
and running time of our algorithm. In order to provide some intuition for it, we notice that as
we move from the HSG Hi to Hi+1, we also increase the corresponding input length parameter
from ni to ni+1 = nβi . While there is an increase in the uniformity complexity, it remains
bounded relative to the new input length. (Think of a truncated geometric series whose value is
dominated by the complexity over the current input length.) We omit the details in this proof
overview.

Non-black-box behavior. We note that the recursive application of the Chen–Tell genera-
tor is responsible for the fully non-black-box behavior of our pseudodeterministic construction.
Indeed, since we invoke the Chen–Tell generator on each function BF (which contains the code
of the algorithm AQ deciding property Q as a subroutine), the collection of strings in the hitting
set generator depends on the layered-polynomial representation that is obtained from the code
of BF. As a consequence, our construction has the unusual feature that the canonical outputs
of the algorithm B in Theorem 6.1.1 are affected by the code of AQ. In other words, by using
a different primality test algorithm (or by making changes to the code implementing the AKS
routine), one might get a different n-bit prime!

The parameters of our hitting set generator appear in Section 6.3. The proof of the result is
given in Section 6.5.

Modified Shaltiel–Umans Generator with Uniform Learning Reconstruction

As explained above, in order to complete the proof of Theorem 6.1.1 we need to design a
variant of the Shaltiel–Umans generator [SU05] with a uniform learning reconstruction proce-
dure.
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The Shaltiel–Umans generator takes as input a low-degree polynomial P : Fm
p → Fp (in our

case, p will be a power of 2) and produces a set of binary strings (which is supposed to be a
hitting set). The construction of this generator also relies on “generator matrices”. A matrix
A ∈ Fm×m

p is a generator matrix if it satisfies {Ai · 1⃗}1≤i<pm = Fm
p \ {⃗0}. Roughly put, the

matrix A can be thought of as performing multiplication with a generator of the multiplicative
group of Fpm .

Recall that a generator has a uniform learning reconstruction algorithm if the following holds.
Given an algorithm D that avoids the output of the generator constructed using P , as well as P
itself, we can uniformly and efficiently generate (with high probability) a D-oracle circuit that
computes the polynomial P . (In other words, we can query P while producing the circuit, but
the circuit itself does not have access to P .)

However, the reconstruction procedure provided by the original Shaltiel–Umans generator
only guarantees the following: If the generator is constructed using P and some generator matrix
A, then using an algorithm D that avoids the output of the generator, and given the matrix A

and oracle access to P , one can obtain a (D-oracle) circuit C : [pm − 1] → Fm
p such that

C(i) = P (Ai · 1⃗).11 (For the precise statement, see Theorem 6.4.9.) That is, this reconstruction
is not a uniform learning algorithm in the following sense:

1. It needs to know the matrix A (which can be viewed as non-uniform advice).

2. Given oracle access to P , it only learns a circuit that computes the mapping i 7→ P (Ai · 1⃗),
instead of a circuit that computes P (x⃗) on a given x⃗ ∈ Fm

p .

We now describe how to modify the Shaltiel–Umans generator to make its reconstruction a
uniform learning algorithm.

For the first issue, our idea is that, instead of using a generator matrix that is obtained by
brute-force search as in the original construction (we note that the reconstruction cannot afford
to perform the brute-force search due to its time constraints), we will use a generator matrix that
is from a small set of matrices that can be constructed efficiently. More specifically, using results
about finding primitive roots of finite fields (e.g., [Sho92]), we show that one can efficiently and
deterministically construct a set S of matrices that contains at least one generator matrix. The
advantage is that the reconstruction algorithm can still afford to compute this set S. Note that
although we don’t know which matrix in S is a valid generator matrix (as verifying whether a
matrix is a generator matrix requires too much time), we can try all the matrices from S, and
one of them will be the correct one. This allows us to obtain a list of candidate circuits, one of
which computes P (provided that we can also handle the second issue, which will be discussed
next). Then, by selecting from the list a circuit that is sufficiently close to P (note that given
oracle access to P , we can easily test whether a circuit is close to P by sampling) and by using
the self-correction property of low-degree polynomials, we can obtain a circuit that computes P
exactly.

With the above idea, we may now assume that in the reconstruction we know the generator
matrix A used by the Shaltiel–Umans generator. Next, we describe how to handle the second
issue. Recall that the reconstruction algorithm of the Shaltiel–Umans generator gives a circuit

11In fact, the circuit only computes P (Ai · v⃗) for some v⃗ output by the reconstruction algorithm. We assume
v⃗ = 1⃗ here for simplicity.
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C such that C(i) = P (Ai · 1⃗), for i ∈ [pm − 1], and we want instead a circuit that given x⃗ ∈ Fm
p

computes P (x⃗). Now suppose given x⃗ ∈ Fm
p \ {⃗0}, we can also efficiently compute the value

i ∈ [pm− 1] such that Ai · 1⃗ = x⃗. Then we would be able to combine this with C to get a circuit
E that computes P , i.e., if x⃗ = 0⃗ then E outputs P (⃗0) (where the value P (⃗0) can be hardcoded);
otherwise, E computes i for x⃗ as described above and then outputs C(i). However, the task of
finding such i given A and x⃗ is essentially the discrete logarithm problem, for which no efficient
algorithm is known!

A classical result in cryptography is that one can construct a pseudorandom generator based
on the hardness of the discrete logarithm problem (see, e.g., [BM84, Yao82]). More generally,
given a permutation f whose inverse admits random self-reducibility12, one can construct a
generator G based on f so that if there is a distinguisher D that breaks G, then it can be used to
invert f via a uniform reduction. Our idea is to consider the bijection f : [pm−1]→ Fm

p \{⃗0} such
that for each i ∈ [pm − 1], f(i) = Ai · 1⃗ (where the random self-reducibility of f−1 follows easily
from that of the discrete logarithm problem), and try to construct a pseudorandom generator
G based on f . We then combine the output of G with that of the Shaltiel–Umans generator
constructed with the polynomial P and the generator matrix A. Now if there is an algorithm D

that avoids this combined generator, which means D simultaneously avoids both the Shaltiel–
Umans generator and the generator G, then D can be used to obtain

• a circuit C such that C(i) = P (Ai · 1⃗) for every i ∈ [pm − 1], and

• a circuit C ′ that inverts f , i.e., C ′(x⃗) outputs i such that Ai · 1⃗ = x⃗ for every x⃗ ∈ Fm
p \ {⃗0}.

Then it is easy to combine C and C ′ to obtain a circuit that computes P .
A careful implementation of these ideas allows us to obtain a variant of the Shaltiel–Umans

generator with uniform learning reconstruction, as needed in our optimised Chen–Tell generator.
We refer to Theorem 6.4.1 in Section 6.4 for more details.

This completes the sketch of the proof of Theorem 6.1.1.

Further remarks about the proof. We note that in our proof the gap between two good
input lengths on which the algorithm outputs a canonical prime can be exponentially large. It
would be interesting to develop techniques to reduce this gap.

Additionally, the proof assumes the existence of a deterministic polynomial-time algorithm
that decides the dense property. In contrast, the subexponential time algorithm from [OS17b]
also works with a dense property that is decidable by a randomised polynomial-time algorithm.
This is caused by the non-black-box nature of our approach via the Chen-Tell generator, which
employs the code of the algorithm A deciding the property as part of the description of the
generator. Consequently, as alluded to above, changing the code of A could result in a different
canonical output on a given input length. If A is randomised, fixing the randomness of A is
similar to the consideration of a different algorithm that decides the property, and it is not
immediately clear how to maintain the pseudodeterministic behaviour in this case.

12Roughly speaking, a function has random self-reducibility if computing the function on a given instance can
be efficiently reduced to computing the function for uniformly random instances.

164



6.2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, 2, . . . , }. We use N to denote all
non-negative integers and N≥1 to denote all positive integers.

For x, y ∈ {0, 1}∗, we use x ◦ y to denote their concatenation.13 For a function f : {0, 1}ℓ →
{0, 1} we use tt(f) to denote the 2ℓ-length truth-table of f (i.e., tt(f) = f(w1) ◦ f(w2) ◦ . . . ◦
f(w2ℓ), where w1, . . . , w2ℓ is the enumeration of all strings from {0, 1}ℓ in the lexicographical
order).

Unless explicitly stated otherwise, we assume that all circuits are comprised of Boolean NAND

gates of fan-in two. In several places, we will need the following notion, which strengthens the
standard notion of a time-computable function by requiring the function to be computable in
logarithmic space. The depth of a circuit is defined to be the maximum length (measured by
the number of edges) of any input-to-output path.

Definition 6.2.1 (Logspace-Computable Functions). We say that a function T : N → N is
logspace-computable if there exists an algorithm that gets input 1n, runs in space O(log(T (n))),
and outputs T (n).

For convenience, we consider circuit families indexed by a tuple of parameters. Specifically,
a circuit family with k input parameters ℓ⃗ = (ℓ1, ℓ2, . . . , ℓk) ∈ Nk is defined as {C

ℓ⃗
}
ℓ⃗∈Nk , where

each C
ℓ⃗

is a circuit.

6.2.1 Finite Fields

Throughout this chapter, we will only consider finite fields of the form GF(22·3
λ
) for some

λ ∈ N since they enjoy simple representations that will be useful for us. We say p = 2r is a nice
power of 2, if r = 2 · 3λ for some λ ∈ N.

Let ℓ ∈ N and n = 2 · 3ℓ. In the following, we use F to denote F2n for convenience. We will
always represent F2n as F2[x]/(x

n + xn/2 +1).14 That is, we identify an element of F2n with an
F2[x] polynomial with degree less than n. To avoid confusion, given a polynomial P (x) ∈ F2[x]

with degree less than n, we will use (P (x))F to denote the unique element in F identified with
P (x).

Let κ(n) be the natural bijection between {0, 1}n and F = GF(2n): for every a ∈ {0, 1}n,
κ(n)(a) =

(∑
i∈[n] ai · xi−1

)
F
. We always use κ(n) to encode elements from F by Boolean strings.

That is, whenever we say that an algorithm takes an input from F, we mean it takes a string
x ∈ {0, 1}n and interprets it as an element of F via κ(n). Similarly, whenever we say that an
algorithm outputs an element from F, we mean it outputs a string {0, 1}n encoding that element
via κ(n). For simplicity, sometimes we use (a)F to denote κ(n)(a). Also, when we say the i-th
element in F, we mean the element in F encoded by the i-th lexicographically smallest Boolean
string in {0, 1}n.

13We sometimes also use C1 ◦ C2 to denote the composition of two circuits, but the meaning of the symbol ◦
will always be clear from the context.

14x2·3ℓ + x3ℓ + 1 ∈ F2[x] is irreducible, see [VL99, Theorem 1.1.28].
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6.2.2 Bounded-Space Turing Machines

Our argument is robust to specific details about the computational model, but in order to
estimate the relevant bounds, we must fix a model. We use the standard model of space-bounded
computation (see [Gol08, Section 5] or [AB09, Section 4]). A deterministic space-bounded Turing
machine has three tapes: an input tape (that is read-only), a work tape (that is read/write),
and an output tape (that is write-only and uni-directional). We assume that the machine’s
alphabet is Σ := {0, 1}. The space complexity of the machine is the number of cells used on the
work tape. For concreteness, we assume that the work tape contains initially only □ (“blank”)
symbols, and that the machine writes symbols from Σ in the tape.

Throughout this chapter, we will describe a space-bounded Turing machine by fixing a uni-
versal Turing machine U that has an additional read-only program tape such that TM(x) is
defined to be the output of U with the program tape initialised as TM.15 Abusing the notation,
we often use TM to denote both the Turing machine and a binary string description of the
Turing machine. Without loss of generality, we also assume our description is paddable meaning
that for every TM ∈ {0, 1}∗ and k ∈ N, TM and TM ◦ 0k represent the same machine. To avoid
certain technicalities, we will always assume that the space bound of a Turing machine TM is
greater than its description size.

Configurations of space-bounded machines. On a fixed input x ∈ {0, 1}n, a space-s
Turing machine TM has 2s

′ possible configurations, where s′ = s′(s, n) = s + O(log s) + log n.
Each configuration can be described by s′ bits. Here, s measures the space used by the universal
Turing machine U that simulates TM on input x. In more detail, it can be described by the
content of U ’s work tape, U ’s current state, and the location of U ’s heads, including the head on
the input/program tape. (Note that a configuration does not include the content of the output
tape, which does not affect the next step of the machine.)

We will need the following fact for determining the relationship between configurations of a
Turing machine. Recall that a sequence {Dn}n≥1 of size-T (n) computational devices is logspace-
uniform if there is a machine M(1n) that runs in space O(log T (n)) and outputs Dn (or equiv-
alently, decides the direct connection language of Dn).

Fact 6.2.2. Given a description of Turing machine TM ∈ {0, 1}∗, a space bound s ∈ N, an input
x ∈ {0, 1}n, and two configurations γ, γ′ ∈ {0, 1}s′ , there is an algorithm Anxt that determines
whether γ′ is the next configuration obtained by running TM for one step on input x. Moreover,
Anxt can be computed by a logspace-uniform O(m3)-size O(logm)-depth formula and by an O(m)-
space algorithm, where m is the total number of input bits. (Here, we assume that if γ is the
accepting state or the rejecting state, then the next configuration of γ is always γ itself.)

6.2.3 Circuits Generated by Bounded-Space Turing Machines

In this chapter, we often use the following two representations of a circuit (recall that through-
out this chapter, all circuits consist entirely of fan-in two NAND gates).

15The advantage of fixing a universal Turing machine is that now our Turing machine always has a constant
number of states, which is helpful when bounding the number of configurations of a Turing machine of super-
constant size.
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• (Adjacency relation tensor.) A circuit C of size T is given as a tensor TC ∈ {0, 1}T×T×T
such that for every tuple (u, v, w) ∈ [T ]3, TC(u, v, w) = 1 if and only if the gates in C

indexed by v and by w feed into the gate in C indexed by u.

• (Layered adjacency relation tensor.) A circuit C of width T and depth d is given as
a list of d tensors T (i)

C ∈ {0, 1}T×T×T , where i ∈ [d], such that for every layer i ∈ [d] and
tuple (u, v, w) ∈ [T ]3, T (i)

C (u, v, w) = 1 if and only if the gates in the (i− 1)-th layer of C
indexed by v and by w feed into the gate in the i-th layer of C indexed by u.

Here, the input gates are on the 0-th layer, and the output gates are on the d-th layer.
Without loss of generality, we can assume all layers have exactly T gates.

In both cases above, when evaluating C in a context, we will also specify two integers nin and
nout to denote the number of input/output gates; see the definition of Circuit[T, s, nin, nout](TM)

given below for details.
While we will mostly use the (unlayered) adjacency relation tensor representation, the layered

variant will be very convenient in Section 6.5.1.
We define next a more general notion of a space-uniform circuit family with input parameters.

This will be useful in some situations where we need to compute explicit space bounds for
uniformity and index circuits by a tuple of parameters.

Definition 6.2.3 (α-Space-Uniform Circuits). Let k ∈ N and α, T : Nk → N. We say that a
circuit family with k input parameters

{
C
ℓ⃗

}
ℓ⃗∈Nk of size T = T (ℓ⃗ ) is α-space-uniform if there

exists an algorithm A such that:

1. Decides the adjacency relation. The algorithm gets ℓ⃗ ∈ Nk and (u, v, w) ∈ {0, 1}3 log(T )

as input and accepts if and only if the gates in C
ℓ⃗

indexed by v and by w feed into the
gate in C

ℓ⃗
indexed by u. (That is, the algorithm computes the adjacency relation tensor

of C
ℓ⃗
.)

2. Runs in α(ℓ⃗) space. For input parameters ℓ⃗ ∈ Nk, the algorithm runs in space α(ℓ⃗ ).

We say
{
C
ℓ⃗

}
ℓ⃗∈Nk is logspace-uniform if it is µ log T -space-uniform for some constant µ.

Circuit determined by a Turing machine through the adjacency relation tensor.
We will also consider the circuit determined by a Turing machine in the non-asymptotic setting.
More specifically, given a Turing machine TM ∈ {0, 1}∗, parameters T, s, nin, nout ∈ N, we
use Circuit[T, s, nin, nout](TM) to denote the circuit whose adjacency relation is determined by
running TM with space bound s over all triples (u, v, w) ∈ {0, 1}3 log T with u > v > w. The
first nin out of T gates are the input gates, and the last nout out of T gates are the output gates.
If TM fails to halt on some triples using s bits of space, or the resulting circuit is invalid (i.e.,
inputs are not source, or outputs are not sink), we let Circuit[T, s, nin, nout](TM) = ⊥.

Given two circuits C1 : {0, 1}n1 → {0, 1}n2 and C2 : {0, 1}n2 → {0, 1}n3 , one can compose
them into a single circuit C2 ◦ C1 : {0, 1}n1 → {0, 1}n3 in a natural way (i.e., by identifying the
outputs of C1 with the inputs of C2). Suppose C1 is a circuit of size T1 and depth d1, and C2

is a circuit of size T2 and depth d2, then C2 ◦ C1 has size T1 + T2 and depth d1 + d2. Also, if
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C1, C2 are given by two Turing machines TM1 and TM2, we can easily generate another Turing
machine TM3 that specifies C2 ◦ C1. Formally, we will pick a universal machine such that we
have the following simple fact on the description length of TM3, whose proof we omit.

Fact 6.2.4 (Turing Machine Description of Circuit Composition). There is a universal constant
ccomp ∈ N such that the following holds. Given the descriptions of Turing machines TM1 and
TM2, parameters

ℓ⃗1 = (T1, s1, n1, n2), ℓ⃗2 = (T2, s2, n2, n3) ∈ N4,

and letting

C1 = Circuit[ℓ⃗1](TM1), C2 = Circuit[ℓ⃗2](TM2), and ℓ⃗3 = (T1 + T2, 2 · (s1 + s2) + ccomp, n1, n3),

there is a polynomial-time algorithm Acomp that given TM1,TM2, ℓ⃗1, ℓ⃗2 as input, outputs the
description of a Turing machine TM3 such that 16

(C2 ◦ C1) = Circuit[ℓ⃗3](TM3) and |TM3| ≤ 2 · (|TM1|+ |TM2|+ log n2) + ccomp.

6.2.4 Pseudorandom Generators and Hitting Set Generators

Definition 6.2.5 (Avoiding and Distinguishing). Let m, t ∈ N, D : {0, 1}m → {0, 1}, and
Z = (zi)i∈[t] be a list of strings from {0, 1}m. Let ε ∈ (0, 1). We say that D ε-distinguishes Z, if

∣∣∣∣ Pr
r←{0,1}m

[D(r) = 1]− Pr
i←[t]

[D(zi) = 1]

∣∣∣∣ ≥ ε.

We say that D ε-avoids Z, if Prr←{0,1}m [D(r) = 1] ≥ ε and D(zi) = 0 for every i ∈ [t].

6.3 Pseudodeterministic Constructions for Dense Properties

In this section, we prove our main result, restated below for convenience.

Theorem 6.1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let
Q ⊆ {0, 1}∗ be a language with the following properties:

(Density.) there is a constant ρ ≥ 1 such that for every n ∈ N≥1, Qn := Q ∩ {0, 1}n satisfies
|Qn| ≥ n−ρ · 2n; and

(Easiness.) there is a deterministic polynomial-time algorithm AQ that decides whether an
input x ∈ {0, 1}∗ belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {xn}n∈N≥1
of n-bit

strings in Q such that the following conditions hold:

1. On every input length n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n.

2. On infinitely many input lengths n ∈ N≥1, PrB[B(1n) = xn] ≥ 1− 2−n.
16We note that if either C1 = ⊥ or C2 = ⊥, then there is no guarantee on Acomp’s behavior.
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We will need the following theorem, which is obtained by combining [SU05] and [CT21a].
The proof is presented in Section 6.5.

Theorem 6.3.1 (Improved Chen–Tell Hitting Set Generator). There exists a universal c ∈ N≥1,
a deterministic algorithm Hct, and a probabilistic oracle algorithm Rct such that the following
holds. Let κ, ρ ∈ N. Let T, d,M, n ∈ N all be sufficiently large such that n ≤ T , d ≤ T , and
c · log T ≤M ≤ T 1/(cρ). Denote ℓ⃗ := (n, T, d,M, κ, ρ) as the input parameters.

For a Turing machine TM with description size |TM| = κ · log T , we let

CTM := Circuit[T, κ · log T, n, n](TM).

Assume the circuit CTM ̸= ⊥ and CTM has depth at most d.

(Generator.) The generator Hct
ℓ⃗

(we write Hct
ℓ⃗

to denote that Hct takes ℓ⃗ as input parameters)
takes the description of a Turing machine TM ∈ {0, 1}κ log T as input, and outputs a list
of M -bit strings. We assume that the list has exactly T (c·κ)/2 entries.

Let T̃ := T c·κ and d̃ := c · (d log T + κ2 log2 T ) +M c. There is a Turing machine TMH

with description length c log T̃ such that for

CH := Circuit

[
T̃ , c · κ log T, n,

(
T̃
)1/2

·M
]
(TMH),

it holds that (1) CH(1
n) = Hct

ℓ⃗
(TM) and (2) CH has depth d̃. Moreover, there is a

polynomial-time17 algorithm Act that on inputs ℓ⃗ and TM ∈ {0, 1}κ log T , outputs the de-
scription of TMH.

(Reconstruction.) The reconstruction algorithm Rct takes the description of a Turing machine
TM ∈ {0, 1}κ log T as input, receives an oracle D : {0, 1}M → {0, 1}, and satisfies the
following:

(Soundness.) For every oracle D : {0, 1}M → {0, 1}, (Rct)D
ℓ⃗
(TM) runs in time (d+ n) ·

M cρ and with probability at least 1− 2−M , its output is either CTM(1n) or ⊥.

(Completeness.) If D (1/Mρ)-avoids Hct
ℓ⃗
(TM), then (Rct)D

ℓ⃗
(TM) outputs CTM(1n) with

probability at least 1− 2−M .

We are now ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. We start with some notations.

Notation. Let n0 ∈ N be sufficiently large. We define n(0)0 = n0, and for every ℓ ∈ N≥1,

n
(ℓ)
0 = 22

n
(ℓ−1)
0 .

Now, fix ℓ ∈ N. For simplicity of notation, in the following we will use ni,Hi, t to denote
n
(ℓ)
i ,H

(ℓ)
i , t(ℓ), which will be defined later.

17In this chapter, whenever we say an algorithm A that generates Turing machines or other succinct descriptions
runs in polynomial time, we mean the running time is polynomial in the total number of input bits. In this case,
the time bound is polynomial in the description length of ℓ⃗ and TM, i.e., poly(κ log T ).
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Construction of hitting sets. For some parameter t that we set later, we will define a
sequence of input lengths n1, . . . , nt, with the hope that we can construct a string in Q pseudo-
deterministically on at least one of the input lengths.

Let β ∈ N≥1 be a sufficiently large constant to be chosen later. For every i ∈ [t], we set
ni = (ni−1)

β . For each i ∈ {0, . . . , t}, we will construct a hitting set Hi ⊆ {0, 1}ni , which is
computable by a logspace-uniform Ti-size di-depth circuit. As the base case, we set H0 as the
whole set {0, 1}n0 . We note that there is a logspace-uniform T0-size d0-depth circuit that outputs
all elements in H0, where T0 = 22n0 and d0 = 2n0.

Let κ ∈ N be a large enough constant to be specified later. Let c be the universal constant
from Theorem 6.3.1.

Informal description. We will first give a somewhat informal description of the construction
of the Hi, in particular, we will omit details about the uniformity of the circuits (whose analysis
is rather tedious). We hope this can help the reader gain some intuition first. Later, we will
carefully analyse the uniformity of the circuits for Hi.

For each i ∈ [t], we construct Hi as follows:

1. We define BFi−1 as the circuit implementing the following algorithm: Enumerate every
element in Hi−1 ⊆ {0, 1}ni−1 , and output the first element that is in Qni−1 ; if no such
element exists, then BFi−1(n) outputs ⊥;

Using the assumed polynomial-time algorithm AQ for deciding membership in Q, BFi−1
can be implemented by a T ′i−1-size d

′
i−1-depth circuit, where

T ′i−1 = Ti−1 · poly(ni−1) and d′i−1 = di−1 + poly(ni−1).

2. We then set Hi as the hitting set from Theorem 6.3.1 constructed with the Turing ma-
chine describing the circuit BFi−1 and output length ni.18 By Theorem 6.3.1, Hi can be
implemented by a Ti-size di-depth circuit, where

Ti = poly(T ′i−1) and di = O(d′i−1 · log T ′i−1 + log2 T ′i−1) + poly(ni).

(Here we are being informal, see below for a more precise description.)

Formal construction. Next, we carefully detail the construction. Let µ ∈ N≥1 be a large
enough constant. First, we define a Turing machine TMH0 of description size µ that describes a
T0-size d0-depth circuit CH0 for H0 on input 1n0 in µ log T0 space. Formally

Circuit[T0, µ · log T0, n0,
√
T0 · n0](TMH0) = CH0 .

Let τ ∈ N be a large enough constant such that the running time of AQ on n-bit inputs is
bounded by nτ/3.

We will make sure all Hi have exactly
√
Ti elements. (This is satisfied for i = 0 since

T0 = 22n0 .)
18We do not discuss how to construct the Turing machine here; the details can be found in the formal con-

struction below.
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Now, for each i ∈ [t], we will define a Turing machine TMHi
such that

Circuit[Ti, µ · log Ti, ni,
√
Ti · ni](TMHi

) = CHi
,

where CHi
has depth at most di. We will also ensure the invariant that |TMHi

| ≤ µ · log Ti. By
our choice of µ, the above is satisfied when i = 0. The machine TMHi

is defined in two steps:
In the first step, we define a machine TMBFi−1

describing the circuit BFi−1, and in the second
step, we plug TMBFi−1

into Theorem 6.3.1 to obtain the machine TMHi
.

A Turing machine TMBFi−1
for BFi−1. We first define a Turing machine TMBFi−1

such that
TMBFi−1

(1ni−1) outputs a circuit for the algorithm BFi−1. Recall that BFi−1 works as follows:
Enumerate every element in Hi−1 ⊆ {0, 1}ni−1 and output the first element that is in Qni−1 ; if
no such element exists, then BFi−1(n) outputs ⊥;

Using the assumed polynomial-time algorithm AQ for deciding membership in Q, we first
construct a Turing machine TMtest with description size µ such that

Ctest = Circuit
[
Ti−1 · (ni−1)τ/2, µ · log Ti−1,

√
Ti−1 · ni−1, ni−1

]
(TMtest)

has depth (ni−1)
τ/2, takes a list of (Ti−1)

1/2 strings from {0, 1}ni−1 , and outputs the lexico-
graphically first one in Qni−1 (if no such string exists, outputs ⊥ instead).

Applying Fact 6.2.4 to compose CHi−1
and Ctest, we obtain the desired Turing machine

TMBFi−1
that constructs a circuit CBFi−1

computing BFi−1. Noting that µ is sufficiently large,
we have that TMBFi−1

takes

2 ·
(∣∣TMHi−1

∣∣+ µ+ log ni−1 + log Ti−1
)
≤ 3µ · log Ti−1

bits to describe and uses

2 · (µ · log Ti−1 + µ · log Ti−1 + log Ti−1) + µ ≤ 5µ · log Ti−1

space. We now set T ′i−1 = Ti−1 · nτi−1 and d′i−1 = di−1 + nτi−1, and we have

Circuit
[
T ′i−1, 5µ · log Ti−1, ni−1, ni−1

]
(TMBFi−1

) = CBFi−1
,

where CBFi−1
has depth at most d′i−1.

The Turing machine TMHi
for Hi. Recall that Hi is defined as the hitting set Hct of The-

orem 6.3.1 constructed with the circuit BFi−1 and output length ni in the informal argument.
We now formally define Hi as the hitting set

Hct
ni−1,T ′i−1,d

′
i−1,ni,κ,ρ

(
TMBFi−1

)
.

To apply Theorem 6.3.1, we first need to ensure that

5µ · log Ti−1 ≤ κ log T ′i−1,
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which is satisfied by setting κ ≥ 5µ. We also need to ensure that

ni−1 ≤ T ′i−1, d′i−1 ≤ T ′i−1, and c · log T ′i−1 ≤ ni ≤ (T ′i−1)
1/(cρ). (6.1)

By Theorem 6.3.1, we know that

TMHi
= Act

ni−1,T ′i−1,d
′
i−1,ni,κ,ρ

(
TMBFi−1

)

describes a Ti-size, di-depth circuit CHi
such that CHi

(1ni−1) computes Hi. Moreover, TMHi

takes c · κ · log T ′i−1 ≤ µ · log Ti space and c · log Ti bits to describe, where

Ti = (T ′i−1)
c·κ and di = c · (d′i−1 log T ′i−1 + κ2 · log2 T ′i−1) + nci .

Formally, we have
CHi

= Circuit[Ti, µ · log Ti, ni,
√
Ti · ni](TMHi

)

as desired. Our invariant on |TMHi
| is satisfied by setting µ > c.

Analysis of Ti and di and justification of (6.1). We set t to be the first integer such that

nt+1 > T
1/(cρ)
t .

In the following, we first show that t ≤ log n0.
We first analyse the growth of Ti and T ′i . For every i < t, by our choice of t, we have that

ni < ni+1 ≤ T
1/(cρ)
i < Ti and hence T ′i = Ti · nτi ≤ T τ+1

i . Then, from Ti+1 = (T ′i )
c·κ, we have

Ti+1 ≤ T c·(τ+1)·κ
i and consequently log Ti+1 ≤ c · (τ +1) · κ · log Ti. Letting λ = c · (τ +1) · κ, we

have
log Ti ≤ λi · log T0 = λi · 2n0

for every i ≤ t.
Recall that ni = nβi−1, we have log ni = βi · log n0. For Tt < nt to hold, we only need to

ensure the following:

λi · 2n0 < βi · log n0
⇐⇒ 2n0/ log n0 < (β/λ)i.

Now we will set β ≥ 100λ. Let t̄ ≤ log n0 be the first integer satisfying the above. We
claim that t ≤ t̄. Since otherwise t̄ < t, and we would have nt̄ > Tt̄ (which certainly implies
nt̄+1 > T

1/(cρ)
t̄

) by our choice of t̄. This contradicts our choice of t. Therefore, we have established
that t ≤ log n0.

Now we turn to analyse di for i ≤ t. Note that d0 = 2n0, and for i ≥ 1, we have

di = O
(
(di−1 + nτi−1) · log T ′i−1 + log2 T ′i−1

)
+ nci .

We will show that for every i < t, di ≤ 2nci . Clearly, this holds for i = 0.
Since log T ′i−1 ≤ log Ti−1 + O(log ni−1) ≤ λi−1 · 2n0 + O(log ni−1) ≤ ni−1 (recall here that
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ni−1 = (n0)
βi−1 and β = 100λ), we have

di ≤ O
(
(ni−1 + nτi−1) · ni−1 + n2i−1

)
+ nci .

We can set β large enough so that di ≤ (ni−1)
β + nci ≤ 2 · nci . From definition, we also have

d′i ≤ 2nci + nτi for every i < t.
Now we are ready to justify that the conditions from (6.1) are satisfied for i ∈ [t]. By our

choice of t and the definition of T ′i−1, we have ni−1 ≤ Ti−1 ≤ T ′i−1. To see d′i−1 ≤ T ′i−1 holds,
recall that T ′i−1 = Ti−1 · nτi−1, and we have d′i−1 ≤ 2nci−1 + nτi−1 ≤ Ti−1 · nτi−1 = T ′i−1 by setting
τ > c. We also have that c log T ′i−1 = c(log Ti−1+ τ log ni−1) = c(λi ·2n0+ τ log ni−1) < ni since
n0 < (ni)

1/β and λi ≤ logn0
ni. Finally, by our choice of t, we have ni ≤ T 1/(cρ)

i−1 <
(
T ′i−1

)1/(cρ).

Informal argument of the correctness. We first give a somewhat informal argument below,
and then give the precise argument later.

We will argue that for every ℓ ∈ N, there exists an i ∈ {0, 1, . . . , t(ℓ)} that our polynomial-
time pseudodeterministic algorithm for constructing an element from Q works on input length
n
(ℓ)
i .

Let i ≥ 0 be the largest integer such that Hi ⊆ {0, 1}ni is a hitting set of Qni . (Note that
such i exists, since H0 = {0, 1}n0 is a hitting set of Qn0 .) If i = t, then we can simply run BFt

to obtain an element in Qnt deterministically. Note that this takes time poly(Tt) = poly(nt),
since by our choice of t, Tt ≤ nc·β·ρt .

Otherwise, we have i < t. In this case, we know that Qni+1 avoids the hitting set Hi+1 (here
we use the fact that Qni+1 accepts more than an n−ρi+1 fraction of strings from {0, 1}ni+1). By
the reconstruction part of Theorem 6.3.1, there is a poly(ni+1) · d′i randomised time algorithm
that simulates BFi with probability at least 1−2ni+1 . Since Hi is a hitting set for Qni , this gives
us a pseudodeterministic algorithm with poly(ni+1) time that finds a canonical element in Qni .
Since ni+1 = poly(ni), our pseudodeterministic algorithm runs in polynomial time.

Formal description of the algorithm B. First, note that by our choice of t and β, it holds
that n(ℓ+1)

0 > n
(ℓ)

t(ℓ)
. On an input length n ∈ N≥1, our algorithm B is defined as follows:

1. Given input 1n for n ∈ N≥1.

2. Compute the largest ℓ ∈ N such that n(ℓ)0 ≤ n, then compute the largest i such that
n
(ℓ)
i ≤ n. Output ⊥ and abort immediately if n(ℓ)i ̸= n. From now on we use ni, Ti, di,

etc. to denote n(ℓ)i , T
(ℓ)
i , d

(ℓ)
i , etc.

3. For every j ∈ {0, 1, . . . , i}, compute Tj , T ′j , dj , d
′
j ,TMHj

,TMBFj
. There are two cases:

• Case I: ni+1 ≤ T 1/(cρ)
i : In this case, we have that i < t. Run

(
Rct
)Qni+1

ni,T ′i ,d
′
i,ni+1,κ,ρ

(TMBFi
)

and set zn to be its output.
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• Case II: ni+1 > T
1/(cρ)
i : In this case, we have that t ≤ i. Compute t first (recall that

t is the first integer such that nt+1 > T
1/(cρ)
t ). Output ⊥ and abort immediately if

i > t. Otherwise, construct CBFi
from TMBFi

and set zn = CBFi
(1n).

4. Output zn if AQ(zn) = 1 and ⊥ otherwise.

From our choice of parameters and Theorem 6.3.1, the algorithm B runs in poly(n) time.

Analysis of the algorithm B. Finally we show that the algorithm B satisfies our require-
ments. We call an input length n ∈ N≥1 valid if there exist ℓ ∈ N and i ∈ {0, . . . , t(ℓ)} such that
n = n

(ℓ)
i , and we call n invalid otherwise.19 For every n ∈ N≥1, let yn be the lexicographically

first element in Qn.
For every invalid n ∈ N≥1, we simply set xn = yn. For every valid n ∈ N≥1, we set xn as

follows:

xn =




CBFi

(1ni), if CBFi
(1ni) ∈ Qni ,

yn, if otherwise.

We first observe that for all invalid n ∈ N≥1, it holds that B(1n) = ⊥ with probability 1.
Now we are ready to show that for every n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n. Clearly, we
only need to consider valid n.

Fix a valid n ∈ N≥1. From the soundness of the reconstruction part of Theorem 6.3.1, it
follows that zn ∈ {CBFi

(1n),⊥} with probability at least 1 − 2−n (if i = t, then zn = CBFi
(1n)

with probability 1). If CBFi
(1ni) ∈ Qni , then xn = CBFi

(1ni) and zn ∈ {xn,⊥} with high
probability; otherwise we have zn = ⊥. In both cases, the soundness of B holds.

Next, we show that for infinitely many n ∈ N≥1, we have PrB[B(1n) = xn] ≥ 1 − 2−n.
Following the informal argument, for every ℓ ∈ N, let i ≥ 0 be the largest integer such that
Hi ⊆ {0, 1}n

(ℓ)
i is a hitting set of Q

n
(ℓ)
i

. Letting n = n
(ℓ)
i , we will show that B(1n) outputs xn

with probability at least 1− 2−n, which would finish the proof.
If i = t, since Hi is a hitting set for Qn, it follows that zn = CBFi

(1n) ∈ Qn, and we have
B(1n) = xn with probability 1. If i < t, we know that Qni+1 (1/nρi+1)-avoids the hitting set
Hi+1. By the completeness of the reconstruction part of Theorem 6.3.1, we have that zn =

(Rct)
Qni+1

ni,T ′i ,d
′
i,ni+1,κ,ρ

(TMBFi
) equals CBFi

(1n) with probability at least 1− 2−n. Moreover, in this
case, since Hi is a hitting set of Qn, we know zn ∈ Qn and zn = xn, which completes the
proof.

Let B be the algorithm given by Theorem 6.1.1. We note that, by using 1 bit of advice to
encode if a given input length n satisfies PrB[B(1n) = xn] ≥ 1− 2−n, we can obtain an efficient
algorithm that outputs a canonical answer with high probability (i.e., satisfies the promise of a
pseudodeterministic algorithm) on all input lengths and is correct on infinitely many of them.
We state the result below as it might be useful in future work.

19By our choice of parameters, such pair (ℓ, i) is unique for a valid n.
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Corollary 6.3.2 (Pseudodeterministic Polynomial-Time Construction with 1 Bit of Advice that
Succeeds Infinitely Often). Let Q be a dense and easy language. There exist a polynomial-time
probabilistic algorithm A and a sequence of advice bits {αi ∈ {0, 1}}i∈N≥1

such that

• for all n ∈ N≥1, A(1n, αn) outputs a canonical xn ∈ {0, 1}n with probability at least 1−2−n,
and

• for infinitely many n ∈ N≥1, xn ∈ Q ∩ {0, 1}n.

6.4 Modified Shaltiel–Umans Generator with Uniform Learning
Reconstruction

In order to prove Theorem 6.3.1, we will need the following result.

Theorem 6.4.1 (A HSG with Uniform Learning Reconstruction). There exist an algorithm H

and a probabilistic oracle algorithm R(−) such that the following holds. Let p be a nice power
of 2, m be a power of 3, ∆,M ∈ N with p > ∆2m7M9, and let ℓ⃗ := (p,m,M,∆) be the input
parameters.

• The generator H
ℓ⃗

takes as input a polynomial P : Fm
p → Fp with total degree at most ∆,

specified as a list of pm evaluations of P on all points from Fm
p in the lexicographic order,

and outputs a set of strings in {0, 1}M . Moreover, H
ℓ⃗

can be implemented by a logspace-
uniform circuit of size poly(pm) and depth poly(log p,m,M).

• The reconstruction algorithm RD,P

ℓ⃗
, where D : {0, 1}M → {0, 1} is any function that

(1/M)-avoids H
ℓ⃗
(P ), runs in time poly(p,m) and outputs, with probability at least 1−1/pm,

a D-oracle circuit that computes P .

The rest of this section is dedicated to the proof of Theorem 6.4.1.

6.4.1 Technical Tools

Error-Correcting Codes

Theorem 6.4.2 (List-Decoding Reed–Solomon Codes [Sud97]). Let b, a, and d be integers such
that a >

√
2d · b. Given b distinct pairs (xi, yi) in a field F, there are at most 2 · b/a polynomials

g of degree d such that g(xi) = yi for at least a pairs. Furthermore, a list of all such polynomials
can be computed in time poly(b, log |F|).

In particular, if a = α · b for some 0 < α ≤ 1, provided that α >
√
2d/b, there are at most

O(1/α) degree-d polynomials that agree with an α-fraction of the b pairs.

Generator Matrices

Definition 6.4.3 (Generator Matrices). Let p be a power of 2 and m ∈ N. We say that A ∈
Fm×m
p is a generator matrix for Fm

p if A is invertible, Apm−1 = I, and {Ai · v⃗}1≤i<pm = Fm
p \ {⃗0}

for any nonzero v⃗ ∈ Fm
p .20

20In fact, it is not hard to see that the third condition implies the first two. We include those two conditions
in this definition as they will be useful later.
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Theorem 6.4.4 ([Sho92]). Let n ∈ N. Given any irreducible polynomial f of degree n over F2,
one can deterministically construct in time poly(n) a set Sn that contains at least one primitive
root of the multiplicative group of F2[x]/(f).

We need the following lemma to deterministically construct generator matrices. Note that it
is unclear how to deterministically construct a single generator matrix. Instead, we reduce the
task of constructing such matrices to the task of constructing primitive roots of Fpm . Then, we
invoke Theorem 6.4.4 to construct a set of matrices that contains at least one generator matrix.
It turns out that this set of matrices suffices for our purposes.

Lemma 6.4.5. Let p be a nice power of 2 and m be a power of 3. One can deterministically
construct in time poly(log p,m) a set of matrices in Fm×m

p that contains at least one generator
matrix for Fm

p .

Proof Sketch. Roughly speaking, every primitive root of Fpm corresponds to a generator matrix
for Fm

p , so the lemma is implied by Theorem 6.4.4.
First, if we let p = 22·3

α and m = 3β , where α, β ∈ N, then the fields Fp and Fpm have
explicit representations

Fpm =
F2[x](

x2·3α+β + x3α+β + 1
) and Fp =

F2[y]

(y2·3α + y3α + 1)
.

Note that Fpm can be viewed as a linear space over Fp of dimensionm (i.e., Fm
p ) by identifying

x3β with y. The (field) addition operation over Fpm coincides with the (linear space) addition
operation over Fm

p . For every element g ∈ Fpm , multiplication by g corresponds to a linear
transformation over Fm

p , i.e., there is a matrix Ag computable in polynomial time given g such
that for every a ∈ Fpm , ga (as the product of two elements in the field Fpm) is equal to Ag ·a (as
a matrix-vector product over the vector space Fm

p ). It is easy to see that if g is a primitive root
of the multiplication group Fpm , then Ag is a generator matrix for Fm

p . The lemma now follows
from Theorem 6.4.4.

Random Self-Reducibility for Discrete Logarithm

Lemma 6.4.6. There is a probabilistic polynomial-time oracle algorithm DLCorr(−) such that
the following holds. Let p be a power of 2, m ∈ N, ε > 0, A be a generator matrix for Fm

p , and
let g be any probabilistic procedure that satisfies

Pr
v⃗←Fm

p \{0⃗}, g

[
g(v⃗) outputs i ∈ [pm − 1] such that Ai · 1⃗ = v⃗

]
≥ ε.

Then for every u⃗ ∈ Fm
p \ {⃗0}, DLCorrg(p,m, 1⌈1/ε⌉, A, u⃗) outputs ℓ ∈ [pm− 1] such that Aℓ · 1⃗ = u⃗

with probability at least 2/3.

Proof Sketch. The algorithm is an adaptation of the worst-case to average-case reduction for
the discrete logarithm problem. Given u⃗ ∈ Fm

p \ {⃗0}, we pick a random j ∈ [pm − 1] and set
v⃗ := Aj · u⃗. Let i := g(v⃗). Since v⃗ is uniformly distributed, with probability at least ε we have
Ai · 1⃗ = v⃗. We check if this is the case in polynomial time (note that we can compute Ai in
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polynomial time by repeated squaring). Suppose this is indeed the case, then Ai · 1⃗ = v⃗ = Aj · u⃗.
Recall that A is invertible. If i > j, we output ℓ := i− j. If i = j, we have u⃗ = 1⃗. In this case,
we output ℓ := pm − 1. Finally, if j > i, we output ℓ := t− (j − i).

By sampling O(1/ε) many values of j, with probability at least 2/3, there is at least one
invocation i := g(v⃗) such that Ai · 1⃗ = v⃗ indeed holds. Therefore, the success probability of our
algorithm is at least 2/3.

Pseudorandom Generators from One-Way Permutations

Theorem 6.4.7 ([BM84,Yao82,GL89]). There exist a deterministic oracle algorithm CryptoG(−)

and a probabilistic oracle algorithm Invert(−) such that the following holds. Let s,M ∈ N be the
input parameters, and let f : {0, 1}s → {0, 1}s be a permutation.

1. CryptoGf
s,M outputs a set of 22s M -bit strings. Moreover, CryptoGf

s,M can be implemented
by a logspace-uniform f -oracle circuit of size poly(2s,M) and depth poly(s,M).

2. Invert
(−)
s,M takes x ∈ {0, 1}s as input and runs in poly(s,M) time. For any function

D : {0, 1}M → {0, 1} that ε-distinguishes CryptoGf
s,M from {0, 1}M , we have

Pr
x←{0,1}s

[
Invertf,Ds,M (x) = f−1(x)

]
≥ ε

poly(M)
.

Proof Sketch. The generator CryptoG(−) follows from the well-known construction of pseudoran-
dom generators from one-way permutations using the Goldreich–Levin Theorem [GL89]. More
specifically,

CryptoGf
s,M :=

⋃

x,r∈{0,1}s

(
⟨x, r⟩, ⟨f(x), r⟩, ⟨f(f(x)), r⟩, . . . ,

〈
f (M−1)(x), r

〉)
,

where ⟨·⟩ denotes the inner product mod 2 function and f (i) denotes the composition of f with
itself i times.

The “inverting” algorithm Invert(−) and its correctness rely on standard techniques in pseu-
dorandomness such as the hybrid argument, Yao’s theorem on the equivalence between pseudo-
randomness and unpredictability [Yao82], and the Goldreich–Levin decoding algorithm [GL89].
(See e.g., [AB09, Section 9.3].)

Finally, to see that CryptoGf
s,M can be implemented by a logspace-uniform f -oracle circuit

of size poly(2s,M) and depth poly(M), we first note that there is a Turing machine that given
s,M ∈ N and x, r ∈ {0, 1}s, computes the M -bit string

⟨x, r⟩, ⟨f(x), r⟩, ⟨f(f(x)), r⟩, . . . ,
〈
fM−1(x), r

〉

in poly(s,M) time using f as an oracle. Then by the fact that any time-t Turing machine
can be simulated by a logspace-uniform circuit of size O(t2), computing a single M -bit string
in CryptoGf

s,M can be done using a logspace-uniform f -oracle circuit of size poly(s,M). The
desired conclusion follows from the observation that we can compute these 22s M -bit strings in
parallel.
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Self-Correction for Polynomials

Theorem 6.4.8 (A Self-Corrector for Polynomials, cf. [GS92,Sud95]). There is a probabilistic
oracle algorithm PCorr(−) such that the following holds. Let p be a power of 2, m,∆ ∈ N such
that ∆ < p/3. Let g : Fm

p → Fp be such that there exists a polynomial P of total degree at most
∆ for which

Pr
x⃗←Fm

p

[g(x⃗) ̸= P (x⃗)] ≤ 1/4.

Then for all x⃗ ∈ Fm
p , PCorrg(p,m,∆, x⃗) runs in time poly(∆, log p,m) and outputs P (x⃗) with

probability at least 2/3.

6.4.2 The Shaltiel–Umans Generator

We state a version of the hitting set generator constructed by Shaltiel and Umans [SU05]
that will be convenient for our purposes.

Theorem 6.4.9 (Implicit in [SU05]). There exist a deterministic algorithm HSU and a proba-
bilistic oracle algorithm RSU(−) such that the following holds. Let p be a power of 2, m,M,∆ ∈ N
with p > ∆2m7M9, ℓ⃗ := (p,m,M,∆) be the input parameters, and let

• P : Fm
p → Fp be a polynomial with total degree at most ∆, given as a list of pm evaluations

of P on all points from Fm
p in lexicographic order, and

• A be a generator matrix for Fm
p .

Then

1. The generator HSU
ℓ⃗
(P,A) outputs a set of strings in {0, 1}M . Moreover, HSU

ℓ⃗
can be

implemented by a logspace-uniform circuit of size poly(pm) and depth poly(log p,m).

2. The reconstruction algorithm RSUD,P

ℓ⃗
(A), where D : {0, 1}M → {0, 1} is any function that

(1/M)-avoids HSU
ℓ⃗
(P,A), runs in poly(p,m) time and outputs, with probability at least

1− 1/p2m, a vector v⃗ ∈ Fm
p \ {⃗0} and a D-oracle circuit C : [pm − 1]→ Fp such that

C(i) = P (Ai · v⃗) for every i ∈ [pm − 1].

The statement of Theorem 6.4.9 and the HSG result of [SU05] differ in two aspects:

• First, we use a polynomial instead of a Boolean function to construct the HSG, which fits
more naturally into the framework of Chen–Tell [CT21a] (see also Section 6.5).

• Second, we explicitly calculated a circuit depth upper bound for computing the HSG,
which is not stated in [SU05].

Nevertheless, Theorem 6.4.9 easily follows from the arguments in [SU05]. For completeness, we
review the construction of [SU05] and present a proof sketch of Theorem 6.4.9 in this subsection.
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The generator. We first construct m candidate “p-ary PRGs” G(0)
p-ary, G

(1)
p-ary, · · · , G(m−1)

p-ary :

Fm
p → FM

p ; note that the inputs and outputs of these “p-ary PRGs” are elements in Fp. In
particular:

G
(j)
p-ary(x⃗) =

(
P (Apj ·1x⃗), P (Apj ·2x⃗), · · · , P (Apj ·M x⃗)

)
.

Then we convert each p-ary PRG into a (usual binary) PRG by invoking [SU05, Lemma 5.6].
More precisely, for each 0 ≤ j < m, we interpret G(j)

p-ary as a PRG that takes a binary seed of
lengthm log p and outputsM elements in {0, 1}log p, using the canonical bijection κ(log p) between
Fp and {0, 1}log p. Then, for G(j)

p-ary : {0, 1}m log p → ({0, 1}log p)M , given seeds x ∈ {0, 1}m log p

and r ∈ {0, 1}log p, we define

G(j)(x, r) =
(
⟨G(j)

p-ary(x)1, r⟩, ⟨G(j)
p-ary(x)2, r⟩, . . . , ⟨G(j)

p-ary(x)M , r⟩
)
.

Here, ⟨·⟩ denotes the inner product mod 2 function. In other words, we combine G(j)
p-ary with the

Hadamard code to obtain a Boolean PRG G(j) : {0, 1}m log p+log p → {0, 1}M .
Finally, our HSG will be the union of all PRGs G(j). That is, our algorithm HSU

ℓ⃗
(P,A)

enumerates every 0 ≤ j < m, x ∈ {0, 1}m log p, r ∈ {0, 1}log p, and prints the string G(j)(x, r).
To see that HSU

ℓ⃗
can be computed by a logspace-uniform low-depth circuit, we argue that

given appropriate indexes j and i, the i-th bit of G(j)(x, r) can be computed by a logspace-
uniform low-depth circuit. The bit we want to compute is

G(j)(x, r)i = ⟨G(j)
p-ary(x)i, r⟩ = ⟨P (Apj ·ix⃗), r⟩,

where x⃗ is the vector in Fm
p encoded by x. By repeated squaring, we can output a (logspace-

uniform) circuit of size and depth poly(log p,m) that computes Apj ·i. Multiplying Apj ·i with x⃗,
indexing (i.e., finding the (Apj ·ix⃗)-th entry of P ), and computing Boolean inner product have
logspace-uniform circuits of size poly(M,pm) = poly(pm) and depth poly(m, log p, logM) =

poly(log p,m). Since we need to output m · pm+1 strings of length M and each output bit can
be computed by a logspace-uniform circuit of size poly(pm) and depth poly(log p,m), the com-
plexity upper bounds for computing HSU

ℓ⃗
follows.

Now we consider the reconstruction algorithm. Suppose there is an adversary D : {0, 1}M →
{0, 1} that (1/M)-avoids HSU

ℓ⃗
(P,A). It follows that D (1/M)-distinguishes every binary PRG

G(j).

From distinguishers to next-element predictors. For each 0 ≤ j < m, we use D to build
a “next-element predictor” D(j) for G(j)

p-ary. Since D (1/M)-distinguishes G(j), it can be used to
build a next-bit predictor D(j)

bit such that

Pr
i←[M ],x←{0,1}m log p,r←{0,1}log p

[
D

(j)
bit

(
G(j)(x, r)1, . . . , G

(j)(x, r)i−1

)
= G(j)(x, r)i

]
≥ 1/2 + 1/M2.

Therefore, with probability ≥ 1/2M2 over i ← [M ] and x ← {0, 1}m log p, the probability over
r ← {0, 1}log p that D(j)

bit predicts the i-th bit of G(j)(x, r) given its first i− 1 bits correctly is at
least 1/2 + 1/2M2. In this case, using the list-decoding algorithm for Hadamard code [GL89],
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we can find a list of O(M4) elements that contains G(j)
p-ary(x)i. (In fact, the trivial list-decoding

algorithm suffices here, since it runs in time poly(p).) We call this procedure the next-element
predictor D(j); it takes as input

uM−1 := P (A−(M−1)p
j
x⃗), uM−2 := P (A−(M−2)p

j
x⃗), . . . , u1 := P (A−p

j
x⃗),

where x⃗ ← Fm
p is a random vector. It randomly selects i ← [M ], invokes D(j)

bit and the list-
decoding algorithm for the Hadamard code, and outputs a list of O(M4) elements. With prob-
ability Ω(1/M2) over x⃗← Fm

p and the internal randomness of D(j)
bit , this list will contain P (x⃗).

We repeat D(j) for O(m log p) times and fix its internal randomness, so that in what follows
we can assumeD(j) is deterministic. With probability at least 1−1/(10p2m), for every 0 ≤ j < m,
D(j) will be correct in the following sense: For some ρ := 1/Θ(M2m log p), D(j) outputs ρ−2

elements, and
Pr

x⃗←Fm
p

[
P (x⃗) ∈ D(j)(uM−1, uM−2, . . . , u1)

]
> ρ.

Learn Next Curve. We will use the following notation from [SU05]. Let r := O(m log p) be
a parameter denoting the number of reference points, and v := (m+ 1)r − 1 denotes the degree
of curves.21 A curve is a polynomial C : Fp → Fm

p with degree v. (That is, each coordinate of C
is a univariate polynomial of degree v over Fp.) Recall that A ∈ Fm×m

p is the generator matrix.
We use AC to denote the curve where for each t ∈ Fp, AC(t) = A · C(t) (note that AC is still
a degree-v polynomial). We also use P (C) to denote the function such that for every t ∈ Fp,
P (C)(t) = P (C(t)); the evaluation table of P (C) is the length-p vector where for every t ∈ Fp,
the t-th entry of the vector is P (C(t)).

Now, we recall the implementation of an important subroutine called Learn Next Curve

as defined in [SU05, Section 5.5]. Learn Next Curve takes as input a next curve C : Fp → Fm
p ,

a set of reference points R ⊆ Fp of size r, a stride 0 ≤ j < m, as well as input evaluations; the input
evaluations consist of two parts, namely the evaluation tables of P (A−ipjC) for every 1 ≤ i < M

and the values of P (C(t)) for every t ∈ R. The intended output evaluations consist of the
evaluation table of P (C).

In particular, Learn Next Curve starts by obtaining a set of ρ−2 values

St := D(j)
(
P (A−(M−1)p

j
C(t)), P (A−(M−2)p

j
C(t)), . . . , P (A−p

j
C(t))

)

for each t ∈ Fp. Then it calls the algorithm from Theorem 6.4.2 on the pairs {(t, e)}t∈Fp,e∈St

to obtain the list of all polynomials Q such that Q(t) ∈ St for many coordinates t. (This takes
poly(pρ−2, log p) ≤ poly(p,m) time.) If this list contains a unique polynomial Q such that
Q(t) = P (C(t)) for every t ∈ R, then we output this polynomial; otherwise, we output ⊥. It is
clear that Learn Next Curve runs in poly(p,m) time.

We say Learn Next Curve succeeds (on next curve, reference points, and stride), if when-
ever the input evaluations are the intended values, the output evaluations are also the intended
values. Let

εLNC := O(vρ−1/p)v/2 + (8ρ−3)(v deg(P )/p)r.

21The parameter v is set in the proof of [SU05, Lemma 5.14].
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It is proven in [SU05, Lemma 5.12] that, assuming p > 32 deg(P )v/ρ4, if the next curve and
reference points are chosen uniformly at random, Learn Next Curve succeeds with probability
1 − εLNC. Since deg(P ) = ∆, ρ−1 = Θ(M2m log p), v = O(m2 log p), and p > ∆2m7M9, it is
indeed the case that p > 32 deg(P )v/ρ4. Also note that

εLNC ≤ O(ρ3/32 deg(P ))v/2 + (8ρ−3)(ρ4/32)r ≤ (1/2)r−1 ≪ 1/(10p4m).

A first attempt for the reconstruction algorithm would be as follows. Let i ∈ [pm − 1], and
suppose that we want to compute P (Ai1⃗). We write i in p-ary as i =

∑m−1
j=0 ijp

j (where each
ij ∈ {0, 1, . . . , p− 1}). Recall that for each next curve C and stride j, given the evaluation tables
of P (A−kpjC) for every 1 ≤ k < M , we can learn the evaluation table of P (C) in one invocation
of Learn Next Curve. Therefore, we proceed in m rounds, where for each 0 ≤ l < m, the
l-th round performs the following computation:

• Let i′ :=
∑l−1

j=0 ijp
j . Suppose that at the beginning of the l-th round, we already know

the evaluation tables of P (Akpl+i′C) for each 1 ≤ k < M . (For l = 0, these values can
be hardcoded as advice; for l ≥ 1, they should be obtained from the previous round.) We
invoke Learn Next Curve M(p− 1) times with stride l to obtain the evaluation tables
of P (Akpl+i′C) for each 1 ≤ k < M · p. The l-th round ends here; note that we have
obtained the evaluation tables required in the (l+1)-th round (namely P (Akpl+1+ilp

l+i′C)

for every 1 ≤ k < M).

However, there is one issue with this approach: to learn a curve C, we also need to provide
Learn Next Curve with the evaluations of some reference points on C. To resolve this issue,
[SU05] introduced an interleaved learning procedure that involves two curves C1 and C2. These
two curves possess nice intersection properties: for certain choices of k and l, AkC1 and AlC2

intersect on at least r points. This enables us to, for example, learn the evaluation table
of P (AlC2) whenever we know the evaluation table of P (AkC1), by using the evaluations of
P (AkC1) at reference points R, where R is the intersection of AkC1 and AlC2.

Interleaved learning. In what follows, we use [C1 ∩ C2] to denote the set {t ∈ Fp : C1(t) =

C2(t)}. We say two curves C1 and C2 are good if they satisfy the following properties:

• C1(1) ̸= 0⃗;

• for all 1 ≤ i < pm and all 0 ≤ j < m, [Ai+pjC1 ∩AiC2] and [AiC1 ∩AiC2] are of size ≥ r;

• for all 1 ≤ i < pm and all 0 ≤ j < m, Learn Next Curve succeeds given next curve
Ai+pjC1, reference points [Ai+pjC1 ∩AiC2], and stride j; and

• for all 1 ≤ i < pm and all 0 ≤ j < m, Learn Next Curve succeeds given next curve
AiC2, reference points [AiC1 ∩AiC2], and stride j.

By [SU05, Lemma 5.14], there is a poly(v, p)-time randomised algorithm that, with proba-
bility 1− 2mpm · εLNC ≥ 1− 1/(10p2m), outputs two curves C1 and C2 that are good.

The basic step in the reconstruction algorithm is called interleaved learning in [SU05].
This step has the following guarantee: For a stride j, given the correct evaluation tables of
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P (Ai−kpjC1) and P (Ai−kpjC2) for every 1 ≤ k < M , we can compute the correct evaluation
tables of P (AiC1) and P (AiC2). In particular, interleaved learning consists of the following two
steps:

• first, we invoke Learn Next Curve with next curve AiC1, reference points [Ai−pjC2 ∩
AiC1], and stride j;

• then, we invoke Learn Next Curve with next curve AiC2, reference points [AiC1∩AiC2],
and stride j.

Note that we assume that all invocations of Learn Next Curve succeed, as this happens with
high probability (1− 1/(10p2m)).

The reconstruction algorithm. Recall that our reconstruction algorithm needs to output
two elements: a vector v⃗ ∈ Fm

p \ {⃗0} and a D-oracle circuit C : [pm − 1] → Fp such that
C(i) = P (Ai · v⃗) for every i ∈ [pm − 1].

We first compute the curves C1 and C2 that are good with probability 1− 1/(10p2m). Our
reconstruction algorithm will be correct provided that C1 and C2 are good (and that we fixed
good internal randomness of our next-element predictors D(j)); this happens with probability
≥ 1 − 1/(10p2m) − 1/(10p2m) ≥ 1 − 1/p2m. The vector we output will be v⃗ := C1(1) (which is
non-zero if C1 and C2 are good). It remains to output a circuit C such that for every i ∈ [pm−1],
C(i) = P (Ai · v⃗).

Given an integer i, our circuit C first writes i in p-ary as i =
∑m−1

j=0 ijp
j . Then, it proceeds

in m rounds, where for each 0 ≤ l < m, the l-th round performs the following:

• Let i′ :=
∑l−1

j=0 ijp
j . Suppose that at the beginning of the l-th round, we already know

the evaluation tables of P (Akpl+i′C1) and P (Akpl+i′C2) for each 1 ≤ k < M . We per-
form interleaved learning M(p − 1) times with stride l to obtain the evaluation tables of
P (Akpl+i′C1) and P (Akpl+i′C2) for each 1 ≤ k < M ·p. The l-th round ends here; note that
we have obtained the evaluation tables required to perform the (l + 1)-th round (namely,
P (Akpl+1+ilp

l+i′C1) and P (Akpl+1+ilp
l+i′C2) for every 1 ≤ k < M).

Finally, after the (m− 1)-th round, we have obtained the evaluation table of P (AiC1), and we
can simply output P (AiC1(1)) = P (Aiv⃗) as the answer.

Note that the interleaved learning procedure needs to invoke the next-element predictor,
therefore our circuit C will be a D-oracle circuit. Also, at the beginning of the first (0-th) round,
we need the evaluation tables of P (AkC1) and P (AkC2) for each 0 ≤ k < M . Our reconstruction
algorithm can simply query the polynomial P to obtain these values and hardcode them into
our circuit C. It is clear that our reconstruction algorithm runs in poly(p,m) time and succeeds
with probability ≥ 1− 1/p2m.

6.4.3 Modified Shaltiel–Umans Generator: Proof of Theorem 6.4.1

In this subsection, we prove Theorem 6.4.1, which is restated below.

Theorem 6.4.1 (A HSG with Uniform Learning Reconstruction). There exist an algorithm H

and a probabilistic oracle algorithm R(−) such that the following holds. Let p be a nice power
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of 2, m be a power of 3, ∆,M ∈ N with p > ∆2m7M9, and let ℓ⃗ := (p,m,M,∆) be the input
parameters.

• The generator H
ℓ⃗

takes as input a polynomial P : Fm
p → Fp with total degree at most ∆,

specified as a list of pm evaluations of P on all points from Fm
p in the lexicographic order,

and outputs a set of strings in {0, 1}M . Moreover, H
ℓ⃗

can be implemented by a logspace-
uniform circuit of size poly(pm) and depth poly(log p,m,M).

• The reconstruction algorithm RD,P

ℓ⃗
, where D : {0, 1}M → {0, 1} is any function that

(1/M)-avoids H
ℓ⃗
(P ), runs in time poly(p,m) and outputs, with probability at least 1−1/pm,

a D-oracle circuit that computes P .

Proof. One difference between our generator and the Shaltiel–Umans generator (Theorem 6.4.9)
is that the reconstruction procedure in the latter only learns a circuit C0 that computes the
mapping i 7→ P (Ai · v⃗) (for some v⃗ output by the reconstruction procedure), where A is the
generator matrix used in the Shaltiel–Umans construction, instead of a circuit that computes
P itself. Let us assume for simplicity that the circuit C0 computes i 7→ P (Ai · 1⃗). Note that if
given x⃗ ∈ Fm

p \ {⃗0} (which is the input on which we intend to evaluate P ), we could efficiently
compute the value i ∈ [pm − 1] such that Ai · 1⃗ = x⃗, then we would be able to combine this
with the circuit C0 to compute P (roughly speaking, by first computing i and then outputting
C0(i)). However, there are two issues with this approach:

1. First, we do not know the generator matrix A, since we need our reconstruction algorithm
to be uniform and hence cannot hardcode A.

2. Second, the task of finding such i given x⃗ and A is essentially the discrete logarithm
problem, for which no efficient algorithm is known.

To handle the first issue, we will construct our generator using the Shaltiel–Umans con-
struction based on a generator matrix from a small set S given by Lemma 6.4.5. Then, in the
reconstruction, we will try all the matrices from S, which can be generated efficiently, to obtain
a list of candidate circuits. We then select from the list a circuit that is sufficiently close to P
and use a self-corrector to compute P everywhere. For the second issue, we first observe that the
mapping f : i 7→ Ai · 1⃗ is a permutation. Treating f as a “cryptographic one-way permutation”
and invoking Theorem 6.4.7, we can construct a “cryptographic pseudorandom generator”, which
has a uniform reconstruction algorithm. We can then combine the output of this “cryptographic
pseudorandom generator” with that of the Shaltiel–Umans generator so that if there is an algo-
rithm D that avoids this combined generator, then D can also be used to invert f efficiently!
Details follow.

The construction of H. For a matrix A ∈ Fm×m
p , let fA : [pm − 1] ∪ {0} → Fm

p be such that

fA(i) :=




0n if i = 0

Ai · 1⃗ if 1 ≤ i < pm.
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We will also view f as a function mapping s bits to s bits, where s := m · log p. Also note that
if A is a generator matrix for Fm

p , then fA is a permutation.
Let HSU be the generator from Theorem 6.4.9 and CryptoG(−) be the generator from The-

orem 6.4.7. Also, let S ⊆ Fm×m
p be the set of matrices constructed using Lemma 6.4.5. We

define
H
ℓ⃗
(P ) :=

⋃

A∈S

(
HSU

ℓ⃗
(P,A)

⋃
CryptoGfA

s,M

)
.

The complexity of H. We argue that H
ℓ⃗

can be implemented by a logspace-uniform circuit
of size poly(pm) and depth poly(log p,m,M).

First note that given A, fA can be computed in poly(log p,m) time. Then again by the fact
that every time-t Turing machine can be simulated by a logspace-uniform circuit of size O(t2),
fA can be computed by a logspace-uniform circuit of size poly(log p,m). This means given A,
CryptoGfA

s,M , which by Theorem 6.4.7 has a logspace-uniform fA-oracle circuit of size poly(2s,M)

and depth poly(s,M), can be implemented by a logspace-uniform circuit of size poly(pm) and
depth poly(log p,m,M), where we have used that s = m · log p and M ≤ p1/9. Also, by
Theorem 6.4.9, HSU

ℓ⃗
has a logspace-uniform circuit of size poly(pm) and depth poly(log p,m,M).

To compute H
ℓ⃗
(P ), we just need to compute HSU

ℓ⃗
(P,A) and CryptoGfA

s,M for all A ∈ S in
parallel, where S can also be computed in time poly(log p,m) and hence has logspace-uniform
circuit of size poly(log p,m). This yields a logspace-uniform circuit of size poly(pm) and depth
poly(log p,m,M) computing H

ℓ⃗
.

The reconstruction. Given oracle access to the polynomial P and a function D that (1/M)-
avoids H

ℓ⃗
(P ), we want to output a D-circuit that computes P . We do this in two stages. In the

first stage, we obtain a list of candidate circuits, one for each A ∈ S, that (with high probability)
contains at least one circuit that computes P . In the second stage, we will select, from the list
of candidate circuits, one that is sufficiently close to P and combine it with a self-corrector to
obtain a circuit that computes P on all inputs.

We now describe the first stage. Let A∗ be the lexicographically first matrix in S that is a
generator matrix for Fm

p , and consider the two sets

HSU
ℓ⃗
(P,A∗) and CryptoG

fA∗
s,M ,

which are subsets of H
ℓ⃗
(P ). Since D avoids H

ℓ⃗
, it also avoids both HSU

ℓ⃗
(P,A∗) and CryptoG

fA∗
s,M .

Assume for a moment that we are given the matrix A∗. We will construct a circuit CA∗ as
follows. Let RSU(−) and Invert(−) be the oracle algorithms from Theorem 6.4.9 and Theorem 6.4.7
respectively. We first run RSUD,P

ℓ⃗
(A∗) to obtain a D-oracle circuit C ′A∗ and some v⃗ ∈ Fm

p \ {⃗0}.
By the property of RSU(−) (Item 2 of Theorem 6.4.9) and the fact that D avoids HSU

ℓ⃗
(P,A∗),

we get that, with probability at least 1− 1/p2m, for every i ∈ [pm − 1],

C ′A∗(i) = P ((A∗)i · v⃗). (6.2)

Similarly, by the property of Invert(−) (Item 2 of Theorem 6.4.7) and the fact that D avoids
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CryptoG
fA∗
s,M , we get that

Pr
x←{0,1}s

[
Invert

fA∗ ,D
s,M (x) = f−1A∗ (x)

]
≥ 1

poly(M)
.

By combining
g := Invert

fA∗ ,D
s,M

with the algorithm DLCorr(−) from Lemma 6.4.6, we get that for every x⃗ ∈ Fm
p , with probability

at least 2/3 over the internal randomness of DLCorrg,

DLCorrg
(
p,m, 1poly(M), A∗, x⃗

)
= f−1A∗ (x⃗).

By using standard error reduction techniques (to reduce the error from 2/3 to 1/(10p2m)) and
by fixing the internal randomness (that hopefully works correctly for all pm inputs), we can
obtain, in time poly(p,m) and with probability at least 1 − 1/(10pm), a D-oracle circuit C ′′A∗
such that for every x⃗ ∈ Fm

p ,
C ′′A∗(x⃗) = f−1A∗ (x⃗). (6.3)

That is, given x⃗ ∈ Fm
p \ {⃗0}, C ′′A∗(x⃗) outputs i ∈ [pm − 1] such that (A∗)i · 1⃗ = x⃗. This is almost

what we need except that we want the circuit to output i such that (A∗)i · v⃗ = x⃗. We further
construct such a circuit C ′′′A∗ as follow. Given x⃗ ∈ Fm

p , we first compute

j := C ′′A∗(v⃗) and k := C ′′A∗(x⃗).

That is, v⃗ = (A∗)j · 1⃗ and x⃗ = (A∗)k · 1⃗. We then output i depending on the values of j and k.
On the one hand, if j < k, we let i := k − j. Then

(A∗)i · v⃗ = (A∗)k−j · (A∗)j · 1⃗ = (A∗)k · 1⃗ = x⃗.

On the other hand, if k ≤ j, we let i := pm − 1− (j − k) , which yields

(A∗)i · v⃗ = (A∗)p
m−1−j+k · (A∗)j · 1⃗ = I · (A∗)k · 1⃗ = x⃗.

Now we have a circuit C ′′′A∗ that given x⃗ ∈ Fm
p \{⃗0}, outputs i ∈ [pm−1] such that (A∗)i ·v⃗ = x⃗

and a circuit C ′A∗ that given i ∈ [pm − 1], computes P ((A∗)i · v⃗). We then construct the circuit

CA∗(x⃗) :=




P (⃗0) if x⃗ = 0⃗

C ′A∗(C
′′′
A∗(x⃗)) if x⃗ ∈ Fm

p \ {⃗0}.

Note that we can hardwire the value of P (⃗0). Also notice that if both Equations 6.2 and 6.3 are
true (which happens with probability at least 1− 1/(9pm)), we will get that for all x⃗ ∈ Fm

p ,

CA∗(x⃗) = P (x⃗).

However, we don’t know the matrix A∗. Instead, we will run the above procedure for each
A ∈ S to obtain a list C := {CA}A∈S of candidate circuits CA. Then, with probability at least
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1 − 1/(9pm), C contains at least one circuit (in particular, CA∗) that computes the polynomial
P .

Given the list of candidate circuits C, we now describe the second stage. First of all, given
a circuit CA ∈ C, we want to check if CA is sufficiently close to P .

Claim 6.4.10. There is a randomised algorithm IsClose that, given a circuit B : Fm
p → Fp,

δ ∈ (0, 1], and oracle access to the polynomial P , runs in time poly(|B|) · log(1/δ) such that

• if Prx⃗[B(x⃗) = P (x⃗)] = 1, the algorithm accepts with probability 1, and

• if Prx⃗[B(x⃗) = P (x⃗)] ≤ 3/4, the algorithm rejects with probability at least 1− δ.

Proof of Claim 6.4.10. The algorithm picks 3 log(1/δ) points uniformly at random from Fm
p

and checks if B and P agree on all those points. If so, the algorithm accepts; otherwise, it
rejects. Note that if Prx⃗[B(x⃗) = P (x⃗)] ≤ 3/4, then the probability that it accepts is at most
(3/4)3 log(1/δ) < δ. ⋄

For each CA ∈ C, we run IsCloseP (CA, δ := 1/(4|C|pm)) and pick the first one that the
algorithm accepts. By the fact that C contains at least one circuit that computes P and by the
property of the algorithm IsClose (Claim 6.4.10), with probability at least 1− 1/(4pm), we will
obtain some D-oracle circuit Cclose such that

Pr
x⃗←Fm

p

[Cclose(x⃗) = P (x⃗)] > 3/4. (6.4)

Conditioned on Equation 6.4, by combining Cclose with the self-corrector PCorr(−) from The-
orem 6.4.8, we get that for every x⃗ ∈ Fm

p , PCorrCclose(p,m,∆, x⃗) = P (x⃗) with probability at
least 2/3 (over the internal randomness of PCorrCclose). Again, by using standard error reduction
techniques and by picking a randomness uniformly at random, we can obtain in time poly(p,m),
with probability at least 1− 1/(4pm), a D-oracle circuit C that computes P .

By a union bound, the above procedure gives, with probability at least 1− 1/pm, a D-oracle
circuit that computes the polynomial P .

Finally, it is easy to verify that the running time is poly(p,m).

6.5 Improved Chen–Tell Targeted Hitting Set Generator

In this section, we prove Theorem 6.3.1, showing how to build a reconstructive hitting set
generator from any uniform low-depth circuit.

6.5.1 Layered-Polynomial Representation

The first step is to “arithmetise” our low-depth circuit into a layered-polynomial representa-
tion. Roughly speaking, given a (uniform) circuit C of depth d and size T , we will produce a
table of size d′×T ′ where d′ ≈ d and T ′ = poly(T ), such that the following key properties hold:

(Low-degree.) Each row is the “truth table” of a low-degree polynomial (thus admits self-
correction properties).
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(Faithful representation.) Given oracle access to the d′-th row, we can compute the output
of C(1n) quickly.

(Downward self-reducibility.) For each 2 ≤ i ≤ d′, given oracle access to the (i − 1)-th
polynomial, we can quickly compute the output of the i-th polynomial on a given input.
Moreover, the entries of the first row (corresponding to i = 1) can be computed quickly.

Later, we will use these properties of the layered-polynomial representation to compile them into
a reconstructive HSG.

We now formally describe our layered-polynomial representation, which can be proved by
modifying the construction in [CT21a]. In the following, letting p be a power of 2, and f : Fℓ

p →
Fp, we use tt(f) to denote the length-(pℓ · log p) Boolean string that consists of pℓ blocks, where
the i-th block corresponds to the Boolean encoding of the i-th element in Fp.

Theorem 6.5.1 (Layered-Polynomial Representation). There exist universal constants c, c′, β >
1 such that the following holds. Let κ ∈ N and let T, d, n, h, p ∈ N all be sufficiently large such
that (1) d ≤ T and n ≤ T , and (2) h, p are both nice powers of 2 and log T ≤ h < p ≤ h27 ≤ T .
(Recall that p is a nice power of 2 if p = 22·3

λ for some λ ∈ N.)
Let ℓ⃗ := (κ, T, d, n, h, p) be the input parameters, and let F := Fp. For a Turing machine TM

with description size |TM| = κ · log T , let

CTM := Circuit[T, κ · log T, n, n](TM).

Assuming CTM ̸= ⊥ and CTM has depth at most d, there are d′ := cκ · log2 T · (d+κ2 log T ) poly-
nomials

(
P ℓ⃗,TM
i

)
i∈[d′]

such that the following hold (below we write P ℓ⃗,TM
i as Pi for simplicity):

1. (Arithmetic setting.) Let H ⊂ F be the first h elements of F, and let m be the smallest
power of 3 such that hm ≥ T βκ. Each polynomial is from F3m to F and has total degree at
most ∆ = c · h · log3(T ).

2. (Faithful representation.) Fix an injective function id : [n] → Hm in an arbitrary but
canonical way.22 For every i ∈ [n], (CTM(1n))i = Pd′(id(i), 0

2m).

3. (Complexity of the polynomials.) Let Tpoly := T c·κ and dpoly := c·(d log T+κ2 log2 T ).
There is a Turing machine TMpoly of description length log Tpoly such that for

Cpoly := Circuit
[
Tpoly, log Tpoly, log d

′, |F|3m · log |F|
]
(TMpoly),

it holds that (1) for every i ∈ [d′] Cpoly(i) = tt(Pi) and (2) Cpoly has depth dpoly.

Moreover, there is a polynomial-time algorithm Apoly

ℓ⃗
that takes TM ∈ {0, 1}κ log T as input,

and outputs the description of TMpoly.

4. (Downward self-reducibility.) There is a max(n, h) ·hc′-time algorithm Base that takes
inputs ℓ⃗, TM ∈ {0, 1}κ·log T , and w⃗ ∈ F3m, outputs P1(w⃗).

22For simplicity, we will ignore the complexity of computing id and its inverse since it is negligible.
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Also, there is an hc
′-time oracle algorithm DSR that takes inputs ℓ⃗, TM ∈ {0, 1}κ·log T ,

i ∈ {2, . . . , d′}, and w⃗ ∈ F3m, and oracle access to a polynomial P̃ : F3m → F, such that
when it is given Pi−1 as the oracle, it outputs Pi(w⃗).

Proof. Recall that we use ℓ⃗ to denote the input parameters (κ, T, d, n, h, p). We will follow the
proof of [CT21a, Proposition 4.7], which in turn follows [Gol17] (see also [Gol18]). In the follow-
ing, we will simply use C to denote the (low-depth) circuit CTM = Circuit[T, κ · log T, n, n](TM)

for notational convenience, but we stress that C depends on both ℓ⃗ and TM (and so does the
later circuits constructed from C).

Construction of a Highly Uniform Circuit D

We first construct a circuit D that has better uniformity and preserves the functional-
ity of C, i.e., D(1n) = C(1n). Given input 1n, D first computes a description of C =

Circuit[T, κ · log T, n, n](TM) (represented as a T × T × T tensor) and then computes the Eval

function ⟨⟨C⟩, n, d⟩ 7→ C(1n). Let s := κ · log T and s′ := O(s+ log(3 log T )) be such that each
configuration of TM on 3 log T -bit inputs can be described by s′ bits.

The circuit D is constructed by composing the following three sub-circuits. Let µ ∈ N be a
sufficiently large universal constant. We will describe and analyse their complexities (or state
the complexity bounds proved in [CT21a,Gol17]).

1. (Computing the adjacency matrices for configurations.) The first circuit D(1)

takes n bits as input (which are supposed to be 1n), outputs a list of T 3 matrices from
{0, 1}2s

′×2s′ , such that the (u, v, w)-th matrix23 M (u,v,w) satisfies the following condition:
for every γ, γ′ ∈ {0, 1}s′ , M (u,v,w)[γ, γ′] = 1 if and only if Anxt(TM, s, (u, v, w), γ, γ

′) (i.e.,
γ′ is the configuration obtained by running TM for one step on configuration γ and input
(u, v, w) with space bound s). Recall we assumed that if γ is the accepting or the rejecting
configuration, then its next configuration is γ itself.

Complexity of D(1). D(1) can be implemented by a projection (i.e., depth dD(1) = 2 and
size TD(1) = T 3 · 22s′).24 Moreover, from Fact 6.2.2, given ℓ⃗ and TM, in polynomial time
we can compute a Turing machine TMD(1) ∈ {0, 1}(κ+µ)·log T such that

Circuit
[
TD(1) , sD(1) , n, T 3 · 22s′

]
(TMD(1)) = D(1),

where sD(1) = µ · s′.

2. (Computing the adjacency relation tensor of C via matrix multiplication.) The
second circuit D(2) takes a list of T 3 matrices from {0, 1}2s

′×2s′ as input, and outputs a
tensor from {0, 1}T×T×T followed by the encoding of a pair (n, d).

In more detail, given the output of D(1)(1n), for every (u, v, w) ∈ [T ]3, it determines
whether TM(u, v, w) = 1 by computing (M (u,v,w))2

s′ , which can be done by repeated
squaring s′ times. This gives the adjacent relation tensor of C.

23We use (u, v, w) ∈ [T ]3 to denote the integer (u− 1)T 2 + (v − 1)T + w ∈ [T 3].
24Note that we can implement projections and restrictions of input bits to 0 and 1 using two layers of NAND

gates.
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Complexity of D(2). D(2) can be implemented by a circuit of depth dD(2) = µ · (s′)2 and
size TD(2) = T 3 · 2µs′ . Moreover, from [CT21a,Gol17] (note that D(2) does not depend on
TM), given ℓ⃗, in polynomial time we can compute a Turing machine TMD(2) ∈ {0, 1}µ·log T
such that

Circuit
[
TD(2) , sD(2) , T 3 · 22s′ , T 3 + |(n, d)|

]
(TMD(2)) = D(2),

where sD(2) = µ · s′.

3. (Computing Eval.) The final circuitD(3) takes ⟨⟨C⟩, n, d⟩ as input, and outputs Eval(⟨C⟩, n, d).
Complexity of D(3). D(3) can be implemented by a circuit of depth dD(3) = µ · d · log T
and size TD(3) = Tµ. Moreover, from [CT21a,Gol17] (note that D(3) does not depend on
TM), given ℓ⃗, in polynomial-time we can compute a Turing machine TMD(3) ∈ {0, 1}µ·log T
such that

Circuit
[
TD(3) , sD(3) , T 3 + |(n, d)|, n

]
(TMD(3)) = D(3),

where sD(3) = µ · s′.

Formally, we have
D = D(3) ◦D(2) ◦D(1).

Let β ∈ N be a sufficiently large constant such that β ≥ 100µ. The following claim summa-
rizes the required properties of D for us.

Claim 6.5.2. The following properties about the circuit D are true.

1. The depth of D is dD = β · (κ2 · log2 T + d · log T ) and the width of D is T ′D = T βκ.

2. The layered adjacency relation function Φ′ : [dD] × {0, 1}3 log(T
′
D) → {0, 1} of D can be

decided by a formula of depth O(log log T ) and size O(log3 T ). Moreover, there is an
algorithm AΦ′ that, given ℓ⃗ and TM as input, outputs the formula above in O(κ log T )

space.

3. There is a Turing machine TMD ∈ {0, 1}βκ log T such that

Circuit[TD, sD, n, n](TMD) = D, 25

where TD = T ′D · (dD + 1) and sD = βκ log T . Moreover, given ℓ⃗ and TM as input, the
description of TMD can be computed in polynomial time.

Proof of Claim 6.5.2. By construction, the size ofD is bounded by poly(T )·2O(s′) ≤ TO(κ) (recall
that s′ = O(s + log(3 log T )) and s = κ log T ), and its depth is bounded by O(s2 + d · log T ).
The first bullet then follows directly from the fact that β is sufficiently large.

Recall that the D(1) part of D has depth dD(1) = 2. To see the complexity of computing
Φ′(i,−,−,−) for i > 2, we note that the layers corresponding to D(2) and D(3) do not depend on
TM. Hence the complexity of computing their layered adjacent relation function follows directly

25Note that Circuit generates the unlayered version of D of size T ′D · (dD + 1), Without loss of generality we
can assume the first T ′ gates are on the first layer, the next T ′ gates are on the second layer, and so on.
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from [CT21a, Claim 4.7.1].26 Also, the complexity of computing Φ′(i,−,−,−) for i ∈ {1, 2}
follows directly from Fact 6.2.2. To see the moreover part, again, the case for i > 2 follows
from [CT21a, Claim 4.7.1], and the case for i ∈ {1, 2} follows from Fact 6.2.2.27

Finally, to obtain the algorithm that computes TMD, we simply apply the composition
Acomp (from Fact 6.2.4) twice to compose the circuits D(1), D(2), D(3) in order and add some
dummy gates to the circuit. The space bound and the description size bound can also be verified
easily. ⋄

Arithmetisation of D

The construction of the polynomials and their corresponding algorithms can then be done
in the same way as in [CT21a]. We only state the necessary changes to establish our theorem.

Note that |F|m = pm ≤ poly(h27m) ≤ TO(βκ) ≤ TO(κ) (β is a universal constant), from our
assumption that p ≤ h27 and our choice of m.

First, we need an arithmetisation of each Φ′i := Φ′(i,−,−,−).

Claim 6.5.3. For i ∈ [dD] there exists a polynomial Φ̂i : F3m → F that satisfies the following:

1. For every (w⃗, u⃗, v⃗) = z1, ..., z3m ∈ H3m we have that Φ̂i(w⃗, u⃗, v⃗) = 1 if gate w⃗ in the ith

layer of D is fed by gates u⃗ and v⃗ in the (i−1)th layer of D, and Φ̂i(w⃗, u⃗, v⃗) = 0 otherwise.

2. The degree of Φ̂i is at most O(h · log3 T ). Moreover, there exists an algorithm that on input
ℓ⃗,TM, i, w⃗, u⃗, v⃗, computes Φ̂i(w⃗, u⃗, v⃗) in poly(h) time.

3. For a universal constant c1 > 1, there exists a circuit CΦ̂ of size TΦ̂ := T c1κ and depth
c1κ · log T that on input i ∈ [dD] outputs tt(Φ̂i) ∈ F|F|3m (represented as a Boolean string).
Moreover, there is a polynomial-time algorithm AΦ̂ that takes ℓ⃗ and TM ∈ {0, 1}κ log T as
input, and outputs the description of a Turing machine TMΦ̂ ∈ {0, 1}c1κ log T such that

CΦ̂ = Circuit
[
TΦ̂, c1 · κ log T, log(dD + 1), |F|3m log |F|

]
(TMΦ̂).

Proof Sketch of Claim 6.5.3. We first define Φ̂i and then establish each item separately.

Construction of Φ̂i. Let FΦ′ be the O(log log T )-depth O(log3 T )-size formula computing
Φ′ : [dD] × {0, 1}3·log T

′
D → {0, 1} from Claim 6.5.2. For every i ∈ [dD], let Fi be the restriction

of FΦ′ by fixing the first input to be i. Then, we arithmetise Fi by replacing every NAND gate
in Fi by an arithmetic gate ÑAND : F2 → F computing ÑAND(u, v) := 1 − uv. Denote the new
formula (which is now an arithmetic formula) by F̂i.

For each j, let πj : H → {0, 1} be the mapping that maps z ∈ H to the j-th bit of the
encoding of z. Note that since H consists of the smallest h elements in F, we know that
π(z) = (π1(z), . . . , πlog h(z)) is a bijection between H and {0, 1}log h.28

26We note that although [CT21a,Gol17] only claims a polylog(T ) bound on the formula size, the formula is
indeed very simple and its size and depth can be easily bounded by O(log3 T ) and O(log log T ), respectively;
see [Gol17, Page 8-9] for details.

27Strictly speaking, we need to combine the formulas for two cases to obtain a single formula for Φ′. The
overhead of doing so is negligible, thus we omit this discussion here.

28More specifically, by our specific encoding of H as strings from {0, 1}log |F|, π(z) is simply the first log h bits
of the encoding of z, hence it can be computed by a projection.
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For each j ∈ [log h], let π̂j : F → F be the unique degree-(h − 1) extension of πj to F, that
can be computed via standard interpolation via logspace-uniform circuits of O(log(h · log |F|)) =
O(log T ) depth and polylog(T ) size [HAB02,HV06] (see [CT21a, Claim 4.7.2] for the details).
We also let π̂(z) = (π̂1(z), . . . , π̂log h(z)). Then, we set

Φ̂i(z1, . . . , z3m) := F̂i(π̂(z1), π̂(z2), . . . , π̂(z3m)).

We also use FΦ̂i
to denote the arithmetic formula on the right side above that computes the

formula Φ̂i.
From the construction above, the first two items of the claim can be proved identically

as [CT21a, Claim 4.7.2]. It remains to establish the third item.

Construction of CΦ̂. We hardwire the description of FΦ′ into CΦ̂. The circuit CΦ̂ takes
i ∈ [dD] as input, performs the above computation to obtain a description of the arithmetic
formula FΦ̂i

, and then outputs the truth table of FΦ̂i
by evaluating it on all vectors in F3m.

In more detail, computing the description of FΦ̂i
from the description of FΦ′ and i can be

done in O(log T ) depth and polylog(T ) size. CΦ̂ then evaluates FΦ̂i
on all vectors from Fm,

which can be done in poly(|F|m) size and O(log(|F|m)) depth. The third bullet (except for the
moreover part) then follows by setting c1 to be sufficiently large and recalling that |F|m ≤ TO(βκ).

Establishing the uniformity. Finally, we establish the moreover part of the third bullet.
Let µΦ̂ ∈ N be a sufficiently large universal constant that depends on the space complexity of
the algorithm AΦ′ from Claim 6.5.2.

Our algorithm AΦ̂ works as follows:

1. We first construct a Turing machine TM[1] with ℓ⃗ and TM hardwired. TM[1] corresponds
to a circuit C[1] that takes i ∈ [dD] as input and outputs i together with the description
of FΦ′ .29 C[1] has depth d[1] = O(1) and size T[1] = polylog(T ). Let s[1] = µΦ̂ · κ log T , we
have

C[1] = Circuit
[
T[1], s[1], log dD, log dD + |FΦ′ |

](
TM[1]

)

and TM[1] has description size at most |TM|+ µΦ̂ · log T = (κ+ µΦ̂) · log T .

Here, we crucially use the fact that the algorithm AΦ′ from Claim 6.5.2 runs in O(κ log T )

space (and µΦ̂ is sufficiently large).

2. Then we construct a Turing machine TM[2] that corresponds to a circuit C[2] that takes
i ∈ [dD] together with the description of FΦ′ as input and outputs tt(Φ̂i). By the discussion
above, from ℓ⃗ we can compute a Turing machine TM[2] ∈ {0, 1}µΦ̂κ log T such that for
T[2] = poly(|F|m) ≤ TµΦ̂κ, d[2] = O(log(|F|m)) ≤ µΦ̂κ · log T , s[2] = µΦ̂κ log T , we have

C[2] = Circuit
[
T[2], s[2], log dD + |FΦ′ |, |F|3m

](
TM[2]

)
,

and C[2] has depth d[2].

29Precisely, TM[1] simulates AΦ′ on input ℓ⃗ and TM to construct a projection that maps i to (i, FΦ′).
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3. Finally, AΦ̂ composes C[1] and C[2] by applying Fact 6.2.4 and outputs the obtained Turing
machine as TMΦ̂. Setting c1 sufficiently large completes the proof. ⋄

Then we define the following polynomials, according to [CT21a, Definition 4.6].

Input polynomial. Let α0 : H
m → {0, 1} represent the string 1n0h

m−n, and let α̂0 : Fm → F
be the “arithmetisation” of α0, defined by

α̂0(w⃗) =
∑

z⃗∈Hm′×{0}m−m′

δz⃗(w⃗) · α0(z⃗).

Here, m′ ≤ m is the minimal integer such that hm′ ≥ n, and δz⃗ is Kronecker’s delta function
(i.e., δz⃗(w⃗) =

∏
j∈[m]

∏
a∈H\{zj}

wj−a
zj−a ).

Layer polynomials. For each i ∈ [dD], let αi : H
m → {0, 1} represent the values of the gates

at the ith layer of D in the computation of D(1n) (with zeroes in locations that do not index
valid gates). Recall that we consider circuits consisting of NAND gates, where for a, b ∈ {0, 1}
we have NAND(a, b) = 1− a · b. We define α̂i : Fm → F as

α̂i(w⃗) =
∑

u⃗,v⃗∈Hm

Φ̂i(w⃗, u⃗, v⃗) · (1− α̂i−1(u⃗) · α̂i−1(v⃗)) . (6.5)

Note that α̂i is the “arithmetisation” of αi in the sense that for every w⃗ ∈ Hm, αi(w⃗) = α̂i(w⃗).

Sumcheck polynomials. For each i ∈ [dD], let α̂i,0 : F3m → F be the polynomial

α̂i,0(w⃗, σ1, ..., σ2m) = Φ̂i(w⃗, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) . (6.6)

For every j ∈ [2m], let α̂i,j : F3m−j → F be the polynomial

α̂i,j(w⃗, σ1, ..., σ2m−j) =∑

σ2m−j+1,...,σ2m∈H
Φ̂i(w⃗, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) , (6.7)

where σk,...,k+r = σk, σk+1, ..., σk+r. It is easy to check that α̂i,2m = α̂i.

We are now ready to define the sequence (Pi)i∈[d′] =
(
P ℓ⃗,TM
i

)
i∈[d′]

. We set d′ := (2m+ 1) ·
dD + 1 and

(Pi)i∈[d′] = (α̂0, α̂1,0, . . . , α̂1,2m, α̂2,0, . . . , α̂2,2m, . . . , α̂dD,0, . . . , α̂dD,2m).

For those α̂i,j (and α̂0) that take less than 3m variables, we add some dummy variables at the
end to make all polynomials take exactly 3m variables.

From the definitions of m and dD, we have m ≤ 3 · βκ · log T + 1 and dD = β · (κ2 · log2 T +

d · log T ). Hence, we have d′ = (2m+ 1) · dD + 1 ≤ cκ · log2 T · (d+ κ2 log T ) as desired.30

30We can add identical polynomials at the end to make d′ exactly cκ · log2 T · (d+ κ2 log T ) as in the theorem
statement.
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Below we verify the desired properties of the sequence (Pi)i∈[d′].

Arithmetic setting, faithful representation, and downward self-reducibility. First,
the degree bounds of all these polynomials follow directly from their definitions and from the
degree bound on Φ̂i (from Claim 6.5.3). The faithful representation property also follows directly
from the definition of αdD and α̂dD,2m = α̂dD . Finally, the downward self-reducibility of the
polynomials follows from the complexity of computing Φ̂i (from Claim 6.5.3) and the definitions
of these polynomials, similarly to the proof of [CT21a, Proposition 4.7].

Complexity of the Polynomials

Now we verify the complexity of computing these polynomials. The argument below is
straightforward but tedious. We first give a high-level overview.

High-level overview of the construction. To construct the circuit Cpoly that maps i′ ∈ [d′]

to tt(Pi), we will construct three sub-circuits Cα, Ctt-Φ̂, and Carith such that:

1. Cα maps i′ ∈ [d′] to (tt(αi−1), i, j). Here, if i′ ≥ 2, then i ∈ {1, . . . , dD} and j ∈
{0, 1, . . . , 2m} satisfies that Pi′ = α̂i,j and tt(αi−1) ∈ {0, 1}hm denotes the values of the
gates at the i-th layer of D. If i′ = 1, then we consider i = j = 0 and Cα outputs
(tt(α0), 0, 0).

2. Ctt-Φ̂ maps (tt(αi−1), i, j) to (tt(αi−1), i, j, tt(Φ̂i)).

3. Carith maps (tt(αi−1), i, j, tt(Φ̂i)) to tt(α̂i,j) ∈ F|F|3m .

Cpoly is then simply Carith ◦ Ctt-Φ̂ ◦ Cα. To compute the Turing machine TMpoly that corre-
sponds to Cpoly, we construct the Turing machines TMα, TMtt-Φ̂, and TMarith corresponding to
the three circuit above, and compose them using Fact 6.2.4.

Construction of Cα and TMα. First, we construct a circuit Cα that takes as input i′ ∈ [d′]

and outputs (tt(αi−1), i, j). To construct Cα, we first compute i and j from i′ using basic
arithmetic, and then truncate D up to its i-th layer. It is easy to see that given the Turing
machine TMD that specifies the circuitD, in polynomial-time we can construct a Turing machine
TMα ∈ {0, 1}|TMD|+µ such that (in what follows, we write |⟨i, j⟩| = log(dD + 1) + log(2m + 1)

for convenience):
Circuit[Tα, sα, log(d

′), hm + |⟨i, j⟩|](TMα) = Cα,

where Tα = µ · TD, sα = 2sD. Moreover, Cα has depth at most dα = 2 · dD.

Construction of Ctt-Φ̂ and TMtt-Φ̂. Let c1 be the universal constant from Claim 6.5.3.
Next we construct a circuit Ctt-Φ̂ that on input (tt(αi−1), i, j), outputs (tt(αi−1), i, j, tt(Φ̂i)).
It is straightforward to obtain this circuit from the circuit CΦ̂ constructed in Claim 6.5.3. In
other words, given ℓ⃗ and TMΦ̂ ∈ {0, 1}c1κ log T as input (where TMΦ̂ is the Turing machine
that generates CΦ̂ as defined in Claim 6.5.3), we can compute a Turing machine TMtt-Φ̂ ∈
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{0, 1}2·c1κ log T such that

Circuit[Ttt-Φ̂, stt-Φ̂, h
m + |⟨i, j⟩|, hm + |⟨i, j⟩|+ |F|3m log |F|](TMtt-Φ̂) = Ctt-Φ̂,

where Ttt-Φ̂ = T 2c1κ, stt-Φ̂ = 2c1κ log T . Moreover, Ctt-Φ̂ has depth dtt-Φ̂ = 2c1κ log T .

Construction of Carith and TMarith. We construct a circuit Carith that maps

(tt(αi−1), i, j, tt(Φ̂i))

to tt(α̂i,j) ∈ F|F|3m . (Recall that throughout this proof we view α̂i,j as a 3m-variable polynomial
by adding dummy variables at the end.) Suppose that i ≥ 1 (the base case i = j = 0 can be
handled similarly). If j = 0, Carith computes tt(α̂i,0) using Equation 6.6, otherwise (j ≥ 1)
Carith computes tt(α̂i,j) using Equation 6.7. (Note that both Equation 6.6 and Equation 6.7
only depend on the values of α̂i−1 overHm, which is exactly tt(αi−1) due to our arithmetisation.)
Since arithmetic operations over F (including iterated addition, multiplication, and inverse) are
in logspace-uniform NC1 [HAB02, HV06],31 it follows that Carith is of Tarith := poly(|F|m) size
and darith := O(m log |F|) depth. Moreover, Carith does not depend on TM, and we can compute
a Turing machine TMarith from ℓ⃗ in time polylog(T ) such that

Circuit[Tarith, sarith, h
m + |⟨i, j⟩|+ |F|3m log |F|, |F|3m log |F|](TMarith) = Carith,

where sarith = µ · βκ log T .
Composing TMα, TMtt-Φ̂, and TMarith by applying Fact 6.2.4 twice gives the desired Turing

machine TMpoly that computes the desired circuit Cpoly.

Complexity of Cpoly and TMpoly. Finally, we verify that TMpoly and Cpoly satisfy our require-
ments. First, from the discussions above, we can bound the size of Cpoly by Tα+Ttt-Φ̂+Tarith ≤
Tpoly = 2c·κ log T by picking a sufficiently large c. Note that m log |F| = log(pm) ≤ O(κ log T ).
The depth of Cpoly can be bounded by dpoly = dα + dtt-Φ̂ + darith ≤ c · (κ2 · log2 T + d · log T ) as
desired.

From Fact 6.2.4, we have that

|TMpoly| ≤ 100 ·
(
|TMα|+ |TMtt-Φ̂|+ |TMarith|+ log(|F|3m)

)
≤ c · κ log T = log Tpoly

by setting c sufficiently large. The space complexity of TMpoly can be bounded by

100 ·
(
sα + stt-Φ̂ + sarith

)
≤ c · κ log T = log Tpoly

as well. This completes the proof.
31It is in fact in logtime-uniform TC0, but here we only need it to be in logspace-uniform NC1.
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6.5.2 Improved Chen–Tell Generator: Proof of Theorem 6.3.1

Now we are ready to prove Theorem 6.3.1 by plugging every polynomial from Theorem 6.5.1
into our modified Shaltiel–Umans generator (Theorem 6.4.1).

Proof of Theorem 6.3.1. We first observe that we can assume ρ = 1 without loss of generality.
To see how the general case follows from the case that ρ = 1, letting M ′ = Mρ, we can simply
define Hct

n,T,d,M,κ,ρ as the set of strings obtained by truncating every string from Hct
n,T,d,M ′,κ,1 to

their first M bits. The reconstruction algorithm Rct
n,T,d,M,κ,ρ can then be obtained by slightly

modifying Rct
n,T,d,M ′,κ,1.

Let
ℓ⃗ct = (n, T, d,M, κ, 1)

be the input parameters from the theorem statement, and c be a sufficiently large universal
constant. From the assumption, we have n ≤ T, d ≤ T , and c · log T ≤M ≤ T 1/c. Let

CTM = Circuit[T, κ · log T, n, n](TM).

The layered-polynomial representation. Let c0, c′0, β be the universal constants from The-
orem 6.5.1. Let h be the smallest nice power of 2 such that h ≥M , p := h27, m be the smallest
power of 3 such that hm ≥ T βκ, and F = Fp. Note that p is also a nice power of 2 and h ≤M3.

We will invoke Theorem 6.5.1 with input parameters

ℓ⃗poly = (κ, T, d, n, h, p).

Note that from their definitions and our assumption M ≥ c log T , we have log T ≤ h < p ≤
h27 ≤M81 ≤ T (assuming c ≥ 81 is large enough), meaning that the requirements on the input
parameters of Theorem 6.5.1 are satisfied.

We first apply Theorem 6.5.1 with input parameters ℓ⃗poly and Turing machine TM to obtain

d′ = c0κ · log2 T · (d+ κ2 log T ) polynomials (Pi)i∈[d′] =
(
P ℓ⃗,TM
i

)
i∈[d′]

.

Hitting set Hct. Let Hlayer and Rlayer denote the H and R algorithms from Theorem 6.4.1,
respectively.32 Let ∆ = c0h log

3(T ),

ℓ⃗layer = (p, 3m,M,∆)

be the input parameters when applying Theorem 6.4.1. We can verify that p > ∆2(3m)7M9,
i.e., the requirement on the input parameters of Theorem 6.4.1 is satisfied.

We then define Hct
ℓ⃗ct
(TM) as the union of Hlayer

ℓ⃗layer
(Pi) for every i ∈ [d′]. Next, we analyse the

complexity of computing Hct
ℓ⃗ct
(TM). First, from Theorem 6.5.1, letting Tpoly = T c0·κ and dpoly =

c0 · (d log T +κ2 log2 T ), there is a polynomial-time algorithm Apoly

ℓ⃗
that takes TM ∈ {0, 1}κ log T

32The superscript layer highlights the fact that they are applied to each layer of the polynomial representation
of the circuit.
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as input, and outputs a description of Turing machine TMpoly ∈ {0, 1}log Tpoly such that for

Cpoly = Circuit
[
Tpoly, log Tpoly, log d

′, |F|3m · log |F|
]
(TMpoly)

it holds that (1) for every i ∈ [d′] Cpoly(i) = tt(Pi) and (2) Cpoly has depth dpoly.
Second, from Theorem 6.4.1, there is a logspace-uniform circuit family with input parameters

ℓ⃗layer, size poly(pm), and depth poly(log p,m,M) such that for every i ∈ [d′], it outputs Hlayer

ℓ⃗layer
(Pi)

when taking tt(Pi) as input. Note that poly(pm) ≤ TO(βκ) and poly(log p,m,M) ≤ poly(M).
Applying Fact 6.2.4 to compose the machines above and enumerating over all i ∈ [d′],33 we
obtain the desired circuit CH (note that c is sufficiently large).

Reconstruction Rct. For every i ∈ {2, . . . , d′}, the reconstruction algorithm Rct attempts to
construct a poly(p,m, log(Md′))-size D-oracle circuit Ei that computes Pi. A formal description
of Rct is as follows:

• We start with the circuit E1(x⃗) = Base(ℓ⃗,TM, x⃗) that computes the polynomial P1.

• For every i ∈ {2, . . . , d′}:

1. We first construct a procedure P̃i computing Pi using the D-oracle circuit ED
i−1 for

Pi−1 and the downward self-reducibility for Pi. In particular, on input x⃗ ∈ F3m, let

P̃i(x⃗) := DSRED
i−1(ℓ⃗,TM, i, x⃗).

2. Run
(
Rlayer

)D,P̃i

ℓ⃗layer
which outputs a D-oracle circuit ẼD

i in poly(p,m,M) time.

3. Let t := c1 · m · log p for a sufficiently large constant c1 > 1. Take t i.i.d. samples
x⃗1, . . . , x⃗t from F3m. Check that for every j ∈ [t], ẼD

i (x⃗j) = P̃i(x⃗j). If any condition
does not hold, the algorithm outputs ⊥ and aborts immediately.

4. Let Ei be a D-oracle circuit constructed as follows:

(a) Draw t = Θ(m log p) i.i.d. samples of random strings r1, . . . , rt used by PCorr.
(Recall PCorr is the self-corrector for low-degree polynomials in Theorem 6.4.8.)

(b) Set Ei(x⃗) = MAJk∈[t] PCorr
Ẽi(p, 3m,∆, x⃗; rk) for all x⃗ ∈ F3m.

• For every j ∈ [n], output ED
d′ (id(j), 0

2m).

For ease of notation, for every i′ ∈ {2, . . . , d′}, we use τi′ to denote the randomness used
when running the algorithm above with i = i′, and we use τ≤i to denote τ1, . . . , τi. Also, if Ei is
not constructed by the algorithm (meaning that the algorithm aborts before constructing Ei),
we set Ei = ⊥.

From Theorem 6.4.8, Theorem 6.4.1, and Theorem 6.5.1, the running time of the algorithm
above can be bounded by

poly(p,m, h, log(Md′)) · (d′ + n) ≤ poly(M) · (d′ + n) ≤ poly(M) · (d+ n).

33Enumerating all i ∈ [d′] only adds a O(log d′) additive overhead in depth and a O(d′) multiplicative blowup
in size, which are negligible.
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The last inequality follows from the fact that M ≥ log T and hence d′ = c0κ · log2 T · (d +

κ2 log T ) ≤ poly(M) ·d. Now we establish the soundness and completeness of the reconstruction.
We show the following claim.

Claim 6.5.4. Fix D : {0, 1}M → {0, 1}. For every i ∈ {2, . . . , d′}, for every fixed τ≤i−1, if ED
i−1

computes Pi−1 or i = 2,34 then with probability at least 1− 1/pm over τi the following holds:

• (Soundness.) If Ei ̸= ⊥, then ED
i computes Pi.

• (Completeness.) If D (1/M)-avoids Hlayer

ℓ⃗layer
(Pi), then ED

i computes Pi.

Before establishing the claim, we show that it implies the completeness and soundness of
the reconstruction. To see the soundness, note that by induction over all i ∈ {2, . . . , d′}, with
probability at least 1− d′/pm > 9/10, it holds that if Ed′ ̸= ⊥, then Ed′ computes Pd′ , meaning
the reconstruction outputs the correct output CTM(1n). To see the completeness, note that an
oracle D : {0, 1}M → {0, 1} that (1/M)-avoids Hct

ℓ⃗
(TM) also (1/M)-avoids Hlayer

ℓ⃗layer
(Pi) for every

i ∈ [d′]. Hence, by induction over i ∈ {2, . . . , d′}, with probability at least 1− d′/pm > 9/10, it
holds that Ei computes Pi for every i ∈ {2, . . . , d′}. Thus the reconstruction will output CTM(1n).
The success probability 9/10 can be amplified to 1−2−M by running the reconstruction algorithm
O(M) times independently and outputting the answer that occurs most frequently.

Finally, we prove the claim.

Proof of Claim 6.5.4. We first establish the soundness. From the assumption that ED
i−1 com-

putes Pi−1 or i = 2 and the downward self-reducibility property of Theorem 6.5.1, it follows
that P̃i computes Pi. Therefore, Ei ̸= ⊥ means that Ẽi has passed the test in Step 3, meaning
that with probability at least 1 − p−4m over the randomness in Step 3, it holds that Ẽi agrees
Pi on at least 3/4 fraction of inputs from F3m. This then means that with probability at least
1− p−3m over the randomness in Step 4(a), we have ED

i computes Pi.
The completeness follows immediately from Theorem 6.4.1. (Here ẼD

i already computes Pi

with probability at least 1− 1/pm.) ⋄

This completes the proof of Theorem 6.3.1.

34Note that τ≤i−1 determines Ei−1.
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Chapter 7

Near-Maximum Circuit Lower Bounds
and New Algorithms for Range
Avoidance

7.1 Introduction

Proving lower bounds against non-uniform computation (i.e., circuit lower bounds) is one
of the most important challenges in theoretical computer science. From Shannon’s counting
argument [Sha49,FM05], we know that almost all n-bit Boolean functions have near-maximum
(2n/n) circuit complexity.1 Therefore, the task of proving circuit lower bounds is simply to
pinpoint one such hard function. More formally, one fundamental question is:

What is the smallest complexity class that contains a language of exponential (2Ω(n))
circuit complexity?

Compared with super-polynomial lower bounds, exponential lower bounds are interesting in
their own right for the following reasons. First, an exponential lower bound would make Shan-
non’s argument fully constructive. Second, exponential lower bounds have more applications
than super-polynomial lower bounds: For example, if one can show that E has no 2o(n)-size
circuits, then we would obtain polynomial-time derandomisation of BPP [NW94, IW97], while
super-polynomial lower bounds such as EXP ̸⊂ P/poly only imply subexponential time deran-
domisation of BPP.2

Unfortunately, despite its importance, our knowledge about exponential lower bounds is quite
limited. Kannan [Kan82] showed that there is a function in Σ3E ∩ Π3E that requires maximum

1All n-input Boolean functions can be computed by a circuit of size (1 + 3 logn
n

+O( 1
n
))2n/n [Lup58,FM05],

while most Boolean functions require circuits of size (1 + logn
n

− O( 1
n
))2n/n [FM05]. Hence, we say an n-bit

Boolean function has near-maximum circuit complexity if its circuit complexity is at least 2n/n.
2E = DTIME[2O(n)] denotes single-exponential time and EXP = DTIME[2n

O(1)

] denotes exponential time;
classes such as ENP and EXPNP are defined analogously. Exponential time and single-exponential time are basically
interchangeable in the context of super-polynomial lower bounds (by a padding argument); the exponential lower
bounds proven in this chapter will be stated for single-exponential time classes since this makes our results
stronger. Below, Σ3E and Π3E denote the exponential-time versions of Σ3P = NPNPNP

and Π3P = coNPNPNP

,
respectively.
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circuit complexity; the complexity of the hard function was later improved to ∆3E = EΣ2P by
Miltersen, Vinodchandran, and Watanabe [MVW99], via a simple binary search argument. This
is essentially all we know regarding exponential circuit lower bounds.3

We remark that Kannan [Kan82, Theorem 4] claimed that Σ2E ∩ Π2E requires exponential
circuit complexity, but [MVW99] pointed out a gap in Kannan’s proof, and suggested that
exponential lower bounds for Σ2E ∩ Π2E were “reopened and considered an open problem.”
Recently, Vyas and Williams [VW23] emphasised our lack of knowledge regarding the circuit
complexity of Σ2EXP, even with respect to relativising proof techniques. In particular, the
following question has been open for at least 20 years (indeed, if we count from [Kan82], it
would be at least 40 years):

Open Problem 7.1.1. Can we prove that Σ2EXP ̸⊂ SIZE[2εn] for some absolute constant ε > 0,
or at least show a relativisation barrier for proving such a lower bound?

The half-exponential barrier. There is a richer literature regarding super-polynomial lower
bounds than exponential lower bounds. Kannan [Kan82] proved that the class Σ2E ∩ Π2E

does not have polynomial-size circuits. Subsequent works proved super-polynomial circuit lower
bounds for exponential-time complexity classes such as ZPEXPNP [KW98, BCG+96], S2EXP

[CCHO05,Cai07], PEXP [Vin05,Aar06], and MAEXP [BFT98,San09].
Unfortunately, all these works fail to prove exponential lower bounds. All of their proofs go

through certain Karp–Lipton collapses [KL80]; such a proof strategy runs into a so-called “half-
exponential barrier”, preventing us from getting exponential lower bounds. See Section 7.1.4 for
a detailed discussion.

7.1.1 Our Results

New near-maximum circuit lower bounds

In this work, we overcome the half-exponential barrier mentioned above and resolve Open
Problem 7.1.1 by showing that both Σ2E and (Σ2E ∩ Π2E)/1 require near-maximum (2n/n)
circuit complexity. Moreover, our proof indeed relativises:

Theorem 7.1.2. Σ2E ̸⊂ SIZE[2n/n] and (Σ2E ∩ Π2E)/1 ̸⊂ SIZE[2n/n]. Moreover, they hold in
every relativised world.

Up to one bit of advice, we finally provide a proof of Kannan’s original claim in [Kan82,
Theorem 4]. Moreover, with some more work, we extend our lower bounds to the smaller
complexity class S2E/1 (see Definition 7.2.1 for a formal definition), again with a relativising
proof:

Theorem 7.1.3. S2E/1 ̸⊂ SIZE[2n/n]. Moreover, this holds in every relativised world.
3We also mention that Hirahara, Lu, and Ren [HLR23] recently proved that for every constant ε > 0,

BPEMCSP/2εn requires near-maximum circuit complexity, where MCSP is the Minimum Circuit Size Problem
[KC00]. However, the hard function they constructed requires subexponentially (2εn) many advice bits to de-
scribe.
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The symmetric time class S2E. S2E can be seen as a “randomised” version of ENP since
it is sandwiched between ENP and ZPENP: it is easy to show that ENP ⊆ S2E [RS98], and it
is also known that S2E ⊆ ZPENP [Cai07]. We also note that under plausible derandomisation
assumptions (e.g., ENP requires 2Ω(n)-size SAT-oracle circuits), all three classes simply collapse
to ENP [KvM02].

Hence, our results also imply a near-maximum circuit lower bound for the class ZPENP/1 ⊆
(Σ2E ∩Π2E)/1. This vastly improves the previous lower bound for ∆3E = EΣ2P.

Corollary 7.1.4. ZPENP/1 ̸⊂ SIZE[2n/n]. Moreover, this holds in every relativised world.

New algorithms for the range avoidance problem

Actually, our circuit lower bounds are implied by our new algorithms for solving the range
avoidance problem. There is a trivial FZPPNP algorithm solving Avoid: randomly generate
strings y ∈ {0, 1}n+1 and output the first y that is outside the range of C (note that we need
an NP oracle to verify if y /∈ Range(C)). Recall that, as demonstrated by Korten [Kor21,
Section 3], Avoid captures the complexity of explicit construction problems whose solutions
are guaranteed to exist by the probabilistic method (more precisely, the dual weak pigeonhole
principle [Kra01b, Jeř04]), in the sense that constructing such objects reduces to Avoid. This
includes many important objects in mathematics and theoretical computer science, including
Ramsey graphs [Erd59], rigid matrices [Val77,GLW22,GGNS23], two-source extractors [CZ19,
Li23], linear codes [GLW22], hard truth tables [Kor21], and strings with maximum time-bounded
Kolmogorov complexity (i.e., Kpoly-random strings) [RSW22]. Hence, derandomising the trivial
FZPPNP algorithm for Avoid would imply explicit constructions for all these important objects.

Our results: new pseudodeterministic algorithms for Avoid. We show that, uncondi-
tionally, the trivial FZPPNP algorithm for Avoid can be made pseudodeterministic on infinitely
many input lengths. A pseudodeterministic algorithm [GG11] is a randomised algorithm that
outputs the same canonical answer on most computational paths. In particular, we have:

Theorem 7.1.5. For every constant d ≥ 1, there is a randomised algorithm A with an NP oracle
such that the following holds for infinitely many integers n. For every circuit C : {0, 1}n →
{0, 1}n+1 of size at most nd, there is a string yC ∈ {0, 1}n \ Range(C) such that A(C) either
outputs yC or ⊥, and the probability (over the internal randomness of A) that A(C) outputs yC
is at least 2/3. Moreover, this theorem holds in every relativised world.

As a corollary, for every problem in APEPP, we obtain zero-error pseudodeterministic con-
structions with an NP oracle and one bit of advice (FZPPNP/1) that works infinitely often4:

Corollary 7.1.6 (Informal). There are infinitely-often zero-error pseudodeterministic construc-
tions for the following objects with an NP oracle and one bit of advice: Ramsey graphs, rigid
matrices, two-source extractors, linear codes, hard truth tables, and Kpoly-random strings.

4The one-bit advice encodes whether our algorithm succeeds on a given input length; it is needed since on
bad input lengths, our algorithm might not be pseudodeterministic (i.e., there may not be a canonical answer
that is outputted with high probability).
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Actually, we obtain single-valued FS2P/1 algorithms for the explicit construction problems
above (see Definition 7.2.2), and the pseudodeterministic FZPPNP/1 algorithms follow from
Cai’s theorem that S2P ⊆ ZPPNP [Cai07]. We stated them as pseudodeterministic FZPPNP/1

algorithms since this notion is better known than the notion of single-valued FS2P/1 algorithms.
Theorem 7.1.5 is tantalizingly close to an infinitely-often FPNP algorithm for Avoid (with

the only caveat of being zero-error instead of being completely deterministic). However, since
an FPNP algorithm for range avoidance would imply near-maximum circuit lower bounds for
ENP, we expect that it would require fundamentally new ideas to completely derandomise our
algorithm. Previously, Hirahara, Lu, and Ren [HLR23, Theorem 36] presented an infinitely-often
pseudodeterministic FZPPNP algorithm for the range avoidance problem using nε bits of advice,
for any small constant ε > 0. Our result improves the above in two aspects: first, we reduce the
number of advice bits to 1; second, our techniques relativise but their techniques do not.

Lower bounds against non-uniform computation with maximum advice length. Fi-
nally, our results also imply lower bounds against non-uniform computation with maximum
advice length. We mention this corollary because it is a stronger statement than circuit lower
bounds, and similar lower bounds appeared recently in the literature of super-fast derandomi-
sation [CT21b].

Corollary 7.1.7. For every α(n) ≥ ω(1) and any constant k ≥ 1, S2E/1 ̸⊂ TIME[2kn]/2n−α(n).
The same holds for Σ2E, (Σ2E ∩ Π2E)/1, and ZPENP/1 in place of S2E/1. Moreover, this holds
in every relativised world.

7.1.2 Intuitions

In the following, we present some high-level intuitions for our new circuit lower bounds.

Perspective: single-valued constructions

A key perspective in this chapter is to view circuit lower bounds (for exponential-time classes)
as single-valued constructions of hard truth tables. This perspective is folklore; it was also
emphasised in recent papers on the range avoidance problem [Kor21,RSW22].

Let Π ⊆ {0, 1}⋆ be an ε-dense property, i.e., for every integer N ∈ N, |ΠN | ≥ ε ·2N . (In what
follows, we use ΠN := Π∩{0, 1}N to denote the length-N slice of Π.) As a concrete example, let
Πhard be the set of hard truth tables, i.e., a string tt ∈ Πhard if and only if it is the truth table of
a function f : {0, 1}n → {0, 1} whose circuit complexity is at least 2n/n, where n := logN . (We
assume that n := logN is an integer.) Shannon’s argument [Sha49,FM05] shows that Πhard is
a 1/2-dense property. We are interested in the following question:

What is the complexity of single-valued constructions for any string in Πhard?

Here, informally speaking, a computation is single-valued if each of its computational paths
either fails or outputs the same value. For example, an NP machine M is a single-valued
construction for Π if there is a “canonical” string y ∈ Π such that (1) M outputs y on every
accepting computational path; (2) M has at least one accepting computational path. (That is,
it is an NPSV construction in the sense of [BLS85,FHOS93,Sel94,HNOS96].) Similarly, a BPP
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machineM is a single-valued construction for Π if there is a “canonical” string y ∈ Π such thatM
outputs y on most (say ≥ 2/3 fraction of) computational paths. (In other words, single-valued
ZPP and BPP constructions are another name for pseudodeterministic constructions [GG11].)5

Hence, the task of proving circuit lower bounds is equivalent to the task of defining, i.e.,
single-value constructing, a hard function, in the smallest possible complexity class. For ex-
ample, a single-valued BPP construction (i.e., pseudodeterministic construction) for Πhard is
equivalent to the circuit lower bound BPE ̸⊂ i.o.-SIZE[2n/n].6 In this regard, the previous
near-maximum circuit lower bound for ∆3E := EΣ2P [MVW99] can be summarised in one sen-
tence: The lexicographically first string in Πhard can be constructed in ∆3P := PΣ2P (which is
necessarily single-valued).

Reduction to Avoid. It was observed in [KKMP21, Kor21] that explicit construction of
elements from Πhard is a special case of range avoidance: Let TT : {0, 1}N−1 → {0, 1}N (here
N = 2n) be a circuit that maps the description of a 2n/n-size circuit into its 2n-length truth table
(by [FM05], this circuit can be encoded by N −1 bits). Hence, a single-valued algorithm solving
Avoid for TT is equivalent to a single-valued construction for Πhard. This explains how our new
range avoidance algorithms imply our new circuit lower bounds (as mentioned in Section 7.1.1).

In the rest of Section 7.1.2, we will only consider the special case of Avoid where the
input circuit for range avoidance is a P-uniform circuit family. Specifically, let {Cn : {0, 1}n →
{0, 1}2n}n∈N be a P-uniform family of circuits, where |Cn| ≤ poly(n).7 Our goal is to find an
algorithm A such that for infinitely many n, A(1n) ∈ {0, 1}2n \ Range(Cn); see Section 7.5.3
and Section 7.5.4 for how to turn this into an algorithm that works for arbitrary input circuit
with a single bit of stretch. Also, since from now on we will not talk about truth tables anymore,
we will use n instead of N to denote the input length of Avoid instances.

The iterative win-win paradigm of [CLO+23]

In a recent work, Chen, Lu, Oliveira, Ren, and Santhanam [CLO+23] introduced the iter-
ative win-win paradigm for explicit constructions, and used that to obtain a polynomial-time
pseudodeterministic construction of primes that works infinitely often. Since our construction
algorithm closely follows their paradigm, it is instructive to take a detour and give a high-level
overview of how the construction from [CLO+23] works.8

5Note that the trivial construction algorithms are not single-valued in general. For example, a trivial Σ2P =
NPNP construction algorithm for Πhard is to guess a hard truth table tt and use the NP oracle to verify that tt
does not have size-N/ logN circuits; however, different accepting computational paths of this computation would
output different hard truth tables. Similarly, a trivial BPP construction algorithm for every dense property Π is
to output a random string, but there is no canonical answer that is outputted with high probability. In other
words, these construction algorithms do not define anything; instead, a single-valued construction algorithm
should define some particular string in Π.

6To see this, note that (1) BPE ̸⊂ i.o.-SIZE[2n/n] implies a simple single-valued BPP construction for Πhard:
given N = 2n, output the truth table of Ln (L restricted to n-bit inputs), where L ∈ BPE is the hard language
not in SIZE[2n/n]; and (2) assuming a single-valued BPP construction A for Πhard, one can define a hard language
L such that the truth table of Ln is the output of A(12

n

), and observe that L ∈ BPE.
7We assume that Cn stretches n bits to 2n bits instead of n+1 bits for simplicity; Korten [Kor21] showed that

there is a PNP reduction from the range avoidance problem with stretch n + 1 to the range avoidance problem
with stretch 2n.

8Indeed, for every 1/poly(n)-dense property Π ∈ P, they obtained a polynomial-time algorithm A such that for
infinitely many n ∈ N, there exists yn ∈ Πn such that A(1n) outputs yn with probability at least 2/3. By [AKS04]
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In this paradigm, for a (starting) input length n0 and some t = O(log n0), we will consider
an increasing sequence of input lengths n0, n1, . . . , nt (jumping ahead, we will set ni+1 = nβi for
a large constant β), and show that our construction algorithm succeeds on at least one of the
input lengths. By varying n0, we can construct infinitely many such sequences of input lengths
that are pairwise disjoint, and therefore our algorithm succeeds on infinitely many input lengths.

In more detail, fixing a sequence of input lengths n0, n1, . . . , nt and letting Π be an ε-dense
property, for each i ∈ {0, 1, . . . , t}, we specify a (deterministic) algorithm ALGi that takes 1ni

as input and aims to construct an explicit element from Πni . We let ALG0 be the simple brute-
force algorithm that enumerates all length-n0 strings and finds the lexicographically first string
in Πn0 ; it is easy to see that ALG0 runs in T0 := 2O(n0) time.

The win-or-improve mechanism. The core of [CLO+23] is a novel win-or-improve mecha-
nism, which is described by a (randomised) algorithm R. Roughly speaking, for input lengths
ni and ni+1, R(1ni) attempts to simulate ALGi faster by using the oracle Πni+1 (hence it runs
in poly(ni+1) time). The crucial property is the following win-win argument:

(Win) Either R(1ni) outputs ALGi(1
ni) with probability at least 2/3 over its internal random-

ness,

(Improve) or, from the failure of R(1ni), we can construct an algorithm ALGi+1 that outputs
an explicit element from Πni+1 and runs in Ti+1 = poly(Ti) time.

We call the above (Win-or-Improve), since either we have a pseudodeterministic algorithm
R(1ni) that constructs an explicit element from Πni in poly(ni+1) ≤ poly(ni) time (since it
simulates ALGi), or we have an improved algorithm ALGi+1 at the input length ni+1 (for example,

on input length n1, the running time of ALG1 is 2O
(
n
1/β
1

)
≪ 2O(n1)). The (Win-or-Improve) part

in [CLO+23] is implemented via the Chen–Tell targeted hitting set generator [CT21a] (we omit
the details here). Jumping ahead, in this chapter, we will implement a similar mechanism using
Jeřábek and Korten’s PNP reduction from the range avoidance problem to constructing hard
truth tables [Jeř04,Kor21].

Getting polynomial time. We briefly explain why (Win-or-Improve) implies a polynomial-
time construction algorithm. Let α be an absolute constant such that we always have Ti+1 ≤ Tα

i ;
we now set β := 2α. Recall that ni = nβi−1 for every i. The crucial observation is the following:

Although T0 is much larger than n0, the sequence {Ti} grows slower than {ni}.

Indeed, a simple calculation shows that when t = O(log n0), we will have Tt ≤ poly(nt); see
[CLO+23, Section 1.3.1].

For each 0 ≤ i < t, if R(1ni) successfully simulates ALGi, then we obtain an algorithm for
input length ni running in poly(ni+1) ≤ poly(ni) time. Otherwise, we have an algorithm ALGi+1

running in Ti+1 time on input length ni+1. Eventually, we will hit t such that Tt ≤ poly(nt), in
which case ALGt itself gives a polynomial-time construction on input length nt. Therefore, we
obtain a polynomial-time algorithm on at least one of the input lengths n0, n1, . . . , nt.

and the prime number theorem, the set of n-bit primes is such a property.
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Algorithms for range-avoidance via Jeřábek–Korten reduction

Now we are ready to describe our new algorithms for Avoid. Roughly speaking, our new
algorithm makes use of the iterative win-win argument introduced above, together with an
easy-witness style argument [IKW02] and the Jeřábek–Korten reduction [Jeř04,Kor21].9 In the
following, we introduce the latter two ingredients and show how to chain them together via the
iterative win-win argument.

An easy-witness style argument. Let BF be the 2O(n)-time brute-force algorithm out-
putting the lexicographically first non-output of Cn. Our first idea is to consider its compu-
tational history, a unique 2O(n)-length string hBF (that can be computed in 2O(n) time), and
branch on whether hBF has a small circuit or not. Suppose hBF admits a, say, nα-size circuit
for some large α, then we apply an easy-witness-style argument [IKW02] to simulate BF by a
single-valued FΣ2P algorithm running in poly(nα) = poly(n) time (see Section 7.1.3). Hence,
we obtained the desired algorithm when hBF is easy.

However, it is less clear how to deal with the other case (when hBF is hard) directly. The
crucial observation is that we have gained the following ability: we can generate a string hBF ∈
{0, 1}2O(n) that has circuit complexity at least nα, in only 2O(n) time.

The Jeřábek–Korten reduction. We will apply the Jeřábek–Korten reduction to make use
of the “gain” above. So it is worth taking a detour to review the main results of [Jeř04,Kor21].
Roughly speaking, this reduction gives an algorithm that uses a hard truth table f to
solve a derandomisation task: finding a non-output of the given circuit (that has
more output bits than input bits).10

Formally, the Jeřábek–Korten reduction is a PNP-computable algorithm Jeřábek–Korten(C, f)
that takes as inputs a circuit C : {0, 1}n → {0, 1}2n and a string f ∈ {0, 1}T (think of n≪ T ),
and outputs a string y ∈ {0, 1}2n. The guarantee is that if the circuit complexity of f is
sufficiently larger than the size of C, then the output y is not in the range of C.

This fits perfectly with our “gain” above: for β ≪ α and m = nβ , Jeřábek–Korten(Cm, hBF)

solves Avoid for Cm since the circuit complexity of hBF, nα, is sufficiently larger than the size
of Cm. Moreover, Jeřábek–Korten(Cm, hBF) runs in only 2O(n) time, which is much less than
the brute-force running time 2O(m). Therefore, we obtain an improved algorithm for Avoid on
input length m.

The iterative win-win argument. What we described above is essentially the first stage of
an win-or-improve mechanism similar to that from Section 7.1.2. Therefore, we only need to
iterate the argument above to obtain a polynomial-time algorithm.

9Korten’s result was inspired by Jeřábek [Jeř04], who proved that the dual weak pigeonhole principle is
equivalent to the statement asserting the existence of Boolean functions with exponential circuit complexity in a
certain fragment of Bounded Arithmetic.

10This is very similar to the classical hardness-vs-randomness connection [NW94, IW97], which can be under-
stood as an algorithm that uses a hard truth table f (i.e., a truth table without small circuits) to solve another
derandomisation task: estimating the acceptance probability of the given circuit. This explains why one may
want to use the Jeřábek–Korten reduction to replace the Chen–Tell targeted generator construction [CT21a]
from [CLO+23], as they are both hardness-vs-randomness connections.
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For this purpose, we need to consider the computational history of not only BF, but also
algorithms of the form Jeřábek–Korten(C, f).11 For any circuit C and “hard” truth table f , there
is a unique “computational history” h of Jeřábek–Korten(C, f), and the length of h is upper
bounded by poly(|f |). We are able to prove the following statement akin to the easy witness
lemma [IKW02]: if h admits a size-s circuit (think of s ≪ T ), then Jeřábek–Korten(C, f) can
be simulated by a single-valued FΣ2P algorithm in time poly(s); see Section 7.1.3 for details on
this argument.12

Now, following the iterative win-win paradigm of [CLO+23], for a (starting) input length
n0 and some t = O(log n0), we consider an increasing sequence of input lengths n0, n1, . . . , nt,
and show that our algorithm A succeeds on at least one of the input lengths (i.e., A(1ni) ∈
{0, 1}2ni \ Range(Cni) for some i ∈ {0, 1, . . . , t}). For each i ∈ {0, 1, . . . , t}, we specify an
algorithm ALGi of the form Jeřábek–Korten(Cni ,−) that aims to solve Avoid for Cni ; in other
words, we specify a string fi ∈ {0, 1}Ti for some Ti and let ALGi := Jeřábek–Korten(Cni , fi).

The algorithm ALG0 is simply the brute force algorithm BF at input length n0. (A conve-
nient observation is that we can specify an exponentially long string f0 ∈ {0, 1}2O(n0) so that
Jeřábek–Korten(Cn0 , f0) is equivalent to BF = ALG0; see Fact 7.3.4.) For each 0 ≤ i < t, to
specify ALGi+1, let fi+1 denote the history of the algorithm ALGi, and consider the following
win-or-improve mechanism.

(Win) If fi+1 admits an nαi -size circuit (for some large constant α), by our easy-witness argu-
ment, we can simulate ALGi by a poly(ni)-time single-valued FΣ2P algorithm.

(Improve) Otherwise fi+1 has circuit complexity at least nαi , we plug it into the Jeřábek–Korten
reduction to solve Avoid for Cni+1 . That is, we take ALGi+1 := Jeřábek–Korten(Cni+1 , fi+1)

as our new algorithm on input length ni+1.

Let Ti = |fi|, then Ti+1 ≤ poly(Ti). By setting ni+1 = nβi for a sufficiently large β, a similar
analysis as [CLO+23] shows that for some t = O(log n0) we would have Tt ≤ poly(nt), meaning
that ALGt would be a poly(nt)-time FPNP algorithm (thus also a single-valued FΣ2P algorithm)
solving Avoid for Cnt . Putting everything together, we obtain a polynomial-time single-valued
FΣ2P algorithm that solves Avoid for at least one of the Cni .

The hardness condenser perspective. Below, we present another perspective on the con-
struction above, which may help the reader understand it better. In the following, we fix
Cn : {0, 1}n → {0, 1}2n to be the truth table generator TTn,2n that maps an n-bit description
of a log(2n)-input circuit into its length-2n truth table. Hence, instead of solving Avoid in
general, our goal here is simply constructing hard truth tables (or equivalently, proving circuit
lower bounds).

11Actually, we need to consider all algorithms ALGi defined below and prove the properties of computational
history for these algorithms. It turns out that all of ALGi are of the form Jeřábek–Korten(C, f) (including ALG0),
so in what follows we only consider the computational history of Jeřábek–Korten(C, f).

12With an “encoded” version of history and more effort, we are able to simulate Jeřábek–Korten(C, f) by a
single-valued FS2P algorithm in time poly(s), and that is how our S2E lower bound is proved; see Section 7.1.3
for details.
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We note that Jeřábek–Korten(TTn,2n, f) can then be interpreted as a hardness condenser
[BS06]:13 Given a truth table f ∈ {0, 1}T whose circuit complexity is sufficiently larger than n,
it outputs a length-2n truth table that is maximally hard (i.e., without n/ log n-size circuits).
The win-or-improve mechanism can be interpreted as an iterative application of this hardness
condenser.

At the stage i, we consider the algorithm ALGi := Jeřábek–Korten(TTni,2ni , fi), which runs
in Ti ≈ |fi| time and creates (roughly) ni bits of hardness. (That is, the circuit complexity of
the output of ALGi is roughly ni.) In the (Win) case above, ALGi admits an nαi -size history fi+1

(with length approximately |fi|) and can therefore be simulated in FΣ2P. The magic is that in
the (Improve) case, we actually have access to much more hardness than ni: the history string
fi+1 has nαi ≫ ni bits of hardness. So we can distill these hardness by applying the condenser to
fi+1 to obtain a maximally hard truth tables of length 2ni+1 = 2nβi , establish the next algorithm
ALGi+1 := Jeřábek–Korten(TTni+1,2ni+1 , fi+1), and keep iterating.

Observe that the string fi+1 above has nαi > nβi = ni+1 bits of hardness. Since |fi+1| ≈ |fi|
and ni+1 = nβi , the process above creates harder and harder strings, until |fi+1| ≤ ni+1 ≤ nαi ,
so the (Win) case must happen at some point.

7.1.3 Proof Overview

In this section, we elaborate on the computational history of Jeřábek–Korten and how the
easy-witness-style argument gives us FΣ2P and FS2P algorithms.

The Jeřábek–Korten reduction

We first review the key concepts and results from [Kor21] that are needed. Given a cir-
cuit C : {0, 1}n → {0, 1}2n and a parameter T ≥ 2n, we can builds another circuit GGMT [C]

stretching n bits to T bits as follows:14

• On input x ∈ {0, 1}n, we set v0,0 = x. For simplicity, we assume that T/n = 2k for some
k ∈ N. We build a full binary tree with k + 1 layers; see Figure 7.1 for an example with
k = 3.

• For every i ∈ {0, 1, . . . , k − 1} and j ∈ {0, 1, . . . , 2i − 1}, we set vi+1,2j and vi+1,2j+1 to be
the first n bits and the last n bits of C(vi,j), respectively.

• The output of GGMT [C](x) is defined to be the concatenation of vk,0, vk,1, . . . , vk,2k−1.

The following two properties of GGMT [C] are established in [Kor21], which will be useful for
us:

1. Given i ∈ [T ], C and x ∈ {0, 1}n, by traversing the tree from the root towards the leaf with
the i-th bit, one can compute the i-th bit of GGMT [C](x) in poly(SIZE(C), log T ) time.
Consequently, for every x, GGMT [C](x) has circuit complexity ≤ poly(SIZE(C), log T ).

13A hardness condenser takes a long truth table f with certain hardness and outputs a shorter truth table with
similar hardness.

14We use the name GGM because the construction is similar to the pseudorandom function generator of Gol-
dreich, Goldwasser, and Micali [GGM86].
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v0,0

v1,0

v2,0

v3,0 v3,1

v2,1

v3,2 v3,3

v1,1

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

Figure 7.1: An illustration of the GGM Tree, in which, for instance, it holds that (v3,4, v3,5) =
C(v2,2).

2. There is a PNP algorithm Jeřábek–Korten(C, f) that takes f ∈ {0, 1}T \ Range(GGMT [C])

as input and outputs a string u ∈ {0, 1}2n \Range(C). Note that this is a reduction from
solving Avoid for C to solving Avoid for GGMT [C].

In particular, letting f be a truth table whose circuit complexity is sufficiently larger than
SIZE(C). By the first property above, f is not in the range of GGMT [C], and therefore
Jeřábek–Korten(C, f) solves Avoid for C. This confirms our description of Jeřábek–Korten in Sec-
tion 7.1.1.

Computational history of Jeřábek–Korten and an easy-witness argument for FΣ2P al-
gorithms

The algorithm Jeřábek–Korten(C, f) works as follows: we first view f as the labels of the
last layer of the binary tree, and try to reconstruct the whole binary tree, layer by layer (start
from the bottom layer to the top layer, within each layer, start from the rightmost node to the
leftmost one), by filling the labels of the intermediate nodes. To fill vi,j , we use an NP oracle
to find the lexicographically first string u ∈ {0, 1}n such that C(u) = vi+1,2j ◦ vi+1,2j+1, and set
vi,j = u. If no such u exists, the algorithm stops and report vi+1,2j ◦ vi+1,2j+1 as the solution
to Avoid for C. Observe that this reconstruction procedure must stop somewhere, since if it
successfully reproduces all the labels in the binary tree, we would have f = GGMT [C](v0,0) ∈
Range(GGMT [C]), contradicting the assumption. See Lemma 7.3.3 for details.

The computational history of Jeřábek–Korten. The algorithm described above induces a
natural description of the computational history of Jeřábek–Korten, denoted as History(C, f),
as follows: the index (i⋆, j⋆) when the algorithm stops (i.e., the algorithm fails to fill in vi⋆,j⋆)
concatenated with the labels of all the nodes generated by Jeřábek–Korten(C, f) (for the interme-
diate nodes with no label assigned, we set their labels to a special symbol ⊥); see Figure 7.2 for
an illustration. The length of this history is at most 5T , and for convenience, we pad additional
zeros at its end so that its length is exactly 5T .
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⊥

⊥

⊥

v3,0 v3,1

⊥

v3,2 v3,3

⊥

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

(i⋆, j⋆) = (2, 1)

Figure 7.2: An illustration of the history of Jeřábek–Korten(C, f). Here we have History(C, f) =
(2, 1) ◦ ⊥⊥⊥⊥⊥ ◦ v2,2 ◦ v2,3 ◦ v3,0 ◦ . . . ◦ v3,7 and Jeřábek–Korten(C, f) = v3,2 ◦ v3,3.

A local characterisation of History(C, f). The crucial observation we make on History(C, f)

is that it admits a local characterisation in the following sense: there is a family of local con-
straints {ψx}x∈{0,1}poly(n) , where each ψx : {0, 1}5T × {0, 1}T → {0, 1} reads only poly(n) many
bits of its input (we think about it as a local constraint since usually n≪ T ), such that for fixed
f , History(C, f) ◦ f is the unique string making all the ψx outputting 1.

The constraints are follows: (1) for every leaf node vk,i, its content is consistent with the
corresponding block in f ; (2) all labels at or before node (i⋆, j⋆) are ⊥;15 (3) for every z ∈ {0, 1}n,
C(z) ̸= vi⋆+1,2j⋆ ◦ vi⋆+1,2j⋆+1 (meaning the algorithm fails at vi⋆,j⋆); (4) for every (i, j) after
(i⋆, j⋆), C(vi,j) = vi+1,2j ◦ vi+1,2j+1 (vi,j is the correct label); (5) for every (i, j) after (i⋆, j⋆) and
for every v′ < vi,j , C(v′) ̸= vi+1,2j ◦ vi+1,2j+1 (vi,j is the lexicographically first correct label). It
is clear that each of these constraints above only reads poly(n) many bits from the input, and
a careful examination shows they precisely define the string History(C, f).

A more intuitive way to look at these local constraints is to treat them as a poly(n)-time
oracle algorithm VHistory that takes a string x ∈ poly(n) as input and two strings h ∈ {0, 1}5T
and f ∈ {0, 1}T as oracles, and we simply let V h,f

History(x) = ψx(h◦f). Since the constraints above
are all very simple and only read poly(n) bits of h ◦ f , VHistory runs in poly(n) time. In some
sense, VHistory is a local Π1 verifier: it is local in the sense that it only queries poly(n) bits from
its oracles, and it is Π1 since it needs a universal quantifier over x ∈ {0, 1}poly(n) to perform all
the checks.

FΣ2P algorithms. Before we proceed, we give a formal definition of a single-valued FΣ2P

algorithm A. Here A is implemented by an algorithm VA taking an input x and two poly(|x|)-
length witnesses π1 and π2. We say A(x) outputs a string z ∈ {0, 1}ℓ (we assume ℓ = ℓ(x) can
be computed in polynomial time from x) if z is the unique length-ℓ string such that the following
hold:

• there exists π1 such that for every π2, VHistory(x, π1, π2, z) = 1.16

15We say that (i, j) is before (after) (i⋆, j⋆) if the pair (i, j) is lexicographically smaller (greater) than (i⋆, j⋆).
16Note that our definition here is different from the formal definition we used in Definition 7.2.2. But from this

definition, it is easier to see why FΣ2P algorithms for constructing hard truth tables imply circuit lower bounds
for Σ2E.
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We can view VHistory as a verifier that checks whether z is the desired output using another
universal quantifier: given a proof π1 and a string z ∈ {0, 1}ℓ. A accepts z if and only if for
every π2, VHistory(x, π1, π2, z) = 1. That is, A can perform exponentially many checks on π1 and
z, each taking poly(|x|) time.

The easy-witness argument. Now we are ready to elaborate on the easy-witness argument
mentioned in Section 7.1.1. Recall that at stage i, we have ALGi = Jeřábek–Korten(Cni , fi) and
fi+1 = History(Cni , fi) (the history of ALGi). Assuming that fi+1 admits a poly(ni)-size circuit,
we want to show that Jeřábek–Korten(Cni , fi) can be simulated by a poly(ni)-time single-valued
FΣ2P algorithm.

Observe that for every t ∈ [i + 1], ft−1 is a substring of ft since ft = History(Cnt−1 , ft−1).
Therefore, fi+1 admitting a poly(ni)-size circuit implies that all ft admit poly(ni)-size circuits
for t ∈ [i]. We can then implement A as follows: the proof π1 is a poly(ni)-size circuit Ci+1

supposed to compute fi+1, from which one can obtain in polynomial time a sequence of circuits
C1, . . . , Ci that are supposed to compute f1, . . . , fi, respectively. (Also, from Fact 7.3.4, one can
easily construct a poly(n0)-size circuit C0 computing f0.) Next, for every t ∈ {0, 1, . . . , i}, A
checks whether tt(Ct+1)◦tt(Ct) satisfies all the local constraints ψx’s from the characterisation
of History(Cnt , ft). In other words, A checks whether V Ct+1,Ct

History (x) = 1 for all x ∈ {0, 1}poly(nt).
The crucial observation is that since all the Ct have size poly(ni), each check above can be

implemented in poly(ni) time as they only read at most poly(ni) bits from their input, despite
that tt(Ct+1) ◦ tt(Ct) itself can be much longer than poly(ni). Assuming that all the checks of
A above are passed, by induction we know that ft+1 = History(Cnt , ft) for every t ∈ {0, 1, . . . , i}.
Finally, A checks whether z corresponds to the answer described in tt(Ci+1) = fi+1.

Selectors and an easy-witness argument for FS2P algorithms

Finally, we discuss how to implement the easy-witness argument above with a single-valued
FS2P algorithm. It is known that any single-valued FS2BPP algorithm can be converted into an
equivalent single-valued FS2P algorithm outputting the same string [Can96,RS98] (see also the
proof of Theorem 7.5.7 for a self-contained argument). Therefore, in the following, we aim to
give a single-valued FS2BPP algorithm for solving range avoidance, which is easier to achieve.

FS2BPP algorithms and randomised selectors. Before we proceed, we give a formal defi-
nition of a single-valued FS2BPP algorithm A. We implement A by a randomised algorithm VA

that takes an input x and two poly(|x|)-length witnesses π1 and π2.17 We say that A(x) outputs
a string z ∈ {0, 1}ℓ (we assume ℓ = ℓ(x) can be computed in polynomial time from x) if the
following hold:

• there exists a string h such that for every π, both VA(x, h, π) and VA(x, π, h) output z
with probability at least 2/3. (Note that such z must be unique if it exists.)

Actually, our algorithm A will be implemented as a randomised selector : given two potential
proofs π1 and π2, it first selects the correct one and then outputs the string z induced by the

17FS2P algorithms are the special case of FS2BPP algorithms where the algorithm VA is deterministic.
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correct proof.18

Recap. Revising the algorithm in Section 7.1.2, our goal now is to give an FS2BPP simulation
of Jeřábek–Korten(Cni , fi), assuming that History(Cni , fi) admits a small circuit. Similar to the
local Π1 verifier used in the case of FΣ2P algorithms, now we consider a local randomised selector
Vselect which takes oracles π1, π2 ∈ {0, 1}5T and f ∈ {0, 1}T such that if exactly one of the π1
and π2 is History(C, f), Vselect outputs its index with high probability.

Assuming that fi+1 = History(Cni , fi) admits a small circuit, one can similarly turn Vselect

into a single-valued FS2BPP algorithms A computing Jeřábek–Korten(Cni , fi): treat two proofs
π1 and π2 as two small circuits C and D both supposed to compute fi+1, from C and D we can
obtain a sequence of circuits {Ct} and {Dt} supposed to compute the ft for t ∈ [i]. Then we
can use the selector Vselect to decide for each t ∈ [i + 1] which of the Ct and Dt is the correct
circuit for ft. Finally, we output the answer encoded in the selected circuit for fi+1; see the
proof of Theorem 7.5.7 for details.19

Observation: it suffices to find the first differing node label. Ignore the (i⋆, j⋆) part of
the history for now. Let {v1i,j} and {v2i,j} be the node labels encoded in π1 and π2, respectively.
We also assume that exactly one of them corresponds to the correct node labels in History(C, f).
The crucial observation here is that, since the correct node labels are generated by a deterministic
procedure node by node (from bottom to top and from rightmost to leftmost), it is possible to
tell which of the {v1i,j} and {v2i,j} is correct given the largest (i′, j′) such that v1i′,j′ ̸= v2i′,j′ . (Note
that since all (i, j) are processed by Jeřábek–Korten(C, f) in reverse lexicographic order, this
(i′, j′) corresponds to the first node label that the wrong process differs from the correct process,
so we call this the first differing point.)

In more detail, assuming we know this (i′, j′), we proceed by discussing several cases. First
of all, if (i′, j′) corresponds to a leaf, then one can query f to figure out which of v1i′,j′ and v2i′,j′
is consistent with the corresponding block in f . Now we can assume (i′, j′) corresponds to an
intermediate node. Since (i′, j′) is the first differing point, we know that v1i′+1,2j′ ◦ v1i′+1,2j′+1 =

v2i′+1,2j′ ◦v2i′+1,2j′+1 (we let this string to be α for convenience). By the definition of History(C, f),
it follows that the correct vi′,j′ should be uniquely determined by α, which means the selector
only needs to read α, v1i′,j′ , and v2i′,j′ , and can then be implemented by a somewhat tedious case
analysis (so it is local). We refer readers to the proof of Lemma 7.5.5 for the details and only
highlight the most illuminating case here: if both of v1i′,j′ and v2i′,j′ are good (we say a string γ
is good, if γ ̸= ⊥ and C(γ) = α), we select the lexicographically smaller one. To handle the
(i⋆, j⋆) part, one needs some additional case analysis. We omit the details here and refer the
reader to the proof of Lemma 7.5.5.

The takeaway here is that if we can find the first differing label (i′, j′), then we can construct
the selector Vselect and hence the desired single-valued FS2BPP algorithm.

18If both proofs are correct or neither proofs are correct, it can select an arbitrary one. The condition only
applies when exactly one of the proofs is correct.

19However, for the reasons to be explained below, we will actually work with the encoded history instead of
the history, which entails a lot of technical challenges in the actual proof.
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Encoded history. However, the above assumes the knowledge of (i′, j′). In general, if one is
only given oracle access to {v1i,j} and {v2i,j}, there is no poly(n)-time oracle algorithm computing
(i′, j′) because there might be exponentially many nodes. To resolve this issue, we will encode
{v1i,j} and {v2i,j} via Reed–Muller codes.

Formally, recall that History(C, f) is the concatenation of (i⋆, j⋆) and the string S, where S
is the concatenation of all the labels on the binary tree. We now define the encoded history,
denoted as H̃istory(C, f), as the concatenation of (i⋆, j⋆) and a Reed–Muller encoding of S. The
new selector is given oracle access to two candidate encoded histories together with f . By
applying low-degree tests and self-correction of polynomials, we can assume that the Reed–
Muller parts of the two candidates are indeed low-degree polynomials. Then we can use a
reduction to polynomial identity testing to compute the first differing point between {v1i,j} and
{v2i,j} in randomised polynomial time. See the proof of Lemma 7.5.3 for the details. This part
is similar to the selector construction from [Hir15].

7.1.4 Karp–Lipton collapses and the half-exponential barrier

In the following, we elaborate on the half-exponential barrier mentioned earlier in the intro-
duction.20 Let C be a “typical” uniform complexity class containing P, a Karp–Lipton collapse
to C states that if a large class (say EXP) has polynomial-size circuits, then this class collapses
to C. For example, there is a Karp–Lipton collapse to C = Σ2P:

Suppose EXP ⊆ P/poly, then EXP = Σ2P. ([KL80], attributed to Albert Meyer)

Now, assuming that EXP ⊆ P/poly =⇒ EXP = C, the following win-win analysis implies
that C-EXP, the exponential-time version of C, is not in P/poly: (1) if EXP ̸⊂ P/poly, then of
course C-EXP ⊇ EXP does not have polynomial-size circuits; (2) otherwise EXP ⊆ P/poly. We
have EXP = C and by padding EEXP = C-EXP. Since EEXP contains a function of maximum
circuit complexity by direct diagonalisation, it follows that C-EXP does not have polynomial-size
circuits.

Karp–Lipton collapses are known for the classes Σ2P [KL80], ZPPNP [BCG+96], S2P [Cai07]
(attributed to Samik Sengupta), PP, MA [LFKN92,BFNW93], and ZPPMCSP [IKV18]. All the
aforementioned super-polynomial circuit lower bounds for Σ2EXP, ZPEXPNP, S2EXP, PEXP,
MAEXP, and ZPEXPMCSP are proven in this way.21

The half-exponential barrier. The above argument is very successful at proving various
super-polynomial lower bounds. However, a closer look shows that it is only capable of proving
sub-half-exponential circuit lower bounds. Indeed, suppose we want to show that C-EXP does
not have circuits of size f(n). We will have to perform the following win-win analysis:

• if EXP ̸⊂ SIZE[f(n)], then of course C-EXP ⊇ EXP does not have circuits of size f(n);
20A function f : N → N is sub-half-exponential if f(f(n)c) = 2o(n) for every constant c ≥ 1, i.e., composing f

twice yields a subexponential function. For example, for constants c ≥ 1 and ε > 0, the functions f(n) = nc and
f(n) = 2log

c n are sub-half-exponential, but the functions f(n) = 2n
ε

and f(n) = 2εn are not.
21There are some evidences that Karp–Lipton collapses are essential for proving circuit lower bounds

[CMMW19].
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• if EXP ⊆ SIZE[f(n)], then (a scaled-up version of) the Karp–Lipton collapse implies that
EXP can be computed by a C machine of poly(f(n)) time. Note that TIME[2poly(f(n))]

does not have circuits of size f(n) by direct diagonalisation. By padding, TIME[2poly(f(n))]

can be computed by a C machine of poly(f(poly(f(n)))) time. Therefore, if f is sub-half-
exponential (meaning f(poly(f(n))) = 2o(n)), then C-EXP does not have circuits of size
f(n).

Intuitively speaking, the two cases above are competing with each other : we cannot get
exponential lower bounds in both cases.

7.2 Preliminaries

Notation. We use [n] to denote {1, 2, . . . , n}. A search problem Π maps every input x ∈ {0, 1}∗
into a solution set Πx ⊆ {0, 1}∗. We say an algorithm A solves the search problem Π on input
x if A(x) ∈ Πx.

7.2.1 Complexity Classes

We assume basic familiarity with computational complexity theory (see, e.g., [AB09,Gol08]
for references). Below we recall the definition of S2TIME[T (n)] [RS98,Can96].

Definition 7.2.1. Let T : N → N. We say a language L ∈ S2TIME[T (n)], if there exists
an O(T (n))-time verifier V (x, π1, π2) that takes x ∈ {0, 1}n and π1, π2 ∈ {0, 1}T (n) as input,
satisfying that

• if x ∈ L, then there exists π1 such that for every π2, V (x, π1, π2) = 1, and

• if x ̸∈ L, then there exists π2 such that for every π1, V (x, π1, π2) = 0.

Moreover, we say L ∈ S2E if L ∈ S2TIME[T (n)] for some T (n) ≤ 2O(n), and L ∈ S2P if
L ∈ S2TIME[p(n)] for some polynomial p.

It is known that S2P contains MA and PNP [RS98], and S2P is contained in ZPPNP [Cai07].
From its definition, it is also clear that S2P ⊆ Σ2P ∩Π2P.

7.2.2 Single-valued FΣ2P and FS2P Algorithms

We consider the following definitions of single-valued algorithms, which correspond to circuit
lower bounds for Σ2E and S2E.

Definition 7.2.2 (Single-valued FΣ2P and FS2P algorithms). A single-valued FΣ2P algorithm
A is specified by a polynomial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On
an input x ∈ {0, 1}∗, we say that A outputs yx ∈ {0, 1}∗, if the following hold:

(a) There is a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

(b) For every π1 ∈ {0, 1}ℓ(|x|), there is a π2 ∈ {0, 1}ℓ(|x|) such that the output of VA(x, π1, π2)
is either yx or ⊥ (where ⊥ indicates “I don’t know”).
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A single-valued FS2P algorithm A is specified similarly, except that we replace the second
condition above with the following:

(b’) There is a π2 ∈ {0, 1}ℓ(|x|) such that for every π1 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

Now, we say that a single-valued FΣ2P (FS2P) algorithm A solves a search problem Π on
input x if it outputs a string yx and yx ∈ Πx. Note that from Definition 7.2.2, if A outputs a
string yx, then yx is unique.

For convenience, we mostly only consider single-valued algorithms A(x) with fixed output
lengths, meaning that the output length |A(x)| only depends on |x| and can be computed in
polynomial time given 1|x|.22

Single-Valued FS2P and FΣ2P algorithms with FPNP post-processing

We also need the fact that single-valued FS2P or FΣ2P algorithms with FPNP post-processing
can still be implemented by single-valued FS2P or FΣ2P algorithms, respectively. More specifi-
cally, we have:

Theorem 7.2.3. Let A(x) be a single-valued FS2P (resp. FΣ2P) algorithm and B(x, y) be an
FPNP algorithm, both with fixed output length. The function f(x) := B(x,A(x)) also admits an
FS2P (resp. FΣ2P) algorithm.

Proof. We only provide a proof for the case of single-valued FS2P algorithms. Recall that the
Lexicographically Maximum Satisfying Assignment problem (LMSAP) is defined as follows: given
an n-variable formula ϕ together with an integer k ∈ [n], one needs to decide whether ak = 1,
where a1, . . . , an ∈ {0, 1}n is the lexicographically largest assignment satisfies ϕ. By [Kre88],
LMSAP is PNP-complete.

Let VA(x, π1, π2) be the corresponding verifier for the single-valued FS2P algorithm A. Let
L(x, y, i) be the PNP language such that L(x, y, i) = 1 if and only if B(x, y)i = 1. Let ℓ =

|B(x, y)| be the output length of B. We now define a single-valued FS2P algorithm Ã by
defining the following verifier V

Ã
, and argue that Ã computes f .

The verifier V
Ã

takes an input x and two proofs π⃗1 and π⃗2, where π⃗1 consists of ω1, acting
as the second argument to VA, and ℓ assignments z11 , z12 , . . . , z1ℓ ∈ {0, 1}m. Similarly, π⃗2 consists
of ω2 and z21 , z22 , . . . , z2ℓ ∈ {0, 1}m.

First, V
Ã

runs VA(x, ω1, ω2) to get y ∈ {0, 1}|A(x)|. Then it runs the reduction from L(x, y, i)

to LMSAP for every i ∈ [ℓ] to obtain ℓ instances {(ϕi, ki)}i∈[ℓ], where ϕi is an m-variable formula
and ki ∈ [m]. (Without loss of generality by padding dummy variables, we may assume that
the number of variables in ϕi is the same for each i, i.e., m; and that m only depends on |x|
and |y|.) Now, for every µ ∈ [2], we can define an answer wµ ∈ {0, 1}ℓ by (wµ)i = (zµi )ki (i.e.,
the value of B(x, y), assuming that π⃗µ consists of the lexicographically largest assignments for
all the LMSAP instances).

In what follows, when we say that V
Ã

selects the proof µ ∈ [2], we mean that V
Ã

outputs wµ

and terminates. Then, V
Ã

works as follows:

22If A takes multiple inputs like x, y, z, then the output length A(x, y, z) only depends on |x|, |y|, |z| and can
be computed in polynomial time given 1|x|, 1|y|, and 1|z|.
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1. For each µ ∈ [2], it first checks whether for every i ∈ [ℓ], zµi satisfies ϕi. If only one of the
µ passes all the checks, V

Ã
selects that µ. If none of them pass all the checks, V

Ã
selects

1. Otherwise, it continues to the next step.

2. Now, letting Zµ = zµ1 ◦ zµ2 ◦ . . . ◦ zµℓ for each µ ∈ [2]. V
Ã

selects the µ with the lexicograph-
ically larger Zµ. If Z1 = Z2, then V

Ã
selects 1.

Now we claim that Ã computes f(x), which can be established by setting π⃗1 or π⃗2 be the
corresponding proof for VA concatenated with all lexicographically largest assignments for the
{ϕi}i∈[ℓ].

7.2.3 The Truth Table Generator

Proving circuit lower bounds (for exponential-time classes) is equivalent to solving the range
avoidance problem on the truth table generator TTn,s, defined as follows. It was shown in [FM05]
that for n, s ∈ N, any s-size n-input circuit C can be encoded as a stack program with description
size Ln,s := (s + 1)(7 + log(n + s)). The precise definition of stack programs does not matter
(see [FM05] for a formal definition); the only property we need is that given s and n such
that n ≤ s ≤ 2n, in poly(2n) time one can construct a circuit TTn,s : {0, 1}Ln,s → {0, 1}2n

mapping the description of a stack program into its truth table. By the equivalence between
stack programs and circuits, it follows that any f ∈ {0, 1}2n \Range(TTn,s) satisfies SIZE(f) > s.
Also, we note that for large enough n ∈ N and s = 2n/n, we have Ln,s < 2n.

Fact 7.2.4. Let s(n) : N → N. Suppose that there is a single-valued FS2P algorithm A such
that for infinitely many n ∈ N, A(12n) takes α(n) bits of advice and outputs a string fn ∈
{0, 1}2n \ Range(TTn,s(n)). Then S2E/α(n) ̸⊂ SIZE[s(n)].

Proof sketch. We define a language L such that the truth table of the characteristic function of
L ∩ {0, 1}n is A(12n). It is easy to see that L /∈ SIZE[s(n)] and L ∈ S2E/α(n).

7.3 The Jeřábek–Korten Reduction

Our results crucially rely on a reduction in [Jeř04,Kor21] showing that proving circuit lower
bounds is “the hardest explicit construction” under PNP reductions.

Notation. Let s be a string of length n. We will always use 0-index (i.e., the first bit of s is
s0 and the last bit of s is sn−1). Let i < j, we use s[i,j] to denote the substring of s from the
i-th bit to the j-th bit, and s[i,j) to denote the substring of s from the i-th bit to the (j − 1)-th
bit. (Actually, we will use the notation s[i,j) more often than s[i,j] as it is convenient when we
describe the GGM tree.) We also use s1 ◦ s2 ◦ · · · ◦ sk to denote the concatenation of k strings.

7.3.1 GGM Tree and the Reduction

We first recall the GGM tree construction from [GGM86], which is used in a crucial way
by [Jeř04,Kor21].
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Definition 7.3.1 (The GGM tree construction [GGM86]). Let C : {0, 1}n → {0, 1}2n be a
circuit. Let n, T ∈ N be such that T ≥ 4n and let k be the smallest integer such that 2kn ≥ T .
The function GGMT [C] : {0, 1}n → {0, 1}T is defined as follows.

Consider a perfect binary tree with 2k leaves, where the root is on level 0 and the leaves
are on level k. Each node is assigned a binary string of length n, and for 0 ≤ j < 2i, denote
vi,j ∈ {0, 1}n the value assigned to the j-th node on level i. Let x ∈ {0, 1}n. We perform
the following computation to obtain GGMT [C](x): we set v0,0 := x, and for each 0 ≤ i < k,
0 ≤ j < 2i, we set vi+1,2j := C(vi,j)[0,n) (i.e., the first half of C(vi,j)) and vi+1,2j+1 := C(vi,j)[n,2n)

(i.e., the second half of C(vi,j)). (We say the nodes (i+ 1, 2j) and (i+ 1, 2j + 1) are “children”
of (i, j).)

Finally, we concatenate all values of the leaves and take the first T bits as the output:

GGMT [C](x) := (vk,0 ◦ vk,1 ◦ · · · ◦ vk,2k−1)[0,T ).

Lemma 7.3.2 (The output of GGM tree has a small circuit). Let GGMEval(C, T, x, i) denote
the i-th bit of GGMT [C](x). There is an algorithm running in Õ(|C| · log T ) time that, given
C, T, x, i, outputs GGMEval(C, T, x, i).

Proof Sketch. We first note that to compute the i-th bit of GGMT [C](x) := (vk,0 ◦ vk,1 ◦ · · · ◦
vk,2k−1)[0,T ), it suffices to compute vk,⌊i/n⌋. Computing vk,⌊i/n⌋ can be done by descending from
the root of the GGM tree to the leave (k, ⌊i/n⌋), which takes Õ(|C| · log T ) time.

It is shown in [Kor21] that the range avoidance problem for C reduces to the range avoidance
problem for GGMT [C]. In what follows, we review this proof, during which we also define the
computational history of “solving range avoidance of C from GGMT [C]”, which will be crucial in
our main proof.

Lemma 7.3.3 (Reduction from solving range avoidance of C to solving range avoidance of
GGMT [C]). Let C : {0, 1}n → {0, 1}2n be a circuit. Let f be a non-output of GGMT [C], i.e.,
f ∈ {0, 1}T \ Range(GGMT [C]). Then, Jeřábek–Korten(C, f) (as defined in Algorithm 7.3.1)
outputs a non-output of C in deterministic poly(T, n) time with an NP oracle.

Proof Sketch. The running time of Jeřábek–Korten(C, f) follows directly from its description.
Also, note that whenever Jeřábek–Korten(C, f) outputs a string vi+1,2j ◦ vi+1,2j+1 ∈ {0, 1}2n,
it holds that this string is not in the range of C. Therefore, it suffices to show that when
f ∈ {0, 1}T \ Range(GGMT [C]), Jeřábek–Korten(C, f) does not return ⊥.

Assume, towards a contradiction, that Jeřábek–Korten(C, f) returns ⊥. This means that all
the {vi,j}i,j values are set. It follows from the algorithm description that f = GGMT [C](v0,0),
which contradicts the assumption that f ∈ {0, 1}T \ Range(GGMT [C]).

In addition, we observe the following trivial fact:

Fact 7.3.4. Let C : {0, 1}n → {0, 1}2n be a circuit, T := 22n · 2n, and f be the concatenation of
all length-2n strings (which has length T ). Then f ̸∈ Range(GGMT [C]).

One can combine Fact 7.3.4 with Lemma 7.3.3 to obtain a brute force algorithm that solves
the range avoidance problem in 2O(n) time with an NP oracle. Essentially, this brute force
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Algorithm 7.3.1: Jeřábek–Korten(C, f): The Jeřábek–Korten reduction
Input: C : {0, 1}n → {0, 1}2n denotes the input circuit, and

f ∈ {0, 1}T \ Range(GGMT [C]) denotes the input “hard” truth table
Output: A non-output of C
Data: The computational history of Jeřábek–Korten(C, f): a pair (i⋆, j⋆) and an array

{vi,j}i,j where i ∈ {0, 1 . . . , k} and j ∈ {0, 1, . . . , 2i}.
1 Let k ← ⌈log2(T/n)⌉;
2 Append f with 2kn− |f | zeros at the end;
3 for j ← 0 to 2k − 1 do
4 vk,j ← f[jn,(j+1)n);

/* the j-th “block” of f */

5 for i← k − 1 downto 0 do
6 for j ← 2i − 1 downto 0 do
7 Let vi,j be the lexicographically smallest string in C−1(vi+1,2j ◦ vi+1,2j+1);

/* Note that this step needs to invoke the NP oracle */
8 if vi,j does not exist then
9 For every (i′, j′) such that vi′,j′ is not set yet, set vi′,j′ ← ⊥;

10 Set i⋆ := i, and j⋆ := j;
11 return vi+1,2j ◦ vi+1,2j+1;

12 return ⊥

algorithm tests every possible length-2n string against the range of the circuit. It will be the
basis of our win-win analysis in Section 7.4.

Finally, we give the following remark, showing that the Jeřábek–Korten reduction relativises.

Remark 7.3.5. Algorithm 7.3.1 and Lemma 7.3.3 relativises, in the sense that if the input is actually
an oracle circuit CO for some arbitrary oracle, the algorithm still works except now it needs to call
an NPO oracle to find the lexicographically smallest string in C−1(vi+1,2j ◦ vi+1,2j+1).

7.3.2 Π1 Verification of the History of Jeřábek–Korten(C, f)

In what follows, we say that (i, j) < (i′, j′) if either i < i′ or (i = i′ and j < j′) (that is,
we consider the lexicographical order of pairs). Observe that Algorithm 7.3.1 processes all the
pairs (i, j) in the reverse lexicographic order.

Definition 7.3.6 (The computational history of Jeřábek–Korten(C, f)). Let n, T ∈ N be such
that log T ≤ n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T be a “hard truth ta-
ble” in the sense that f ̸∈ Range(GGMT [C]). The computational history of Jeřábek–Korten(C, f),
denoted as

History(C, f),

consists of (i⋆, j⋆), as well as the concatenation of vi,j for every 0 ≤ i < k and 0 ≤ j < 2i, in the
lexicographical order of (i, j) ((i⋆, j⋆) and the vi,j are defined in Algorithm 7.3.1). Each vi,j is
encoded by n + 1 bits enc(vi,j), where if vi,j ∈ {0, 1}n then enc(vi,j) = 0 ◦ vi,j , and if vi,j = ⊥
then enc(vi,j) = 1n+1. The length of this history is at most (2k+1 − 1)(n + 1) + 2 log T ≤ 5T ,
and for convenience we always pad zeros at the end so that its length becomes exactly 5T .
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The following lemma summarises the properties of the computational history construction
above required for the Σ2E lower bound in the next section.

Lemma 7.3.7. Let n, T ∈ N be such that log T ≤ n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit
and f ∈ {0, 1}T \ Range(GGMT [C]). Let h := History(C, f) and z := Jeřábek–Korten(C, f).

1. (history contains input/output) There is a poly(log T )-time one-query oracle algo-
rithm in and an O(n)-time oracle algorithm Output, both having input parameters T, n
and taking a string h̃ ∈ {0, 1}5T as oracle, such that the following hold:

(a) When given h as the oracle, inT,n takes an additional input i ∈ {0, 1, . . . , 5T − 1} and
outputs fi.

(b) When given h as the oracle, OutputT,n outputs z = Jeřábek–Korten(C, f).

2. (Π1 verification of the history) There is an oracle algorithm V with input parameters
T, n such that the following holds:

(a) V takes f̃ ∈ {0, 1}T , h̃ ∈ {0, 1}5T as oracles and C and w ∈ {0, 1}5·(log T+n) as inputs.
It runs in poly(n) time.

(b) h = History(C, f) is the unique string from {0, 1}5T satisfying the following:

V f,h(C,w) = 1 for every w ∈ {0, 1}5·(log T+n).

Proof. From the definition of History(C, f), the construction of inT,n and OutputT,n are straight-
forward. Now we describe the verifier V f,h̃, where f ∈ {0, 1}T and h̃ ∈ {0, 1}5T . Note that here
we fix the first oracle of V to be the input truth table f , while the second oracle h̃ can be any
string from {0, 1}5T .

First, V reads (i⋆, j⋆) from h̃. Note that the rest of h̃ can be parsed as an array {vi,j}i,j
where i ∈ {0, 1 . . . , k} and j ∈ {0, 1, . . . , 2i}. We will think of V as performing at most 2|w|

checks, each of which passes or fails. To show the second item of the lemma, we need to show
that (1) if a string h̃ passes all the checks, then it must be the case that h̃ = h; and (2) h passes
all the checks.

Specifically, V checks h̃ as follows:

• The values written on the leaves of {vi,j} are indeed f . That is, for every j ∈ {0, 1, . . . , 2k−
1}, check that vk,j is consistent with the corresponding block in f .

• For every (i, j) > (i⋆, j⋆) such that i < k, C(vi,j) = vi+1,2j ◦ vi+1,2j+1. (That is, the value
vi,j is consistent with its two children.)

• For every (i, j) > (i⋆, j⋆) such that i < k, for every x ∈ {0, 1}n that is lexicographically
smaller than vi,j , C(x) ̸= vi+1,2j ◦vi+1,2j+1. (That is, the value vi,j is the lexicographically
first preimage of its two children.)

• For every x ∈ {0, 1}n, C(x) ̸= vi⋆+1,2j⋆ ◦ vi⋆+1,2j⋆+1. (That is, the two children of (i⋆, j⋆)
form a non-output of C; by the previous checks, (i⋆, j⋆) is the lexicographically largest
such pair.)
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• For every (i, j) ≤ (i⋆, j⋆), vi,j = ⊥.

Note that the above can be implemented with a universal (∀) quantification over at most 5 ·
(log T+n) bits. First, one can see that by the definition of the correct history h (Definition 7.3.6),
h passes all the checks above. Second, one can indeed see that all the conditions above uniquely
determine h, and therefore any h̃ passing all the checks must equal h.

Again, it is easy to observe that Definition 7.3.6 and Lemma 7.3.7 relativise.

Remark 7.3.8. Definition 7.3.6 and Lemma 7.3.7 relativise, in the sense that if C is an oracle circuit
CO for some arbitrary oracle, Definition 7.3.6 needs no modification since Algorithm 7.3.1 relativises,
and Lemma 7.3.7 holds with the only modification that V now also need to take O as an oracle
(since it needs to evaluate C).

7.4 Circuit Lower Bounds for Σ2E

In this section, we prove our near-maximum circuit lower bounds for Σ2E by providing a new
single-valued FΣ2P algorithm for Avoid.

Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. We show that there is
a single-valued FΣ2P algorithm A that, on input 1n, outputs a canonical string that is outside
the range of Cn for infinitely many n ∈ N.

Theorem 7.4.1. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There is
a single-valued FΣ2P algorithm A with one bit of advice such that for infinitely many n ∈ N,
A(1n) outputs yn ∈ {0, 1}2n \ Range(Cn).

Proof. We begin with some notation.

Notation. Let n(1) be a large enough power of 2, n(ℓ) = 22
n(ℓ−1)

for each integer ℓ > 1. Let
n
(ℓ)
0 = n(ℓ) and t(ℓ) = O

(
log n

(ℓ)
0

)
be parameters that we set later. For each 1 ≤ i ≤ t(ℓ), let

n
(ℓ)
i :=

(
n
(ℓ)
i−1

)10
. To show our algorithm A works on infinitely many input lengths, we will show

that for every ℓ ∈ N, there is an input length n(ℓ)i for some i ∈ {0, 1, . . . , t(ℓ)} such that A works.
Fix ℓ ∈ N. From now on, for convenience, we will use ni and t to denote n(ℓ)i and t(ℓ),

respectively.

Specifying Ti and fi. For each input length ni, we will specify a parameter Ti ∈ N and a
string fi ∈ {0, 1}Ti . Our win-win analysis is based on whether fi ∈ Range(GGMTi [Cni ]) for each
i ∈ {0, 1, . . . , t}.

Let T0 := 22n0 · 2n0 and f0 be the concatenation of all length-2n0 strings (which has length
T0). From Fact 7.3.4, we have that f0 ̸∈ Range(GGMT0 [Cn0 ]). For every i ∈ [t], we define

fi := History(Cni−1 , fi−1).

From Definition 7.3.6, this also means that we have set Ti = 5 · Ti−1 for every i ∈ [t].
Let t be the first integer such that Tt+1 ≤ 4nt+1. Note that we have Ti = 5i ·T0 ≤ 23n0+i·log 5

and ni = (n0)
10i = 2logn0·10i . Hence, we have that t ≤ O(log n0). (Also note that n(ℓ)t < n

(ℓ+1)
0 .)
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Description of our FΣ2P algorithm A. Now, let k ∈ {0, 1, . . . , t} be the largest integer
such that fk ̸∈ Range(GGMTk

[Cnk
]). Since f0 ̸∈ Range(GGMT0 [Cn0 ]), such a k must exist. Let

z := Jeřábek–Korten(Cnk
, fk). It follows from Lemma 7.3.3 that z is not in the range of Cnk

.
Our single-valued FΣ2P algorithm A computes z on input 1nk (see Definition 7.2.2). That is,
for some ℓ1, ℓ2 ≤ poly(nk):

• There exists π1 ∈ {0, 1}ℓ1 such that for every π2 ∈ {0, 1}ℓ2 , VA(1nk , π1, π2) prints z, and

• For every π1 ∈ {0, 1}ℓ1 , there exists some π2 ∈ {0, 1}ℓ2 such that VA(1nk , π1, π2) prints
either z or ⊥.

In more details, if k < t, then VA treats π1 as an input to the circuit GGMTk+1
[Cnk+1

], and
let

f̂k+1 := GGMTk+1
[Cnk+1

](π1).

Here, the length of π1 is ℓ1 := nk+1 ≤ poly(nk). If k = t, then VA defines f̂k+1 := π1 and
ℓ1 := Tt+1 ≤ poly(nk). It is intended that f̂k+1 = fk+1 = History(Cnk

, fk) (which VA needs to
verify). Note that in the case where k < t, since fk+1 ∈ Range(GGMTk+1

[Cnk+1
]), there indeed

exists some π1 such that f̂k+1 = fk+1.
We note that Lemma 7.3.2 provides us “random access” to the (potentially very long) string

f̂k+1: given π1 and j ∈ [Tk+1], one can compute the j-th bit of f̂k+1 in poly(nk) time. Also
recall from Lemma 7.3.7 that for each i, fi+1 = History(Cni , fi) contains the string fi, which
can be retrieved by the oracle algorithm in described in Item 1 of Lemma 7.3.7. Therefore, for
each i from k downto 1, we can recursively define f̂i such that (f̂i)j = in

f̂i+1

Ti,ni
(j). We define

f̂0 to be the concatenation of all length-(2n0) strings in the lexicographical order, so f̂0 = f0.
Applying the algorithm in recursively, we obtain an algorithm that given i ∈ {0, 1, . . . , k} and
j ∈ {0, 1, . . . , Ti − 1}, outputs the j-th bit of f̂i. Since in only makes one oracle query, this
algorithm runs in poly(nk) time.23

Then, VA parses the second proof π2 into π2 = (i, w) where i ∈ {0, 1, . . . , k} and w ∈
{0, 1}5(log Ti+ni). Clearly, the length of π2 is at most ℓ2 := log(k+1)+5(log Tk+nk) ≤ poly(nk).
Now, let VHistory be the oracle algorithm in Item 2 of Lemma 7.3.7, we let VA(1nk , π1, π2) check
whether the following holds:

V
f̂i,f̂i+1

History (Cni , w) = 1.24 (7.1)

If this is true, then VA outputs the string z := Output
f̂k+1

Tk,nk
, where Output is the output oracle

algorithm defined in Item 1 of Lemma 7.3.7. Otherwise, VA outputs ⊥.

The correctness of A. Before establishing the correctness of A, we need the following claim:

Claim 7.4.2. fk+1 = f̂k+1 if and only if the following holds:

• V
f̂i,f̂i+1

History (Cni , w) = 1 for every i ∈ {0, 1, . . . , k} and for every w ∈ {0, 1}5(log Ti+ni).
23Note that the definition of f0 is so simple that one can directly compute the j-th bit of f0 in poly(n0) time.
24Here VHistory also takes input parameters Ti and ni. We omit them in the subscript for notational convenience.
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Proof. First, assume that fk+1 = f̂k+1. By Item 1a of Lemma 7.3.7, we have that f̂i = fi

for every i ∈ {0, 1, . . . , k + 1}. Recall that by definition, fi+1 = History(Cni , fi) for every
i ∈ {0, 1, . . . , k}. Hence, by Item 2b of Lemma 7.3.7, we have that for every i ∈ {0, 1, . . . , k},
and for every w ∈ {0, 1}5(log Ti+ni), V f̂i,f̂i+1

History (Cni , w) = 1 holds.
For the other direction, suppose that for every i ∈ {0, 1, . . . , k} and w ∈ {0, 1}5(log Ti+ni), we

have that V f̂i,f̂i+1

History (Cni , w) = 1 holds. First recall that f0 = f̂0 by definition. By an induction
on i ∈ [k + 1] and (the uniqueness part of) Item 2b of Lemma 7.3.7, it follows that fi = f̂i for
every i ∈ {0, 1, . . . , k + 1}. In particular, fk+1 = f̂k+1. ⋄

Now we are ready to establish that A is a single-valued FΣ2P algorithm computing z on
input 1nk . We first prove the completeness of A; i.e., there is a proof π1 such that for every
π2, VA(1nk , π1, π2) outputs z = Jeřábek–Korten(Cnk

, fk). We set π1 to be the following proof:
If k < t, then fk+1 ∈ Range(GGMTk+1

[Cnk+1
]), and we can set π1 ∈ {0, 1}nk+1 to be the input

such that fk+1 = GGMTk+1
[Cnk+1

](π1); if k = t, then we simply set π1 = fk+1. Then, we have
fk+1 = f̂k+1, and by Claim 7.4.2, we know that VA will output z = Jeřábek–Korten(Cnk

, fk) on
every proof π2.

Next, we show that for every π1, there is some π2 that makes VA output either z or ⊥. It
suffices to consider π1 such that for every π2, VA(1nk , π1, π2) ̸= ⊥. In this case, every invocation
of Equation 7.1 holds, and thus by Claim 7.4.2 we know that fk+1 = f̂k+1. It follows that
Jeřábek–Korten(Cnk

, fk) = z and VA will output z regardless of π2.
Finally, we generalise A and VA to work on all inputs 1n. On input 1n, VA calculates the

largest ℓ such that n(ℓ) ≤ n, and also calculates the largest k′ such that n(ℓ)k′ ≤ n. If n(ℓ)k′ ̸= n, then
VA immediately outputs ⊥ and halts. Otherwise, VA receives an advice bit indicating whether
k′ = k(ℓ) where k(ℓ) is the largest integer such that f (ℓ)

k(ℓ)
̸∈ Range(GGM

T
(ℓ)
k

[C
n
(ℓ)
k

]). If this is the
case, then VA runs the verification procedure above; otherwise, it immediately outputs ⊥ and
halts. It is easy to see that VA runs in poly(n) time, and is an infinitely-often single-valued
FΣ2P algorithm solving the range avoidance problem of {Cn}n∈N.

From Remark 7.3.5 and Remark 7.3.8, one can observe that the proof above also relativises.
Hence, we have the following as well.

Theorem 7.4.3 (Relativised version of Theorem 7.4.1). Let O : {0, 1}∗ → {0, 1} be any oracle.
Let {COn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of O-oracle circuits. There is a single-
valued FΣ2P

O algorithm AO with one bit of advice such that for infinitely many n ∈ N, AO(1n)
outputs yn ∈ {0, 1}2n \ Range(COn ).

We omit the proof of the following corollary since it is superseded by the results in the next
section.

Corollary 7.4.4. Σ2E ̸⊆ SIZE[2n/n] and (Σ2E ∩Π2E)/1 ̸⊆ SIZE[2n/n]. Moreover, these results
relativise: for every oracle O, Σ2E

O ̸⊆ SIZEO[2n/n] and (Σ2E
O ∩Π2E

O)/1 ̸⊆ SIZEO[2n/n].

7.5 Circuit Lower Bounds for S2E

In this section, we prove our near-maximum circuit lower bounds for S2E/1 by giving a new
single-valued FS2P algorithm for Avoid.
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7.5.1 Reed–Muller Codes

To prove maximum circuit lower bounds for S2E/1, we will need several standard tools for
manipulating Reed–Muller (RM) codes (i.e., low-degree multi-variate polynomials).

For a polynomial P : Fm
p → Fp, where Fp is the finite field of p elements, we use degmax(P )

to denote the maximum individual degree of variables in P . Let p be a prime, ∆,m ∈ N. For
a string S ∈ {0, 1}∆m , we use RMFp,∆,m(S) to denote its Reed–Muller encoding by extension:
letting H = {0, 1, . . . ,∆− 1} and w1, . . . , w∆m ∈ Hm be the enumeration of all elements in Hm

in the lexicographical order, RMFp,∆,m(S) is the unique polynomial P : Fm
p → Fp such that (1)

P (wi) = Si for every i ∈ [∆m] and (2) degmax(P ) ≤ ∆− 1.25

We also fix a Boolean encoding of Fp denoted as EncFp : Fp → {0, 1}⌈log p⌉. For simplicity, we
can just map z ∈ {0, 1, . . . , p− 1} to its binary encoding. In particular, EncFp(0) = 0⌈log p⌉ and
EncFp(1) = 0⌈log p⌉−1 ◦ 1.26 Now we further define BRMFp,∆,m(S) by concatenating RMFp,∆,m(S)

with EncFp , thus obtaining a Boolean encoding again. Formally, letting P = RMFp,∆,m(S) and
w1, . . . , wpm ∈ Fm

p be the enumeration of all elements from Fm
p in the lexicographic order, we

define BRMFp,∆,m(S) = EncFp(P (w1)) ◦ EncFp(P (w2)) ◦ . . . ◦ EncFp(P (wpm)). We remark that
for every i ∈ [∆m], in poly(m, log p) time one can compute an index i′ ∈ [pm · ⌈log p⌉] such that
BRMFp,∆,m(S)i′ = Si.

We need three properties of Reed–Muller codes, which we explain below.

Self-correction for polynomials. We first need the following self-corrector for polynomials,
which efficiently computes the value of P on any input given an oracle that is close to a low-degree
polynomial P . (In other words, it is a local decoder for the Reed–Muller code.)

Lemma 7.5.1 (A self-corrector for polynomials, cf. [GS92, Sud95]). There is a probabilistic
oracle algorithm PCorr such that the following holds. Let p be a prime, m,∆ ∈ N such that
∆ < p/3. Let g : Fm

p → Fp be a function such that for some polynomial P of total degree at most
∆,

Pr
x⃗←Fm

p

[g(x⃗) ̸= P (x⃗)] ≤ 1/4.

Then for all x⃗ ∈ Fm
p , PCorrg(p,m,∆, x⃗) runs in time poly(∆, log p,m) and outputs P (x⃗) with

probability at least 2/3.

Low-max-degree test. We also need the following efficient tester, which checks whether a
given polynomial has maximum individual degree at most ∆ or is far from such polynomials.27

Lemma 7.5.2 (Low-max-degree tester [BFL91, Remark 5.15]). Let n,∆, p ∈ N be such that
p ≥ 20 · (∆+1)2 ·n2 and p is a prime. There is a probabilistic non-adaptive oracle machine LDT

such that the following holds. Let g : Fn
p → Fp. Then for δ = 3n2 · (∆ + 1)/p, it holds that

1. if degmax(g) ≤ ∆, then LDTg(p, n,∆) accepts with probability 1,
25To see the uniqueness of P , note that for every P : Fm

p → Fp with degmax(P ) ≤ ∆ − 1, the restriction of P
to Hm uniquely determines the polynomial P . We can construct P using standard interpolation.

26This fact is useful because if we know a string m ∈ {0, 1}⌈log p⌉ encodes either 0 or 1, then we can decode it
by only querying the last bit of m.

27To obtain the theorem below, we set the parameter δ and ε from [BFL91, Remark 5.15] to be
min

(
1

200n2(∆+1)
, 1/2p

)
and min

(
1

400n3(∆+1)
, 1/2p

)
, respectively.
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2. if g is at least δ-far from every polynomial with maximum individual degree at most ∆,
then LDTg(p, n,∆) rejects with probability at least 2/3, and

3. LDT runs in poly(p) time.

Comparing two RM codewords. Lastly, we show an efficient algorithm that, given oracle
access to two codewords of RMFp,∆,m, computes the lexicographically first differing point between
the respective messages of the two codewords.

Lemma 7.5.3 (Comparing two RM codewords). Let p be a prime. Let m,∆ ∈ N be such
that m · ∆ < p/2. There is a probabilistic oracle algorithm Comp that takes two polynomials
f, g : Fm

p → Fp as oracles, such that if both degmax(f) and degmax(g) are at most ∆, then the
following holds with probability at least 9/10:

• If f ̸= g, then Compf,g(p,m,∆) outputs the lexicographically smallest element w in Hm

such that f(w) ̸= g(w), where H = {0, 1, . . . ,∆− 1}.28

• If f = g, then Compf,g(p,m,∆) outputs ⊥.

• Comp makes at most poly(m ·∆) queries to both f and g, and runs in poly(m ·∆ · log p)
time.

Proof. Our proof is similar to the proof from [Hir15], which only considers multi-linear polyno-
mials. Our algorithm Compf,g(p,m,∆) works as follows:

1. The algorithm has m stages, where the i-th stage aims to find the i-th entry of w. At the
end of the i-th stage, the algorithm obtains a length-i prefix of w.

2. For every i ∈ [m]:

(a) Let w<i ∈ H i−1 be the current prefix. For every h ∈ {0, 1, . . . ,∆ − 1}, we run
a randomised polynomial identity test to check whether the restricted polynomial
f(w<i, h, ·) and g(w<i, h, ·) are the same, with error at most 1

10m|H| .
29

(b) We set wi to be the smallest h such that our test above reports that f(w<i, h, ·) and
g(w<i, h, ·) are distinct. If there is no such h, we immediately return ⊥.

By a union bound, all mH polynomial identity testings are correct with probability at least
9/10. In this case, if f = g, then the algorithm outputs ⊥ in the first stage. If f ̸= g, by
induction on i, we can show that for every i ∈ [m], w≤i is the lexicographically smallest element
from Hm such that f(w≤i, ·) and g(w≤i, ·) are distinct, which implies that the output w is also
the lexicographically smallest element w in Hm such that f(w) ̸= g(w).

28Since both f and g have max degree at most ∆, their values are completely determined by their restrictions
on Hm. Hence, if f ̸= g, then such w must exist.

29Note that these two polynomials have total degree at most m · ∆ < p/2. Hence, if they are different, their
values on a random element from Fm−i

p are different with probability at least 1/2. Hence the desired error level
can be achieved by sampling O(logm+ log∆) random points from Fm−i and checking whether f(w<i, h, ·) and
g(w<i, h, ·) have the same values.
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7.5.2 Encoded History and S2BPP Verification

Next, we define the following encoded history.

Definition 7.5.4. Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T be a “hard truth
table” in the sense that f ̸∈ Range(GGMT [C]). Let k, (i⋆, j⋆), and {vi,j}i,j be defined as
in Algorithm 7.3.1. Let S be the concatenation of enc(vi,j) for every i ∈ {0, 1, . . . , k − 1},
j ∈ {0, 1, . . . , 2i − 1}, in the reserve lexicographical order of (i, j), padded with zeros at the end
to length exactly 5T . (Recall that enc(vi,j) was defined in Definition 7.3.6.) Let p be the smallest
prime that is at least 20 · log5 T , and m be the smallest integer such that (log T )m ≥ 5 · T .

The encoded computational history of Jeřábek–Korten(C, f), denoted as

H̃istory(C, f),

consists of (i⋆, j⋆), concatenated with BRMFp,log T,m(S).
The length of the encoded history is at most

⌈
log(40 · log5 T )

⌉
· (40 · log5 T )log(5T )/ log log T+1 + 2 log T ≤ T 6

for all sufficiently large T , and for convenience we always pad zeros at the end so that its length
becomes exactly T 6.30

Recall that the original computational history History(C, f) is simply the concatenation of
(i⋆, j⋆) and S. In the encoded version, we encode its S part by the Reed–Muller code instead. In
the rest of this section, when we say history, we always mean the encoded history H̃istory(C, f)

instead of the vanilla history History(C, f).
We need the following lemma.

Lemma 7.5.5. Let n, T ∈ N be such that log T ≤ n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit
and f ∈ {0, 1}T \ Range(GGMT [C]). Let h := H̃istory(C, f) and z := Jeřábek–Korten(C, f).

1. (history contains input/output) There is a poly(log T )-time oracle algorithm in and
an O(n)-time oracle algorithm Output, both of which have input parameters T, n and take
a string h̃ ∈ {0, 1}T 6 as oracle, such that the following hold:

(a) inT,n makes a single query to its oracle; when given h as the oracle, inT,n takes an
additional input i ∈ {0, 1, . . . , T 6 − 1} and outputs fi.

(b) OutputT,n makes at most 4n queries to its oracle; when given h as the oracle, OutputT,n
outputs z = Jeřábek–Korten(C, f).

2. (S2BPP verification of the history) There is a randomised oracle algorithm V with
input parameters T, n such that the following hold:

(a) V takes strings f̃ ∈ {0, 1}T , π1, π2 ∈ {0, 1}T 6 as oracles, the circuit C, an integer
i ∈
[
T 6
]
, and ε ∈ (0, 1) as input, and runs in poly(n, log ε−1) time.

30For simplicity, even for T such that the length of the encoded history is longer than T 6, we will pretend its
length is exactly T 6 throughout this section. This does not affect the analysis in our main theorem Theorem 7.5.7
since there we only care about sufficiently large T .
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(b) For every π ∈ {0, 1}T 6 and every i ∈ {0, 1, . . . , T 6 − 1}, we have that

Pr
[
V f,π,h
T,n (C, i, ε) = hi

]
≥ 1− ε and Pr

[
V f,h,π
T,n (C, i, ε) = hi

]
≥ 1− ε.

Proof. Again, the algorithms inT,n and OutputT,n can be constructed in a straightforward way.31

So we focus on the construction of V . Let p,m, k ∈ N be as in Definition 7.5.4. We also set
F = Fp and ∆ = log T in the rest of the proof.

Our V always first selects one of the oracles π1 and π2 (say πµ for µ ∈ {1, 2}), and then
outputs πµ(i). Hence, in the following, we say that V selects πµ to mean that V outputs πµ(i)
and terminates. Given π1 and π2, let g1, g2 : Fm → F be the (potential) RM codewords encoded
in π1 and π2, respectively.32 From now on, we will assume that i points to an entry in the
encoded history g1 or g2 instead of the encoded pair of integers (i⋆, j⋆). We will discuss the
other case at the end of the proof.

Low-max-degree test and self-correction. Let c1 be a large enough constant, we first
run LDTg1(p,m,∆ − 1) and LDTg2(p,m,∆ − 1) for c1 times. Recall that p ≥ 20 · log5 T ,
m = ⌈log(5T )/ log log T ⌉, and ∆ = log T . It follows that p ≥ 20 · ((∆ − 1) + 1)2 · m2, which
satisfies the condition of Lemma 7.5.2. We also note that 3m2 · ((∆− 1) + 1)/p < 1/4. Hence,
by Lemma 7.5.2, if g1 is 1/4-far from all polynomials with maximum individual degree at most
∆− 1, then LDTg1(p,m,∆− 1) rejects with probability 2/3, and similarly for g2.

Now, if any of the runs on LDTg1(p,m,∆− 1) rejects, V selects π2, and if any of the runs on
LDTg2(p,m,∆ − 1) rejects, V selects π1.33 In other words, V first disqualifies the oracles that
do not pass the low-max-degree test. We set c1 to be large enough so that conditioning on the
event that V does not terminate yet, with probability at least 0.99, both g1 and g2 are 1/4-close
to polynomials g̃1 : Fm

p → F and g̃2 : Fm
p → F, respectively, where degmax(g̃1) and degmax(g̃2) are

at most ∆− 1.
We can then use PCorrg1(p,m,m·(∆−1), ·) and PCorrg2(p,m,m·(∆−1), ·) to access the poly-

nomials g̃1 and g̃2. (Note that m · (∆− 1) < p/3, which satisfies the condition of Lemma 7.5.1).
We repeat them each O(log T + logm) times to make sure that on a single invocation, they
return the correct values of g̃1 and g̃2 respectively with probability at least 1 − 1/(mT )c2 for
a sufficiently large constant c2. By Lemma 7.5.1, each call to PCorrg1(p,m,m · (∆ − 1), ·) or
PCorrg2(p,m,m · (∆− 1), ·) takes polylog(T ) time.

Selecting the better polynomial. From now on, we refine what it means when V selects
πµ: now it means that V outputs the bit corresponding to i in g̃µ (recall that we are assuming
that i points to an entry in the encoded history g1 or g2).

Let {v1i,j} and {v2i,j} be the encoded histories in g̃1 and g̃2. Then V uses Compg̃1,g̃2(p,m,∆−1)
to find the lexicographically largest (i′, j′) such that v1i′,j′ ̸= v2i′,j′ .

34 This requires at most
poly(m ·∆) queries to both g̃1 and g̃2. By making c2 large enough, we know that Comp operates

31To see that OutputT,n makes at most 4n queries: Note that Output first reads the pair (i⋆, j⋆) from h, and
then reads two corresponding blocks from vi,j encoded in h. In total, it reads at most 2 log T +2n ≤ 4n bits from
h.

32Technically π1 and π2 are supposed to contain the RM codewords concatenated with EncFp : Fp → {0, 1}⌈log p⌉.
33As a minor detail, if both g1 and g2 are rejected by some runs, V selects π2.
34Recall that the {vi,j} is encoded in the reverse lexicographic order (Definition 7.5.4).
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correctly with probability at least 0.8. By operating correctly, we mean that (1) if g̃1 ̸= g̃2,
Comp finds the correct (i′, j′) and (2) If g̃1 = g̃2, Comp returns ⊥.35

In what follows, we assume that Comp operates correctly. If Comp returns ⊥, then V simply
selects π1. Otherwise, there are several cases:

1. i′ = k. In this case, g̃1 and g̃2 disagree on their leaf values, which intend to encode f .
V queries f to figure out which one has the correct value, and selects the corresponding
oracle. (Note that at most one of them can be consistent with f . If none of them are
consistent, then V selects π1.)

From now on, assume i′ < k and set α = v1i′+1,2j′ ◦ v1i′+1,2j′+1. Note that by the definition
of (i′, j′), it holds that α = v2i′+1,2j′ ◦ v2i′+1,2j′+1 as well.

2. i′ < k and both v1i′,j′ and v2i′,j′ are not ⊥. In this case, V first checks whether both of
them are in C−1(α) (it can be checked by testing whether C(v1i′,j′) = α and C(v2i′,j′) = α).
If only one of them is contained in C−1(α), V selects the corresponding oracle. If none
of them are contained, V selects π1. Finally, if both are contained in C−1(α), V checks
which one is lexicographically smaller, and selects the corresponding oracle.

3. i′ < k, and one of the v1i′,j′ and v2i′,j′ is ⊥. Say that vbi′,j′ = ⊥ for some b ∈ {1, 2}, and
denote b̄ := 3 − b as the index of the other proof. In this case, let (i◦, j◦) denote the
predecessor of (i′, j′) in terms of the reverse lexicographical order (that is, the smallest
pair that is lexicographically greater than (i′, j′)). Since Comp operates correctly, we have
that v1i◦,j◦ = v2i◦,j◦ . If v1i◦,j◦ = ⊥, then πb̄ has to be incorrect (since by Definition 7.3.6, ⊥’s
form a contiguous suffix of the history), and V selects πb. Otherwise, if vb̄i′,j′ ∈ C−1(α),
then πb is incorrect (as it claims that C−1(α) = ∅), and V selects πb̄. Otherwise, V selects
πb.

Analysis. Now we show that Pr
[
V f,h,π
T,n (i) = h(i)

]
≥ 2/3. (One can symmetrically prove that

Pr
[
V f,π,h
T,n (i) = h(i)

]
≥ 2/3.) To get the desired ε error probability, one can simply repeat the

above procedure O(log 1/ε) times and output the majority.
First, by Lemma 7.5.2, LDTg1(p,m,∆− 1) passes with probability 1. If some of the runs of

LDTg2(p,m,∆− 1) rejects, then V selects h. Otherwise, we know that with probability at least
0.99, PCorrg1(p,m,m · (∆− 1), ·) and PCorrg2(p,m,m · (∆− 1), ·) provide access to polynomials
g̃1 and g̃2 with maximum individual degree at most ∆− 1, where g̃1 encodes the correct history
values {vi,j}i,j of Jeřábek–Korten(C, f).

Then, assuming Comp operates correctly (which happens with probability at least 0.8), if
g̃1 = g̃2, then the selection of V does not matter. Now we assume g̃1 ̸= g̃2.

We will verify that in all three cases above, h (as the first oracle) is selected by V . In the
first case, by definition, all leaf values in h are consistent with f , and hence h is selected. In the
second case, since h contains the correct history values, we know that v1i′,j′ must be the smallest

35From Lemma 7.5.3, Compg̃1,g̃2(p,m,∆ − 1) itself operates correctly with probability at least 0.9. But the
access to g̃1 (similarly to g̃2) is provided by PCorrg1(p,m,m · (∆− 1), ·), which may err with probability at most
1/(mT )c2 . Hence, we also need to take a union bound over all the bad events that a query from Comp to g̃1 or
g̃2 is incorrectly answered.
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element from C−1(α), so again h is selected. In the last case: (1) if v1i◦,j◦ = ⊥, then v1i′,j′ has
to be ⊥ as well, thus h is selected; (2) if v1i◦,j◦ ̸= ⊥ and v1i′,j′ = ⊥, then C−1(α) = ∅, and since
the other proof π claims some element v2i′,j′ ∈ C−1(α), h is selected; and (3) if v1i◦,j◦ ̸= ⊥ and
v1i′,j′ ̸= ⊥, then π claims that C−1(α) = ∅ and we can check that v1i′,j′ ∈ C−1(α), therefore h is
selected as well.

The remaining case: i points to the location of (i⋆, j⋆). In this case, V still runs the
algorithm described above to make a selection. Indeed, if Comp does not return ⊥, V operates
exactly the same. But when Comp returns ⊥, V cannot simply select π1 since we need to make
sure that V selects the oracle corresponding to h (it can be either π1 or π2). Hence, in this
case, V first reads (i1⋆, j

1
⋆) and (i2⋆, j

2
⋆) from π1 and π2. If they are the same, V simply selects

π1. Otherwise, for b ∈ [2], V checks whether vb
ib⋆,j

b
⋆
= ⊥, and select the one that satisfies this

condition. (If none of the vb
ib⋆,j

b
⋆

are, then V selects π1). If both of vb
ib⋆,j

b
⋆

are ⊥, V selects the
µ ∈ [2] such that (iµ⋆ , j

µ
⋆ ) is larger.

Now, we can verify that V f,h,π
T,n selects h with high probability as well. (To see this, note that

in the correct history, (i⋆, j⋆) points to the lexicographically largest all-zero block.)
Finally, the running time bound follows directly from the description of V .

A remark on relativisation

Perhaps surprisingly, although Lemma 7.5.5 heavily relies on arithmetisation tools such as
Reed–Muller encoding and low-degree tests, it in fact also relativises. To see this, the crucial
observation is that, similarly to Lemma 7.3.7, the verifier V from Lemma 7.5.5 only needs black-
box access to the input circuit C, meaning that it only needs to evaluate C on certain chosen
inputs. Hence, when C is actually an oracle circuit CO for some arbitrary oracle O, the only
modification we need is that V now also takes O as an oracle.

Remark 7.5.6. Definition 7.5.4 and Lemma 7.5.5 relativise, in the sense that if C is an oracle
circuit CO for some arbitrary oracle, Definition 7.5.4 needs no modification since Definition 7.3.6
relativises, and Lemma 7.5.5 holds with the only modification that V now also needs to take O
as an oracle (since it needs to evaluate C).

Indeed, the remark above might sound strange at first glance: arguments that involve PCPs
often do not relativise, and the encoded history H̃istory(C, f) looks similar to a PCP since it
enables V to perform a probabilistic local verification. However, a closer inspection reveals a key
difference: the circuit C is always treated as a black box—both in the construction of history
(Definition 7.3.6) and in the construction of the encoded history (Definition 7.5.4). That is, the
arithmetisation in the encoded history does not arithmetise the circuit C itself.

7.5.3 Lower Bounds for S2E

Let {Cn : {0, 1}n → {0, 1}2n} be a P-uniform family of circuits. We show that there is a
single-valued FS2P algorithm A such that for infinitely many n ∈ N, on input 1n, A(1n) outputs
a canonical string that is outside the range of Cn.
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Theorem 7.5.7. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There is
a sequence of valid outputs {yn ∈ {0, 1}2n \ Range(Cn)}n∈N and a single-valued FS2P algorithm
A with one bit of advice, such that for infinitely many n ∈ N, A(1n) outputs yn.

Proof. Our proof proceeds similarly to the proof of the previous Theorem 7.4.1. We will follow
the same notation.

Notation. Let n(1) be a large enough power of 2, n(ℓ) = 22
n(ℓ−1)

for each integer ℓ > 1. Let
n
(ℓ)
0 = n(ℓ) and t(ℓ) = O

(
log n

(ℓ)
0

)
be parameters that we set later. For each 1 ≤ i ≤ t(ℓ), let

n
(ℓ)
i :=

(
n
(ℓ)
i−1

)10
. To show our algorithm A works on infinitely many input lengths, we will show

that for every ℓ ∈ N, there is an input length n(ℓ)i for some i ∈
[
t(ℓ)
]

such that A works.
Fix ℓ ∈ N. From now on, for convenience, we will use ni and t to denote n(ℓ)i and t(ℓ),

respectively.

Specifying Ti and fi. For each input length ni, we will specify a parameter Ti ∈ N and a
string fi ∈ {0, 1}Ti . Our win-win analysis is based on whether fi ∈ Range(GGMTi [Cni ]) for each
i ∈ {0, 1, . . . , t}.

Let T0 := 22n0 · 2n0 and f0 be the concatenation of all length-2n0 strings (which has length
T0). From Fact 7.3.4, we have that f0 ̸∈ Range(GGMT0 [Cn0 ]). For every i ∈ [t], we define

fi = H̃istory(Cni−1 , fi−1).

From Definition 7.5.4, this also means that we have set Ti = T 6
i−1 for every i ∈ [t].

Let t be the first integer such that Tt+1 ≤ nt+1. Note that we have Ti = (T0)
6i ≤ 23n0·6i and

ni = (n0)
10i = 2logn0·10i . Hence, we have that t ≤ O(log n0). (Also note that n(ℓ)t < n

(ℓ+1)
0 .)

Description of our FS2P algorithm A. Now, let k ∈ {0, 1, . . . , t} be the largest integer
such that fk ̸∈ Range(GGMTk

[Cnk
]). Since f0 ̸∈ Range(GGMT0 [Cn0 ]), such a k must exist. Let

z := Jeřábek–Korten(Cnk
, fk), it follows from Lemma 7.3.3 that z is not in the range of Cnk

(i.e., z ∈ {0, 1}2nk \Range(Cnk
)). Our single-valued FS2P algorithm A computes z on input 1nk

(see Definition 7.2.2).
We will first construct an S2BPP verifier V that computes z in polynomial time on input

1nk , and then use the fact that all S2BPP verifiers can be turned into equivalent S2P verifiers
with a polynomial-time blow-up [Can96, RS98], from which we can obtain the desired verifier
VA for A.

Description of an S2BPP verifier V computing z. Formally, V is a randomised polynomial-
time algorithm that takes 1nk and two witnesses π1, π2 ∈ {0, 1}nk+1 as input, and we aim to
establish the following:

There exists ω ∈ {0, 1}nk+1 such that for every π ∈ {0, 1}nk+1 , we have

Pr[V (1nk , ω, π) = z] ≥ 2/3 and Pr[V (1nk , π, ω) = z] ≥ 2/3,
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where the probabilities are over the internal randomness of V .

In more detail, if k < t, then V treats π1 and π2 as inputs to the circuit GGMTk+1
[Cnk+1

],
and let

f̂k+1 := GGMTk+1
[Cnk+1

](π1) and ĝk+1 := GGMTk+1
[Cnk+1

](π2).

Here, the lengths of π1 and π2 are ℓ := nk+1 ≤ poly(nk). If k = t, then V defines f̂k+1 := π1,
ĝk+1 := π2, and their lengths are ℓ := Tt+1 ≤ nk+1 ≤ poly(nk). It is intended that one of the
f̂k+1 and ĝk+1 is fk+1 = H̃istory(Cnk

, fk) (V needs to figure out which one).
We now specify the intended proof ω ∈ {0, 1}nk+1 . When k < t, since fk+1 is in the range of

GGMTk+1
[Cnk+1

], we can set ω so that GGMTk+1
[Cnk+1

](ω) = fk+1. When k = t, we simply set
ω = fk+1.

Note that Lemma 7.3.2 provides us “random access” to the (potentially very long) strings
f̂k+1 and ĝk+1: (take f̂k+1 as an example) given π1 and j ∈ {0, 1, . . . , Tk+1 − 1}, one can
compute the j-th bit of f̂k+1 in poly(nk) time. Also recall from Lemma 7.5.5 that for each i,
fi+1 = H̃istory(Cni , fi) contains the string fi, which can be retrieved by the oracle algorithm in

described in Item 1 of Lemma 7.5.5. Therefore, for each i from k downto 1, we can recursively
define f̂i such that (f̂i)j = in

f̂i+1

Ti,ni
(j) (similarly for ĝi). We also define f̂0 and ĝ0 to be the

concatenation of all length-(2n0) strings in the lexicographical order, so f̂0 = ĝ0 = f0.
Applying the algorithm in recursively, we obtain two algorithms F and G (depending on

π1 and π2, respectively) that given i ∈ {0, 1, . . . , k + 1} and j ∈ {0, 1, . . . , Ti − 1}, output the
j-th bit of f̂i or ĝi, respectively. Since in only makes one oracle query, these algorithms run in
poly(nk) time.

We are now ready to formally construct V . We first recursively define a series of procedures
V0, . . . , Vk+1, where each Vi takes an input j and outputs (with high probability) the j-th bit
of fi. Let V0 be the simple algorithm that, on input j, computes the j-th bit of f0. For every
i ∈ [k + 1] and for some εi ∈ [0, 1) to be specified later, we define

Vi(α) := Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi),

where Select is the algorithm in Item 2 of Lemma 7.5.5. We note that since Vi−1 is a
randomised algorithm, when Vi calls Vi−1, it also draws independent random coins used by the
execution of Vi−1. Moreover, all calls to f̂i and ĝi in Vi can be simulated by calling our algorithms
F and G. Jumping ahead, we remark that Vi is supposed to compute fi when at least one of f̂i
or ĝi is fi. We then set

V (1nk , π1, π2) := Output
Vk+1

Tk,nk

(note that Vk+1 is defined from f̂k+1 and ĝk+1, which are in turn constructed from π1 and π2),
where OutputTk,nk

is the algorithm from Item 1 of Lemma 7.5.5.

Correctness of V . Let τ ∈ N be a large constant such that SelectT,n runs in (n · log 1/ε)τ

time. In particular, on any input α, SelectVi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes at most (ni−1 · log 1/εi)τ
many queries to Vi−1.

We say Selectf,π1,π2

T,n (C,α, εi) makes an error if the following statements is true (here h =
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H̃istory(C, f) from Lemma 7.5.5):36

[π1 = h OR π2 = h] AND
[
Selectf,π1,π2

T,n (Cni−1 , α, εi) ̸= hα

]
.

Similarly, we say that Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error if either (1) one of the
queries to Vi−1 are incorrectly answered (i.e., the answer is not consistent with fi−1) or (2) all
queries are correctly answered but Select

fi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error. Note that (2)
happens with probability at most εi from Item 2 of Lemma 7.5.5.

Now we are ready to specify the parameter εi. We set εk+1 = 1/(100 · nk+1), and for every
i ∈ {0, 1, . . . , k}, we set

εi =
εi+1

4 · (ni · log 1/εi+1)τ
.

To show the correctness of V , we prove the following claim by induction.

Claim 7.5.8. Assume either f̂k+1 = fk+1 or ĝk+1 = fk+1. For every i ∈ {0, 1, . . . , k + 1} and
α ∈ [|fi|], Vi(α) outputs fi(α) with probability at least 1− 2εi.

Proof. The claim certainly holds for V0. Now, for i ∈ [k + 1], assuming it holds for Vi−1, it
follows that Select

Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error with probability at most

εi + (ni−1 · log 1/εi)τ · 2εi−1 ≤ 2εi.

By the definition of making an error and our assumption that either f̂k+1 = fk+1 or ĝk+1 = fk+1

(from which we know either f̂i = fi or ĝi = fi), it follows that Vi(α) outputs fi(α) with
probability at least 1− 2εi. ⋄

Note that Output
Vk+1

Tk,nk
makes at most 4nk queries to Vk+1. It follows from Claim 7.5.8 that

when either f̂k+1 = fk+1 or ĝk+1 = fk+1, we have that V (1nk , π1, π2) outputs z with probability
at least 1− (4nk) · 1/(100nk+1) ≥ 2/3. The correctness of V then follows from our choice of ω.

Running time of V . Finally, we analyse the running time of V , for which we first need to
bound log ε−1i . First, we have

log ε−1k+1 = log nk+1 + log 100.

By our definition of εi and the fact that τ is a constant, we have

log ε−1i = log ε−1i+1 + log 4 + τ ·
(
log ni + log log ε−1i+1

)

≤ 2 log ε−1i+1 +O(log ni).

Expanding the above and noting that k ≤ t ≤ O(log n0), for every i ∈ [k + 1] we have that

log ε−1i ≤ 2k ·O
(

k∑

ℓ=0

log nℓ

)
≤ poly(n0) · log nk.

36The condition below only applies when at least one of π1 and π2 is h. If neither of them are h, then Select
by definition never errs.
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Now we are ready to bound the running time of the Vi. First V0 runs in T0 = poly(n0) time.
For every i ∈ [k + 1], by the definition of Vi, we know that Vi runs in time

Ti = O
(
(ni−1 · log 1/εi)τ

)
· (Ti−1 + nβk + 1),

where β is a sufficiently large constant and nβk bounds the running time of answering each query

Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes to f̂i or ĝi, by running F or G, respectively.
Expanding out the bound for Tk, we know that Vk+1 runs in time

2O(k) · (poly(n0) · log nk)O(k·τ) · nβk ·
k+1∏

i=1

nτi−1.

Since nk = n10
k

0 and k ≤ O(log n0), the above can be bounded by poly(nk). This also implies
that V runs in poly(nk) time as well, which completes the analysis of the S2BPP verifier V .

Derandomisation of the S2BPP verifier V into the desired S2P verifier VA. Finally,
we use the underlying proof technique of S2BPP = S2P [Can96,RS98] to derandomise V into a
deterministic S2P verifier VA that outputs z.

By repeating V poly(nk) times and outputting the majority among all the outputs, we can
obtain a new S2BPP verifier Ṽ such that

• There exists ω ∈ {0, 1}nk+1 such that for every π ∈ {0, 1}nk+1 , we have

Pr[Ṽ (1nk , ω, π) = z] ≥ 1− 2−nk and Pr[Ṽ (1nk , π, ω) = z] ≥ 1− 2−nk . (7.2)

Let ℓ = poly(nk) be an upper bound on the number of random coins used by Ṽ . We
also let m := poly(ℓ, nk+1) ≤ poly(nk) and use Ṽ (1nk , π1, π2; r) to denote the output of Ṽ given
randomness r. Now, we define VA as follows: It takes two vectors π⃗1, π⃗2 ∈ {0, 1}nk+1×

(
{0, 1}ℓ

)m

as proofs. For π⃗1 = (α, u1, u2, . . . , um) and π⃗2 = (β, v1, v2, . . . , vm), VA outputs the majority of
the multi-set

{Ṽ (1nk , α, β;ui ⊕ vj)}(i,j)∈[m]2 ,

where ui ⊕ vj denotes the bit-wise XOR of ui and vj (if no strings occur more than m2/2 times
in the set above, then VA simply outputs ⊥).

We will show there exists ω⃗ = (γ, r1, . . . , rm) such that for every π⃗ ∈ {0, 1}nk+1 ×
(
{0, 1}ℓ

)m,

Pr[VA(1
nk , ω⃗, π⃗) = z] and Pr[VA(1

nk , π⃗, ω⃗) = z].

We first claim that there exist r1, . . . , rm ∈ {0, 1}ℓ such that for every u ∈ {0, 1}ℓ and for every
π ∈ {0, 1}nk+1 , it holds that (1) for at least a 2/3 fraction of i ∈ [m], we have Ṽ (1nk , ω, π; ri⊕u) =
z and (2) for at least a 2/3 fraction of i ∈ [m], we have Ṽ (1nk , π, ω; ri ⊕ u) = z.

To see this, for every fixed u ∈ {0, 1}ℓ and π ∈ {0, 1}nk+1 , by a simple Chernoff bound, the
probability, over m independently uniformly drawn r1, . . . , rm, that more than a 1/3 fraction
of i ∈ [m] satisfies Ṽ (1nk , ω, π; ri ⊕ u) ̸= z is at most 2−Ω(m), and the same probability upper
bound holds for the corresponding case of Ṽ (1nk , π, ω; ri ⊕ u) ̸= z as well. Our claim then just
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follows from a simple union bound over all u ∈ {0, 1}ℓ and π ∈ {0, 1}nk+1 .
Now, let γ be the proof ω such that the condition (7.2) holds, we set ω⃗ = (γ, r1, . . . , rm).

From our choice of γ and r1, . . . , rm, it then follows that for every v1, . . . , vm ∈ {0, 1}ℓ and π ∈
{0, 1}nk+1 , at least a 2/3 fraction of Ṽ (1nk , γ, π; ri⊕vj) equals z, and similarly for Ṽ (1nk , π, γ; ri⊕
vj). This completes the proof.

Wrapping up. Finally, we generalise A and VA to work on all inputs 1n. On input 1n, VA
calculates the largest ℓ such that n(ℓ) ≤ n, and also calculates the largest k′ such that n(ℓ)k′ ≤ n. If
n
(ℓ)
k′ ̸= n, then VA immediately outputs ⊥ and halts. Otherwise, VA receives an advice bit indicat-

ing whether k′ = k(ℓ), where k(ℓ) is the largest integer such that f (ℓ)
k(ℓ)
̸∈ Range(GGM

T
(ℓ)
k

[C
n
(ℓ)
k

]).
If this is the case, then VA runs the verification procedure above; otherwise, it immediately
outputs ⊥ and halts. It is easy to see that VA runs in poly(n) time, and is an infinitely-often
single-valued FS2P algorithm solving the range avoidance problem of {Cn}.

Moreover, observe that in the proof of Lemma 7.5.5, all considered input lengths (the n(ℓ)i )
are indeed powers of 2. So we indeed have the following slightly stronger result.

Corollary 7.5.9. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There
is a single-valued FS2P algorithm A with one bit of advice such that for infinitely many r ∈ N,
letting n = 2r, A(1n) outputs yn ∈ {0, 1}2n \ Range(Cn).

We need the following reduction from Korten, which reduces solving range avoidance with
one-bit stretch to solving range avoidance with doubling stretch.

Lemma 7.5.10 ([Kor21, Lemma 3]). Let n ∈ N. There is a polynomial time algorithm A and
an FPNP algorithm B such that the following hold:

1. Given a circuit C : {0, 1}n → {0, 1}n+1, A(C) outputs a circuit D : {0, 1}n → {0, 1}2n.

2. Given any y ∈ {0, 1}2n \ Range(D), B(C, y) outputs a string z ∈ {0, 1}n+1 \ Range(C).

The following corollary then follows by combining Lemma 7.5.10 and Theorem 7.2.3.

Corollary 7.5.11. Let {Cn : {0, 1}n → {0, 1}n+1}n∈N be a P-uniform family of circuits. There
is a single-valued FS2P algorithm A with one bit of advice such that for infinitely many r ∈ N,
letting n = 2r, A(1n) outputs yn ∈ {0, 1}n+1 \ Range(Cn).

The following corollary follows from Fact 7.2.4 and Corollary 7.5.11.

Corollary 7.5.12. S2E/1 ̸⊂ SIZE[2n/n].

Finally, we also note that by letting Cn be a universal Turing machine mapping n bits to n+1

bits in poly(n) time, we have the following strong lower bounds for S2E/1 against non-uniform
time complexity classes with maximum advice.

Corollary 7.5.13. For every α(n) ≥ ω(1) and any constant k ≥ 1, S2E/1 ̸⊂ TIME[2kn]/2n−α(n).

From Remark 7.5.6 and noting that the derandomisation of S2BPP verifier V to S2P verifier
AV also relativises, we can see that all the results above relativise as well.
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7.5.4 Infinitely-Often Single-Valued FS2P Algorithms for Arbitrary Range
Avoidance

Theorem 7.5.7 and Corollary 7.5.11 only give single-valued FS2P algorithms for solving range
avoidance for P-uniform families of circuits. Applying the Jeřábek–Korten reduction (again),
we show that it can be strengthened into a single-valued infinitely-often FS2P algorithm solving
range avoidance given an arbitrary input circuit.

Theorem 7.5.14. There is a single-valued FS2P algorithm A with one bit of advice such that
for infinitely many s ∈ N, for all s-size circuits C : {0, 1}n → {0, 1}n+1 where n ≤ s, A(C)
outputs yC ∈ {0, 1}n+1 \ Range(C).

Proof Sketch. By Corollary 7.5.11, there is a single-valued FS2P algorithm W with one bit
of advice such that for infinitely many n ∈ N, W (12

n
) outputs a string fn ∈ {0, 1}2n with

SIZE(fn) ≥ 2n/n.
Now we construct our single-valued FS2P algorithm A with one bit of advice as follows: given

an s-size circuit C : {0, 1}n → {0, 1}n+1 with n ≤ s as input; let m = ⌈log s3⌉ and fm =W (12
m
);

output Jeřábek–Korten(C, fm). It follows from Theorem 7.2.3 that A is a single-valued FS2P

algorithm with one bit of advice (the advice of A is given to W ).

Finally, S2P ⊆ ZPPNP [Cai07] implies that every single-valued FS2P algorithm can also be
implemented as a single-valued FZPPNP algorithm with polynomial overhead. Therefore, the
above theorem also implies an infinitely often FZPPNP algorithm for range avoidance.

Reminder of Theorem 7.1.5. There is a single-valued FZPPNP algorithm A with one bit of
advice such that for infinitely many s ∈ N, for all s-size circuits C : {0, 1}n → {0, 1}n+1 where
n ≤ s, A(C) outputs yC ∈ {0, 1}n+1 \ Range(C). That is, for all those s, there is a string
yC ∈ {0, 1}n+1 \Range(C) such that A(C) either outputs yC or ⊥, and the probability (over the
inner randomness of A) that A(C) outputs yC is at least 2/3.
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Chapter 8

The Complexity of Avoiding Heavy
Elements

8.1 Introduction

Let C be a Boolean circuit sampling a distribution D on N -bit strings. Say that an N -bit
string y is δ-heavy in D if y occurs with probability at least δ in D. Assuming that some
2δ-heavy string exists, for δ ≥ 1/poly(N), how hard is it to find a δ-heavy string given C as
input?

We call this natural search problem the heavy element finding (Heavy Find) problem. It is
not difficult to see that the complexity of Heavy Find is closely related to the complexity of
derandomisation. There is a simple randomised polynomial-time algorithm for Heavy Find: we
use C to draw O(N/δ2) independent samples from D and output the string that occurs with the
greatest multiplicity in the multiset of samples. A standard application of Chernoff–Hoeffding
bounds shows that assuming that a 2δ-heavy string exists, the output of the algorithm will be
a string that is δ-heavy in D with high probability.

Moreover, a deterministic polynomial-time algorithm for Heavy Find implies BPP = P.
Indeed, let M be a probabilistic polynomial-time Turing machine with error bounded by 1/4 and
x be an input to M . We can define a circuit sampler Cx which interprets its input as randomness
r for the computation of M on x, outputting 1N if M accepts on x using randomness r and
0N otherwise. Observe that if M accepts x, the unique solution to Heavy Find on input Cx

with parameter δ = 1/3 is 1N , and if M rejects x, the unique solution to Heavy Find on input
Cx with parameter 1/3 is 0N . Thus, a deterministic polynomial-time algorithm for Heavy Find
allows us to decide if M accepts x, also in deterministic polynomial time.1

We now turn our original question on its head: given C as input, how hard is it to find a
string that is not δ-heavy? We call this the heavy element avoidance (Heavy Avoid) problem.
Heavy Avoid is the complementary search problem to Heavy Find: a string y ∈ {0, 1}N is a
solution to Heavy Avoid if and only if it is not a solution to Heavy Find. The complexity of
Heavy Avoid is the primary focus of this chapter.

1Readers who are familiar with derandomisation might already see that the derandomisation also holds for the
promise version of BPP (prBPP). In fact, it is not hard to show that Heavy Find can be solved in deterministic
polynomial time if and only if prBPP collapses to prP, the promise version of P.
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Superficially, Heavy Avoid seems to be a much simpler problem to solve than Heavy Find.
First, when δ > 2−N , Heavy Avoid is a total search problem, i.e., the promise that a non-
heavy N -bit string exists is automatically satisfied. In this chapter, we mainly focus on the
regime where δ ≥ 1/poly(N), hence this is always true if N is large enough. Second, there is a
trivial algorithm that list-solves Heavy Avoid: Since the number of δ-heavy strings is at most
1/δ, at least one of the lexicographically first ⌈1/δ⌉ + 1 strings of length N is guaranteed to
be a solution to Heavy Avoid. Third, there is a very efficient randomised algorithm for Heavy
Avoid with overwhelming success probability: output a uniformly random string of length N .
Note that by the previous observation that the number of δ-heavy strings is at most 1/δ, this
randomised algorithm fails on at most 1/δ ≤ poly(N) of its random choices.

Our main contribution is to introduce Heavy Avoid as a natural search problem of interest,
and show that despite its seeming simplicity, Heavy Avoid has applications to several frontier
questions in complexity theory regarding uniform randomised lower bounds and derandomisation.
Indeed, we show that in many settings the existence of algorithms for Heavy Avoid is equivalent
to a complexity lower bound. The study of Heavy Avoid also illuminates recent almost-all-inputs-
hardness assumptions in the theory of derandomisation [CT21a], and leads to novel white-box
reductions in settings where black-box reductions are hard to show.

8.1.1 Results

Our results are twofold.

• First, we present algorithmic characterisations of lower bounds against uniform probabilis-
tic circuits via Heavy Avoid. That is, deterministic algorithms for Heavy Avoid (in certain
settings and with certain parameters) are equivalent to such lower bounds. In fact, we
obtain very general characterisations that hold for classes such as EXP,PSPACE,EXPNP

and NP, against uniform randomised circuit classes such as ACC0, TC0, or SIZE[poly].
This suggests that the analysis of Heavy Avoid could be useful in attacking frontier open
questions such as EXP ⊈ BP-ACC0 and EXPNP ⊈ BPP.

• Then, we give applications of Heavy Avoid to derandomisation, including novel white-box
reductions from promise problems that are hard for prRP or prBPP to Heavy Avoid, as
well as connections to “almost-all-inputs-hardness" assumptions that have been explored
in recent work on derandomisation.

We consider both uniform and non-uniform versions of Heavy Avoid. In the uniform version,
the search algorithm is given N in unary, and needs to find a δ-light2 element in DN , where
D = {DN}N∈N is an ensemble of distributions over N -bit strings that are sampled by some
uniform sequence of circuits from a circuit class. Since D is sampled by a uniform sequence of
circuits, we do not need to give the circuit sampler explicitly to the search algorithm—the search
algorithm can compute the circuit sampler by itself. In this uniform variant of the problem, fix
a parameter δ : N→ [0, 1], (D, δ)-Heavy-Avoid is the problem of finding a δ(N)-light element in
DN , given 1N as input.

2A δ-light element is one that is not δ-heavy.
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In the non-uniform variant of the problem, the search algorithm is given as input a circuit
sampler C from some circuit class C, and needs to output a δ-light element in the distribution
sampled by C.

There are also two kinds of samplability we consider: implicit and explicit. In the implicit
version, our sampler C is Boolean: given randomness r as input together with an index i ∈ [N ],
it outputs the i-th bit of the string sampled on randomness r. In this setting, the circuit size
is typically less than N . In the explicit version, the circuit C is given randomness r as input
and has N output bits: it outputs the string sampled on randomness r. In this setting, the
circuit size is at least N , since there are N output bits. Note that when we show an implication
from solving Heavy Avoid to proving lower bounds, the implication is stronger when we consider
implicit solvers, since the algorithmic problem is easier to solve for implicit samplers.3 An
implicit solver C(r, i) can easily be converted to an equivalent explicit solver

CExplicit(r) := C(r, 1)C(r, 2) . . . C(r,N).

Equivalences Between Complexity Separations and Algorithms for Heavy Avoid

It is a long-standing open question to prove lower bounds against non-uniform circuits – we
still have not ruled out the possibility that every language computable in exponential time with
an NP oracle (EXPNP) has polynomial-size circuits. What is more embarrassing is our inability
to separate EXPNP from BPP (see, e.g., [Wil13b,Wil19] for discussions), despite the belief shared
by many researchers that BPP = P [NW94, IW97].4 Moreover, the state of affairs is the same
regarding lower bounds against uniform probabilistic circuits from restricted circuit classes: for
example, it is open whether EXP can be simulated by DLOGTIME-uniform probabilistic ACC0

circuits or EXPNP can be simulated by DLOGTIME-uniform probabilistic TC0 circuits.5

Our first set of results gives equivalences between such explicit lower bounds against uniform
probabilistic circuits and efficient deterministic algorithms for Heavy Avoid. The equivalences
work in a wide variety of settings, for a range of circuit classes including ACC0,TC0,NC1 and
general Boolean circuits, and for explicit lower bounds in several standard complexity classes
of interest such as EXP,EXPNP,PSPACE and NP. Notably, these results give new algorithmic
characterisations of uniform lower bound questions by the existence of efficient algorithms for
a natural search problem. Thus, they could potentially be useful in attacking frontier open
questions such as the EXP vs (uniform probabilistic) ACC0 question, or the EXPNP vs BPP

question.
We use BPC to denote the set of languages computed by DLOGTIME-uniform probabilistic

C-circuits.

Theorem 8.1.1 (Informal). Let C be a nice6 class of Boolean circuits. The following equivalences
3We measure the complexity of solving the search problem as a function of N , even in the implicit-sampler

setting.
4Since BPP is strictly contained in SIZE[poly] [Adl78], the open problem of separating EXPNP from BPP is

more embarrassing than separating EXPNP from SIZE[poly]! See also [Wil19, Table 1] for a related perspective.
5It follows from EXPNP ⊈ ACC0 [Wil14, CLW20], which is a non-uniform circuit lower bound, that EXPNP

cannot be simulated by DLOGTIME-uniform probabilistic ACC0 circuits. (Note that we do not know how to prove
such lower bounds by exploiting the circuit uniformity condition.)

6In brief, a nice circuit class is one that contains AC0[⊕], is closed under composition, and admits universal
circuits for the corresponding class.
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hold:

(i) EXP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved
in deterministic polynomial time on infinitely many input lengths for any D that admits
implicit DLOGTIME-uniform C-samplers of size polylog(N).

(ii) EXPNP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved
in deterministic polynomial time with an NP oracle on infinitely many input lengths for
any D that admits implicit DLOGTIME-uniform C-samplers of size polylog(N).

(iii) PSPACE ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be
solved in deterministic logarithmic space on infinitely many input lengths for any D that
admits implicit DLOGTIME-uniform C-samplers of size polylog(N).

(iv) NP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved
by DLOGTIME-uniform unbounded fan-in circuits of quasi-polynomial size and constant
depth on infinitely many input lengths for any D that admits implicit DLOGTIME-uniform
C-samplers of size polylog(N).

For the PSPACE lower bounds, analogous algorithmic characterisations hold for almost ev-
erywhere uniform lower bounds and for lower bounds against uniform randomised subexponential
size circuits. Perhaps interestingly, it follows from our arguments that the existence of efficient
algorithms for (D, δ)-Heavy-Avoid in the settings considered in Theorem 8.1.1 is robust with
respect to the threshold parameter δ(N): the existence of algorithms for any δ(N) = o(1) yields
the existence of algorithms of similar complexity for δ(N) = 1/polylog(N).

Theorem 8.1.1 has direct corollaries that characterise frontier open questions in complexity
theory.

Corollary 8.1.2 (Informal). The following results hold:

(i) EXPNP ⊈ BP-TC0 if and only if Heavy-Avoid for implicit DLOGTIME-uniform TC0-
samplers can be solved in deterministic polynomial time with access to and NP oracle
on infinitely many input lengths.

(ii) PSPACE ⊈ BP-ACC0 if and only if Heavy-Avoid for implicit DLOGTIME-uniform ACC0-
samplers can be solved in logarithmic space on infinitely many input lengths.

Previously, algorithmic characterisations of non-uniform lower bounds were known for classes
such as NEXP [IKW02,Wil16] and EXPNP [Kor21,RSW22], and such characterisations for uni-
form randomised lower bounds against general circuits (that is, against BPP) were known for
EXP [IW01] and NEXP [Wil16]. We are not aware of any previous algorithmic characterisation
of super-polynomial non-uniform or uniform randomised lower bounds for NP.

Connections to Derandomisation

We also explore relations between the complexity of Heavy Avoid and fundamental questions
in derandomisation. We consider the non-uniform variant of Heavy Avoid, where a Boolean
circuit sampler is given as input to the algorithm solving Heavy Avoid. For δ : N → [0, 1],
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Implicit-δ-Heavy-Avoid is the problem where we are given as input a circuit C implicitly
sampling a distribution on N bits (as explained at the beginning of Section 8.1.1), and would
like to output a δ-light element in the distribution.

Our first result shows that the existence of efficient deterministic algorithms for Heavy Avoid
that, in addition, can be implemented by uniform circuits of sub-polynomial depth leads to a
complete derandomisation of prBPP. Note that in this result, to obtain the desired conclusion,
it is sufficient for this algorithm to solve the problem for implicit samplers.

Theorem 8.1.3. Let δ(N) = o(1) be any function. Suppose there is a constant ε > 0 and a
deterministic algorithm A that solves the Implicit-δ-Heavy-Avoid problem on implicit samplers
of size N ε. Moreover, assume that A can be implemented as a logspace-uniform circuit of size
poly(N) and depth No(1). Then prBPP = prP.

If we could eliminate the circuit depth constraint from the statement of Theorem 8.1.3, it
would be possible to establish an equivalence between the derandomisation of prBPP and algo-
rithms for Heavy Avoid (in both the implicit and explicit settings). While obtaining this strong
characterisation remains elusive, in the next result, we obtain a non-trivial derandomisation
consequence from the existence of an efficient algorithm for Heavy Avoid without assuming a
circuit depth bound.

Let Gap-SAT denote the promise problem where YES instances are Boolean circuits with
at least half of the assignments being satisfying, and NO instances are unsatisfiable Boolean
circuits. It is well known that Gap-SAT is complete for the promise version of RP.

Theorem 8.1.4 (Informal). Let δ(N) = o(1) be any function. Suppose there is an algorithm for
Implicit-δ-Heavy-Avoid on maps G : {0, 1}poly(n) → {0, 1}N (where N = 2n

ε) implicitly com-
putable by an input circuit of size poly(n), where the Heavy Avoid algorithm runs in poly(N)

time and is infinitely-often correct. Then there is an algorithm for Gap-SAT that runs in subex-
ponential time and is infinitely-often∗ correct.7

Theorem 8.1.3 and Theorem 8.1.4 are both established using non-black-box reductions that
make use of recent hardness-randomness trade-offs. In more detail, as explained in Section 8.1.2
below, Theorem 8.1.3 crucially relies on the instance-wise hardness-randomness trade-off for
low-depth circuits of Chen and Tell [CT21a], while Theorem 8.1.4 combines the framework of
[CT21a] and the “leakage resilient” hardness-randomness framework of Liu and Pass [LP23]. In
contrast to the non-black-box nature of the proofs given for these two results, we show that
it will be quite difficult to obtain them using black-box reductions. In particular, we show
that improving Theorem 8.1.4 to a polynomial-time Levin reduction [Lev73] would derandomise
prBPP.8 Stated more precisely, if there is an efficient black-box Levin reduction from the search

7In Theorem 8.1.4, we only obtain Gap-SAT algorithms satisfying a technical condition called infinitely-often∗

correctness, which is a nonstandard variant of infinitely-often correctness. The crucial difference is that, for a
sequence of inputs {xn}n∈N, given 1n, the algorithm is allowed to inspect every input x1, x2, . . . , xpoly(n), and
needs to provide a solution for xn. In other words, the algorithm is correct infinitely-often∗ if it outputs the
correct answer on infinitely many input lengths n while having access to all input strings from the sequence that
have length polynomial in n. We refer the reader to Definition 8.4.7 and to the proof of Theorem 8.4.8 for more
details.

8Recall that in a Levin reduction between search problems we have a pair (f, g) of functions, where f maps
to an instance of the other problem while g converts a given solution into a solution to the original problem.
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version of Gap-SAT to Heavy Avoid (even with respect to non-uniform explicit samplers), then
prBPP = prP holds unconditionally. We refer to Section 8.4.3 for more details.

Finally, we establish a deeper connection between the implicit non-uniform variant of Heavy
Avoid considered in this section and the recent paradigm of instance-wise hardness-randomness
trade-offs alluded to above [CT21a,LP22,LP23,CTW23]. Roughly speaking, in this paradigm,
we convert a hard function f : {0, 1}n → {0, 1}poly(n) with multiple output bits into pseudoran-
domness, where the obtained derandomisation is instance-wise: for every x ∈ {0, 1}n, if f is hard
to compute on x, then the derandomisation of the corresponding computation over input x suc-
ceeds. Naturally, the derandomisation assumptions used in these results need almost-all-inputs
hardness, meaning that f is hard on all but finitely many inputs (instead of input lengths).9 In
Section 8.4.4, we prove that the existence of efficient deterministic algorithms for Heavy Avoid
in the implicit non-uniform setting is equivalent to the existence of functions f with multiple
output bits that are easy to compute deterministically but are hard against fixed polynomial-size
randomised algorithms. This result sheds light on the relevance of the techniques that we employ
to prove Theorem 8.1.3 and Theorem 8.1.4, and suggests that developing further connections
between Heavy Avoid and these modern hardness-randomness trade-offs paradigms could be a
fruitful research direction.

8.1.2 Techniques

We now discuss the proofs of Theorem 8.1.1, Theorem 8.1.3, and Theorem 8.1.4. We make
use of a variety of techniques to establish these results:

• The proof of Theorem 8.1.1 Item (iii) relies on extremely efficient instance checkers for
a special PSPACE-complete problem investigated in [Che23]. This allows us to establish
equivalences for very weak circuit classes C at the frontier of existing separations. Extend-
ing the equivalence result to NP, EXP, and EXPNP in the context of weak circuit classes
poses some additional challenges that we address through different ideas and techniques.

• The proof of Theorem 8.1.3 relies on a novel application of the Chen–Tell non-black-box
hitting set generator construction from [CT21a,CLO+23]. In contrast to previous appli-
cations, here the reconstruction procedure of the generator itself, as well as the assumed
algorithm for Heavy Avoid, plays a key role in the specification of a “hard” function.

• Finally, the proof of Theorem 8.1.4 builds on the proof of Theorem 8.1.3. It combines for
the first time the Chen–Tell derandomisation framework [CT21a] with the leakage resilience
derandomisation framework of [LP23], using a win-win analysis. We show that either the
Heavy Avoid algorithm is leakage resilient, allowing us to apply the framework of [LP23],
or it can be implemented by a low-depth circuit, allowing us to apply the framework of
[CT21a]. This enables us to derive a non-trivial derandomisation consequence without the
circuit depth constraint present in the hypothesis of Theorem 8.1.3.

Next, we describe some of our proofs and techniques in more detail.
9Compared with classical hardness-randomness frameworks such as [NW94, IW97, STV01], the advantage of

the new paradigm is that lower bounds against uniform algorithms (instead of non-uniform circuits) suffice for
worst-case derandomisation.
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Sketch of the Proof of Theorem 8.1.1. We first explain the proof of Item (iii), i.e.,
the equivalence between the complexity separation PSPACE ⊈ BP- C and the existence of (in-
finitely often) logarithmic-space algorithms for Heavy-Avoid over implicit DLOGTIME-uniform
C-samplers.

First, we show how to obtain the separation using algorithms for the implicit heavy avoid
problem. Using standard arguments, it suffices to show that for every choice of k ≥ 1, there
is L ∈ DSPACE[n2] such that L cannot be computed by DTIME[k · log n]-uniform randomised
C-circuits of size nk.

Let N = 2n. We consider a map GN : {0, 1}nO(k) → {0, 1}N that views its input string x as
a pair (M, r), where M is a short encoding (say, log n bits) of a clocked machine running in time
10k · log n, and r is a random string. Let DM be the C-circuit of size at most n2k whose direct
connection language is encoded by the machine M . For i ∈ [N ], we define the i-th output bit of
GN (x) as DM (r, i). Due to its running time, the computation of M can be uniformly converted
into an AC0 circuit of size at most n10k. Using that C is a nice circuit class, GN can be implicitly
computed by a DLOGTIME-uniform probabilistic C-circuit CN of size at most nO(k).

LetB(1N ) be an algorithm of space complexityO(logN) that solves C-Implicit-δ-Heavy-Avoid
on infinitely many values of N for the sequence GN , and let LB be the language defined by B.
Note that LB is in DSPACE[O(n)] ⊆ DSPACE[n2]. To argue that LB cannot be computed by
DTIME[k · log n]-uniform randomised C-circuits of size nk, it is enough to show that for every lan-
guage L computed by such circuits, each string in the sequence {yLN}N of truth-tables obtained
from L is δ-heavy in GN (Um(N)). Since B solves C-Implicit-δ-Heavy-Avoid for the sequence
{GN}, it follows that LB ̸= L.

The proof that the sequence {yLN}N of truth-tables obtained from L is δ-heavy in GN (Um(N))

relies on the definition of GN . In more detail, under the assumption that L admits DTIME[k ·
log n]-uniform randomised C-circuits of size nk, it is not hard to show that its truth-table is
produced with probability comparable to 2−|M |. However, this probability is sufficiently large
under the assumption that the encoding length |M | is small in the definition of GN .

The proof of the other direction in Theorem 8.1.1 is more interesting. We establish the
contrapositive. Suppose that for some GN : {0, 1}poly(n) → {0, 1}N implicitly computed by
DLOGTIME-uniform C-circuits of size poly(n), every algorithm A(1N ) running in space O(logN)

fails to solve C-Implicit-δ-Heavy-Avoid on every large enough input length N . We employ this
assumption to show that PSPACE ⊆ BP- C. For this, we recall the notion of instance checkers.
Let L ⊆ {0, 1}∗ be a language, and let {C(−)

n (x, z)}n∈N be a family of probabilistic oracle circuits.
We say that C is an instance checker for L if for every input x ∈ {0, 1}∗:

1. Prz[C
L
|x|(x, z) = L(x)] = 1, and

2. for every oracle O, Prz[CO|x|(x, z) /∈ {L(x),⊥}] ≤ 1/2n.

We will rely on an appropriate PSPACE-complete language L⋆ that admits highly efficient in-
stance checkers computable in any nice circuit class. This is a consequence of a result from
[Che23], as explained in Section 8.5.

We then consider a candidate algorithm A(1N ) that computes as follows. On input 1N ,
define ttN to be the truth table of L⋆ on n-bit inputs; we simply output ttN . It is possible to
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show that A computes in space O(logN) after an appropriate scaling of parameters, which we
omit here for simplicity. Therefore, A fails to solve C-Implicit-δ-Heavy-Avoid on every large
enough input length N . This means that for every large enough N , the probability of ttN under
the distribution GN (Upoly(n)) from above is at least δ = 1/(logN)O(1) = 1/poly(n).

To explain how we compute L⋆ on an input x ∈ {0, 1}n, assume for simplicity that the
oracle instance checker circuit (call it IC) only queries its oracle on input length n. We sample
v := nO(1) strings z1, . . . , zv ∈ {0, 1}poly(n) uniformly and independently at random, and for
each string zi, we define an oracle Oi whose truth table is the string GN (zi) ∈ {0, 1}N . We run
IC in parallel and obtain bi := ICOi

n (x) for each i ∈ [v]. We output 1 if at least one bit among
b1, . . . , bv is 1, and 0 otherwise.

Next, we argue that A computes L⋆ with high probability. Let ttN denote the truth table of
L⋆ on input length n. By our choice of v, with high probability the string ttN appears among
the strings GN (z1), . . . , GN (zv), meaning that one of the oracles Oi computes L⋆ on inputs of
length n. Consequently, in this case, if L⋆(x) = 1 then at least one bit bi = 1, and the procedure
outputs 1. On the other hand, if L⋆(x) = 0, then by a union bound over the internal randomness
of IC, with high probability every bit bi ∈ {0,⊥}. In this case, the procedure outputs 0. This
establishes the correctness of A. Using the efficiency of the instance checker and that C is a nice
circuit class, it is also possible to upper bound the circuit complexity of A and to analyse the
uniformity of the corresponding circuits. This implies that L⋆ ∈ BP- C. Since L⋆ is PSPACE-
complete under DLOGTIME-uniform projection reductions, we get that PSPACE ⊆ BP- C, as
desired.

We now briefly comment on the additional ideas needed for the proofs of the other items
in Theorem 8.1.1. The proof of Item (ii) requires a different approach, since instance checkers
for EXPNP-complete languages are not known. We provide two different proofs in this case. In
more detail, the result for EXPNP can be obtained using a win-win argument and a reduction
to Item (iii), or through the use of selectors for EXPNP-complete languages [Hir15]. These two
approaches provide different extensions of the result, which we discuss in detail in Section 8.3.3.
On the other hand, the proof of Item (iv) relies on a randomised depth-efficient version of the
search-to-decision reduction for SAT based on the Valiant-Vazirani Isolation Lemma [VV86],
as well as the equivalence between the polynomial hierarchy and DLOGTIME-uniform constant-
depth circuits of exponential size [BIS90].

Sketch of the Proof of Theorem 8.1.3. Using existing results [BF99], in order to deran-
domise prBPP it is sufficient to describe an algorithm that, given an input circuit D : {0, 1}M →
{0, 1} of size O(M) with the promise that Pry[D(y) = 1] ≥ 1/2, runs in deterministic time
poly(M) and outputs a positive input of D. To achieve this, we will rely on a novel application
of the Chen–Tell generator [CT21a] (with the improved parameters from [CLO+23]). In more
detail, given a function f : {0, 1}n → {0, 1}T (n) computed by logspace uniform circuits of size
T (n) and depth d(n), and a parameter M(n) such that c · log T ≤M ≤ T 1/c (for a constant c),
[CT21a,CLO+23] provides algorithms HSGf and Reconf depending on f such that:

• The algorithm HSGf (x) runs in deterministic T c time and outputs a set of M -bit strings.

• Given x ∈ {0, 1}n and i ∈ [T ] as inputs, and oracle access to a candidate distinguisher
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D : {0, 1}M → {0, 1}, ReconDf (x, i) runs in randomised (dnM)c time. If D is dense and
avoids HSGf (x), then with probability ≥ 1 − 2−M , ReconDf (x, i) outputs the i-th bit of
f(x).

We consider an appropriate function f ′ : {0, 1}Õ(M) → {0, 1}N , where N = MC1 for a
large enough constant C1. We view the input of f ′ as the description of an arbitrary circuit
D : {0, 1}M → {0, 1} of size O(M). In this construction, the parameter T = MC2 for a large
enough constant C2 > C1, while d = Mo(1) = No(1). Moreover, f ′ will be computed by a
logspace-uniform family of circuits. We then show that HSGf ′(D) hits D if D is a dense circuit.
Note that the generator runs in time poly(T ) = poly(M) by our choice of parameters.

The function f ′ makes use of the algorithm A that solves the Implicit-δ-Heavy-Avoid
problem on instances G : {0, 1}Nε → {0, 1}N that are implicitly computable in N ε size. In more
detail, we let f ′(D) = A(CD), where CD is an implicit (non-uniform) sampler of size N ε for a
map GD : {0, 1}Nε → {0, 1}N described next.

First, we make a simplifying assumption: The sampler GD has access to the code of a
machine Mf ′ that serves as a logspace-uniform description of a circuit family that computes f ′.
(Observe that this is self-referential, since we have defined f ′(D) = A(CD) above, while we will
also use f ′ to define CD. We will handle this issue later.)

The sampler GD stores D as advice. This is possible because D is of size M , and if C1

is large enough, then M ≪ N ε. The implicit sampler CD(r, i) for GD then uses its random
input string r of length N ε and i ∈ [logN ] to compute ReconDf ′(D, i, r), where we have made
explicit the random string r used by ReconDf ′ . Since d = Mo(1) and C1 is large enough, we
get that ReconDf ′(D, i, r) can be computed in time (d ·M1+o(1) ·M)c ≤ M c+o(1) ≤ N ε. This
completes the definition of f ′(D) and of HSGf ′(D). We note that to establish the size, depth,
and logspace-uniformity of the sequence of circuits computing f ′ we can rely on the fact that f ′

only needs to produce the code of CD.10

Next, we argue that HSGf ′(D) hits any dense circuit D. Assume this is not the case.
Then, since D avoids the generator, ReconDf (D, i) outputs the i-th bit of f ′(D) with probability
at least 1 − 2−M . Consequently, by a union bound over i ∈ [N ], it follows that the string
A(CD) = f ′(D) ∈ {0, 1}N is output by ReconDf (D, ·) with probability 1− o(1). In other words,
the string f ′(D) is sampled with high probability by the sampler GD encoded by CD. On the
other hand, since f ′(D) = A(CD) and A solves the heavy avoid problem for GD, we get that the
string f ′(D) has probability o(1) under GD. This contradiction implies that HSGf ′(D) indeed
hits D.

It remains to explain how to fix the self-referential nature of the definition of GD via the
implicit sampler CD, which depends on f ′ (and which in turn depends on CD). In more detail,
the construction is self-referential due to the use of the routine ReconDf ′ , which depends on f ′.
To patch the argument, we combine the following key points:

• There is a deterministic algorithm that, given the Turing machine Mf ′ that prints the
circuit for f ′ in logspace, outputs the description of Reconf ′ in poly(|⟨Mf ′⟩|) time.

10We make a brief comment about the novelty of this argument. In order to define the “hard” function f ′,
here we make use of the reconstruction procedure of the generator. This is different from an application of this
generator in [CLO+23], where the code of the hitting set procedure plays a key role in the definition of the hard
function.
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• We can combine O(1) many samplers into a single sampler that produces the convex
combination of the corresponding distributions. A string with weight o(1) under the new
distribution must have weight o(1) under each original sampler.

Therefore, we can change the description of GD so that it interprets a small prefix of its random
input string as the description of a Turing machine Mf that prints a circuit of the expected
size using logarithmic uniformity, then use the first bullet above to produce the procedure
Reconf corresponding to f . Notice that with this change, the sampler GD no longer depends
on f ′. Moreover, since f ′ is encoded by some finite machine Mf ′ , using the second bullet the
argument described above to reach a contradiction and establish the correctness of the hitting
set generator still holds: When D avoids HSGf ′(D) the modified sampler GD outputs the string
f ′(D) = A(CD) with constant probability, while as a solution to the heavy avoid problem for
GD this string has probability o(1). This completes the sketch of the argument.11

Sketch of the Proof of Theorem 8.1.4. Since this is a more sophisticated construction, we
only provide a brief sketch of the idea. As alluded to above, the argument combines the two
instance-wise hardness-randomness trade-offs introduced by Chen and Tell [CT21a] and by Liu
and Pass [LP23], respectively.

We employ a win-win analysis based on whether the assumed algorithm for Implicit-δ-Heavy-Avoid
(call it Avoid) is “ leakage resilient” hard. In more detail, let f : {0, 1}n → {0, 1}T be a function,
A be a randomised algorithm, and x ∈ {0, 1}n be an input of f . We say that f(x) is ℓ-leakage
resilient hard against A if for every “leakage string” leak ∈ {0, 1}ℓ, there is some i ∈ [T ] such that
Pr[A(x, leak, i) = f(x)i] ≤ 2/3, where the probability is taken over the internal randomness of
A. Liu and Pass [LP23] showed that leakage resilient hardness can be used for derandomisation.

We can now explain the main idea behind the win-win analysis. If Avoid is leakage resilient
hard, we use the hardness-randomness trade-offs in [LP23]. If this is not the case, we show
that Avoid can actually be implemented by a low-depth circuit. We can then use the hardness-
randomness trade-offs in [CT21a], which requires the hard function to be computed by a low-
depth circuit family.

Implementing this plan turns out to require a delicate construction and the notion of infinitely-
often∗ correctness appearing in the statement of Theorem 8.1.4. We refer to Section 8.4.2 for
more details.

8.2 Preliminaries

8.2.1 Notation

We use Un to denote the uniform distribution over {0, 1}n. For a distribution D and an
element x, we use D(x) to denote the probability of x under D.

We say that a probability distribution D contains a δ-heavy element if there is x in the
support of D such that D(x) ≥ δ. Any such element x is said to be δ-heavy. In this case, we also
say that the distribution D is δ-heavy. If an element x is not δ-heavy, then we say it is δ-light.

11We note that this argument is non-black-box. The code of a machine Mf ′ that describes a uniform circuit
family for f ′ is needed to instantiate the Chen-Tell generator. In the aforementioned construction, this means
that black-box access to the algorithm A is not enough.
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We will often consider a distribution ensemble D = {Dn}n≥1, where each Dn is a distribution
supported over {0, 1}n. For convenience, we might simply refer to D as a distribution. We let
PSAMP denote the set of polynomial-time samplable distributions.

We say a probabilistic algorithm A for a search problem P is pseudodeterministic [GG11], if
for every input x, there is a canonical P-solution y of x such that A(x) outputs y with probability
≥ 2/3. It is easy to see that the success probability can be amplified to 1− exp(−n) by parallel
repetition.

8.2.2 The Heavy Avoid Problem

In general, given a distribution D over {0, 1}n and a parameter δ ∈ (0, 1), the Heavy Avoid
problem asks to find a string x ∈ {0, 1}n such that D(x) < δ. It is easy to see that such a string
always exists as long as 2n > 1/δ. Consequently, the Heavy Avoid problem is a total search
problem. We mainly focus on the regime where 1/δ is significantly smaller than 2n, such as
δ = 1/poly(n) or even just δ ≈ 1/ log n.

We consider the Heavy Avoid problem in different settings, depending on whether the sampler
for D implicitly samples the distribution and whether it is computed uniformly.12

• We say a distribution D over {0, 1}n is implicit (or, locally-samplable) if there is an efficient
procedure that given an integer i and the randomness r used by the sampler, outputs the
i-th bit of the sample according to r. In the typical parameter regime, D runs in time
t ≈ poly(log n, |r|) which is much smaller than n. Depending on the context, “efficient
procedure” could either mean Turing machines or circuits, as will be addressed in the next
bullet. Note that the random string r is also short and the sampler has sequential access
(instead of random access) to r.

We use the word explicit to describe samplers that take poly(n) time, as opposed to implicit
samplers.

• We say a family of distributions D = {Dn}n∈N is uniformly samplable if there is a Turing
machine M that given 1n (and access to uniformly random bits), samples from Dn. (Sim-
ilarly, we often consider a Turing machine M(1n) that prints a circuit that samples Dn.)
On the other hand, if we only have a (non-uniform) family of circuits {Cn}, where each
Cn samples from Dn, then we say the distribution is non-uniformly samplable.

We will also say that uniformly samplable distributions are sampled in time t, while non-
uniformly samplable distributions are sampled in size t.

Explicit Maps

Definition 8.2.1 (Uniform Heavy Avoid). Let D = {Dn} ∈ PSAMP, where each Dn is sup-
ported over {0, 1}n, and let δ(n) ∈ [0, 1]. In the (D, δ)-Heavy-Avoid problem, given 1n the goal
is to output an element x ∈ {0, 1}n such that Dn(x) < δ(n).

12Do not confuse the uniformity of the sampler with the distribution Dn, which most often in this work will
not be the uniform distribution.
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We say that the (D, δ)-Heavy-Avoid problem can be solved in polynomial time if there is
a deterministic algorithm A(1n) that runs in polynomial time and solves (D, δ)-Heavy-Avoid.
Similarly, the (D, δ)-Heavy-Avoid problem can be solved in pseudodeterministic polynomial
time if there is a pseudodeterministic algorithm A(1n) that runs in polynomial time and solves
(D, δ)-Heavy-Avoid.

Definition 8.2.2 (Non-Uniform Heavy Avoid). Let C : {0, 1}m → {0, 1}n be a Boolean circuit,
and letDC be the distribution induced by C(Um). Let δ ∈ [0, 1]. In the Non-Uniform-Heavy-Avoid
problem, given C and δ, the goal is to output an element x ∈ {0, 1}n such that DC(x) < δ.

We may also represent 1/δ in unary when we want to emphasise that we consider the regime
where δ ≥ 1/poly(n). In this case, the input consists of (C, 1t), let δ := 1/t, and the goal is to
output a δ-light element of DC .

We say that Non-Uniform-Heavy-Avoid can be solved in polynomial time if for every constant
c ≥ 1, Non-Uniform-Heavy-Avoid over inputs where the circuit C is of size at most nc and
δ ≥ 1/nc can be solved in deterministic polynomial time.

Note that it is not hard to solve Non-Uniform-Heavy-Avoid with randomness.

Proposition 8.2.3. Let c ≥ 1. There is a probabilistic polynomial-time algorithm A such that,
given a circuit C : {0, 1}m → {0, 1}n of size at most nc and a parameter δ ≥ 1/nc, A runs in time
polynomial in nc and outputs with high probability a set TC,δ of size at most 2 ·(1/δ) that contains
all δ-heavy elements of DC . Hence, if we output the lexicographically smallest string not in TC,δ,
then we obtain a probabilistic polynomial-time algorithm solving Non-Uniform-Heavy-Avoid.

Let SC,δ = {x ∈ {0, 1}c | DC(x) ≥ δ}, where DC = C(Um). Note that the algorithm
A outputs with high probability a set TC,δ of bounded size such that SC,δ ⊆ TC,δ. However,
different executions of A might produce different sets TC,δ. Consequently, this does not give rise
to a pseudodeterministic algorithm for Non-Uniform-Heavy-Avoid.

Implicit Maps (Locally Samplable Distributions)

For locally samplable distributions (which will also be called “implicit maps” in this chapter),
it will be important to fix the following notation. A map, or generator, is a functionG : {0, 1}m →
{0, 1}N (typically N ≫ m) such that our input distribution is G(Um). We say the map is
implicitly computed by a circuit C if C : {0, 1}m×[N ]→ {0, 1} satisfies that for every r ∈ {0, 1}m,
C(r, i) outputs the i-th bit of G(r). The input of Implicit-Heavy-Avoid will be a circuit C even
though we are actually solving Heavy Avoid on the corresponding instance G. (In the uniform
case, the circuit C is generated by a uniform procedure, in which case the input to the problem
is simply 1N .)

Although the input length, poly(|C|), is usually much smaller than N , the output length is
still N , hence we still measure the time complexity of algorithms solving Implicit-Heavy-Avoid
by N . For example, we say Implicit-Heavy-Avoid can be solved in deterministic polynomial
time if it can be solved by a deterministic machine that runs in time polynomial in N .

Definition 8.2.4 (C-Implicit-δ-Heavy-Avoid for non-uniform samplers). Let C be a circuit
class, δ : N → [0, 1], m,N, s : N → N be parameters. We define the C-implicit δ-heavy avoid
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problem for maps that stretch m(N) bits to N bits and are implicitly computed by C-circuits
of size at most s(N). (A typical parameter regime is that N = 2n for some integer n, δ(N) =

1/poly(n), and m(N), s(N) ≤ poly(n). The parameters will be clear in each statement.)
The input of this problem is a size-s C-circuit C : {0, 1}m × [N ] → {0, 1}. Recall that this

circuit C implicitly defines a map G : {0, 1}m → {0, 1}N such that, for every r ∈ {0, 1}m, and
i ∈ [N ], C(r, i) outputs G(r)i (the i-th bit of the N -bit string G(r)). Given C, the goal is to
output an element y ∈ {0, 1}N such that Pr[G(Um) = y] < δ.

Similarly, we can also define C-Implicit-δ-Heavy-Avoid for uniformly-samplable maps. Here,
we consider families of maps {GN} that are implicitly computed by DLOGTIME-uniform C-
circuits {CN} of size at most s(N). In other words, there is a DLOGTIME-uniform sequence
{CN}N≥1 of size-s(N) C-circuits such that, for every N ≥ 1, r ∈ {0, 1}m(N), and i ∈ [N ],
CN (r, i) outputs GN (r)i, i.e., the i-th bit of the N -bit string GN (r). (Here, we say {CN} is
DLOGTIME-uniform if the direct connection language of CN can be decided in O(log s(N)) time.)

Definition 8.2.5 (C-Implicit-δ-Heavy-Avoid for uniform samplers). Let m(N), s(N), δ(N) be
parameters as above, and {CN} be a DLOGTIME-uniform sequence of C-circuits that defines
a family of maps {GN}. That is, given r ∈ {0, 1}m and i ∈ [N ], CN (r, i) outputs the i-th
bit of GN (r). The C-Implicit-δ-Heavy-Avoid problem corresponding to {GN} is the following
problem: Given 1N the goal is to output a string x ∈ {0, 1}N such that Prr[GN (r) = x] < δ(N).

Note that the input to the Heavy Avoid problem is given by a circuit when we consider the
non-uniform formulations (in both the implicit and explicit settings), while the input to the
problem is simply the input length when we consider uniform formulations (since the sampler
can be efficiently obtained from the input length).

8.2.3 Time-Bounded Kolmogorov Complexity

We review some notions from time-bounded Kolmogorov complexity (see, e.g., [LO22] for
more details). Let U be a Turing machine. Given a positive integer t and a string x ∈ {0, 1}∗,
we let

Kt
U (x) = min

p∈{0,1}∗

{
|p|
∣∣ U(p) outputs x in at most t steps

}
.

We say that Kt
U (x) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As

usual, we fix U to be a time-optimal machine [LV19], i.e., a universal machine that is almost as
fast and length efficient as any other universal machine, and drop the index U when referring
to time-bounded Kolmogorov complexity measures.

For x ∈ {0, 1}∗, the probabilistic t-time-bounded Kolmogorov complexity of x is defined as

pKt(x) = min

{
k ∈ N

∣∣∣ Pr
w∼{0,1}t

[
∃ p ∈ {0, 1}k, U(p, w) outputs x within t steps

]
≥ 2

3

}
.

In other words, if k = pKt(x), then with probability at least 2/3 over the choice of the random
string w, given w, the string x admits a t-time-bounded encoding of length k.
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We can also consider the randomised Kt complexity of a string x ∈ {0, 1}∗, defined as

rKt(x) = min
t∈N, p∈{0,1}∗

{
|p|+ ⌈log t⌉

∣∣∣ Pr
r∼{0,1}∗

[U(p, r) outputs x in t steps] ≥ 2/3

}
.

All these notions of time-bounded Kolmogorov complexity can be generalised to capture the
conditional complexity of x given y in the natural way, i.e., by providing y as an extra input
string to the universal machine U .

8.2.4 Pseudorandomness and Derandomisation

Fix an input length n. A generator is simply a multiset G ⊆ {0, 1}n. We will consider
families of generators {Gn}n∈N where each Gn ⊆ {0, 1}n is a generator outputting n-bit strings.
In the literature, it is also common to consider these generators as functions: let ℓ(n) < n denote
the seed length of the generator, then the function Gn : {0, 1}ℓ(n) → {0, 1}n is equivalent to the
multiset

{Gn(s) : s ∈ {0, 1}ℓ(n)}.

In this chapter, we will use the subset- and functional-definitions of generators interchangeably.
Let A : {0, 1}n → {0, 1} be a function, H ⊆ {0, 1}n be a generator, and ε > 0 be a parameter.

We say that A is ε-dense if Prx∼{0,1}n [A(x) = 1] ≥ ε. We say that A ε-avoids H if A is ε-dense,
and for every string x ∈ H, we have A(x) = 0. If A does not ε-avoid H, then we say that H
ε-hits A.

Let A : {0, 1}n → {0, 1} be a function, G : {0, 1}ℓ → {0, 1}n be a generator, and ε > 0 be a
parameter. We say that A ε-distinguishes G, if

∣∣∣∣ Pr
x∼{0,1}n

[A(x) = 1]− Pr
s∼{0,1}ℓ

[A(G(s)) = 1]

∣∣∣∣ > ε;

otherwise (if the above inequality does not hold), we say that G ε-fools A.
Like many papers in derandomisation [Gol11b,CT21a,LP22,LP23], we will consider promise

versions of randomised complexity classes, such as prRP and prBPP. A promise problem [ESY84]
(ΠYES,ΠNO) is a pair of disjoint sets (ΠYES ∩ ΠNO = ∅). A machine solves the corresponding
promise problem if given an input x ∈ {0, 1}∗, it outputs 1 when x ∈ ΠYES and outputs 0

when x ∈ ΠNO; note that there is no requirement on the behaviour of the machine when
x /∈ (ΠYES ∪ΠNO).

We also recall the definitions of the canonical prRP-complete problem Gap-SAT and the
canonical prBPP-complete problem CAPP.

Definition 8.2.6 (Gap-SAT). The problem Gap-SAT is the following promise problem (ΠYES,ΠNO):
ΠYES consists of all circuits C : {0, 1}n → {0, 1} that are 1/10-dense, and ΠNO consists of all
circuits C : {0, 1}n → {0, 1} such that C(x) = 0 for every x ∈ {0, 1}n.

Definition 8.2.7 (CAPP). The problem CAPP is the following promise problem (ΠYES,ΠNO):
On input (C, δ), where C : {0, 1}n → {0, 1} is a circuit and δ ∈ (0, 1) is a number, ΠYES

consists of (C, δ) where δ ≥ Prx∼{0,1}n [C(x)] + 1/10, and ΠNO consists of (C, δ) where δ ≤
Prx∼{0,1}n [C(x)]− 1/10.
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The constant 1/10 in the above two definitions is arbitrary and can be amplified to 1/poly(n)

by parallel repetition.

8.3 Heavy Avoid and Lower Bounds Against Uniform Probabilis-
tic Circuits

In this section, we study the connection between the Heavy-Avoid problem and the problem
of proving lower bounds against uniform probabilistic circuits. Our main result is that in many
settings, lower bounds against uniform probabilistic circuits are characterised by the existence
of algorithms for Implicit-Heavy-Avoid.

Let C be a circuit class. A probabilistic C-circuit E(x; z) is a circuit from C that computes
over an input x and an input z, where the latter corresponds to the random choice of E. We
denote BP- C the set of languages L that can be computed by a DLOGTIME-uniform sequence
of probabilistic C-circuits of polynomial size. We stress that the uniform machine generating the
C circuit is deterministic, while the circuit itself is allowed to make random choices (z).

Our results hold for any (uniform probabilistic) circuit class C that is nice, i.e., satisfies a
few technical conditions. More precisely, we say a circuit class C is nice if the following holds:

• (C contains AC0[⊕].) AC0[⊕] ⊆ C.

• (C is closed under composition.) For every language L ∈ C and every DLOGTIME-
uniform family of oracle circuits {C(−)

n }n∈N making non-adaptive projection queries where
the top (i.e., post-processing) circuit is in C, the language computed by the circuit family
{CLn

n }n∈N is still in DLOGTIME-uniform C.

• (C admits universal circuits.) There is a DLOGTIME-uniform family of C-circuits Eval
such that given the description of a C-circuit C (i.e., the truth table of the direct connection
language of C) and an input x, Eval(⟨C⟩, x) outputs C(x).

In the case that C is the union of depth-d circuits for every constant d, such as AC0 or TC0,
we allow Eval to have higher depth than C: for every fixed depth d, the circuit evaluation
problem can be solved by a family of DLOGTIME-uniform C-circuit of constant depth.

It is not hard to check that many standard circuit classes considered in the literature are nice,
e.g., AC0[⊕], ACC0, TC0, NC1, P/poly. For instance, universal circuits for NC1 are constructed
in [Bus87], while universal circuits for TC0 can be built using the universal threshold function
(see, e.g., [BW05]) and standard techniques.

A note on notation: throughout this section, when we use parameters n and N together,
we implicitly assume N = 2n. We switch back and forth between the two parameters based on
which one is more natural in a given context.

8.3.1 Equivalences for PSPACE via Instance Checkers

Our equivalences for PSPACE follow from the existence of instance checkers [BK95,TV07]
for PSPACE-complete languages. To establish our equivalences with respect to restricted circuit
classes, we use a recent construction of AC0[⊕]-computable instance checkers by Chen [Che23].
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Below, we say that an oracle circuit E(−)(x, z) from BP- C makes projection queries if every
query it makes to the oracle can be computed by a projection over the inputs (x, z). After
gathering the answers of the oracles, the final output is computed by a C circuit over (x, z) and
these oracle answers. We stress that any oracle circuit that makes projection queries is non-
adaptive. When we say such a circuit is DLOGTIME-uniform, we mean that both the projection
(computing the queries to the oracles) and the top C circuit are DLOGTIME-uniform.

Theorem 8.3.1 (A PSPACE-Complete Language with Useful Properties). There is a language
L⋆ ⊆ {0, 1}∗ with the following properties:

1. (Complexity Upper Bound) L⋆ ∈ PSPACE.

2. (Completeness) L⋆ is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC0[⊕] oracle
circuits {ICn}n≥1 making projection queries such that, on every input string x ∈ {0, 1}n
and for every oracle O ⊆ {0, 1}∗, the following holds:

• ICOn (x) only makes queries of length n to O.

• If O agrees with L⋆ on inputs of length n, then Prr[IC
O
n (x; r) = L⋆(x)] = 1.

• For every oracle O, Prr[ICOn (x; r) ∈ {⊥, L⋆(x)}] ≥ 1− exp(−n).

Theorem 8.3.1 follows from [Che23, Section 7]; we refer the reader to Section 8.5 for more
details.

We say that the C-Implicit-δ-Heavy-Avoid problem corresponding to a given family {GN}
of implicitly computed maps can be solved in space s(N) if there is an algorithm A of space
complexity s(N) such that, for every input lengthN , there is some x ∈ {0, 1}N for which A(1N , i)
outputs the i-th bit of x for all i ∈ [N ], and x is a solution to the C-Implicit-δ-Heavy-Avoid
problem for GN .

Theorem 8.3.2 (Equivalence for PSPACE). Let C be a nice class of Boolean circuits. The
following statements are equivalent:

(i) PSPACE ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be
solved in space O(logN) on infinitely many input lengths N .

Proof. We consider each implication below.

(ii) ⇒ (i). Using the assumption, we show below that for every choice of k ≥ 1, there is
L ∈ DSPACE[n2] such that L cannot be computed by DTIME[k · log n]-uniform randomised C-
circuits of size nk.13 Since there exist PSPACE-complete problems, a standard argument shows
that this implies PSPACE ⊈ BP- C.

13If C is a constant-depth circuit class defined as a union of classes for each fixed depth k, the argument can
be adapted accordingly.
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Fix a large enough k ≥ 1, and consider the map GN : {0, 1}m(N) → {0, 1}N defined as
follows, where m(N) := n3k. The map GN views its input string x as a pair (M, r), where M is
the description of a clocked deterministic machine running in time 10k · log n, and r is the rest
of x, treated as a random string. We assume that this encoding satisfies that for a random x,
every machine M of description length ℓ occurs with probability Θ(2−ℓ/ℓ2) (this is possible since∑

ℓ≥1
1
ℓ2

is bounded). The important part is that if the description length of M is a constant,
then it occurs with constant probability. Let DM : {0, 1}n2k × {0, 1}n → {0, 1} be the C-circuit
of size at most n2k encoded by the machine M(1n, ·) (i.e., we assume that M computes the
direct connection language of DM ). For i ∈ {0, 1}n, we define the i-th output bit of GN (x) as
DM (r, i). Note that a uniform computation over inputs of length at most 10k · log n and running
in time 10k · log n can be uniformly converted into an AC0 circuit of size at most n10k. Since C
contains AC0, admits universal circuits, and is closed under composition, GN can be implicitly
computed by a DLOGTIME-uniform probabilistic C-circuit CN defined over m(N)+n input bits
and of size at most nC·k, where C is a large enough universal constant that depends only on the
circuit class C.

LetB(1N ) be an algorithm of space complexityO(logN) that solves C-Implicit-δ-Heavy-Avoid
on infinitely many values of N for the sequence GN , with parameters c, d ≤ C · k and function
δ(N) ≤ o(1). Let LB be the language defined by B, i.e., a string z ∈ {0, 1}n is in LB if and only
if the z-th bit of B(1N ) (with N = 2n) is 1. Note that LB is in DSPACE[O(n)].

We now argue that LB cannot be computed by DTIME[k·log n]-uniform randomised C-circuits
of size nk. To prove this, it is enough to show that for every language L computed by such circuits,
each string in the sequence {yLN}N of truth-tables obtained from L is δ-heavy in GN (Um(N)) for
every large enough N . Under this claim, since B solves C-Implicit-δ-Heavy-Avoid for the
sequence {GN}, it follows that LB ̸= L.

To see that the claim holds, recall that L is computed by DTIME[k·log n]-uniform randomised
C-circuits of size nk. Consequently, there is a deterministic machine ML that runs in time
k · log n and decides the direct connection language of a corresponding randomised C-circuit DL

of size at most n2k and using at most nk random bits that computes L on n-bit inputs. We
now boost the success probability of the circuit DL via repetition and (approximate) majority
vote. More precisely, since the approximate majority function can be computed by DLOGTIME-
uniform AC0 circuits [Ajt90,Vio09], C contains AC0, and C is closed under composition, there
is a deterministic machine M̃L that runs in time 10k · log n and decides the direct connection
language of a corresponding randomised C-circuit D̃L of size at most nC·k and using at most
n2k random bits that computes L on each n-bit input string with probability at least 1− 2−2n.
Moreover, we can assume that the description length of M̃L is a constant ℓdesc, hence it occurs
with constant probability. Let yLN be the truth-table of L on input length n, i.e., |yLN | = N =

2n. By construction, using an union bound over all n-bit input strings, the probability that
GN (Um(N)) = yLN is at least Ω(2−ℓdesc/ℓ2desc) · (1 − 2−n) ≥ Ω(1) > δ, for large enough N . This
shows that yLN is δ-heavy, concluding the proof of this item.

(i)⇒ (ii). We argue in the contrapositive. In other words, suppose that there is a choice of con-
stants c, d, and ℓ, with m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N
implicitly computed by DLOGTIME-uniform C-circuits of size nc such that every algorithm A(1N )
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running in space O(logN) time fails to solve C-Implicit-δ-Heavy-Avoid on every large enough
input length N . Next, we use this assumption to establish that PSPACE ⊆ BP- C, which con-
cludes the proof.

We consider a candidate algorithm A(1N ) that computes as follows. Consider the language
L⋆ from Theorem 8.3.1, and assume that L⋆ ∈ DSPACE[na], where a ∈ N. For a given N ′ = 2n

′ ,
we let tt⋆N ′ ∈ {0, 1}N

′ denote the truth table of L⋆ over inputs of length n′. On input 1N ,
algorithm A outputs the string yN = tt⋆N ′0

uN ∈ {0, 1}N , where N ′ = 2n
′ for n′ = n1/a, and

uN = N −N ′.
Note that A computes in space O(logN), due to our choice of parameters. Therefore, A fails

to solve C-Implicit-δ-Heavy-Avoid on every large enough input length N . This means that for
every large enough N the probability of yN under GN (Um(N)) is at least δ = 1/nℓ.

We first describe a randomised algorithm that computes L⋆, deferring for now a discussion of
its correctness, circuit complexity, and uniformity. Let n = (n′)a, as above. To compute L⋆ on a
given input x of length n′ ∈ N, we sample v = n3ℓ strings z1, . . . , zv ∈ {0, 1}m(N) uniformly and
independently at random, and use the 2n

′-bit prefixes O′1, . . . ,O′v of the corresponding oracles
O1, . . . ,Ov as candidate oracles for L⋆ on input length n′, where each Oi is the oracle associated
with the string GN (zi) ∈ {0, 1}N . In more detail, let bi = IC

O′i
n′ (x), where ICn′ is the algorithm

from Theorem 8.3.1. We output 1 if at least one bit among b1, . . . , bv is 1, and 0 otherwise.
Next, we argue that A computes L⋆ with high probability. Consider an arbitrary input

length n′ and a given input string x ∈ {0, 1}n′ . By our choice of v, with high probability the
string yN appears among the strings GN (z1), . . . , GN (zv). In particular, with high probability
the truth table tt⋆N ′ appears as an N ′-bit prefix of one of these strings, meaning that one of the
oracles O′i computes L⋆ on inputs of length n′. Consequently, in this case, if L⋆(x) = 1 then at
least one bit bi = 1, and the procedure outputs 1. On the other hand, if L⋆(x) = 0, then by a
union bound over the internal randomness of ICn′ , with high probability every bit bi ∈ {0,⊥}.
In this case, the procedure outputs 0. This establishes the correctness of A.

It remains to establish an upper bound on the circuit complexity of A and to analyse the
uniformity of the corresponding circuits. Note that each bit bi ∈ {0, 1,⊥} can be computed
by a randomised C-circuit of polynomial size, since GN is implicitly computed by C-circuits of
polynomial size, ICn′ is computable by randomised C-circuits of polynomial size, and C is closed
under composition. Moreover, the disjunction of the bits bi can also be computed in C, since this
class contains AC0[⊕]. Therefore, A can be implemented by randomised C-circuits of polynomial
size. Finally, it is not hard to check that the corresponding sequence of randomised C-circuits
is DLOGTIME uniform, since IC is computed by DLOGTIME-uniform randomised circuits, and
GN is implicitly computed by DLOGTIME-uniform circuits.

The above discussion implies that L⋆ ∈ BP- C. Since L⋆ is complete under DLOGTIME-
uniform projection reductions, we get that PSPACE ⊆ BP- C, as desired.

Our characterisations also extend to almost-everywhere lower bounds and subexponential
lower bounds, as demonstrated in the following theorems.

Theorem 8.3.3. Let C be a nice class of Boolean circuits. The following statements are equiv-
alent:

(i) PSPACE ⊈ i.o.-BP- C.
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(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be
solved in O(log(N)) space for all large enough N .

Proof Sketch. The result follows from the same argument given for Theorem 8.3.2:

• (ii)⇒ (i): If our algorithm B is correct on input 1N , then our language L is hard on input
length n.

• (i) ⇒ (ii): If the language L⋆ is hard on input length n′, then our algorithm A is correct
on input 1N where N = 2(n

′)a .

We use BP- C-SIZE[f(n)] to denote the class of languages computable by DLOGTIME-uniform
BP- C circuits of size f(n).

Theorem 8.3.4. Let C be a nice class of Boolean circuits. The following statements are equiv-
alent:

(i) There is a constant ε > 0 such that PSPACE ⊈ BP- C-SIZE[2nε
].

(ii) There is a constant ε > 0 such that for δ(N) := 2−n
ε and for every sequence {GN} of

maps GN : {0, 1}2n
ε

→ {0, 1}N implicitly computed by DLOGTIME-uniform C-circuits of
size 2n

ε, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved in poly(N)

time on infinitely many input lengths N .

Proof Sketch. The argument is an adaptation of the proof of Theorem 8.3.2 by adjusting a few
parameters, so we refer the reader to that proof for more details.

To see that (ii) ⇒ (i) holds, let ε′ := ε/4, and consider the map GN : {0, 1}m(N) → {0, 1}N
where m(N) := 2n

2ε′ and the input bits are parsed into the description of a Turing machine M
that encodes a size-2nε′ C-circuit DM and the rest random inputs (fed to DM ). Like in Theo-
rem 8.3.2, we assume that every constant-size Turing machine occurs with constant probability.
This map GN can be implicitly computed by a DLOGTIME-uniform probabilistic C-circuit CN

of size 2n
ε , in the sense that for every x ∈ {0, 1}m(N) and i ∈ [N ], the i-th bit of GN (x) is equal

to CN (x, i). We can see that for every language L ∈ BP- C-SIZE[2nε′
], let yLN denote the truth

table of Ln, then the probability that GN (Um(N)) = yLN is at least a constant. Hence, given an
algorithm B(1N ) that solves the C-Implicit-δ-Heavy-Avoid problem for δ = o(1) (on infinitely
many N), the language whose truth table is the output of B(1N ) is not in BP- C-SIZE[2nε′

] (on
infinitely many n). Since we further assumed that B runs in space O(logN), we obtain a hard
language in SPACE[O(logN)] = SPACE[O(n)] that is not in BP- C-SIZE[2nε′

].
To see that (i) ⇒ (ii) holds, let L⋆ denote the PSPACE-complete language in Theorem 8.3.1

and let ε′ := ε/(5a), where a ≥ 1 is a constant such that L⋆ ∈ SPACE[na]. Consider the following
algorithm A(1N ) for solving the C-Implicit-δ-Heavy-Avoid problem with parameter ε′. On
input 1N , let n′ := n1/a, N ′ := 2n

′ , yn′ ∈ {0, 1}N
′ be the truth table of L⋆ on input length n′,

then A outputs yn′0N−N
′ ∈ {0, 1}N . If A fails to solve C-Implicit-δ-Heavy-Avoid, then we can

compute L⋆ in BP- C-SIZE[2nε
] as follows. Let x ∈ {0, 1}n′ be an instance of L⋆, we set n := (n′)a

and N ′ := 2n
′ . We sample v := (1/δ(N))3 ≤ 23n

ε strings z1, . . . , zv ∈ {0, 1}2n
ε

uniformly and
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independently at random, and for each string zi we define an oracle Oi : {0, 1}n′ → {0, 1}
whose truth table is the first N ′ bits of GN (zi). We then run IC against each Oi and obtain
bi := ICOi

n′ (x) for each i ∈ [v], and finally we output 1 if some bi is equal to 1. This algorithm
computes L⋆ because with high probability, the truth table yn′ appears in these oracles, and also
the instance checker will never output 1−L(x) by mistake. Our algorithm can be implemented
in BP- C-SIZE[2n5ε′

] ⊆ BP- C-SIZE[2(n′)ε ].

Remark 8.3.5. In the proof of Theorem 8.3.2, we only need to solve the C-Implicit-δ-Heavy-Avoid
problem for δ = o(1) to obtain the lower bound (i.e., Item (i)), while the latter implies algorithms for
the C-Implicit-δ-Heavy-Avoid problem even when δ = 1/poly(n) = 1/polylog(N). This illustrates
the robustness of the parameter δ in C-Implicit-δ-Heavy-Avoid with respect to O(logN)-space
algorithms: if the problem is solvable for δ = o(1), then it is also solvable for δ = 1/polylog(N).
Similarly, Theorem 8.3.4 shows that if we consider implicit maps computable in the 2n

ε

time regime,
then this problem is solvable for δ = o(1) if and only if it is solvable for δ = 2−n

ε

. In fact, it is
evident from the proofs that the robustness of the parameter δ holds in every characterisation result
in Section 8.3.

8.3.2 Equivalences for NP via Search-to-Decision Reductions

In this section, we show equivalences between uniform randomised lower bounds for NP

and Heavy Avoid algorithms implementable by constant-depth circuits. NP is not known to be
instance-checkable, hence we cannot use the technique from the previous section. However, it
turns out that search-to-decision reductions can also be used to argue the desired equivalences.
The standard search-to-decision reduction is highly sequential, so in order to show equivalences
that work for any nice circuit class, we use a depth-efficient version based on the Valiant-Vazirani
Isolation Lemma [VV86] which exploits our access to randomness.

We first need a generalisation of the standard result that NP ⊈ BPP iff PH ⊈ BPP.

Lemma 8.3.6. Let C be a nice circuit class. NP ⊈ BP- C if and only if PH ⊈ BP- C.

Proof Sketch. The proof is essentially the same inductive argument as for the standard equiva-
lence between NP ⊈ BPP and PH ⊈ BPP. We must show that if NP ⊆ BPP then PH ⊆ BPP.
In order to implement that argument, we need to be able to do error reduction to exponentially
small error by DLOGTIME-uniform randomised C circuits, which holds since C contains AC0,
and Approximate Majority can be computed in DLOGTIME-uniform AC0 [Ajt90, Vio09]. We
also need the closure of C under composition to be able to do induction, but that also holds
since C is nice.

Now we proceed to our equivalences for NP.

Theorem 8.3.7 (Equivalences for NP). Let C be a nice circuit class. The following statements
are equivalent:

(i) NP ⊈ BP- C.

(ii) There are positive integers k and r such that for every c, d, ℓ ∈ N, with m(N) = nd

and δ(N) = 1/nℓ, and for every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N
implicitly computed by DLOGTIME-uniform C-circuits of size at most nc, the corresponding

252



C-Implicit-δ-Heavy-Avoid problem can be solved by DLOGTIME-uniform unbounded fan-
in circuits of size 2log(N)r and depth k on infinitely many input lengths N .

Proof. We consider each implication below.

(ii) ⇒ (i). We will use the assumption to show that PH ⊈ BP- C, and the desired implication
then follows from Lemma 8.3.6 and the assumption that C is nice.

As in the proof of the analogous equivalence for PSPACE, fix a large enough a ≥ 1, and
consider the map GN : {0, 1}m(N) → {0, 1}N defined as follows, where m(N) := n3a. The map
GN parses its input string x into (M, r), where M is the description of a clocked determinis-
tic machine running in time 10a · log n, and r consists of the remaining bits of x, treated as
randomness. Let DM : {0, 1}n2a × {0, 1}n → {0, 1} be the randomised C circuit of size at most
n2a encoded by the machine M(1n, ·) (i.e., we assume that M computes the direct connection
language of DM ). For i ∈ {0, 1}n, we define the i-th output bit of GN (x) as DM (r, i). Note that
GN can be implicitly computed by a DLOGTIME-uniform randomised C circuit CN defined over
m(N) + n input bits and of size at most nC·a, where C is a large enough universal constant.

As per assumption, let {CN} be a DLOGTIME-uniform family of unbounded fan-in circuits of
size 2log(N)r and depth k such that for infinitely many N , CN solves C-Implicit-δ-Heavy-Avoid
on GN , with parameters c = C · a, d = 2a + 1, and δ(N) = o(1). (Recall that each output bit
of GN is computed in time nc, m(N) ≤ nd, and we want to find a δ(N)-light element.) Let
L be the language defined by {CN}, i.e., a string z ∈ {0, 1}n is in L if and only if the z-th
bit of CN (1N ) (with N = 2n) is 1. Note that there are integers s and k′ (depending only on
r and k) such that L is in Σk′-TIME[ns] by the known equivalence [BIS90] between PH and
DLOGTIME-uniform circuits of exponential size in n (which is quasi-polynomial size in N).

We now argue that L cannot be computed by DTIME[a · log n]-uniform randomised C circuits
of size na. To prove this, it is enough to show that for every language L′ computed by such
circuits, each string in the sequence {yL′N }N of truth-tables obtained from L′ is δ-heavy in
GN (Um(N)) for every large enough N . Under this claim, as B solves C-Implicit-δ-Heavy-Avoid
for the sequence {GN}, it follows that L ̸= L′.

To see that the claim holds, suppose that L′ is computed by DTIME[a · log n]-uniform ran-
domised C circuits DL′ of size na. Consequently, there is a deterministic machine ML′ that runs
in time a · log n and decides the direct connection language of a corresponding randomised C
circuit DL′ , and the circuit DL′ computes L′ on n-bit inputs, has size at most n2a and uses at
most na random bits. We can then reduce the error of the circuit DL to be exponentially small
by using the facts that Approximate Majority is in DLOGTIME-uniform AC0 [Ajt90,Vio09] and
that C is nice. Thus we obtain a family of randomised Boolean circuits D̃L that has size at most
nC·a, uses at most n2a random bits, and computes L on each n-bit input string with probability
at least 1−2−2n. Moreover, there is a deterministic machine ÑL′ that runs in time 10a · log n and
decides the direct connection language of D̃L. Since the description length of ÑL′ is constant, it
occurs with constant probability in the distribution sampled by GN . Let yL′N be the truth-table
of L′ on input length n, i.e., |yL′N | = N = 2n. By construction, using an union bound over all
n-bit input strings, the probability that GN (Um(N)) = yL

′
N is at least Ω(1) · (1 − 2−n) ≥ δ(N).

This shows that yL′N is δ-heavy, concluding the proof of the claim.
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Note that the language L defined above depends on a, however by the standard fact that
there is a language Lcomp complete for Σk′-TIME[ns] under DLOGTIME-uniform projections of
linear size, we get that that for each a, Lcomp is not computed by DTIME[a · log n]-uniform
randomised C circuits of size na. This implies that Lcomp ̸∈ BPC, and hence that PH ⊈ BPC.
Therefore NP ⊈ BPC by Lemma 8.3.6, concluding the proof of this item.

(i) ⇒ (ii). We argue in the contrapositive. Suppose that there is a choice of constants c,d, and
ℓ, with m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N implicitly com-
puted by DLOGTIME-uniform C circuits of size nc such that every DLOGTIME-uniform sequence
of unbounded fan-in circuits of size 2log(N)2 and depth 3 fails to solve C-Implicit-δ-Heavy-Avoid
on every large enough input length N . We use this assumption to establish that NP ⊆ BPC,
which concludes the proof.

We consider a candidate algorithm A(1N ) that simply outputs ttN , where ttN is the truth
table of SAT on n-bit inputs. We consider a standard encoding of SAT in which SAT is depth-
efficiently paddable, i.e., there is an algorithm Pad implemented by DLOGTIME-uniform AC0

circuits which, given as inputs 1t for a positive integer t and a formula ϕ of length at most
t, outputs an equisatisfiable formula ϕ′ of length t. Note that A can be implemented by
DLOGTIME-uniform unbounded fan-in circuits of size 2log(N)2 and depth 3, using the known
simulation of non-deterministic quasi-linear time by uniform unbounded fan-in circuits [BIS90].
By assumption, A fails to solve C-Implicit-δ-Heavy-Avoid on every large enough input length
N . We show how to use this failure together with a depth-efficient randomised search-to-decision
reduction based on the Valiant-Vazirani Isolation Lemma [VV86] and depth-efficient paddability
of SAT to solve SAT in BPC, which implies NP ⊆ BPC by the NP-completeness of SAT with
respect to DLOGTIME-uniform projections.

By the failure of A, we have that for every large enough N , the probability of ttN under
GN (Um(N)) is at least δ = 1/nℓ. First, we describe a polynomial-time randomised algorithm B

to solve SAT. Let ϕ be a length-n input to SAT. For some T = quasipoly(N) and t = log T to be
determined later, we sample v := t5ℓ strings z1, . . . , zv ∈ {0, 1}m(T ) uniformly and independently
at random, and for each string zi, we define an oracle Oi whose truth table is the string GT (zi) ∈
{0, 1}T . For each i ≤ v, we try to use Oi and a depth-efficient search-to-decision reduction to
find a satisfying assignment to ϕ, as follows. Assume without loss of generality that ϕ has n
variables. We do the following for each i in parallel. We check if Oi(pad(1

t, ϕ)) = 1. If this
is not the case for any i, we reject. If Oi does evaluate to 1 on the padded version of ϕ, we
use this oracle to find a candidate satisfying assignment w to ϕ as follows. The idea is to use
the Valiant-Vazirani technique of intersecting the solution space of ϕ with k randomly chosen
hyperplanes for k = 1 . . . n to obtain formulas ϕ1, . . . , ϕn. The Valiant-Vazirani Isolation Lemma
[VV86] states that if ϕ is satisfiable, then with probability at least 1/4n over random choices of
these formulas, some ϕj has a unique solution. Note that each ϕj can be constructed from ϕ

by randomised constant-depth circuits. We would like to use Oi to find and check the unique
satisfying assignment so that we can verify that ϕ is satisfiable. An issue is that the ϕj are in
general of size larger than n, but they are still of size poly(n) and we choose t a large enough
polynomial in n so that they can all be padded to length t. For each ϕj and each of the n
original variables xk in ϕ, we use an oracle call to Oi (using padding if necessary) to determine
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if there is a satisfying assignment to ϕ with the variable xk set to 0. If yes, we set the wire bj,k
to 1, else to 0. We check if there is a j such that the assignment xk = bj,k for each k satisfies
ϕ. If this is the case for some i, we accept; otherwise we reject. Note that all of the above
can be implemented in constant-depth, apart from the oracle calls to Oi, which we simulate by
evaluations of the implicit sampler for Oi.

By the niceness of C, specifically the assumptions that AC0[⊕] is contained in C and C is
closed under composition, as well as the fact that our sampler is implicitly computed by uniform
C circuits, there are DLOGTIME-uniform randomised C circuits of polynomial size implement-
ing the procedure above. We need to argue that these circuits correctly solve SAT with high
probability. Note that a circuit only accepts a formula ϕ if it verifies that some assignment
satisfies ϕ. Hence, it suffices to check that any satisfiable ϕ is accepted with high probability.
By our choice of v, with high probability the string ttT appears with multiplicity ω(n) among
the strings GT (z1), . . . , GT (zv), meaning that ω(n) of the oracles Oi compute SAT on inputs of
length t. By the correctness of the paddability procedure, for all of these correct oracles, satis-
fiability questions about the randomised formulas ϕj are all answered correctly. This, together
with the lower bound on probability that one of the ϕj is uniquely satisfiable, implies that with
probability at least 1 − o(1), oracle calls to some oracle Oi yield a satisfying assignment for ϕ,
which is then correctly verified and results in acceptance of the circuit.

8.3.3 Equivalences for EXP and EXPNP via a Win-Win Argument and Selec-
tors

In this section, we generalise our equivalence results to the classes EXP and EXPNP.
We provide two proofs. The first proof uses a win-win argument and relies on the existing

equivalence result for PSPACE (Theorem 8.3.2). The second proof uses selectors for EXPNP-
complete languages [Hir15] or instance checkers for EXP-complete languages [BFL91]. Each
proof has its advantages and disadvantages, as will be discussed in Remark 8.3.15.

We start with the first proof. We first state the equivalence result for EXPNP.

Theorem 8.3.8 (Equivalence for EXPNP). Let C be a nice class of Boolean circuits. The
following statements are equivalent:

(i) EXPNP ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be
solved in deterministic time poly(N) with access to an NP oracle on infinitely many input
lengths N .

Proof. We consider each implication below.

(ii)⇒ (i). The proof is completely analogous to the implication from (ii) to (i) in Theorem 8.3.2.
The only difference is that due to the access to an NP oracle provided to each deterministic
polynomial-time algorithm for Implicit-δ-Heavy-Avoid, the resulting hard language is in EXPNP

as opposed to PSPACE.
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(i)⇒ (ii). If EXPNP ⊈ BP- C then either EXPNP ⊈ PSPACE or PSPACE ⊈ BP- C. We show that
the desired conclusion holds in each one of these cases.

First, assume that EXPNP ⊈ PSPACE. Recall that if EXPNP ⊆ SIZE[poly] then EXPNP =

PSPACE [BH92]. Therefore, it follows that EXPNP ⊈ SIZE[poly]. In particular, there is a
language L ∈ DTIME[2O(n)]NP such that L /∈ SIZE[nk] for every choice of k. Now fix a choice
of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and consider a sequence {GN} of maps
GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-circuits of size at
most nc. Consider the following algorithm A: On input 1N , where N = 2n, A outputs the N -bit
string wN corresponding to the truth-table of L on n-bit strings. Since L ∈ DTIME[2O(n)]NP, A
computes in time poly(N) with access to an NP oracle. Moreover, since L is not computed by
(general) Boolean circuits of size nk on infinitely many input lengths, where k is an arbitrary
constant, it follows that wN is not in the range of GN for infinitely many values of N . Otherwise,
there would be a choice a for the seed of GN such that wN = GN (a), which yields a bounded-size
circuit for the function encoded by wN , given that GN is implicitly computed by C-circuits of
bounded size. In particular, it follows that on infinitely many values of N , wN is not δ-heavy
for GN , as desired.

Now consider the remaining case, i.e., assume that PSPACE ⊈ BP- C. Then, by Theo-
rem 8.3.2, we can solve the required C-Implicit-δ-Heavy-Avoid problem in space O(logN) on
infinitely many input lengths N . Since O(logN) space algorithms can be simulated by poly(N)

time algorithm (not to mention that we have access to an NP oracle), the desired conclusion
also holds in this case.

It is easy to see that a similar equivalence result for EXP also holds. Actually, the proof
is essentially the same as Theorem 8.3.8, with the only difference being that we use the Karp–
Lipton theorem for EXP [KL80] instead of the one for EXPNP [BH92]. Hence, we only state the
result and omit the proof here.

Theorem 8.3.9 (Equivalence for EXP). Let C be a nice class of Boolean circuits. The following
statements are equivalent:

(i) EXP ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be
solved in deterministic time poly(N) on infinitely many input lengths N .

Next, we present another proof of Theorem 8.3.8 for the special case where C is the class
of general Boolean circuits. The proof is direct and does not go through win-win arguments.
In one sentence, we use selectors for EXPNP-complete problems [Hir15] and note that the proof
strategy from Theorem 8.3.2 extends to selectors.

Definition 8.3.10. We say that a probabilistic polynomial-time oracle machine S is a selector
for a language L ⊆ {0, 1}∗ if the following holds. Let O1,O2 ⊆ {0, 1}∗ be arbitrary oracles.
Then, for any input x ∈ {0, 1}∗, if L ∈ {O1,O2} then

Pr
S
[SO1,O2(x) = L(x)] ≥ 2/3.
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It is possible to boost the success probability of the selector using standard techniques. In
addition, [Hir15] proved that if a language L admits a selector, then it also admits a selector
that succeeds when given access to polynomially many oracles, provided that at least one of
them correctly computes L. These are summarised in the following result.

Theorem 8.3.11 ([Hir15]). Every EXPNP-complete language admits a selector. Moreover, there
is a paddable EXPNP-complete language L′ ∈ DTIME[2O(n)]NP, a polynomial q, and a probabilistic
polynomial-time oracle algorithm S such that the following conditions hold:

• For every n ≥ 1, x ∈ {0, 1}n, and t ≥ 1, if O1, . . . ,Ot ⊆ {0, 1}∗ and L′ ∈ {O1, . . . ,Ot},
then

Pr
S
[SO1,...,Ot(x, 1t) = L′(x)] ≥ 1− 2−n.

• Every oracle query of S(x) has length exactly q(n). Consequently, it is enough to assume
that the oracles O1, . . . ,Ot : {0, 1}q(n) → {0, 1} and that L′q(n) ∈ {O1, . . . ,Ot}, where
L′q(n) = L ∩ {0, 1}q(n).

The “moreover” part of the result follows from the existence of a selector for every EXPNP-
complete problem [Hir15] combined with the paddability of L′ and the discussion above.

Proof of Theorem 8.3.8, for the case that C is the class of general Boolean circuits.

(ii) ⇒ (i). Again, the proof is completely analogous to the same implication in Theorem 8.3.2,
and we omit the details.

(i)⇒ (ii). We argue in the contrapositive. Suppose there is a choice of constants c, d, and ℓ, with
m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N implicitly computed by
general Boolean circuits of size at most nc such that every deterministic algorithm A(1N ) with
access to an NP oracle that runs in poly(N) time fails to solve Implicit-δ-Heavy-Avoid on every
large enough input length N . Next, we use this assumption to establish that EXPNP ⊆ BPP.

We consider a candidate algorithm A′(1N ) with access to an NP oracle that computes as
follows. Consider the EXPNP-complete language L′ from Theorem 8.3.11. On input 1N , A′

outputs the truth-table ttN ∈ {0, 1}N of L′ over strings of length n, where N = 2n. Note that
A′ uses an NP oracle and computes in time poly(N), since L′ ∈ DTIME[2O(n)]NP. Since A′

fails to solve Implicit-δ-Heavy-Avoid, for every large enough N , the probability of ttN under
GN (Um(N)) is at least δ = 1/nℓ.

The rest of the argument is similar to that of the proof of Theorem 8.3.2. To compute L′

on some input x ∈ {0, 1}n′ , we let n := q(n′), where q is the polynomial from Theorem 8.3.11.
We sample t := n3ℓ strings z1, . . . , zt ∈ {0, 1}m(N) uniformly and independently at random, and
use the corresponding oracles O1, . . . ,Ot as candidate oracles for L′n, where each Oi computes
according to the string GN (zi) ∈ {0, 1}N . By our choice of t, with high probability the string
ttN is among the oracles obtained from z1, . . . , zt. In this case, there is at least one correct oracle
Oi among the oracles O1, . . . ,Ot. Consequently, if we run S(x, 1t) with access to O1, . . . ,Ot,
we compute L′(x) with high probability. Since n = poly(n′), t = poly(n), the selector runs in
time poly(n′, t), and the simulation of each oracle query to Oi can be done using a computation
of the corresponding bit of GN (zi) in time poly(n), it follows that given x of length n′ we can
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compute L′(x) with high probability in time poly(n′). Finally, since L′ is complete for EXPNP,
it follows that EXPNP ⊆ BPP, as desired.

Inspecting the proof, it is not hard to see that it also extends to almost-everywhere and
subexponential lower bounds. Since the proofs are straightforward modifications of the argument
given above, we only state the results and omit the proof details.

Theorem 8.3.12. The following statements are equivalent:

(i) EXPNP ⊈ i.o.-BPP.

(ii) For every choice of the parameters c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and
for every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed in time
nc, the Implicit-δ-Heavy-Avoid problem can be solved with access to an NP oracle in
deterministic time poly(N) for every large enough N .

Theorem 8.3.13. The following statements are equivalent:

(i) There is a constant ε > 0 such that ENP ⊈ BPTIME[2n
ε
].

(ii) There is a constant ε > 0 such that for δ(N) := 2−n
ε and for every sequence {GN} of maps

GN : {0, 1}2n
ε

→ {0, 1}N implicitly computed in time 2n
ε , the Implicit-δ-Heavy-Avoid

problem on {GN} can be solved with access to an NP oracle in deterministic time poly(N)

on infinitely many values of N .

One can also use the instance checkers for EXP-complete languages [BFL91] (which imply
selectors for such languages [Hir15]) to prove similar characterisations for EXP. For example, the
following theorem holds (we omit the details as it is the same as our second proof for EXPNP):

Theorem 8.3.14. The following statements are equivalent:

(i) EXP ⊈ i.o.-BPP.

(ii) For every choice of the parameters c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and
for every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed in time
nc, the Implicit-δ-Heavy-Avoid problem can be solved in deterministic poly(N) time for
every large enough N .

Remark 8.3.15 (Comparison between the two proof methods). We presented two proofs for Theo-
rem 8.3.8. Both proofs have their advantages and disadvantages, as we summarise below:

• The first proof only uses (non-adaptive) instance checkers [Che23] that have small circuit
complexity overheads, hence it works for restricted circuit classes such as AC0[⊕] and ACC0.
On the other hand, the second proof needs to use the selectors for EXPNP [Hir15] which is
highly adaptive, hence does not extend to smaller circuit classes such as C = NC1 or C = TC0.a

• The second proof proceeds by a direct argument and hence generalises to almost-everywhere
and subexponential time lower bounds (Theorem 8.3.12 and Theorem 8.3.13), while the first
proof uses a win-win analysis and does not seem to generalise to these cases.

aOne can also construct non-adaptive instance checkers for EXP-complete languages from highly-efficient
PCPs such as [BGH+06, BS08, BCGT13, BV14]. In fact, the results in [BV14] imply an instance checker
whose circuit complexity is only a 3-CNF over its randomness r. However, it is unclear if that instance
checker also has low circuit complexity over the input x. (Looking into the proof, it seems that one needs
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to at least compute a Reed–Solomon encoding of x). Therefore, we chose to use the off-the-shelf AC0[⊕]
instance checker in [Che23] for PSPACE and resort to a win-win argument for EXP. On the other hand, it
is unclear to the authors whether the selectors in [Hir15] can be made non-adaptive.

8.4 Heavy Avoid and Derandomisation

In this section, we study the relation between algorithms for Heavy Avoid and derandomi-
sation, with connections to recent developments in instance-wise hardness-randomness trade-
offs [CT21a, LP22,Kor22, LP23,CTW23]. This section mainly considers Heavy Avoid for non-
uniformly and implicitly sampled distributions.

8.4.1 A Non-Black-Box Reduction

We show that in some scenarios, solving the Implicit-Heavy-Avoid problem on non-uniform
samplers implies general derandomisation of prBPP. Intriguingly, our reduction from prBPP to
Heavy Avoid is non-black-box and relies on the code of an algorithm for Implicit-Heavy-Avoid.

We first introduce appropriate notation. We say that a Boolean circuit family {Cn} has
dimension d(n)× T (n) if for each n ∈ N, the gates of Cn are partitioned into d(n) layers, each
layer contains at most T (n) gates, and each gate on layer i only receives inputs from layer i− 1.
The depth of the circuit is d(n) and the width of the circuit is T (n). We will always assume
d(n) ≤ T (n). A circuit family of dimension d(n)× T (n) is logspace-uniform if there is a Turing
machine that on input 1n, uses at most O(log T (n)) space, and prints the description of Cn.

Recall that for ε(n) > 0, a Boolean function f : {0, 1}M → {0, 1} is ε-dense if

Pr
x∼{0,1}M

[f(x) = 1] ≥ ε(M).

We say f ε-avoids a hitting set H ⊆ {0, 1}M if f is ε-dense and for every y ∈ H, f(y) = 0.
Now we are ready to state our main technical tool, the instance-wise hardness-randomness

trade-off in [CT21a].

Theorem 8.4.1 ([CT21a] with the improved parameters from [CLO+23]). There is an absolute
constant c ≥ 1 such that the following holds. Let f : {0, 1}n → {0, 1}T (n) be a multi-output
function computable by a logspace-uniform circuit of dimension d(n)× T (n). Let M(n) be a pa-
rameter such that c log T ≤M ≤ T 1/c. Then there are algorithms CT21.HSGf and CT21.Reconf

depending on f , such that:

• The algorithm CT21.HSGf (x) runs in deterministic T c time and outputs a set of M -bit
strings.

• Given x ∈ {0, 1}n and i ∈ [T ] as inputs, and oracle access to a candidate distinguisher
D : {0, 1}M → {0, 1}, CT21.ReconDf (x, i) runs in randomised (dnM)c time. If D (1/M)-
avoids CT21.HSGf (x), then with probability ≥ 1−2−M , CT21.ReconDf (x, i) outputs the i-th
bit of f(x).

Moreover, there is a deterministic algorithm that, given the Turing machine Mf that prints
the circuit for f in logspace, outputs the descriptions of CT21.HSGf and CT21.Reconf in time
poly(|⟨Mf ⟩|).
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Remark 8.4.2. The hardness-randomness trade-offs in [CT21a,CLO+23] were stated for hard func-
tions of the form f : {0, 1}n → {0, 1}n, where the reconstruction algorithm prints the entire string
f(x) in ≪ T time. Inspecting their proofs, it is easy to see that the same holds when we have a
function f : {0, 1}n → {0, 1}T and the reconstruction algorithm prints the i-th bit of f(x) in ≪ T

time, given i ∈ [T ] as an input.

Theorem 8.4.3 (Non-black-box reduction under logspace-uniform sub-polynomial depth algo-
rithms). Let δ(n) = o(1) be any function. Suppose there is a constant ε > 0 and an algorithm
A(⟨C⟩) that solves the Implicit-δ-Heavy-Avoid problem on instances G : {0, 1}Nε → {0, 1}N
that are implicitly computable by a circuit C of size N ε, where a description of C is given as in-
put. Moreover, assume that A can be implemented as a logspace-uniform circuit of size poly(N)

and depth No(1). Then prBPP = prP.

Proof. Since prBPP ⊆ prRPprRP [BF99], it suffices to prove that prRP = prP. That is, we want a
deterministic algorithm that, given as input a size-2M circuit D : {0, 1}M → {0, 1}, distinguishes
between the case that D rejects every input and the case that D is 1/2-dense.

Let c be the constant in Theorem 8.4.1, and set N := M3c/ε. We recall our assumption:
given an implicit map with parameters as above, for some T ≤ poly(N), d ≤ No(1) and δ ≤
o(1), there is a logspace-uniform circuit A of dimension d × T that solves the corresponding
Implicit-δ-Heavy-Avoid problem deterministically.

Consider the implicit map GD : {0, 1}Nε → {0, 1}N , where the underlying circuit CD for
computing each output bit of GD is as follows. Given x ∈ {0, 1}Nε and i ∈ [N ], we parse x as
(Mf , r), whereMf is a program, and r consists of the remaining bits of x (treated as randomness).
We can encode x in such a way that every program of length ℓ appears with probability mass
Θ(2−ℓ/ℓ2), hence every program with constant description length appears with probability mass
Ω(1) > δ. Suppose that Mf is a logspace-uniform Turing machine that defines a circuit of size
T · poly(M) and depth d+polylog(M) that computes a function f : {0, 1}Õ(M) → {0, 1}N (this
can be syntactically ensured by imposing a space constraint on Mf ). We let

CD(x, i) := CT21.ReconDf (⟨D⟩, i; r). (8.1)

Here, CT21.Recon(⟨D⟩, i; r) denotes the output of CT21.Recon(⟨D⟩, i) on randomness r. Note
that when we compute CD(x, i), we treat D both as the distinguisher (for the reconstruction
algorithm CT21.Recon) and as the input of f . We then run CT21.Recon on randomness r and
(attempt to) reconstruct the i-th bit of f(⟨D⟩). If the length of ⟨Mf ⟩ is a constant, then we have
|r| ≥ N ε −O(1) ≥M2.9c ≥ (d2 · Õ(M) ·M)c, hence there is always enough randomness to feed
into Recon. Also, by Theorem 8.4.1, the description ⟨CD⟩ can be computed from the description
⟨D⟩ in poly(M) time and polylog(M) depth.14 Note that GD can be implicitly computed in
time N ε due to our choice of parameters.

Define a function f ′ : {0, 1}Õ(M) → {0, 1}N as follows: Given a size-2M circuit D : {0, 1}M →
{0, 1} as input, f ′ computes the circuit CD as in (8.1) and outputs A(⟨CD⟩). Recall that A is

14The depth upper bound is dominated by computing the description of CT21.Reconf from Mf , which takes
time polylog(M). Although CT21.Reconf is an adaptive oracle algorithm, to compute the code of CT21.ReconDf
from ⟨D⟩ we only need to concatenate the codes of CT21.Reconf and D together, hence this step is depth-efficient.
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computed by a logspace-uniform circuit of dimension d×T , hence f ′ is computed by a logspace-
uniform circuit of size T · poly(M) and depth d+ polylog(M).

AssumingD is 1/2-dense, we argue that CT21.HSGf ′(⟨D⟩) hitsD. Otherwise, D (1/2)-avoids
CT21.HSGf ′(⟨D⟩). By Theorem 8.4.1, for every i ∈ [N ], with probability at least 1− 2−M over
the randomness r, CT21.ReconDf ′(⟨D⟩, i; r) is equal to the i-th output bit of f ′(⟨D⟩). By a
union bound, w.p. at least 1−N · 2−M over the randomness r, we have that for every i ∈ [N ],
CT21.ReconDf ′(⟨D⟩, i; r) = f ′(⟨D⟩)i. Since f ′(⟨D⟩) = A(⟨CD⟩) by definition, we have:

Pr
x
[GD(x) = A(⟨CD⟩) | ⟨Mf ⟩ = ⟨Mf ′⟩ where (Mf , r) = x] ≥ 1−N · 2−M ≥ 1/2.

Since the description length of Mf ′ is a constant, it follows that ⟨Mf ⟩ = ⟨Mf ′⟩ with constant
probability. Hence,

Pr
x
[GD(x) = A(⟨CD⟩)] ≥ Ω(1),

contradicting our assumption that A solves the Implicit-δ-Heavy-Avoid problem.
We have shown that if D is 1/2-dense, then CT21.HSGf ′(⟨D⟩) hits D. We can compute

CT21.HSGf ′(⟨D⟩) in poly(T,N) ≤ poly(M) time, hence we can solve the Gap-UNSAT problem
in deterministic polynomial time. This implies that prRP = prP, as desired.

Remark 8.4.4. The above reduction is non-black-box for two reasons. First, the statement prBPP ⊆
prRPprRP can be seen as a non-black-box reduction from prBPP to prRP [BF99]. Second, and perhaps
more interestingly, the reduction from prRP to Implicit-Heavy-Avoid is also non-black-box, as it
requires the algorithm A for Implicit-Heavy-Avoid to be a logspace-uniform circuit of low depth
and relies on an application of Theorem 8.4.1 over this low-depth circuit. Indeed, the proof of
Theorem 8.4.1 performs arithmetisation on this low-depth circuit.

Remark 8.4.5. It is also interesting to compare Theorem 8.4.3 with [Kor22, Theorem 8]. The latter
result is a black-box reduction from prBPP to a problem called R-Lossy Code. In contrast, our
Theorem 8.4.3 needs additional constraints on the algorithm solving Implicit-Heavy-Avoid and
makes non-black-box use of that algorithm.

Our Implicit-Heavy-Avoid is a special case of R-Lossy Code in the following sense. Recall
that R-Lossy Code is the problem where, given circuits Comp : {0, 1}n × {0, 1}m → {0, 1}n−1
and Decomp : {0, 1}n−1 → {0, 1}n and a parameter δ > 0, one needs to find some x ∈ {0, 1}n such
that Prr←{0,1}m [Decomp(Comp(x, r)) = x] < δ. Given an implicit map C : {0, 1}r × [N ] → {0, 1}
as the input of Implicit-δ-Heavy-Avoid (recall that r < N in the typical parameter setting), we
can reduce it to the R-Lossy Code instance (Comp,Decomp) where Comp(x, r) simply outputs its
randomness r, and Decomp(r) = C(r, 1)C(r, 2) . . . C(r,N). In this sense, Implicit-Heavy-Avoid is
no more than a special case of R-Lossy Code where the compressor circuit is trivial.

8.4.2 Getting Rid of the Depth Assumption

In this section, we show how to get rid of the low-depth assumption in Theorem 8.4.3 in
a weaker but non-trivial setting. An ideal statement would be: a deterministic polynomial-
time algorithm for Implicit-Heavy-Avoid implies a deterministic polynomial-time algorithm
for Gap-SAT or CAPP. Compared to the ideal statement, the actual result that we prove only
holds for subexponential-time infinitely-often algorithms, as we shall explain later.

We note that it should not be too surprising that a subexponential-time infinitely-often
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algorithm for Implicit-Heavy-Avoid implies a subexponential-time infinitely-often algorithm
for Gap-SAT. In fact, combining Theorem 8.3.9 and [IW01], it is easy to show that this holds
for heuristic algorithms.15

Theorem 8.4.6. The following items are equivalent.

• (Infinitely-often subexponential-time heuristic derandomisation.)

For every language L ∈ BPP, every ensemble of polynomial-time samplable distributions
D = {Dn} ∈ PSAMP, every polynomial p(·), and every constant δ > 0, there exists a
deterministic Turing machine M running in 2n

δ time, such that for infinitely many input
lengths n,

Pr
x∼Dn

[L(x) ̸=M(x)] ≤ 1/p(n).

• (Infinitely-often polynomial-time algorithms for uniform Implicit-Heavy-Avoid.)

For every δ(N) = 1/polylog(N), and for every sequence {GN} of maps GN : {0, 1}polylog(N) →
{0, 1}N where each bit of GN is implicitly computed in polylog(N) time, there is a de-
terministic poly(N)-time algorithm that solves the Implicit-δ-Heavy-Avoid problem for
{GN} on infinitely many input lengths N .

Proof Sketch. In fact, both items are equivalent to EXP ̸= BPP. The equivalence between the
first item and EXP ̸= BPP is shown in [IW01], and the equivalence between the second item and
EXP ̸= BPP follows from Theorem 8.3.9.

We now attempt to prove a version of Theorem 8.4.6 with respect to worst-case algorithms,
instead of heuristics. Our worst-case version of Theorem 8.4.6 also has many caveats such as
being infinitely-often and requiring subexponential time, but the biggest caveat might be that
we could only obtain infinitely-often algorithms in the following, somewhat artificial, setting:
For a sequence of inputs {xn}n∈N, the algorithms read many inputs x1, x2, . . . , xpoly(n) but are
only required to solve xn. We call this “infinitely-often∗” algorithms. Formally, we have:

Definition 8.4.7. Let P be a computational problem and {xn}n∈N be a sequence of inputs.
We say an algorithm A infinitely-often∗ solves P on {xn} if there is a polynomial p(·) such that
for infinitely many integers n, A(1n, x1, x2, . . . , xp(n)) outputs a valid P-solution for xn.

In other words, an infinitely-often∗ algorithm has access to the (non-uniform) sequence of
inputs around xn, as opposed to the usual setting where the algorithm only has access to the
given input string. We remark that our algorithm in Theorem 8.4.8 works in a weaker model
where the machine only reads xn and xp(n) and outputs an answer for xn. However, we believe
that Definition 8.4.7 is a more accurate model to capture win-win analyses in complexity theory,
hence choose to define it in this way.

For ease of notation, in what follows, we will denote the sequence x1, x2, . . . , xℓ simply by
x1∼ℓ. We are now able to state our main result in this section.

15Note that Theorem 8.4.6 refers to Implicit-Heavy-Avoid for uniformly samplable distributions, which is
different from most results in this section. We believe that more connections between Implicit-Heavy-Avoid
for uniformly samplable distributions and average-case derandomisation can be obtained (e.g., using the recent
“unstructured hardness to average-case randomness” [CRT22]), but we do not pursue this direction here.
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Theorem 8.4.8 (A non-black-box reduction for Implicit-Heavy-Avoid).
Assume there is an infinitely-often polynomial-time algorithm for Implicit-Heavy-Avoid

with subexponential stretch. That is, for every constants a ≥ 1, ε > 0, and function δ ≤ o(1),
there exists a deterministic algorithm Avoid running in poly(N) time such that for infinitely
many n ∈ N and N := 2n

ε, and for every generator G : {0, 1}na → {0, 1}N implicitly described
by a size-na circuit C : {0, 1}na × [N ] → {0, 1}, Avoid(⟨C⟩) solves Implicit-δ-Heavy-Avoid on
G.

Then there is an infinitely-often∗ subexponential-time algorithm for Gap-SAT. That is, for
every ε > 0 and c ≥ 1, there exists a deterministic algorithm Derand running in 2n

ε time such
that the following holds: For every sequence of circuits {Dn}n∈N, where each Dn : {0, 1}nc →
{0, 1} is a circuit of size 2nc, Derand(1n, ⟨D1∼poly(n)⟩) infinitely-often∗ solves Gap-SAT on {Dn}.

Our proof combines the two instance-wise hardness-randomness trade-offs introduced by
Chen and Tell [CT21a] and Liu and Pass [LP23] recently. Since the hardness-randomness trade-
off in [CT21a] is already summarised in Theorem 8.4.1, in what follows, we summarise the
hardness-randomness trade-off in [LP23].

Definition 8.4.9. Let f : {0, 1}n → {0, 1}T (n) be a function, A be a randomised algorithm, and
x ∈ {0, 1}n be an input of f . We say that f(x) is ℓ-leakage resilient hard against A if for every
“leakage string” leak ∈ {0, 1}ℓ, there is some i ∈ [T ] such that Pr[A(x, leak, i) = f(x)i] ≤ 2/3,
where the probability is over the internal randomness of A.

We need the following result by Liu and Pass [LP23] showing that leakage resilient hardness
can be used for derandomisation.

Theorem 8.4.10 ([LP23]). There are algorithms LP23.PRG and LP23.Recon and an abso-
lute constant c ≥ 1 such that the following holds. Let f : {0, 1}n → {0, 1}T (n) be a function,
D : {0, 1}M → {0, 1} be a distinguisher, and x ∈ {0, 1}n be an input of f . Let ℓ := (M log T )c

and r := O(log2 T/ logM). Then:

• LP23.PRG : {0, 1}T × {0, 1}r → {0, 1}M runs in deterministic poly(T,M) time.

• LP23.Recon(−) : {0, 1}ℓ × [T ]→ {0, 1} runs in randomised poly(ℓ, log T ).

• If f(x) is ℓ-leakage resilient hard against LP23.ReconD, then LP23.PRG(f(x),−) is a (tar-
geted) PRG that (1/10)-fools D.

Proof Sketch. This follows by observing that the leakage resilient hardness-randomness trade-
off in [LP23] holds instance-wise. In particular, if we let g be the “k-reconstructive PRG”
described in [LP23, Theorem 3.11] (which follows from [STV01]), then LP23.PRG(f(x), z) =

gf(x)(1m(n), 1M(n), z); the algorithm LP23.Recon is simply the corresponding “reconstruction
algorithm” R as defined in [LP23, Definition 3.10].

Suppose that f : {0, 1}n → {0, 1}m(n) is computable by a deterministic Turing machine M
running in time T (n). We can define fhist : {0, 1}n → {0, 1}T ′(n) for some function T ′(n) ≤
poly(T (n),m(n)) such that fhist(x) outputs the computational history of f(x), i.e., the sequence
of configurations of M when computing over the input string x. It will be useful to consider
the leakage-resilience hardness of fhist, since if fhist is not leakage resilient hard, then f can be
computed by a low-depth circuit:
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Claim 8.4.11. Let f : {0, 1}n → {0, 1}T (n) be a function computable in time T (n), ℓ = ℓ(n)

be a parameter, and A be a randomised algorithm running in time TA(n). Then, for d(n) :=

O(TA(n) + ℓ(n) + log T (n)), there is a logspace-uniform circuit C : {0, 1}n → {0, 1}T (n) of di-
mension d(n) × 2d(n) such that the following holds. For every input x ∈ {0, 1}n, if fhist(x) is
not ℓ(n)-leakage resilient hard against A, then f(x) = C(x).

Proof. The circuit C(x) enumerates all strings leak ∈ {0, 1}ℓ and computes A(x, leak, i) for each
i. Although A is a randomised algorithm, we can compute A(x, leak, i) by brute force using a
logspace-uniform circuit of width 2O(TA(n)) and depth O(TA(n)). Then, (for each leak) C verifies
whether the computational history H(x, leak) defined by H(x, leak)i = A(x, leak, i) is indeed the
correct history for f(x); this can be done by a logspace-uniform circuit of width poly(T (n)) and
depth O(log T (n)), by checking that every local step in H(x, leak) is correct. Whenever there
is some leak that corresponds to the correct history for f(x), the circuit C outputs the value of
f(x) according to this history. The depth of C is d(n) ≤ O(TA(n) + ℓ(n) + log T (n)) and the
size of C is exponential in d(n).

Now we are ready to prove Theorem 8.4.8.

Proof of Theorem 8.4.8. Let c ≥ 1 and ε > 0 be constants. Let {Dn}n∈N be a sequence of
circuits where each Dn : {0, 1}nc → {0, 1} is of size 2nc. Recall that we want a deterministic
2n

ε-time algorithm that infinitely-often∗ solves Gap-SAT on {Dn}. Let c1 be the constant in
Theorem 8.4.1 (the trade-off in [CT21a]) or Theorem 8.4.10 (the trade-off in [LP23]), whichever
is larger. Let κ := ⌈max{4c/ε, 8c1/ε}⌉; the meaning of this constant is that we will perform a
win-win analysis over input lengths m and mκ. Finally, let a := 4κcc1 and L(t) := 2t

ε/4 . The
input instances of our Heavy Avoid algorithm will be generators Gt : {0, 1}ta → {0, 1}L(t) whose
output bits are implicitly computable in ta size.

c, ε We want a Gap-SAT algorithm on nc-size circuits in 2n
ε time

c1 Overheads of the trade-offs in Theorem 8.4.1 and Theorem 8.4.10
κ = O(c/ε) Our win-win analysis is over input lengths m and mκ

a = O(c2/ε) We need a Heavy Avoid algorithm for generators
G : {0, 1}ta → {0, 1}L(t), implicitly computable in ta sizeL(t) = 2t

ε/4

Table 8.1: Constants used in this proof.

For any integer M , its index idx(M) is defined as the largest integer such that M = mκidx(M)

for some integer m. (Note that most integers have index 0.) We say an input length M is big if
idx(M) is odd, and is small if idx(M) is even. For convenience, we will always use upper-case
M to denote big input lengths and lower-case m to denote small input lengths. Looking ahead,
each small input length m will be paired with a big input length mκ and vice versa; if our Heavy
Avoid algorithm succeeds on input length m, then our Gap-SAT algorithm succeeds on either
length m or length mκ.

We now define the sequence of implicit descriptions Ct : {0, 1}ta × [L(t)] → {0, 1} for each
t ∈ N, which we feed into our Heavy Avoid algorithm. Each Ct also defines the generator
Gt : {0, 1}ta → {0, 1}L(t). Let M be the t-th smallest big input length. Note that M ≤ O(tκ).
Let x denote the input of Gt. We parse x into (⟨Mf ⟩, r), where ⟨Mf ⟩ is the description of a
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Turing machine Mf and the remaining M (2c+1)c1 bits r are treated as randomness. As in the
proof of Theorem 8.4.3, we encode x in such a way that every constant-length program Mf

occurs with constant probability. Now, let d :=M2ε/3 and f be the d× 2d circuit outputted by
Mf within space constraint d. Then

Ct(x, i) := CT21.ReconDM
f (⟨DM ⟩, i; r).

Recall that CT21.Recon uses at most (d · |⟨DM ⟩|2)c1 ≤ (dM2c)c1 random bits, hence we have
enough random bits to feed into CT21.Recon. We can see that each bit of Gt can be computed
in M3cc1 ≤ t4κcc1 ≤ ta size.

Let Avoid be our algorithm for Implicit-δ-Heavy-Avoid that runs in deterministic poly(L(t))
time. Let I be the set of input lengths t for which Avoid(⟨Ct⟩) correctly outputs a δ-light element
of Gt. Using the same reasoning as Theorem 8.4.3, one can see that:

Claim 8.4.12. Let t ∈ I, M be the t-th big input length, and let d :=M ε/2. Suppose there is a
constant-length Turing machine that outputs a circuit f ′ of dimension d× 2d in O(d) space such
that f ′(⟨Ct⟩) = Avoid(⟨Ct⟩). Then CT21.HSGf ′(⟨Ct⟩) hits DM .

Let Avoidhist denote the algorithm that outputs the computational history of Avoid. Note
that Avoidhist(⟨Ct⟩) runs in Thist(t) ≤ poly(L(t)) time. Now let m ∈ N be the t-th small input
length, M := mκ be the t-th big input length, and ℓ(t) := (m · log Thist(t))c1 . Consider the
following criterion for our win-win analysis:

▶ Crit(t): Avoidhist(⟨Ct⟩) is ℓ(t)-leakage resilient hard against LP23.ReconDm .

Our algorithm Derand works as follows. On input (1n, ⟨D1∼nκ⟩):

• Suppose n is small, m := n, and M := nκ. Assume that m is the t-th small input length
and assume that Crit(t) holds. Then by Theorem 8.4.10,

LP23.PRG(Avoidhist(⟨Ct⟩),−) : {0, 1}r → {0, 1}m

is a PRG that (1/10)-foolsDm, where r := O(log2 Thist(t)/ logm) ≤ O(tε/2/ logm) < mε/2.
By enumerating this PRG, we can solve the Gap-SAT (in fact, CAPP) problem on input
Dm in deterministic 2m

ε time.

Note: The definition of Ct involves DM = Dnκ ; this is why we need our infinitely-often∗

algorithm to have access to inputs on a larger length.

• Suppose n is big, M := n, and m := n1/κ. Suppose that M is the t-th big input length
and assume that Crit(t) does not hold. Then it follows from Claim 8.4.11 that there is a
logspace-uniform circuit Ãvoid of dimension d′ × T ′ such that Ãvoid(⟨Ct⟩) = Avoid(⟨Ct⟩),
where d′ = O(mc + ℓ(m) + log Thist(t)) ≤ O(mc + (mtε/4)c1) < M ε/2 and T ′ = 2d

′ . By
Claim 8.4.12, CT21.HSG

Ãvoid
(⟨Ct⟩) hits DM . Since the size of this HSG is 2O(d′) < 2M

0.9ε ,
we can solve the Gap-SAT problem on DM in 2M

ε time.

For every t ∈ I, let m be the t-th small input length and M = mκ. If Crit(t) holds, then our
algorithm solves Gap-SAT on input Dm; otherwise our algorithm solves Gap-SAT on input DM .
Since |I| is infinite, it follows that our algorithm infinitely-often∗ solves Gap-SAT on {Dn}.
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8.4.3 On Black-Box Reductions to Heavy-Avoid

We complement the previous non-black-box reductions by showing that if there is a black-
box reduction from Gap-SAT to Heavy-Avoid of a certain type, then we would have prBPP = prP

unconditionally. In more detail, we consider the natural notion of Levin reductions [Lev73], i.e.,
“witness-mapping” reductions between search problems, and show that a Levin reduction from
search-Gap-SAT to Heavy-Avoid implies prBPP = prP.

Intriguingly, these results together separate the notion of (weak) non-black-box reductions
and black-box (i.e., Levin) reductions between two natural problems w.r.t. current techniques!
That is, improving the weak non-black-box reductions in Theorem 8.4.3 and Theorem 8.4.8 to
Levin reductions (which is a stronger notion of black-box reduction) would imply breakthroughs
in complexity theory.

As the notion of Levin reductions is standard in complexity theory (for a recent example,
see [MP24]), we only recall its definition in the special case of reducing search-Gap-SAT to
Heavy-Avoid:

Definition 8.4.13. We say there is a Levin reduction from search-Gap-SAT to Heavy-Avoid if
there are functions f, g computable in deterministic polynomial time such that the following
holds:

• For every circuit C : {0, 1}n → {0, 1} that is 1/2-dense (i.e., that is a valid search-Gap-SAT
instance), f(C) = (D, 1t) is a Heavy-Avoid instance where we want to find a (1/t)-light
string in D.

• For every string y that is (1/t)-light for D, g(C, y) is a valid solution for search-Gap-SAT
for C. That is, if C is 1/2-dense, then C(g(C, y)) = 1.

Theorem 8.4.14. If there is a polynomial-time Levin reduction (f, g) from search-Gap-SAT to
Heavy-Avoid, then prP = prBPP.

Proof. First, we describe the main idea. The crucial observation is that there is a trivial al-
gorithm that “ list-solves” any Heavy-Avoid instance, that is, outputs a list of solutions such
that some element in the list is not heavy. In particular, let (D, 1t) be an input instance of
Heavy-Avoid, and consider the trivial algorithm that outputs an arbitrary list of t + 1 distinct
strings. By an averaging argument, at least one string in this list will be a (1/t)-light element
of D. This means that using the list and a witness-mapping reduction, we can produce at least
one satisfying assignment if the input circuit is dense.

We proceed to the formal proof. Again, by [BF99], it suffices to prove that prP = prRP. Let
C : {0, 1}n → {0, 1} be an input to Gap-SAT. We first reduce C to a Heavy-Avoid instance
(D, 1t) := f(C). Then we compute an arbitrary list of t+1 distinct strings x1, x2, . . . , xt+1. We
are guaranteed that some xi is a δ-light element of D, hence if C is 1/2-dense, then g(C, xi)

would be a satisfying assignment of C. Consequently, if there is an index i ∈ [ℓ] such that
C(g(C, xi)) = 1, then we output 1, otherwise we output 0. It is easy to see that if C is
unsatisfiable then we always output 0, while if C is 1/2-dense then we always output 1. Hence,
we have prP = prRP, and this concludes the proof.
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8.4.4 Heavy Avoid versus Almost-All-Inputs Hardness

Finally, we show connections between Implicit-Heavy-Avoid and the almost-all-inputs hard-
ness assumptions, introduced recently in [CT21a].

The results in this section are motivated by two conjectures. Given the non-black-box re-
ductions presented in Theorem 8.4.3 and Theorem 8.4.8, it seems natural to conjecture that
Implicit-Heavy-Avoid is complete for prBPP under “the most natural notion of non-black-box
reductions”:

Conjecture 8.4.15 (Informal). If Implicit-Heavy-Avoid for non-uniform samplers admits a
deterministic polynomial-time algorithm, then prBPP = prP.

On the other hand, there is another intriguing conjecture implicit in the work of Chen–
Tell [CT21a]. Recall that Chen and Tell [CT21a] showed how to derive prBPP = prP given a
multi-output function f : {0, 1}n → {0, 1}n that is almost-all-inputs hard against randomised
algorithms, provided that f can be computed in low depth. They also showed that prBPP = prP

necessitates the existence of multi-output functions with almost-all-inputs hardness, but the
hard function they construct might require high depth. Still, this demonstrates that almost-all-
inputs hardness might be the right hardness assumption for derandomisation. It is tempting to
conjecture that low-depth constraints are, in fact, not necessary:

Conjecture 8.4.16 (Informal). If there is a multi-output function f : {0, 1}n → {0, 1}n com-
putable in deterministic polynomial time that is almost-all-inputs hard against fixed-polynomial
time randomised algorithms, then prBPP = prP.

In this section, we show that in an “implicit” setting, Conjecture 8.4.15 and Conjecture 8.4.16
are equivalent! In fact, we show that Implicit-Heavy-Avoid is the computational problem
characterising the task of “creating” almost-all-inputs hardness (against randomised algorithms).
We also show that creating such hardness is equivalent to generating strings with high conditional
sublinear-time probabilistic Kolmogorov complexity.

Our “implicit” setting. We consider functions with a possibly long output, i.e., f : {0, 1}n →
{0, 1}ℓ(n) where ℓ(n) is larger than the running time of our adversaries. Consequently, it makes
sense to only require our adversaries to output each bit of f(x) given x and the index of that
bit. It is worth noting that the hardness-randomness trade-offs in both [CT21a] and [LP23] hold
for such implicit adversaries.

Formally, let A be a randomised algorithm, we say that A locally computes f(x) if for every
i ∈ [ℓ(n)], it holds that Pr[A(x, i) = f(x)i] ≥ 2/3, where the probability is over the internal
randomness of A. An equivalent way of saying this is that f(x) is not 0-leakage resilient hard
against A in the sense of Definition 8.4.9.

We also consider the task of generating strings with high (conditional) sublinear-time prob-
abilistic Kolmogorov complexity. (Our equivalence results hold for both pKpoly and rKpoly.)
Roughly speaking, fix a universal Turing machine U , a time bound t, and strings x, y, where
|x| ≪ t ≪ |y|. The conditional complexity of y given x is the length of the shortest program p

such that U(p, w, x, i) outputs the i-th bit of y in t steps, with w being the randomness. How-
ever, there is a technical detail that is worth stressing: In our definition, we require the resources

267



(x and r) to have length at most t, hence the universal Turing machine U has time to read them
in their entirety. A possible alternative definition would be that U has oracle access to strings
x and r (whose lengths might be ≫ t), but it is unclear if we can extend our equivalence result
(Theorem 8.4.18) to these alternative definitions.

Definition 8.4.17 (Sublinear-time probabilistic Kolmogorov complexity). Let U be a universal
Turing machine, x, y ∈ {0, 1}∗, and t ∈ N. (Think of |x| ≪ t and |y| ≫ t.) We artificially define
y|y|+1 = ⋆.

• Sublinear-time pKt complexity:

pKt
U (y | x) := min

{
k ∈ N

∣∣∣ Pr
w∼{0,1}t

[
∃p ∈ {0, 1}k,∀i ∈ [|y|+ 1], U(1t, p, w, x, i) = yi

]
≥ 2

3

}
.

In other words, if k = pKt
U (y | x), then with probability at least 2/3 over the choice of

the length-t random string w, given w and x, the string y admits a t-time-bounded local
encoding of length k.

• Sublinear-time rKt complexity:

rKt
U (y | x) = min

p∈{0,1}∗

{
|p|
∣∣∣ ∀i ∈ [|y|+ 1], Pr

w∼{0,1}t
[U(1t, p, w, x, i) = yi] ≥

2

3

}
.

Now we are ready to present our equivalence result.

Theorem 8.4.18. The following are equivalent.

(1) (Almost-all-inputs hardness.) For every polynomial p(·), there exists a polynomial q(·)
and a function f : {0, 1}n → {0, 1}q(n) computable by a deterministic polynomial-time al-
gorithm, such that every algorithm running in randomised p(n) time only locally computes
f(x) on finitely many inputs x ∈ {0, 1}∗.

(2) (Deterministic algorithms for Heavy-Avoid.) For every polynomial p(·), there exists a
polynomial q(·) such that the following holds. Let C denote the class of circuits with n input
bits and q(n) output bits where each output bit is implicitly computed by a size-p(n) circuit,
then C-Implicit-(1/p(n))-Heavy-Avoid can be solved in deterministic polynomial time.

(3) (Finding strings with large conditional pKpoly-complexity.) For every polynomial
p(·), there exists a polynomial q(·) and a deterministic polynomial-time algorithm that given
an input x ∈ {0, 1}n, finds a string y ∈ {0, 1}q(n) such that pKp(n)(y | x) ≥ log p(n).

(4) (Finding strings with large conditional rKpoly-complexity.) For every polynomial
p(·), there exists a polynomial q(·) and a deterministic polynomial-time algorithm that given
an input x ∈ {0, 1}n, finds a string y ∈ {0, 1}q(n) such that rKp(n)(y | x) ≥ log p(n).

Arguably, the most interesting implication above is (1) ⇒ (2), which can be interpreted as
instance-wise hardness vs. randomness for solving Implicit-Heavy-Avoid without depth con-
straints.
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Lemma 8.4.19. In Theorem 8.4.18, (1) ⇒ (2) holds. That is, almost-all-inputs hardness (of
any kind, without depth restrictions) can be used to solve Implicit-Heavy-Avoid.

Proof. Let T (n) and q′(n) be two polynomials such that there is a multi-output function
f : {0, 1}n → {0, 1}q′(n) computable in deterministic T (n) time that is almost-all-inputs hard
against randomised algorithms running in time p(n)6. Let q(n) := poly(T (n), q′(n)), and
fPCP : {0, 1}n → {0, 1}q(n) denote the PCP of f : On input x ∈ {0, 1}n, fPCP(x) outputs
the concatenation of strings z, pcp1, pcp2, . . . , pcpq′(n), where z = f(x) and each pcpi is a
length-poly(T (n)) PCP proof for the assertion that the i-th output bit of f(x) is equal to
zi. (Any efficiently-computable PCP with polynomial length and constant query complexity
works here, e.g., [ALM+98,BGH+06,Din07].) We claim that fPCP is an algorithm that solves
C-Implicit-(1/p(n))-Heavy-Avoid.

Suppose, towards a contradiction, that fPCP does not solve C-Implicit-(1/p(n))-Heavy-Avoid
on an input ⟨C⟩ ∈ {0, 1}ℓ. The input ⟨C⟩ encodes a circuit C of size p(n) (hence ℓ = Õ(p(n)))
that implicitly represents a generator G : {0, 1}n → {0, 1}q(n). Given ⟨C⟩, r ∈ {0, 1}n, and
i ∈ [q(n)], the i-th output bit of G(r) can be computed in Õ(p(n)) time. Since fPCP fails on
⟨C⟩, we have

Pr
r∼{0,1}n

[fPCP(⟨C⟩) = G(r)] ≥ 1/p(n). (8.2)

Now we present a randomised algorithm A running in p(n)5 time that locally computes f
on input ⟨C⟩. Given an integer i, we want to compute the i-th bit of f(⟨C⟩). We repeat the
following O(p(n)2) times:

1. Sample a random string r ∼ {0, 1}n.

2. Parse G(r) as the concatenation of z, pcp1, pcp2, . . . , pcpq′(n).

3. Invoke the PCP verifier O(p(n)) times to verify that pcpi is indeed a correct PCP proof
that f(⟨C⟩)i = zi.

4. If all invocations of the PCP verifier are successful, then we output zi and halt.

If we have not outputted anything after these O(p(n)2) iterations, then we output a random bit.
Let A denote the above randomised algorithm. We now analyse A.

• (Running time.) Since each bit of pcpi can be retrieved in Õ(p(n)) time, Step 3 above
takes Õ(p(n)2) time, hence the whole algorithm runs in at most Õ(p(n)4) ≤ p(n)5 time.

• (“Soundness.”) At each iteration where we parse G(r) as z, pcp1, . . . , pcpq(n), if f(⟨C⟩)i ̸=
zi, then no matter what pcpi is, the PCP verifier will catch an error with probability at
least 1 − exp(−p(n)). Hence, the probability that A(⟨C⟩, i) halts in Step 4 above and
outputs 1− f(⟨C⟩)i is at most exp(−p(n)).

• (“Completeness.”) On the other hand, by Eq. (8.2), with probability at least 1 − (1 −
1/p(n))p(n)

2 ≥ 1 − exp(−p(n)), there is some iteration of the above algorithm in which
G(r) = fPCP(⟨C⟩). During this iteration, it will be the case that zi = f(⟨C⟩)i and pcpi is
a valid PCP proof for this, therefore we will output f(⟨C⟩)i and halt. It follows that the
probability that none of the p(n)2 iterations succeed and we output a random bit at the
end is also upper bounded by exp(−p(n)).
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The “Soundness” and “Completeness” above imply that A locally computes f(⟨C⟩). To
conclude, if f is indeed almost-all-inputs hard against randomised algorithms running in time
p(n)6, then fPCP solves the C-Implicit-(1/p(n))-Heavy-Avoid problem on all but finitely many
inputs.

Now we present the complete proof for Theorem 8.4.18.

Proof of Theorem 8.4.18. We consider each implication below.

(1)⇒ (2): This follows from Lemma 8.4.19.

(2)⇒ (3): Let p(n) be a polynomial and p′(n) := p(n)2. By (2), for some polynomial q(n), there
is a polynomial-time algorithm Avoid solving the C-Implicit-(1/p′(n))-Heavy-Avoid problem,
where the generators have output length q(n) and each bit can be computed in size p′(n). Let
U be a universal Turing machine and suppose that given input x ∈ {0, 1}n, we want to find a
string y ∈ {0, 1}q(n) such that pK

p(n)
U (y | x) ≥ log p(n).

Consider the generator Gx : {0, 1}p(n)+log p(n) → {0, 1}q(n) that is implicitly computed by
the following circuit Cx: given (z, i) as input, where z ∈ {0, 1}p(n)+log p(n) and i ∈ [q(n)],
Cx(z, i) outputs the i-th bit of G(z). We parse z into (⟨M⟩, r), where M is a Turing machine of
description length log p(n), and r ∈ {0, 1}p(n) is treated as randomness. Then, Cx(z, i) outputs
U(1p(n), ⟨M⟩, r, x, i). Clearly, Cx can be implemented by a circuit of size Õ(p(n)) < p′(n).

Let y ∈ {0, 1}q(n) be any string that is 1
p′(n) -light for Gx, we claim that pK

p(n)
U (y | x) ≥

log p(n). This is easily shown by contradiction. Suppose that pK
p(n)
U (y | x) < log p(n), then

w.p. at least 2/3 over r ∼ {0, 1}p(n), there is a program M of description length log p(n) such
that for every i ∈ [n + 1], U(1p(n), ⟨M⟩, r, x, i) = yi; in other words, Gx(⟨M⟩, r) = y. This
contradicts our assumption that y is 1

p′(n) -light for Gx.
Hence, solving the C-Implicit-(1/p′(n))-Heavy-Avoid problem on Gx will give us a string

y ∈ {0, 1}q(n) such that pK
p(n)
U (y | x) ≥ log p(n).

(3) ⇒ (4): This follows from the fact ([LO22, Fact 2]) that for every universal Turing machine
U , every x, y ∈ {0, 1}∗ and every time bound t, we have pKt

U (y | x) ≤ rKt
U (y | x). It is easy to

verify that this is still true with respect to our notions of sublinear-time-bounded Kolmogorov
complexity.

(4) ⇒ (1): Let q(n) be any polynomial, f : {0, 1}n → {0, 1}q(n) be any function, and A be
a randomised algorithm running in p(n) time. We claim that for every input x ∈ {0, 1}n, if
rKp(n)2(f(x) | x) > |A| + ω(1), then A fails to locally compute f(x). Indeed, if A locally
computes f(x), then

∀i ∈ [|x|+ 1], Pr
r∼{0,1}p(n)

[A(x, i; r) = U(1p(n), ⟨A⟩, r, x, i) = f(x)i] ≥ 2/3.

Clearly, this means that rKp(n)2(f(x) | x) ≤ |A|+O(1).
Suppose that f is a deterministic polynomial-time algorithm that given an input x ∈ {0, 1}n,

outputs a string y ∈ {0, 1}q(n) such that rKp(n)2(y | x) ≥ 2 log p(n). It follows directly that every
randomised algorithm running in p(n) time only locally computes f(x) for finitely many inputs
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x ∈ {0, 1}∗ (as long as the algorithm admits a constant-size description). Hence f is almost-all-
inputs hard against p(n)-time randomised algorithms.

Given the above equivalence, it is easy to see that Conjecture 8.4.15 and Conjecture 8.4.16
are equivalent, since Conjecture 8.4.15 asserts the equivalence between (2) and prBPP = prP,
while Conjecture 8.4.16 asserts the equivalence between (1) and prBPP = prP.

8.5 Properties of the PSPACE-Complete Language

In this section, we discuss the proof of the following result.

Theorem 8.3.1 (A PSPACE-Complete Language with Useful Properties). There is a language
L⋆ ⊆ {0, 1}∗ with the following properties:

1. (Complexity Upper Bound) L⋆ ∈ PSPACE.

2. (Completeness) L⋆ is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC0[⊕] oracle
circuits {ICn}n≥1 making projection queries such that, on every input string x ∈ {0, 1}n
and for every oracle O ⊆ {0, 1}∗, the following holds:

• ICOn (x) only makes queries of length n to O.

• If O agrees with L⋆ on inputs of length n, then Prr[IC
O
n (x; r) = L⋆(x)] = 1.

• For every oracle O, Prr[ICOn (x; r) ∈ {⊥, L⋆(x)}] ≥ 1− exp(−n).

To establish this theorem, we verify that the language called LWH-TV described in [Che23,
Section 7] satisfies the properties we need.16 In particular, [Che23] showed that this language
is PSPACE-complete and has instance checkers in AC0[⊕]. However, [Che23] only considered
P-uniformity. For both the instance checker and the PSPACE-hardness reduction, a few minor
modifications of the construction are needed to achieve DLOGTIME-uniformity.

The rest of this section will verify the required uniformity conditions by inspecting the proof
in [Che23, Section 7]. Note that we will assume familiarity with [Che23, Section 7].17

8.5.1 Preliminaries

We assume familiarity with notations in [Che23, Section 7] such as pwℓ, ℓn, szn, and Fn.
We will use length-szn strings and elements in Fn interchangeably (instead of explicitly going
through the bijection κn). The following tasks can be computed in DLOGTIME-uniform AC0[⊕]
[HV06]:

• (Iterated addition.) Given α1, . . . , αt ∈ {0, 1}szn , compute
∑

i∈[t] ai ∈ {0, 1}szn .

• (Iterated multiplication.) Given α1, . . . , αt ∈ {0, 1}szn where t ≤ log n, compute
∏

i∈[t] ai ∈
{0, 1}szn .

16We work with LWH-TV instead of the final language LPSPACE because the only difference between LWH-TV and
LPSPACE is paddability, which is not required for our arguments.

17The full version of [Che23] can be found at ECCC Report TR22-183.
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We will need a DLOGTIME-uniform AC0[⊕] circuit for polynomial interpolation over Fn,
which is the following task. Let α1, α2, . . . , αt be the lexicographically smallest t elements in Fn.
Given β1, β2, . . . , βt ∈ Fn and z ∈ Fn as inputs, the goal is to output p(z), where p : Fn → Fn is
the unique degree-(t− 1) polynomial over Fn such that p(αi) = βi for every i ∈ [t].

It is shown in [Che23, Corollary 7.2] that the polynomial interpolation problem admits a
uniform AC0[⊕] circuit when t ≤ log n. Jumping ahead, the circuit is not DLOGTIME-uniform
since (8.3) requires one to compute the inverse of αi − αj , and it is unclear how to compute
inverses over Fn in DLOGTIME-uniform AC0[⊕]. One way to work around this technical issue is
to let the interpolation algorithm output two numbers u, v ∈ Fn such that p(z) = u · v−1.

Claim 8.5.1. For any constant t ≥ 118, there is a DLOGTIME-uniform AC0[⊕] circuit that
given z, β1, . . . , βt ∈ Fn as inputs, outputs two elements u, v ∈ Fn such that p(z) = u ·v−1, where
p : Fn → Fn is the unique degree-(t−1) polynomial over Fn such that p(αi) = βi for every i ∈ [t].

Proof Sketch. The expression for p(z) is

p(z) =
∑

i∈[t]

βi ·
∏

j∈[t]\{i}

z − αj

αi − αj
. (8.3)

Hence, we have p(z) = u · v−1 where

v =
∏

1≤i<j≤t
(αi − αj), and

u = p(z)v =
∑

i∈[t]

βi ·
∏

j∈[t]\{i}

(z − αj) ·
∏

1≤i′<j′≤t
i′ ̸=i and j′ ̸=i

(αi − αj).

(Note that we omitted some (−1)i terms since our field has characteristic 2.)
The desired DLOGTIME-uniform AC0[⊕] circuit follows from [HV06].

8.5.2 The Instance Checker

We assume familiarity with the notations in [Che23, Section 7], such as SQ, fn,i, Jn,j , Qn,j .
We start by showing that [Che23, Algorithm 7.1] (i.e., the instance checker for the polynomials
{fn,i} defined in [Che23, Lemma 7.3]) admits a DLOGTIME-uniform family of BP-AC0[⊕] oracle
circuits. The instance checker receives input parameters n, i ∈ N such that 1 ≤ i ≤ n, input x⃗ ∈
Fn
n, and oracle access to n−i+1 functions f̃i, f̃i+1, . . . , f̃n : Fn

n → Fn. It draws zi, zi+1, . . . , zn−1 ←
Fn uniformly at random and performs the following steps:

1. First, it computes α⃗i, α⃗i+1, . . . , α⃗n ∈ Fn
n as in [Che23, Eq. (8)]. For each i ≤ j ≤ n and

ℓ ∈ [n], let jmax be the maximum j′ < j such that j′ ≥ i, Jn,j′ = ℓ and Qn,j′ ̸= MUL (or ⊥
if such j′ does not exist). If jmax does not exist, then (α⃗j)ℓ = xℓ; otherwise (α⃗j)ℓ = zjmax .
We will show in Claim 8.5.2 that given j and ℓ, we can compute jmax in O(log n) time;
hence, we can compute each α⃗j via a DLOGTIME-uniform projection.

2. Then, it queries the oracles to obtain rj = f̃j(α⃗j) for every i ≤ j ≤ n.
18Actually, solving the polynomial interpolation problem for t = 3 suffices for our instance checker.
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3. Let t := cdeg + 1 = 3 (by [Che23, Lemma 7.7], the polynomials have individual degree at
most 2), w1, . . . , wt be the first t non-zero elements of Fn. For each i ≤ j < n and ℓ ∈ [t],
it queries the oracles to obtain βjℓ := f̃j+1((α⃗j)

Jn,j←wℓ).

4. For every i ≤ j < n in parallel :

• If Qn,j = MUL, then it verifies that rj = rj+1 · Termn,j(α⃗j), where Termn,j is defined
in [Che23, Eq. (4)] and hence computable by DLOGTIME-uniform AC0[⊕] circuits.

• Otherwise, let p be the unique degree-(t − 1) polynomial such that p(wℓ) = βjℓ for
every ℓ ∈ [t], we can use Claim 8.5.1 to obtain the values p(0), p(1), and p(zj). If
rj ̸= SQn,j ((α⃗j)Jn,j , p(0), p(1)) or rj+1 ̸= p(zj), then output ⊥ and halt.

5. Finally, if rn = 1 then accept and output ri (= f̃(x⃗)); otherwise output ⊥.

We remark that the values p(0), p(1), p(zj) in Item 4 are represented as u · v−1 for some
u, v ∈ Fn, but it is still possible to check the equalities. For example:

• If Q = ∃, then SQ(x, y0, y1) = y0 · y1, hence SQ(x, y0z−10 , y1z
−1
1 ) = r if and only if y0y1 =

rz0z1.

• If Q = ∀, then SQ(x, y0, y1) = 1 − (1 − y0)(1 − y1), hence SQ(x, y0z−10 , y1z
−1
1 ) = r if and

only if (z0 − y0)(z1 − y1) = z0z1(1− r).

• If Q = LIN, then SQ(x, y0, y1) = xy1+(1−x)y0, hence SQ(x, y0z−10 , y1z
−1
1 ) = r if and only

if xy1z0 + (1− x)y0z1 = rz0z1.

The first three steps above issue queries to the oracles f̃i, f̃i+1, . . . , f̃n, and it is easy to see that
these queries can be generated by a DLOGTIME-uniform projection over x⃗ and z⃗ = (zi, . . . , zn−1).
The last two steps above perform DLOGTIME-uniform AC0[⊕] computation over z⃗ and the
answers returned from the oracles. This establishes the complexity of the instance checker.

Finally, we need to compute jmax efficiently:

Claim 8.5.2. There is an algorithm running in O(log n) time that given i < j ≤ n and ℓ ∈ [n],
finds the maximum j′ < j such that j′ ≥ i, Jn,j′ = ℓ, and Qn,j′ ̸= MUL.

Proof. We recall the definitions of Jn,j and Qn,j from [Che23, Proof of Lemma 7.6]. For some
integers m < λ <

√
n computable in O(log n) time, we have:

(Jn,j , Qn,j) =





(1, LIN) if j > λ2,

(j mod λ, LIN) otherwise, if λ ∤ j,

(1,MUL) otherwise, if j ≥ (m+ 1)λ,

(j/λ,Qj/λ ∈ {∃, ∀}) otherwise.

If ℓ ≥ λ, then we can safely return ⊥. If ℓ = 1 and j > λ2 + 1, then we can simply return
jmax = j − 1. Otherwise, there are only two possible candidates for jmax:

• The case that (Jn,j , Qn,j) = (j mod λ, LIN): the largest j′ < min{j, λ2} s.t. j mod λ = ℓ;
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• The case that (Jn,j , Qn,j) = (j/λ,Qj/λ): j′ = ℓ · λ.

We discard any candidate not in the range [i, j) and return the (larger) remaining candidate j′.
If neither candidate is in [i, j), then we return ⊥. This finishes the algorithm for finding jmax in
O(log n) time.

The instance checker for LWH-TV reduces to the instance checker for the polynomials {fn,i}
in a straightforward way. In fact, let input ∈ {0, 1}m be the input of LWH-TV and k be the
integer defined in [Che23, Algorithm 7.2] (computable in O(logm) time), then:

• given access to (a purported oracle for) the m-th slice of LWH-TV, one can access the
polynomials fnk,ik , fnk,ik+1, . . . , fnk,nk

via DLOGTIME-uniform projections;

• given input and the answers of each fnk,j(x⃗) (j ≥ ik), where x⃗ ∈ Fn
n corresponds to the

length-(n · szn) prefix of input , one can compute LWH-TV(input) using [Che23, Eq. (10)
and (11)] via a DLOGTIME-uniform AC0[⊕] circuit.

Since the instance checker for {fn,i} is a DLOGTIME-uniform BP-AC0[⊕] circuit making
projection queries, so is the instance checker for LWH-TV. Finally, the error probability of
the instance checker for {fn,i} is at most poly(n)/2n by [Che23, Claim 7.12], hence the error
probability of the instance checker for LWH-TV is also at most poly(n)/2n by a union bound.

8.5.3 PSPACE-Completeness

We also need to show that LWH-TV is PSPACE-complete under DLOGTIME-uniform projec-
tions. Note that LWH-TV is an arithmetisation of the problem TQBFu defined in [Che23, Section
7.3], thus we first show that TQBFu is PSPACE-complete under DLOGTIME-uniform projec-
tions, and then reduce TQBFu to LWH-TV using DLOGTIME-uniform projections. However, the
PSPACE-completeness reduction presented in [Che23, Section 7.3] (from the classical TQBF to
TQBFu) is not a projection, so we need to implement the reduction more efficiently here.

Definition of TQBFu. There are 8 ·
(
n
3

)
possible width-3 clauses on n variables and we let

ϕcl-idx
n be a bijection between [8 ·

(
n
3

)
] and the set of valid width-3 clauses. A 3-CNF ϕ can thus

be described by a string y ∈ {0, 1}8·(n3). The TQBFu problem takes such a bit-string as an input,
constructs the corresponding 3-CNF Φ(x1, x2, . . . , xn), and outputs

Q1x1Q2x2 . . . Qnxn Φ(x1, x2, . . . , xn), (8.4)

where Qi equals ∃ for odd i and ∀ for even i.

PSPACE-completeness of TQBFu. First, the proof of the PSPACE-completeness of TQBF

(that is, computing (8.4) when Φ is a general circuit) actually shows the following stronger
result: For every language L ∈ PSPACE, there is a polynomial-time Turing machine M and a
polynomial ℓ(n) such that, for every z ∈ {0, 1}n, z ∈ L if and only if

Q1x1Q2x2 . . . Qℓ(n)xℓ(n) M(z1∼n, x1∼ℓ(n)),
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where, again, Qi equals ∃ for odd i and ∀ for even i. (See [ALR99] for an exposition. In
particular, [ALR99, Section 6.2] pointed out that the above PSPACE-completeness reduction
can be computed by a DLOGTIME-uniform projection.)

Since P is equal to DLOGTIME-uniform SIZE[poly] [BI94], there is a family of poly(n)-
size circuits {Cn : {0, 1}n+ℓ(n)→{0,1}} that simulates M and satisfies the following uniformity
conditions. Let s(n) ≤ poly(n) denote the number of gates in Cn (including input gates), then
1, 2, . . . , s is a valid topological order of Cn (the first n+ ℓ gates are inputs and the s-th gate is
the output gate). By adding dummy gates, we may assume that no gate has both children being
zi variables (this will imply that our final is 1-local). Finally, the direct connection language of
Cn can be computed in O(log n) time: there is an algorithm running in deterministic O(log n)

time that given n, indices of gates g1, g2, g3 ∈ [|Cn|] (where g1 > max{g2, g3}), and assignments
b1, b2, b3 ∈ {0, 1}, returns true if and only if the outputs of g2 and g3 are fed as inputs of g1 and
{gi = bi}i∈[3] is consistent with the gate type of g1 (e.g., if g1 is an AND gate, then it cannot be
the case that b1 = 1 but b2 = 0).

Now we show that this implies a DLOGTIME-uniform projection reduction from L to TQBFu.
We will reduce an instance z ∈ {0, 1}n of L to a TQBFu instance Φz with s(n) variables. Let D
be a clause expressing

(gi ̸= bi) ∨ (gj ̸= bj) ∨ (gk ̸= bk),

where gi, gj , gk are variables corresponding to gates in Cn and bi, bj , bk ∈ {0, 1}. We may assume
that gi > max{gj , gk}. Then, D appears in Φ if and only if gj , gk are fed as inputs of gi but
{gi = bi}i∈[3] is inconsistent with the gate type of gi. This information can be retrieved by O(1)

queries to the direct connection language.
Finally, the TQBFu instance we produced is

Q1x1Q2x2 . . . Qℓ(n)xℓ(n)∃g(ℓ(n)+n+1)∼s(n) Φ(z1∼n, x1∼ℓ(n), g(ℓ(n)+n+1)∼s(n)),

and we may insert ∀ quantifiers among g(ℓ(n)+n+1)∼s(n) to make the quantifiers alternate. It is
easy to see that the reduction is computable in DLOGTIME; it is a projection because every
clause (i.e., gate in Cn) only touches one zi variable.

PSPACE-completeness of LWH-TV. The reduction from TQBFu to LWH-TV is straightforward.
First, by [Che23, Lemma 7.10], the truth-table of TQBFu on input length m coincides with
the truth-table of fn,1 = g

(n)
1,1 over the Boolean cube, for some n = poly(m). Hence, when

L = TQBFu, the algorithm Ared
L (as defined in Item 4 of [Che23, Lemma 7.3]) is a DLOGTIME-

uniform projection. Second, the reduction in [Che23, Lemma 7.19] produces the instance (z⃗, y⃗, u⃗)
where y⃗ and u⃗ are constant vectors whose each bit can be computed trivially, and z⃗ = Ared

L (x)

and x is the input of L. Hence, when L = TQBFu, this reduction is also a DLOGTIME-uniform
projection over x.

Combining all of the above, we can see that the overall reduction from any language L ∈
PSPACE to LWH-TV is a DLOGTIME-uniform projection.
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Chapter 9

Hardness of Range Avoidance from
Demi-Bits

9.1 Introduction

We make progress on the hardness of the range avoidance problem and the existence of proof
complexity generators. We begin with a brief overview of these two lines of research.

9.1.1 Range Avoidance

It is easy to see that the range avoidance problem admits a trivial randomised algorithm:
given a circuit G : {0, 1}n → {0, 1}m as input, a uniformly random m-bit string would be a valid
output with high probability. On the other hand, deterministic algorithms for Avoid would
imply breakthroughs in explicit constructions and circuit lower bounds [Kor21,RSW22,GLW22,
GGNS23]. Since such breakthroughs are widely believed to be true (albeit difficult to prove), the
aforementioned results only suggest that deterministic algorithms for Avoid would be difficult
to obtain unconditionally, rather than that such algorithms are unlikely to exist. This raises a
natural question: Is there a deterministic algorithm for Avoid?

Perhaps surprisingly, recent results suggested that the answer is likely no under plausible
cryptographic assumptions. Ilango, Li, and Williams [ILW23] showed that Avoid is hard for
deterministic algorithms assuming the existence of subexponentially secure indistinguishability
obfuscation (iO) and that NP ̸= coNP. Chen and Li [CL24] extended this result and showed
that Avoid is hard even for nondeterministic algorithms, under certain assumptions regarding
the nondeterministic hardness of LWE (Learning with Errors) or LPN (Learning Parity with
Noise). In addition to providing compelling evidence for the hardness of Avoid, these results
establish a strong separation between deterministic and randomised algorithms (recall that there
exists a trivial randomised algorithm for Avoid).

The hardness results in [ILW23,CL24] open up several exciting research directions:

1. Can the hardness of range avoidance be based on weaker (or alternative) as-
sumptions?

The assumptions used in prior work, i.e., iO [ILW23] and public-key encryption [CL24],
belong to Cryptomania in the terminology of Impagliazzo’s worlds [Imp95]. Can we base
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the hardness of range avoidance on assumptions of a “Minicrypt” flavor, such as one-way
functions or pseudorandom generators? Additionally, both [ILW23] and [CL24] rely on
subexponential indistinguishability assumptions1. Are such subexponential assumptions
necessary?

2. Can we obtain hardness of Avoid for instances computed by restricted circuits?

Previously, under assumptions related to LWE, Chen and Li [CL24] showed that Avoid

remains hard even when each output bit of G is computed by a so-called “DOR ◦MAJ ◦
ANDO(logn) circuit”. No such results were known for other restricted circuit classes. The
related remote point problem has been shown to be hard under LPN-style assumptions for
XOR ◦ ANDO(logn) (i.e., O(log n)-degree polynomials over F2) [CL24].

This chapter makes progress on both fronts. We show that Avoid is hard for nondetermin-
istic algorithms under the existence of demi-bits generators with sufficient stretch2 [Rud97]. A
formal definition of demi-bits generators is deferred to Section 9.2.1, and candidate constructions
supporting their existence are discussed in Section 9.5. For the purpose of this introduction, it
suffices to keep in mind that demi-bits generators are a version of cryptographic pseudorandom
generators secure against nondeterministic adversaries.

We highlight two key features of our results here:

1. Minicrypt-style assumptions against nondeterministic adversaries.

Roughly speaking, demi-bits generators are (cryptographic) pseudorandom generators se-
cure against nondeterministic adversaries3. They are arguably a natural “Minicrypt” ana-
logue of pseudorandom generators in the context of cryptography against nondeterministic
adversaries. Moreover, our results only rely on the super-polynomial hardness of these
demi-bits generators, thereby completely getting rid of the subexponential (or “JLS”-style)
assumptions used in prior work.

2. Hardness for restricted circuit classes.

Under the assumption that certain concrete demi-bits generators are secure (e.g., those
based on LPN or Goldreich’s PRG), we show that the range avoidance problem remains
hard for nondeterministic algorithms even when the underlying circuits belong to XOR ◦
ANDO(1), i.e., constant-degree polynomials over F2.

9.1.2 Proof Complexity Generators

Let G : {0, 1}n → {0, 1}m be a Boolean circuit where m > n, and P be a propositional proof
system. We say that G is a (secure) proof complexity generator [ABRW04,Kra01a] against P if,

1More precisely, the assumptions in [ILW23, CL24] assert subexponential indistinguishability against
polynomial-time adversaries. This level of security is referred to as “JLS-security” in [ILW23], where “JLS”
comes from the strengths of the “well-founded” assumptions used to construct iO in [JLS21].

2The stretchability of generic demi-bits generators is only partially understood. Recent work of Tzameret and
Zhang [TZ24] shows that demi-bits generator with 1-bit stretch G : {0, 1}n → {0, 1}n+1 implies those with a
sublinear bits of stretch G′ : {0, 1}n → {0, 1}n+nc

for any constant 0 < c < 1. This is the first proof that generic
demi-bits generators are stretchable at all, but it still falls short of the linear or polynomial stretch assumed in
our hypothesis.

3In fact, Rudich [Rud97] introduced two ways to define pseudorandomness against nondeterministic adver-
saries: super-bits and demi-bits. Demi-bits are weaker than super-bits.
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for every string y ∈ {0, 1}m, the (properly encoded) statement “y ̸∈ Range(G)” does not admit
short proofs in P.4 A comprehensive survey about proof complexity generators can be found
in [Kra25].

The study of proof complexity generators is motivated by at least the following themes:

1. Pseudorandomness in proof complexity [ABRW04].

A standard pseudorandom generator G : {0, 1}n → {0, 1}m [Yao82] fools a (polynomial-
time) algorithm D if D cannot distinguish the outputs of G from truly random m-bit
strings; that is, D(Um) ≈ D(G(Un)), where Uℓ denotes the uniform distribution over ℓ-bit
strings. Analogously, one can say that G fools a propositional proof system P if P cannot
distinguish between the outputs of G and truly random m-bit strings, and a natural way
of formalising this is to say that P cannot efficiently prove any string outside the range of
G.

Following the idea of pseudorandomness in proof complexity, subsequent works [Kra04,
Pic11,Kra11,Raz15,Kha22] studied the hardness of the Nisan–Wigderson generator [NW94]
as a proof complexity generator in various settings. In particular, an influential conjecture
of Razborov [Raz15, Conjecture 2] asserts that the Nisan–Wigderson generator based on
any “sufficiently hard” function in NP ∩ coNP is a proof complexity generator against Ex-
tended Frege; that is, computational hardness can be transformed into proof complexity
pseudorandomness.

2. Candidate hard tautologies for strong proof systems.

There are two difficulties in proving lower bounds for strong proof systems such as Frege
and Extended Frege: the lack of techniques and the lack of candidate hard tautologies. The
latter problem was highlighted by Bonet, Buss, and Pitassi [BBP95], who demonstrated
that many combinatorial tautologies can be proved efficiently in Frege, hence disqualifying
them as hard candidates. This issue has been further discussed in [Kra01b,Kra04, ST21,
Kha22].

Tautologies from proof complexity generators are among the few natural candidates that
appear hard for strong proof systems. It seems plausible that for some mapping G :

{0, 1}n → {0, 1}n+1 and some (or even every) y ∈ {0, 1}n+1 \Range(G), the natural CNF
encoding of the tautology “y ̸∈ Range(G)” requires super-polynomially long Extended
Frege proofs.

3. Unprovability of circuit lower bounds.

Given our very limited progress in circuit complexity, it is tempting to conjecture that
circuit lower bounds are hard to prove in formal proof systems. For a Boolean function
f : {0, 1}n → {0, 1} and a size parameter s, one can write down a propositional formula
lb(f, s) (of size 2O(n)) asserting that no circuit of size at most s computes f . The proof
complexity of such formulas has been studied extensively [Raz98, Raz04, Kra04, Raz15,

4If y is in fact in the range of G, then “y ̸∈ Range(G)” is a false statement and hence has no proof in any
sound proof system. Therefore, this requirement is equivalent to that, for every y ̸∈ Range(G), the tautology
“y ̸∈ Range(G)” is hard to prove in P.
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Pic15,PS19, ST21,PS22], due to its implications for the metamathematics of complexity
theory.

Consider the truth table generator TT : {0, 1}poly(s) → {0, 1}2n , which maps a size-s
circuit C to its 2n-bit truth table. By definition, TT is a proof complexity generator
against a proof system P if and only if P cannot efficiently prove any circuit lower bound
lb(f, s). Krajíček [Kra04] introduced the notion of pseudo-surjectivity and showed that
TT is the hardest pseudo-surjective generator: The existence of any generator pseudo-
surjective against P implies that TT is pseudo-surjective against P (and thus that P
cannot prove circuit lower bounds). Razborov [Raz15] further showed unprovability of
circuit lower bounds in the proof system Res(ε log logN) by exhibiting a proof complexity
generator that is iterable for this system.5

Krajíček [Kra04, Kra23, Kra24] conjectured that there exists a proof complexity generator
that is secure against every propositional proof system. One could also consider a slightly weaker
conjecture that for every propositional proof system P, there is a proof complexity generator
CP (possibly depending on P) that is hard against P. At first glance, these conjectures may
appear unrelated to standard hardness assumptions in complexity theory or cryptography, as
proof complexity generators require “y ̸∈ Range(G)” to be hard to prove for every y (i.e.,
the best-case y), while complexity-theoretic or cryptographic hardness assumptions tend to be
either worst-case or average-case. We elaborate on the notion of “best-case” proof complexity
in Section 9.1.4.

In this chapter, we give strong evidence for the weaker conjecture by showing that it follows
from the existence of demi-bits generators (with sufficiently large stretch) [Rud97]. The latter
is a natural and fundamental assumption in the study of cryptography against nondeterministic
adversaries. Furthermore, we show that our generators are even pseudo-surjective under certain
regimes.6

9.1.3 Our Results

Hardness of range avoidance. Our main result is that the existence of demi-bits generators
implies that Avoid ̸∈ SearchNP, i.e., Avoid is hard for nondeterministic search algorithms.

Theorem 9.1.1 (Main). If there exists a demi-bits generator G : {0, 1}n → {0, 1}10n, then
Avoid /∈ SearchNP.

In fact, we show that composing the demi-bits generator with a hash function in some
pairwise independent hash family would yield a hard instance for Avoid. In its full generality,
our arguments hold for arbitrary strong seeded extractors, and the theorem below follows from
the leftover hash lemma [ILL89], which guarantees that pairwise independent hash families are
such extractors; see Theorem 9.3.1 for details.

We present the version using pairwise independent hash families here due to its elegance:
5Iterability is a weaker notion than pseudo-surjectivity. Krajíček [Kra04] also showed that TT is the “hardest”

iterable generator. Therefore, the existence of a proof complexity generator iterable for some proof system implies
that TT is also iterable (and thus hard) for this proof system.

6The parameters of our pseudo-surjectivity results fall just short of those required to apply Krajíček’s re-
sult [Kra04], hence they do not imply the hardness of the truth table generator. This limitation is inherent; we
discuss this issue in more detail after presenting Theorem 9.1.7.
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Theorem 9.1.2. Let G : {0, 1}n → {0, 1}N be a demi-bits generator, H = {h : {0, 1}N →
{0, 1}m} be a family of pairwise independent hash functions, and A be a nondeterministic
polynomial-time algorithm. If N > 10m > n, then there exists h ∈ H such that A fails to
solve the range avoidance problem on the input h ◦G.

As discussed before, this result improves upon [ILW23,CL24] in several key aspects. First, we
only require super-polynomial hardness of the demi-bits generators, thereby completely eliminat-
ing the subexponential- or JLS-hardness assumptions. Second, our assumptions are solely based
on the existence of demi-bits generators, a primitive arguably situated within “nondeterministic
Minicrypt.” Finally, by instantiating the extractors with pairwise independent hash functions
computable by linear transformations over F2, and using demi-bits generators computable by
constant-degree F2-polynomials, we establish the hardness of Avoid even for circuits where each
output bit is computable in constant F2-degree (i.e., XOR ◦ ANDO(1) circuits):

Corollary 9.1.3 (Informal). Assuming the existence of demi-bits generators computable in
XOR ◦ANDO(1) (Assumption 9.2.3), the range avoidance problem for XOR ◦ANDO(1) circuits is
not in SearchNP.

Proof complexity generators. Building on this result, we show that for any fixed proposi-
tional proof system P closed under certain reductions, demi-bits generators for P imply proof
complexity generators for P. In particular, the existence of demi-bits generators secure against
NP/poly implies the weaker version of Krajíček’s conjecture, providing strong evidence that the
latter conjecture is true.

Moreover, this result suggests a new approach for constructing proof complexity generators
for concrete proof systems closed under certain reductions, such as Res[⊕]: it suffices to construct
demi-bits generators secure against the same proof system.

Theorem 9.1.4. Let P be a proof system closed under parity reductions. If there exists a demi-
bits generator G : {0, 1}n → {0, 1}10n secure against P, then there is a (non-uniform) proof
complexity generator secure against P.

Unprovability of dwPHP(PV) in PV from demi-bits. Our results also have implications
in bounded arithmetic. A central goal in bounded arithmetic is to delineate the logical power
required to formalise reasoning about computational complexity. Two well-studied theories in
this context are Cook’s theory PV1 [Coo75], which corresponds to reasoning in deterministic
polynomial time, and Jeřábek’s theory APC1 [Jeř04, Jer07]7, which extends PV1 by adding
the dual weak pigeonhole principle for polynomial-time functions (dwPHP(PV)), and captures
aspects of randomised polynomial-time reasoning.

Despite decades of interest, it has remained open whether APC1 and PV1 are actually dis-
tinct theories—that is, whether dwPHP(PV) is unprovable in PV1. Recently, Ilango, Li, and
Williams [ILW23] provided the first evidence separating the two: they showed that dwPHP(PV)
is unprovable in PV1 under the assumptions that indistinguishability obfuscation (iO) with JLS
security exists and that coNP is not infinitely often in AM. We remark that the same separation

7Note that the terminology “APC1” was first used in [BKT14].
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was also shown by Krajíček [Kra21], albeit under an assumption that is regarded as “unlikely” (P
admits fixed-polynomial size circuits). In this work, we establish the same separation assuming
the existence of demi-bits generators against AM/O(1).

Theorem 9.1.5. Assume there exists a demi-bits generator G : {0, 1}n → {0, 1}ω(n) secure
against AM/O(1). Then, the Dual Weak Pigeonhole Principle for polynomial-time functions
(dwPHP(PV)) is not provable in PV. (In particular, APC1 is a strict extension of PV1.)

The only property of PV1 used in our argument is the KPT witnessing theorem [KPT91],
which states that if PV1 proves the dual weak pigeonhole principle for polynomial-time functions,
then there exists a deterministic polynomial-time algorithm for solving Avoid with O(1) circuit-
inversion oracle queries ([ILW23, Definition 19]). Our separation result in Theorem 9.1.5 follows
by showing that no such algorithm can exist. Moreover, for any parameter k = k(n), assuming
the existence of demi-bits generators secure against AM/O(log k), we further rule out deterministic
polynomial-time algorithms for Avoid that make k circuit-inversion oracle queries.

Theorem 9.1.6. Let m = m(n) > n and k = k(n) be parameters. If there exists a demi-bits
generator G : {0, 1}n → {0, 1}100km secure against AM/O(log k), then there is no polynomial-time
deterministic algorithm for Avoid on circuits with n inputs and m outputs using k circuit-
inversion oracle queries.

Pseudo-surjective proof complexity generators. Assuming demi-bits generators against
NP/poly, we show that our proof complexity generators are even pseudo-surjective against every
proof system. (The precise definition of k-round pseudo-surjectivity is presented in Defini-
tion 9.2.14.)

Theorem 9.1.7. Let m = m(n) > n and k = k(n) be parameters. If there exists a demi-
bits generator G : {0, 1}n → {0, 1}100km secure against NP/poly, then for every non-uniform
propositional proof system P, there is a non-uniform proof complexity generator GP,k : {0, 1}n →
{0, 1}m that is k-round pseudo-surjective against P.

Krajíček [Kra04] proved that, under appropriate parameter settings, the existence of pseudo-
surjective proof complexity generators is equivalent to the pseudo-surjectivity of the truth table
generator. As a corollary, the existence of pseudo-surjective generators against a proof system
P implies that every circuit lower bound is hard to prove in P.

However, the parameters in our Theorem 9.1.7 fall short of applying Krajíček’s result and
therefore do not imply the pseudo-surjectivity of the truth table generator. Specifically, to apply
Krajíček’s results, we need a proof complexity generator that is computable by circuits of size
s and is k-round pseudo-surjective for some k ≫ s; see the proof of [Kra04, Theorem 4.2] for
detailed discussions. In contrast, Theorem 9.1.7 guarantees a generator computable by circuits
of size poly(n, k) that is k-round pseudo-surjective, which is in the regime where k < s and thus
outside the reach of Krajíček’s equivalence.

This limitation is inherent to the generality of our result: we construct generators secure
against all proof systems, whereas under the assumption E ̸⊆ SIZE[2o(n)], there exists a proof
system that can prove circuit lower bounds (e.g., by simply hardwiring an axiom that certain
E-complete language has exponential circuit complexity). Thus, under this standard hardness

281



assumption, it is provably impossible to extend our results to the regime where k ≫ s and
thereby obtain pseudo-surjectivity of the truth table generator. It remains an intriguing open
question whether our approach can be refined to construct proof complexity generators of size
s that are k-round pseudo-surjective against specific systems such as Extended Frege, for some
k ≫ s. Such a result would imply that Extended Frege cannot prove any circuit lower bounds.

Finally, we comment on the strength of the adversaries required in our assumptions on
demi-bits generators. In the main theorem (Theorem 9.1.1), a SearchNP algorithm for Avoid

is transformed into a nondeterministic adversary that breaks the demi-bits generator. Since
SearchNP is a uniform class, it suffices to assume that the generator is secure against uniform
nondeterministic adversaries. In contrast, Theorem 9.1.6 requires the generator to be secure
against AM/O(log k(n)) adversaries. This is because the adversary invokes the Goldwasser–Sipser
protocol [GS86], which is in AM, and needs to hardwire the index of the circuit-inversion query
that succeeds with good probability. In Theorem 9.1.7, we require security against NP/poly

adversaries, as our adversary needs to hardwire a “good” sequence of teacher responses in the
student-teacher game, thus it is highly non-uniform.

9.1.4 Perspective: Average-Case to Best-Case Reductions in Proof Com-
plexity

Theoretical computer science has traditionally focused on the worst-case complexity of prob-
lems: An algorithm A solves a problem if A(x) succeeds on every input x. Motivated by practical
heuristics (where worst-case analysis tends to be overly pessimistic) and cryptography (where
worst-case hardness is not sufficient for security), average-case complexity has emerged as an
important research direction [Imp95,BT06a]. In this setting, fixing a distribution D over inputs,
an algorithm A solves a problem if A(x) succeeds with good probability over x ← D. Re-
cently, average-case complexity has received attention in proof complexity as well: For example,
[Pan21,dRPR23,CdRN+23] proved proof complexity lower bounds for Clique and Coloring

for random graphs.
An important topic in average-case complexity is worst-case to average-case reductions:

reductions showing that if a problem L is hard in the worst-case, then a related problem L′ is
hard on average. Worst-case to average-case reductions are known for the Permanent [CPS99],
Discrete Logarithm [BM84], Quadratic Residuosity [GM84], certain lattice problems [Ajt96], and
more recently for problems in meta-complexity [Hir18]. On the other hand, “black-box” worst-
case to average-case reductions are unlikely to exist for NP-complete problems [FF93,BT06b].

In contrast, the notion of best-case complexity has received far less attention. Perhaps
one reason is that this notion is often trivial in standard computational complexity: for every
language L, either the all-zero function or the all-one function can decide L on the “best”
input.8 However, in proof complexity, best-case hardness is a meaningful and natural notion,
as illustrated by proof complexity generators, which are stretching functions G such that the
statement “y ̸∈ Range(G)” is hard to prove even for the best choice of y.

In this context, our results can be interpreted as an average-case to best-case reduction in
8One notable exception appears in recent derandomisation results [CT21a] based on almost-all-input hardness

assumptions. In particular, it was shown that prP = prBPP follows from the existence of depth-efficient multi-
output functions with high best-case complexity against randomised algorithms.
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proof complexity. Indeed, Theorem 9.1.4 transforms demi-bits generators, where statements of
the form “y ̸∈ Range(G)” are hard to prove for an average-case y, to proof complexity generators,
where such statements are hard for a best-case y.

We find the existence of such average-case to best-case reductions quite surprising. Our
arguments crucially exploit the power of nondeterministic computation, and the phenomenon
of average-case to best-case reductions seems unique to the setting of proof complexity and
hardness against nondeterministic algorithms. We believe that further exploring the scope and
limitations of average-case to best-case reductions is a promising direction for future research.

We remark that there are also worst-case to best-case reductions in proof complexity. Kra-
jíček [Kra09] constructed a proof complexity generator whose hardness can be based on the
hardness of the pigeonhole principle, thereby reducing the best-case hardness of an entire family
of tautologies to that of a single tautology. Inspired by this example, Garlík, Gryaznov, Ren, and
Tzameret [GGRT25] recently showed a worst-case to best-case reduction for the rank principles.
Let “rank(A) > r” denote the collection of polynomial equations expressing that the rank of an
n× n matrix A is greater than r. If a proof system (closed under certain algebraic reductions)
cannot prove “rank(In) > r” where In is the n × n identity matrix, then it also cannot prove
“rank(A) > r” for every n× n matrix A.

9.2 Preliminaries

9.2.1 Demi-Bits Generators

Definition 9.2.1 (Demi-Bits Generators). Let n,m be length parameters such that n < m.
A function G : {0, 1}n → {0, 1}m is an (s, ε)-secure demi-bits generator if there is no NP/poly

adversary Adv of size s such that

Pr
y←{0,1}m

[Adv(y) = 1] ≥ ε and Pr
x←{0,1}n

[Adv(G(x)) = 1] = 0.

The results in this chapter require demi-bits generators with large stretch and computable
with small circuit complexity. In particular, we need the following assumptions:

Assumption 9.2.2 (Demi-bits Generators with Polynomial Stretch). For every constant c ≥ 1,
there exists a family of demi-bits generators {gn : {0, 1}n → {0, 1}nc} secure against NP/poly.

Assumption 9.2.3 (Demi-bits Generators with n1+ε Stretch in Constant Degree). There exist
constants ε > 0, d ≥ 2, and a (non-uniformly computable) family of demi-bits generators
{gn : {0, 1}n → {0, 1}n1+ε} secure against NP/poly, such that each output bit of gn is computable
by a degree-d polynomial over F2 (i.e., an XOR ◦ ANDd circuit).

Our main hardness results for Avoid will be based on Assumption 9.2.2; we also need
Assumption 9.2.3 to obtain hardness results for constant-degree Avoid. In Section 9.5, we
justify these assumptions and provide some candidate constructions.
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9.2.2 Arthur–Merlin Protocols

An Arthur–Merlin protocol [Bab85] for a language L is a constant-round public-coin in-
teractive protocol between a computationally unbounded Prover (Merlin) and a randomised
polynomial-time Verifier (Arthur) that satisfies the following properties for every input x:

• Completeness: If x ∈ L, then there is a Prover that makes the Verifier accept w.p. ≥ 2/3.

• Soundness: If x ̸∈ L, then no Prover can make the Verifier accept w.p. > 1/3.

Let AM denote the set of languages with an Arthur–Merlin protocol. The round-collapse
theorem of Babai [Bab85] implies that every language in AM actually has an Arthur–Merlin
protocol with two rounds: Verifier sends the first message, Prover sends a proof, and Verifier

decides whether x ∈ L. Hence, AM can be seen as a randomised version of NP; indeed, one can
prove that AM = NP under circuit lower bound assumptions [KvM02,MV05,SU05,SU06].

Goldwasser–Sipser set lower bound protocol. We need the following well-known AM

protocol for proving lower bounds on the size of efficiently recognisable sets.

Lemma 9.2.4 ([GS86], also see [AB09, section 8.4]). There is an Arthur–Merlin protocol such
that the following holds. Suppose that both Prover and Verifier receive a nondeterministic circuit
C : {0, 1}n → {0, 1} and a number s ≤ 2n. Let S = {x ∈ {0, 1}n : C(x) = 1}. Then

• Completeness: If |S| ≥ s, then there exist messages Prover can send such that Verifier

accepts with probability at least 2/3.

• Soundness: If |S| ≤ s/2, then regardless of what Prover sends, Verifier accepts with
probability at most 1/3.

Moreover, the protocol is a two-round public-coin protocol: Verifier first sends a random seed r
and receives a message m; then it deterministically decides whether to accept based on r and m
in polynomial time.

Arthur–Merlin protocols as adversaries.

Definition 9.2.5 (Breaking demi-bits generators by AM adversaries). Let m > n. An AM

adversary breaks a demi-bits generator G : {0, 1}n → {0, 1}m if both Prover and Verifier receives
a common input y ∈ {0, 1}m, and:

• for ≥ 1/3 fraction of y ∈ {0, 1}m, there exists a Prover that makes the Verifier accepts with
probability ≥ 2/3;

• for all y ∈ Range(G), for every Prover, the Verifier accepts with probability ≤ 1/3.

We also consider AM adversaries with advice:

Definition 9.2.6 (AM/k(n) adversaries). An AM/k(n) adversary is an Arthur–Merlin protocol
where the Verifier is a probabilistic polynomial-time machine that additionally receives a k(n)-
bit advice string an (which may depend on the input length n but not on the specific input y).
The interaction on input y proceeds as follows:
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1. The Verifier uses an and randomness r to generate a message to the Prover;
2. The Prover replies with a message;
3. The Verifier accepts or rejects based on y, an, r, and the Prover’s response.

The acceptance probabilities are still defined over Verifier’s internal randomness, with the advice
string fixed to an.

Proposition 9.2.7. Let G be a demi-bits generator.

• If there exists an AM adversary breaking G, then there exists an NP/poly adversary breaking
G ([Adl78]).

• For every constant k ≥ 2, if there exists a k-round AM adversary breaking G, then there
exists a (standard) two-round AM adversary breaking G ([Bab85]).

9.2.3 FNP v.s. SearchNP

In this chapter, we need to distinguish between the two notions FNP and SearchNP.

Definition 9.2.8 (SearchNP [CL24]). Let P be a search problem and R be the binary relation
defining P . We say P can be solved by a nondeterministic polynomial-time algorithm if there
is a nondeterministic Turing machine M such that for every input x,

• If x has a solution, then M(x) has an accepting computation path, and every accepting
path will output a valid solution y, i.e., R(x, y) is true.

• If x has no solution, then M(x) has no accepting computation path.

The class of search problems solvable by nondeterministic polynomial-time algorithms is defined
as SearchNP.

Definition 9.2.9 (FNP [CL24]). The class of search problems defined by a polynomial-time
relation, i.e., R ∈ P is defined as FNP.

While it is clear that FNP ⊆ SearchNP, the following example suggests that this inclusion is
strict.

Proposition 9.2.10 ([CL24]). If P ̸= NP, then there is a total search problem in SearchNP\FNP.

For more knowledge about nondeterministic algorithms, readers are referred to [CL24, Sec-
tion 2.4].

9.2.4 Proof Complexity

Recall that TAUT, the set of DNF tautologies, is the canonical coNP-complete problem. A
propositional proof system is simply a nondeterministic algorithm for TAUT. More formally:

Definition 9.2.11 ([CR79]). An algorithm P(φ, π) is called a propositional proof system if it
satisfies the following conditions:

• (Completeness) For every φ ∈ TAUT, there exists a string π ∈ {0, 1}∗ such that P(φ, π)
accepts.
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• (Soundness) For every φ, π ∈ {0, 1}∗, if P(φ, π) accepts, then φ ∈ TAUT.

• (Efficiency) P(φ, π) runs in deterministic poly(|φ|+ |π|) time.

We say that P is a non-uniform propositional proof system if P is a polynomial-size circuit
instead of a uniform algorithm (that is, P is equipped with non-uniform advice).

Definition 9.2.12 (Proof Complexity Generators [ABRW04,Kra04]). Let s(n) < n be a func-
tion for seed length. A proof complexity generator is a map Cn : {0, 1}s → {0, 1}n computed by
a family of polynomial-size circuits {Cn}n. A generator is secure against a propositional proof
system P if for every large enough n and every y ∈ {0, 1}n, P does not have a polynomial-size
proof of the (properly encoded) statement

∀x ∈ {0, 1}s, Cn(x) ̸= y.

It is easy to see that the existence of proof complexity generators is closely related to the
hardness of range avoidance. In fact, we have:

Theorem 9.2.13 (Informal version of [RSW22, Theorem 6.6]). The range avoidance problem
with suitable stretch is in FNP if and only if there exists a propositional proof system that breaks
every proof complexity generator.

Pseudo-surjectivity. In addition to the basic notion of hardness for proof complexity gener-
ators, several stronger notions have been proposed in the literature, including freeness [Kra01b],
iterability and pseudo-surjectivity [Kra04], and

∨
-hardness [Kra24]. Pseudo-surjectivity is the

strongest hardness notion among them. In this chapter, we show that our proof complexity
generators are pseudo-surjective in certain parameter regimes.

To motivate the definition of pseudo-surjectivity [Kra04, Definition 3.1], it is helpful to
consider Student-Teacher games for solving Avoid. Let G : {0, 1}n → {0, 1}m be a circuit
where m > n. A polynomial-time Student attempts to find a string y ∈ {0, 1}m \Range(G) with
the help of a Teacher who has unbounded computational power. The game proceeds in rounds.
In each round i, the Student proposes a candidate string yi ∈ {0, 1}m, and if yi ∈ Range(G),
the Teacher returns a preimage qi ∈ {0, 1}n such that G(qi) = yi. If the Student ever proposes
a string outside the range of G, they win the game.

A Student who attempts to solve Avoid in k rounds can be represented as k circuits
B1, B2, . . . , Bk, where each Bi uses the Teacher’s responses from previous rounds to generate the
next query. Specifically, B1 outputs a fixed string y1 ∈ {0, 1}m, and each subsequent circuit Bi

(i > 1) takes the previous responses q1, q2, . . . , qi−1 ∈ {0, 1}n as inputs and outputs yi ∈ {0, 1}m.
The game proceeds as follows:

• The Student proposes y1 := B1 ∈ {0, 1}m. If y1 ̸∈ Range(G), then the Student wins the
game; otherwise, the Teacher returns some q1 ∈ {0, 1}n such that G(q1) = y1.

• The Student then proposes y2 := B2(q1) ∈ {0, 1}m. If y2 ̸∈ Range(G) then the Student
wins the game; otherwise, the Teacher returns q2 ∈ {0, 1}n such that G(q2) = y2.

• . . .
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• This continues until round k, where the Student proposes yk := Bk(q1, . . . , qk−1) ∈ {0, 1}m.
If yk ̸∈ Range(G), then the Student wins the game; otherwise, the Student loses the game.

To formally express whether the Student succeeds in the game, we define a formula stating
that at least one of the Student’s queries is outside the range of G. Let B : {0, 1}n′ → {0, 1}m
be a circuit, z ∈ {0, 1}n′ and x ∈ {0, 1}n be disjoint variables, we define τ(G)B(z)(x) to be the
(properly encoded) statement that B(z) ̸= G(x). Then, using q⃗1, . . . , q⃗k−1 ∈ {0, 1}n to represent
the Teacher’s responses, the Student wins if and only if

k∨

i=1

τ(G)Bi(q1,...,qi−1)(qi). (9.1)

Roughly speaking, a generator G is pseudo-surjective for a proof system P if P cannot
prove any Student wins the game, no matter how the Student is constructed. In other words,
a generator G is pseudo-surjective for P if, for every sequence of Student circuits (B1, . . . , Bk),
the formula (9.1) is hard to prove in P.

Note that pseudo-surjectivity is indeed a stronger notion than standard hardness for proof
complexity generators. Indeed, for every y ∈ {0, 1}m \Range(G), the trivial one-round Student
with B1 = y clearly wins the game—yet pseudo-surjectivity implies that this fact is hard to
prove in P.

We proceed to the formal definition. We also introduce the notion of k-round pseudo-
surjectivity, where the unprovability of (9.1) only holds for k-round Students for some fixed
k = k(n).

Definition 9.2.14 (k-round pseudo-surjectivity [Kra04]). Let P be any proof system, G :

{0, 1}n → {0, 1}m be a circuit where m > n, and s be a size parameter.

• We say that G is s-pseudo-surjective for P if for every k and every sequence of Student
circuits (B1, B2, . . . , Bk), (9.1) requires P-proof of size at least s.

• Fixing a parameter k = k(n), we say that G is k-round s-pseudo-surjective for P if for
every sequence of Student circuits (B1, B2, . . . , Bk), (9.1) requires P-proof of size ≥ s.

When s = nω(1), we omit the parameter s and simply say that G is (k-round) pseudo-
surjective for P.

9.2.5 Bounded Arithmetic

Roughly speaking, PV1 is a theory of bounded arithmetic capturing “polynomial-time” rea-
soning. The language of PV1, L(PV), contains a function symbol for every polynomial-time
algorithm f : Nk → N, defined using Cobham’s characterization of polynomial-time func-
tions [Cob64]. Although Cook’s PV [Coo75] was originally defined as an equational theory (i.e.,
the only relation in PV is equality and there are no quantifiers), one can define a first-order theory
PV1 by adding suitable induction schemes [Coo75,KPT91]. In the literature, the notation PV is
often used to refer to the set of polynomial-time computable functions as well. The precise defini-
tion of PV1 is somewhat involved, and we refer the reader to the textbooks [Kra95,CN10,Kra19]
and references [Coo75,Jer06,CLO24,Li25].

287



To capture reasoning in randomised polynomial time, Jeřábek [Jeř04,Jeř05,Jer07] defined a
theory APC1 by extending PV1 with the dual weak Pigeonhole Principle for PV1 functions (i.e.,
polynomial-time functions). Let Eval(⟨C⟩, x) := C(x) be the circuit evaluation function. For a
function ℓ(n) > n, define dwPHPℓ(Eval) to be the following sentence

dwPHPℓ(Eval) :=

∀n ∈ Log ∀circuit C : {0, 1}n → {0, 1}ℓ(n) ∃y ∈ {0, 1}ℓ(n) ∀x ∈ {0, 1}n [Eval(C, x) ̸= y].

Here, “n ∈ Log” is the standard notation in bounded arithmetic, which means that n is the
bit-length of some object; this notation allows us to reason about objects of size poly(n) instead
of merely size polylog(n). The above sentence can be interpreted as the totality of Avoid: every
input C : {0, 1}n → {0, 1}ℓ(n) has at least one solution y.

For this chapter, it suffices to think of ℓ(n) as a large polynomial in n; in fact, under
suitable hardness assumptions, we will be able to show that PV1 cannot prove dwPHPℓ for
every polynomial ℓ(n). This suffices to separate APC1 from PV1.

KPT witnessing and Student-Teacher games. The only property of bounded arithmetic
theories that we need in this chapter is the KPT witnessing theorem:

Theorem 9.2.15 (KPT Witnessing Theorem for PV1 [KPT91]). For every quantifier-free for-
mula φ(x⃗, y, z) in the language L(PV), if PV1 ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z), then there is a k ∈ N and
L(PV)-terms t1, t2, . . . , tk such that

PV1 ⊢ ∀x⃗ ∀z1 ∀z2 . . . ∀zk
k∨

i=1

φ(x⃗, ti(x⃗, z1, . . . , zi−1), zi). (9.2)

In particular, Theorem 9.2.15 implies that if PV1 ⊢ dwPHPℓ(Eval), then there exists a
constant k and a polynomial-time Student that wins the Student-Teacher game for the Range
Avoidance problem. (Note that here the Student is computed by a uniform algorithm that gets
(1n, C) as inputs, as opposed to a family of non-uniform circuits in Section 9.2.4). To see this,
let φ((1n, C), y, x) = 1 iff Eval(C, x) ̸= y and apply Theorem 9.2.15. We obtain a constant k ∈ N
and L(PV)-terms t1, t2, . . . , tk such that:

PV1 ⊢ ∀n ∈ Log ∀C ∀z1 ∀z2 . . . ∀zk
k∨

i=1

Eval(C, zi) ̸= ti(C, z1, . . . , zi−1). (9.3)

This implies that the following Student wins the Student-Teacher game in k rounds:

1. The Student and the Teacher are given a circuit C : {0, 1}n → {0, 1}ℓ(n) as input.

2. In the first round, the Student proposes y1 := t1(C) as a candidate non-output. If y1
is correct (i.e., ∀z1 φ(C, y1, z1) is true), then the Student wins the game. Otherwise,
the Teacher provides a counterexample z1 such that Eval(C, z1) = y1, i.e., a preimage
z1 ∈ C−1(y1).
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3. Then, the Student proposes a new candidate y2 := t2(C, z1) based on the counterexample
given in the first round. If y2 is a correct non-output, then the Student wins the game.
Otherwise, the Teacher again provides a counterexample z2 such that Eval(C, z2) = y2,
i.e., a preimage z2 ∈ C−1(y2).

4. The game proceeds until the Student provides a correct witness y.

9.2.6 Extractors

Definition 9.2.16 (k-Source). A random variable X is a k-source if for every x ∈ Supp(X),
Pr[X = x] ≤ 2−k.

Definition 9.2.17 (Strong Seeded Extractors). A polynomial-time computable function Ext :

{0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-strong seeded extractor if for every k-source X over {0, 1}n,
the statistical distance of (Ud,Ext(X,Ud)) and (Ud,Um) is at most ε.

Below is the only property of strong seeded extractors that we will use:

Fact 9.2.18. Suppose Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong seeded extractor.
Then for every (possibly unbounded) adversary A : {0, 1}d+m → {0, 1}, the number of strings
x ∈ {0, 1}n such that

Pr
r←{0,1}d

[A(r,Ext(x, r)) = 1] < Pr
r←{0,1}d,z←{0,1}m

[A(r, z) = 1]− ε (9.4)

is at most 2k.

Proof Sketch. Fix an adversary A, let X be the set of strings x ∈ {0, 1}n such that (9.4) holds.
(We abuse notation and also use X to denote the uniform distribution over itself.) Note that A
distinguishes Ext(X , r) from the uniform distribution with advantage ε. If |X | ≥ 2k, then the
min-entropy of X is at least k, contradicting the extractor properties of Ext. Hence |X | < 2k.

We require extractors with exponentially small ε, which can be constructed from any family
of pairwise independent hash functions.

Theorem 9.2.19 (Leftover Hash Lemma [ILL89]). Let h : {0, 1}n × {0, 1}d → {0, 1}m be a
family of pairwise independent hash functions, where the first component (length n) is its input
and the second component (length d) is its key. Then for every k, ε such that m = k−2 log(1/ε),
h is a (k, ε)-strong seeded extractor.

In particular, if n ≥ m and d ≥ 2n, there exists a family of pairwise independent hash
functions h that is F2-linear.9 If we set n ≥ 3m+ 3, d ≥ 2n, k := n− 1, ε := 2−m−1, then h is
an (n− 1, ε)-strong seeded extractor.

9.3 Hardness of Range Avoidance

Theorem 9.3.1. Assume that for some m > n, there exists a demi-bits generator G : {0, 1}n →
{0, 1}N and Ext : {0, 1}N × {0, 1}d → {0, 1}m is an (N − 1, 2−m−1)-strong seeded extractor.
(N, d ≤ poly(m).) Then Avoid for polynomial-size circuits of stretch n→ m is not in SearchNP.

9That is, for each fixed r ∈ {0, 1}d, the function h(−, r) is an F2-linear function over its inputs.
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Proof. Let r ∈ {0, 1}d, define the circuit Cr : {0, 1}n → {0, 1}m with r hardwired:

Cr(s) = Ext(G(s), r).

Assume towards contradiction that there is a nondeterministic polynomial-time algorithm A
solving Avoid. We construct the following nondeterministic adversary B(y) that breaks the
demi-bits generator G. Given an input y ∈ {0, 1}N , the adversary B accepts y if and only if
there exists r ∈ {0, 1}d such that some nondeterministic branch of A(Cr) outputs Ext(y, r).

It is easy to see that B rejects every string y ∈ Range(G). To see this, suppose that y = G(s)

for some s ∈ {0, 1}n. Then

Cr(s) = Ext(G(s), r) = Ext(y, r),

hence A(Cr) will never output Ext(y, r).
It remains to show that B accepts at least 1/2 fraction of strings y ∈ {0, 1}N . For r ∈

{0, 1}d, z ∈ {0, 1}m, let A′(r, z) be the adversary that outputs 1 if there is a nondeterministic
branch of A(Cr) that outputs z, and outputs 0 otherwise. Since Ext is an (N −1, 2−m−1)-strong
seeded extractor, the following is true for at least 1/2 fraction of y ∈ {0, 1}N :

Pr
r←{0,1}d

[A′(r,Ext(y, r)) = 1] ≥ Pr
r←{0,1}d
z←{0,1}m

[A′(r, z) = 1]− 2−m−1 ≥ 2−m−1.

For such y, there exists r⋆ ∈ {0, 1}d and a nondeterministic branch of A(Cr⋆) that outputs
Ext(y, r⋆).

It follows that B rejects every string in Range(G) but accepts at least 1/2 fraction of strings
y ∈ {0, 1}N . This contradicts the security of G.

Theorem 9.1.2. Let G : {0, 1}n → {0, 1}N be a demi-bits generator, H = {h : {0, 1}N →
{0, 1}m} be a family of pairwise independent hash functions, and A be a nondeterministic
polynomial-time algorithm. If N > 10m > n, then there exists h ∈ H such that A fails to
solve the range avoidance problem on the input h ◦G.

Proof. We construct an extractor Ext(y, h) := h(y) (y ∈ {0, 1}N , h ∈ H). According to Theo-
rem 9.2.19, Ext : {0, 1}N×H → {0, 1}m is an (N−1, 2−m−1)-strong seeded extractor. Therefore,
by Theorem 9.3.1, there exists h ∈ H such that A fails to solve Avoid on Ext(G(·), h), i.e.,
h ◦G.

Corollary 9.3.2. Under Assumption 9.2.3, there are constants ε > 0 and d ≥ 2 such that
Avoid for XOR ◦ ANDd circuits (i.e., degree-d polynomials over F2) of stretch n 7→ n1+ε is not
in SearchNP.

Proof. Assumption 9.2.3 implies a demi-bits generator G : {0, 1}n → {0, 1}n1+δ and each output
bit of G can be computed by a degree-d polynomial over F2, where δ > 0 and d ≥ 2 are constants.
Let ε := δ/2, Ext : {0, 1}n1+δ × {0, 1}2n1+δ → {0, 1}n1+ε be a (n1+δ − 1, 2−n

1+ε−1)-strong linear
seeded extractor guaranteed by Theorem 9.2.19. Then, for every nondeterministic adversary A,
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there exists r ∈ {0, 1}2n1+δ such that A fails to solve Avoid on the instance

Cr(s) := Ext(G(s), r).

Since Ext is multi-linear and G is a degree-d polynomial over F2, Cr is an XOR◦ANDd circuit.

9.3.1 From Demi-Bits Generators to Proof Complexity Generators

Let P be a proof system and G : {0, 1}n → {0, 1}ℓ be a function computable in polynomial
size where ℓ > n. (We allow G to take non-uniform advice.) Let b ∈ {0, 1}ℓ, denote as τb(G) the
propositional formula encoding that b is not in the range of G. We say G is a:

• demi-bits generator against P, if for at least a 1/3 fraction of b ∈ {0, 1}ℓ, P does not have
polynomial-size proof of τb(G); and G is a

• proof complexity generator against P, if for every b ∈ {0, 1}ℓ, P does not have polynomial-
size proof of τb(G).

The precise definition of τb(G) as a 3-CNF is as follows. The variables of τb(G) consist of
x ∈ {0, 1}n and hist ∈ {0, 1}s, where s is the number of internal gates in G (including the
output gates but not including the input gates). The intended meaning is that G(x) = b and
hist represents the values of internal gates of G during the computation of G(x). Each gate in
G corresponds to a bit vg; if g is an input (internal) gate then vg refers to some xi (histi). For
each internal gate g ∈ G labeled by an operation ◦g (such as ∧, ∨, or ⊕) and two children gates
gl, gr, we have a constraint

vg = vgl ◦g vgr

in τb(G). Similarly, for each i ∈ [ℓ] representing an output gate gi, we have a constraint

vgi = bi

in τb(G). Note that since every constraint only depends on at most 3 variables, it can be written
as a 3-CNF of size at most 23 = 8, and we can add every clause in this 3-CNF into τb(G). We
assume that the ⊕ gate of fan-in 2 is included in our basis (looking ahead, it will be used to
implement the extractor). The 3-CNF τb(G) is simply the union of (3-CNFs generated from)
these constraints over every internal and output gate g ∈ G.

Now we define the notion of simple parity reductions between two CNFs. This is a technical
notion that we need in Claim 9.3.4.

Definition 9.3.3. Let F (x) and G(y) be CNF formulas over variables x = (x1, . . . , xn) and
y = (y1, . . . , ym). We say that there is a simple parity reduction from F to G, denoted as
F ≤⊕ G, if:

• Variables. The reduction is computed by a GF(2)-linear mapping redu : {0, 1}n →
{0, 1}m (that is, every output bit of redu is the XOR of a subset of its input bits).

• Axioms. For any clause g ∈ G, one of the following happens:

– g ◦ redu ≡ True;
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– g ◦ redu is equal to some axiom in F ; or
– g is a width-1 clause (i.e., one that consists of a single literal) and g ◦ redu is the XOR

of a subset of axioms in F (in which case these axioms in F are also width-1 clauses).

We say a proof system P is closed under simple parity reductions if there is a polynomial
p such that the following holds. For every CNF F and G, if there is a simple parity reduction
from F to G and there is a length-ℓ P-proof of G, then there is a length-p(ℓ) P-proof of F .

We note that this notion is weaker than that of (degree-1) algebraic reductions in [BGIP01,
dRGN+21]. It follows from [dRGN+21, Lemma 8.3] that many algebraic proof systems (such as
Nullstellensatz and Polynomial Calculus) over GF(2) are closed under simple parity reductions
when the complexity measure is degree. While we do not know if Res[⊕] (resolution over linear
equations modulo 2 [IS20]) is closed under low-degree algebraic reductions, it is straightforward
to prove that Res[⊕] is closed under simple parity reductions (see Theorem 9.3.6).

Recall that G : {0, 1}n → {0, 1}N is a purported demi-bits generator, Ext : {0, 1}N ×
{0, 1}d → {0, 1}m is an extractor, and for a fixed r ∈ {0, 1}d we define the circuit Cr : {0, 1}n →
{0, 1}m as

Cr(s) := Ext(G(s), r).

We say that Ext is linear if for every fixed randomness r, the function Ext(·, r) : GF(2)N →
GF(2)m is GF(2)-linear. For every r we fix a circuit Extr for computing Ext(·, r) using ⊕ gates
of fan-in 2 only.

Claim 9.3.4. Suppose that Ext is a linear extractor. For every y ∈ {0, 1}N and r ∈ {0, 1}d,
there is a simple parity reduction from τy(G) to τz(Cr), where z := Ext(y, r).

First, as a sanity check, we show that τy(G) follows from τz(Cr) logically: Suppose that
τy(G) is false and that y = G(s) for some s ∈ {0, 1}n, then

Cr(s) = Ext(G(s), r) = Ext(y, r) = z,

meaning that τz(Cr) is also false. Now we show that if Ext is a linear extractor, then the above
deduction is actually a simple parity reduction under our formalisation of τb(G):

Proof of Claim 9.3.4. Recall that the variables of τy(G) consist of s ∈ {0, 1}n and histG ∈
{0, 1}|G|, where |G| denotes the number of internal gates in G. Also, recall the variables of
τz(Cr) consist of s ∈ {0, 1}n and histCr ∈ {0, 1}|Cr|. Since Cr(s) = Ext(G(s), r), histCr consists
of histG as well as the internal gates of Ext(·, r). Since Ext is linear, each internal gate in
Ext(·, r) is an XOR of variables in histG. Therefore, one can compute a GF(2)-linear map
redu : {0, 1}n+|G| → {0, 1}n+|Cr| that maps (s, histG) to (s, histCr).

Now we show that for every clause c ∈ τz(Cr), one of the three cases in Definition 9.3.3
happens. Note that c comes from an internal gate or an output gate of Cr.

• If c comes from an internal gate of G, then c ◦ redu (which is equal to c itself) is an axiom
in τy(G).

• If c comes from an internal gate in Ext(·, r), then c ◦ redu ≡ True by the definition of redu.
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• The only remaining case is that c comes from an output gate. Suppose this is the i-th
output gate of Cr (where i ∈ [m]), and let v′i denote the variable (of τz(Cr)) representing
the i-th output of Cr. Note that c is a width-1 axiom stating that v′i = zi.

Let Si ⊆ [N ] be such that Ext(y, r)i =
⊕

j∈Si
yj . Then redu maps v′i to

⊕
j∈Si

vGj , where
vGj is the variable in τy(G) that represents the j-th output gate of G. We also have that
zi =

⊕
j∈Si

yj . Hence c◦ redu is the XOR of the axioms vGj = yj over all j ∈ Si. Since each
vGj = yj is an axiom in τy(G), this concludes the proof.

Theorem 9.3.5. Let P be a proof system closed under parity reductions. Let G : {0, 1}n →
{0, 1}N be a demi-bits generator secure against P, and Ext : {0, 1}N × {0, 1}d → {0, 1}m be an
(N − 2, 2−m−1)-strong linear seeded extractor. Then there is a non-uniform proof complexity
generator secure against P.

Proof. Suppose for contradiction that for every r ∈ {0, 1}d, there exists a string z(r) ∈ {0, 1}m
such that P admits a length-ℓ proof of τz(r)(Cr), where ℓ ≤ poly(|G|). For r ∈ {0, 1}d and
z ∈ {0, 1}m, let A′(r, z) be the adversary that outputs 1 if P admits a length-ℓ proof of τz(Cr)

and outputs 0 otherwise. Since for every r, A′(r, z(r)) = 1, we have

Pr
r←{0,1}d
z←{0,1}m

[A′(r, z) = 1] ≥ 2−m.

Since Ext is a (n− 2, 2−m−1)-strong extractor, for at least a 3/4 fraction of y ∈ {0, 1}N , we have

Pr
r←{0,1}d

[A′(r,Ext(y, r)) = 1] ≥ Pr
r←{0,1}d
z←{0,1}m

[A′(r, z) = 1]− 2−m−1 > 0.

Hence, for such y ∈ {0, 1}N , there exists some r := r(y) such that P admits a length-ℓ proof
of τz(Cr) where z := Ext(y, r). Since there is a parity reduction from τy(G) to τz(Cr) and P is
closed under parity reductions, it follows that P admits a length-poly(ℓ) proof of τy(G) as well,
contradicting the security of G as a demi-bits generator against P.

Although super-polynomial lower bounds for Res[⊕] remain open, it seems conceivable that
we will eventually prove such lower bounds sooner or later. Our results suggest a potential
approach for designing proof complexity generators against Res[⊕]: it suffices to design a demi-
bits generator against Res[⊕] (which might be an easier task) and then apply Theorem 9.3.5.

We end this section by proving that Res[⊕] is closed under simple parity reductions:

Theorem 9.3.6. Res[⊕] is closed under simple parity reductions. That is, let F (x1∼n) = f1 ∧
f2 ∧ · · · ∧ fm and G(y1∼n′) = g1 ∧ g2 ∧ · · · ∧ gm′ be CNF formulas such that F ≤⊕ G. If there
exists Res[⊕] refutation of G in s steps, then there exists a Res[⊕] refutation of F in 2nm′ + s

steps.

Proof. We assume familiarity with Res[⊕] (the definition can be found in [IS20]).
Let C1, C2, . . . , Cs be a Res[⊕] refutation of G where each Ci is a disjunction of linear

equations modulo 2, Ci = gi for every 1 ≤ i ≤ m, and Cs = ⊥. Let redu : {0, 1}n → {0, 1}m be
the simple parity reduction from F to G. Define C ′i = Ci ◦ redu, then C ′i is still a disjunction of
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linear equations modulo 2. It is easy to see that C ′1, C ′2, . . . , C ′s is still a valid Res[⊕] derivation,
and that C ′s = ⊥. Hence there is an s-step Res[⊕] refutation from the axioms {gi ◦ redu}1≤i≤m.

It suffices to show that each gi ◦ redu can be proved from the axioms of F . This is easy to
see when gi ◦ redu ≡ True or gi ◦ redu is equal to some fi, hence we only need to consider the
third case in Definition 9.3.3 where gi ◦ redu is the XOR of some axioms in fi. Note that one
can derive (a⊕ b = 0) from (a = 0) and (b = 0) in 2 steps10, hence gi ◦ redu can be derived from
F in 2n steps. Since there are at most m′ linear clauses of the form gi ◦ redu that need to be
derived, the total number of steps is at most 2nm′ + s.

9.4 Lower Bounds for Student-Teacher Games

In this section, we show that the Range Avoidance problem is hard for Student-Teacher
games. In Section 9.4.1 we prove lower bounds against uniform, polynomial-time Students,
which implies a conditional separation between bounded arithmetic theories PV1 and APC1.
In Section 9.4.2, we show that demi-bits generators can be transformed into proof complexity
generators that are pseudo-surjective.

9.4.1 Separating PV1 from APC1

As discussed in Section 9.2.5, to separate PV1 from APC1, it suffices to show that there is
no polynomial-time Student that wins the Student-Teacher game in O(1) rounds. In fact, we
will show something stronger: Let k = k(n) be a parameter, assuming the existence of demi-
bits generators secure against AM/O(log k), there is no polynomial-time Student that wins the
Student-Teacher game in k(n) rounds.

Theorem 9.4.1. Let m,n, k be parameters such that m > n. Assume there exists a demi-bits
generator G : {0, 1}n → {0, 1}N secure against AM/O(log k). Let Ext : {0, 1}N×{0, 1}d → {0, 1}m
be an (N−1, 2−10km)-strong extractor. Then for every deterministic polynomial-time Student A,
there is a string r ∈ {0, 1}d and a Teacher such that A fails to solve Avoid on Cr in k rounds,
where Cr : {0, 1}n → {0, 1}m is the circuit

Cr(s) := Ext(G(s), r).

Proof. Let A denote the Student algorithm where A(i, C, z1, . . . , zi−1) outputs the i-th candidate
solution. For strings s1, . . . , sj ∈ {0, 1}n (where j ≤ k), we say that (s1, . . . , sj) is a valid trace
for A on the input Cr if all of the following are true:

• Cr(s1) = A(1, Cr) (that is, s1 is a valid counterexample for A(1,−));
• Cr(s2) = A(2, Cr, s1) (that is, s2 is a valid counterexample for A(2,−));
• . . .

• and Cr(sj) = A(j, Cr, s1, s2, . . . , sj−1) (that is, sj is a valid counterexample for A(j,−)).
We prove the following stronger claim that implies Theorem 9.4.1:

10First weaken (b = 0) to derive (a = 1 ∨ a ⊕ b = 0), then resolve (a = 0) and (a = 1 ∨ a ⊕ b = 0) to derive
(a⊕ b = 0).
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Claim 9.4.2. For every j ≤ k, there exist s1, s2, . . . , sj ∈ {0, 1}n such that

Pr
r←{0,1}d

[(s1, . . . , sj) is a valid trace for A on the input Cr] ≥ 2−2jm.

Clearly, Claim 9.4.2 implies Theorem 9.4.1 by setting j := k and noticing that 2−2jm > 0.
We prove Claim 9.4.2 by induction on j. The base case j = 0 is trivially true. Now we

assume the claim is true for j − 1, which gives strings s1, . . . , sj−1 such that

Pr
r←{0,1}d

[(s1, . . . , sj−1) is a valid trace for A on the input Cr] ≥ 2−2(j−1)m.

Consider the following AM/O(log k) protocol that attempts to break the demi-bits generator G.
This protocol has the index j hardwired as advice but is otherwise uniform.

Algorithm 9.4.1: The AM/O(log k) protocol P breaking demi-bits generator G

Input: A string y ∈ {0, 1}N .
1 Prover sends s1, . . . , sj−1;
2 Prover and Verifier run the Goldwasser–Sipser protocol to estimate

p := Pr
r←{0,1}d

[
(s1, . . . , sj−1) is a valid trace for A on the input Cr

and Ext(y, r) = A(j, Cr, s1, . . . , sj−1).

]
;

3 If p ≥ 2−(2j−1)m−1 then Verifier accepts; if p ≤ 2−(2j−1)m−2 then Verifier rejects;

Completeness of P. We show that for ≥ 1/2 fraction of y, there is a Prover such that the
Verifier accepts w.p. ≥ 2/3 in P. In the first round, the honest Prover sends (s1, . . . , sj−1) as
guaranteed by the induction hypothesis. Recall that this means

Pr
r←{0,1}d

[(s1, . . . , sj−1) is a valid trace for A on the input Cr] ≥ 2−2(j−1)m.

Let Test(r, z) = 1 if (s1, . . . , sj−1) is a valid trace forA on the input Cr and z = A(j, Cr, s1, . . . , sj−1),
and Test(r, z) = 0 otherwise. Clearly, we have

Pr
r←{0,1}d,z←{0,1}m

[Test(r, z) = 1] ≥ 2−2(j−1)m/2m = 2−(2j−1)m.

Since Ext is an (N − 1, 2−10km)-strong extractor, for ≥ 1/2 fraction of y’s, it holds that

Pr
r←{0,1}d

[Test(r,Ext(y, r)) = 1] ≥ Pr
r←{0,1}d,z←{0,1}m

[Test(r, z) = 1]− 2−10km ≥ 2−(2j−1)m−1.

It follows that there is a Prover for the Goldwasser–Sipser protocol in Line 2 of Algorithm 9.4.1
such that the verifier accepts with probability at least 2/3.

Employing the lack of soundness. Since G is a demi-bits generator that is secure against
AM/O(log k) adversaries, P does not have the soundness for all sufficiently large n. In other words,
there is a Prover∗ that makes the Verifier accepts some y ∈ Range(G) with probability > 1/3.
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Fix such a string y, let sj be any n-bit string such that G(sj) = y, and let s1, . . . , sj−1 ∈ {0, 1}n
be the message sent in Line 1 (of Algorithm 9.4.1) by Prover∗ on the input y.

Since Verifier accepts with probability > 1/3, by the soundness of the Goldwasser–Sipser
Protocol (Lemma 9.2.4), we have that

Pr
r←{0,1}d

[
(s1, . . . , sj−1) is a valid trace for A on the input Cr

and Ext(y, r) = A(j, Cr, s1, . . . , sj−1).

]
≥ 2−j(2m+1)−2.

Note that Ext(y, r) = Cr(sj), hence the above condition inside Prr←{0,1}d [·] means exactly that
(s1, . . . , sj) is a valid trace for A(Cr). This implies Claim 9.4.2 for j.

We remark that the parameters we obtained in Theorem 9.4.1 are (almost) tight in the
following sense. Theorem 9.4.1 showed that (under plausible assumptions) for every parameter
k ≤ poly(n), there is no deterministic polynomial-time Student that wins the Student-Teacher
game for Avoid in k rounds, when given an Avoid instance of size s = poly(k, n) > k. On
the other hand, under plausible derandomisation assumptions, for every size parameter s, there
exists a deterministic polynomial-time Student that wins the game on size-s circuits within
k = poly(s, n) > s rounds [ILW23, Appendix A].

Finally, setting k := O(1) in Theorem 9.4.1, we obtain the following separation:

Theorem 9.1.5. Assume there exists a demi-bits generator G : {0, 1}n → {0, 1}ω(n) secure
against AM/O(1). Then, the Dual Weak Pigeonhole Principle for polynomial-time functions
(dwPHP(PV)) is not provable in PV. (In particular, APC1 is a strict extension of PV1.)

9.4.2 From Demi-Bits to Pseudo-Surjectivity

Theorem 9.4.3. Let G : {0, 1}n → {0, 1}N be a demi-bits generator secure against NP/poly,
k ∈ N, and Ext : {0, 1}N × {0, 1}d → {0, 1}m be an (N − 1, ε)-strong linear extractor for
ε := 2−10km. (k, d,N ≤ poly(m).) Then for every non-uniform propositional proof system P,
there is a string r ∈ {0, 1}d such that the circuit Cr : {0, 1}n → {0, 1}m defined as

Cr(s) := Ext(G(s), r)

is a non-uniform k-round pseudo-surjective proof complexity generator secure for P.

Proof. Suppose, for contradiction, that such an r ∈ {0, 1}d does not exist. Then, for any
r ∈ {0, 1}d, there exist student circuits

B(r) =
{
B

(r)
i : {0, 1}n(i−1) → {0, 1}m

}
i∈[k+1]

such that P admits a proof of

k+1∨

i=1

τ(Cr)Bi(q1,q2,...,qi−1)(qi).

(i.e., P can prove that B(r) wins the Student-Teacher game on Cr.)
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Now we attempt to break the demi-bits generator G. For j = 0, 1, . . . , k + 1, define

Φj := max
(s1,s2,...,sj)∈{0,1}nj

Pr
r←{0,1}m




∃ Student B such that:

(1) P proves that B wins the Student-Teacher game on Cr;

(2) Bi(s1, . . . , si−1) = Cr(si) for all i ∈ [j].


 .

(Item (2) says that the history of the Student-Teacher game in the first i rounds is exactly
s1, . . . , sj .) We make the following claims on the values of Φ0 and Φk+1:

• Φ0 = 1: When j = 0, item (2) obviously holds, and item (1) holds by our assumption that
Cr is not a pseudo-surjective proof complexity generator;

• Φk+1 = 0: When j = k + 1, for any r,B items (1) and (2) cannot hold simultaneously.
This is because (2) implies that B loses the Student-Teacher game, which contradicts (1).

Simple calculations show that there exists j ∈ {0, 1, . . . , k} such that

Φj · 2−m − ε > 2 · Φj+1.

We use such j to break the demi-bits generator G. Let (s∗1, . . . , s
∗
j ) be the tuple such that the

maximum is achieved in the definition of Φj , i.e.,

Φj = Pr
r←{0,1}m




∃ Student B such that:

(1) P proves that B wins the Student-Teacher game on Cr;

(2) Bi(s
∗
1, . . . , s

∗
i−1) = Cr(s

∗
i ) for all i ∈ [j].


 .

Consider the following algorithm: on an input y ∈ {0, 1}n, let

p(y) := Pr
r←{0,1}m




∃ Student B such that:

(1) P proves that B wins the Student-Teacher game on Cr;

(2) Bi(s
∗
1, . . . , s

∗
i−1) = Cr(s

∗
i ) = Ext(G(s∗i ), r) for all i ∈ [j],

and Bj+1(s
∗
1, . . . , s

∗
j ) = Ext(y, r).



.

Our algorithm accepts y if p(y) ≥ Φj · 2−m − ε, and rejects if p(y) ≤ Φj+1. This can be
implemented by the Goldwasser–Sipser set lower bound protocol since Φj · 2−m − ε > 2 · Φj+1,
and the condition inside Prr←{0,1}m [·] is certifiable in polynomial time with the help of a prover.
Finally, we prove that this algorithm breaks demi-bits generator G:

• For any y ∈ Range(G), we have p(y) ≤ Φj+1:

Suppose y = G(s). Then

p(y) = Pr
r←{0,1}m




∃ Student B such that:

(1) P Proves that B wins the Student-Teacher game on Ext(G(·), r);
(2) Bi(s

∗
1, . . . , s

∗
i−1) = Ext(G(s∗i ), r) for all i ∈ [j],

and Bj+1(s
∗
1, . . . , s

∗
j ) = Ext(G(s), r).



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≤ Φj+1.

Where the ≤ in the second line follows from the definition of Φj+1.

• For half of y ∈ {0, 1}n, we have p(y) ≥ Φj · 2−m − ε:
For simplicity, we use “Test(r,Ext(y, r))” to denote the condition inside Prr←{0,1}m [·] in
the definition of p(y). We have:

Pr
r←{0,1}m
z←{0,1}m

[Test(r, z)] = Φj · 2−m.

By the definition of strong extractors, for half of y ∈ {0, 1}n, we have

Pr
r←{0,1}m

[Test(r,Ext(y, r))] ≥ Pr
r←{0,1}m
z←{0,1}m

[Test(r, z)]− ε = Φj · 2−m − ε.

Corollary 9.4.4. Suppose for any parameter N ≤ poly(n), there exists a demi-bits generator
G : {0, 1}n → {0, 1}N secure against NP/poly. Then for every non-uniform propositional proof
system P and any parameters k ≤ poly(n) and n < m < poly(n), there is a circuit C : {0, 1}n →
{0, 1}m of size poly(n) such that C is a k-round pseudo-surjective proof complexity generator
secure against P.

Proof. In Theorem 9.4.3, let N := 100km and Ext : {0, 1}N × {0, 1}O(km) → {0, 1}m be an
(N − 1, 2−10km)-strong seeded extractor guaranteed by Theorem 9.2.19. Then there exists
r ∈ {0, 1}O(km) such that Cr := Ext(G(·), r) is a k-round pseudo-surjective proof complexity
generator secure against P.

9.5 Candidate Demi-Bits Generators

9.5.1 Demi-Bits Generators with Polynomial Stretch

Assumption 9.2.2 (demi-bits generators with polynomial stretch) follows from Rudich’s con-
jecture on the unprovability of circuit lower bounds [Rud97], with the truth table generator TT

being a candidate demi-bits generator.
For a Boolean function f : {0, 1}n → {0, 1} and a parameter s(n) ≤ poly(n), let lb(f, s)

denote the sentence stating that “f requires circuit complexity at least s(n)”. This sentence
can be written as a CNF of size 2O(n) and, if true, admits a trivial proof of length 2Õ(s(n))

in most reasonable proof systems. Rudich’s conjecture asserts that there is no (non-uniform)
propositional proof system that has length-2O(n) proofs of lb(f, s) for a large fraction of Boolean
functions f . This can be equivalently formulated as the non-existence of “NP/poly-natural proofs”
against polynomial-size circuits (see [Rud97] for more details). Rudich’s conjecture was further
investigated in [PS19,ST21].

It is easy to see that Rudich’s conjecture is equivalent to the demi-hardness of the “truth
table generator” TT : {0, 1}O(s log s) → {0, 1}2n : Given as input the description of a size-s circuit
C, TT(C) outputs the truth table of C. As we only want demi-bits generators with polynomial
stretch, we can set the parameter s(n) to be 2εn for some constant ε > 0.
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Rudich’s conjecture follows from the existence of any super-bits generator g : {0, 1}ℓ →
{0, 1}ℓ+1 [Rud97,GGM86].11 It is open whether Rudich’s conjecture also follows from the exis-
tence of any demi-bits generator g : {0, 1}ℓ → {0, 1}ℓ+1, i.e., whether TT is the “most secure”
demi-bits generator (see Open Problem 4 of [Rud97]). Hence, we have:

Proposition 9.5.1. Assumption 9.2.2 follows from either:

• Rudich’s conjecture on the unprovability of random circuit lower bounds; or

• the existence of super-bits generators.

9.5.2 Constant-Degree Demi-Bits Generators from LPN

Learning Parity with Noise (LPN) is the assumption that noisy linear equations over F2

are hard to solve. Let n ∈ N be the number of variables, m := m(n) ∈ N be the number of
equations, and µ := µ(n) ∈ (0, 1) be the noise rate. Here we work in the regime where m = n1+ε

and µ = n−ε for some constant ε > 0. Let A ← Fm×n
2 be a random matrix, s⃗ ∈ Fn

2 be a
hidden random vector (i.e., the solution), and e⃗← Ber(µ)m be a hidden noise vector where each
entry is equal to 1 w.p. µ independently. The LPN assumption asserts that the following two
distributions are computationally indistinguishable:

(A,As⃗+ e⃗) v.s. (A,Um).

Roughly speaking, we will assume the above indistinguishability holds even for nondeterministic
adversaries, in the sense that no non-uniform proof system can efficiently prove a vector v⃗ ∈ Fm

is not of the form As⃗+ e⃗ when e⃗ is a (µ ·m)-sparse vector. That is:

Assumption 9.5.2. For some (public) matrix A ∈ Fm×n
2 , there is no polynomial-size non-

uniform nondeterministic circuit C : {0, 1}m → {0, 1} such that C accepts a constant fraction
of random strings but rejects every string of the form As⃗ + e⃗, where e⃗ ∈ Fm

2 is (µ ·m)-sparse
and s⃗ ∈ Fn

2 .

Fact 9.5.3. Assumption 9.5.2 implies Assumption 9.2.3.

Proof. Let d := ⌈2/ε⌉. Since µ·m < m1−1/d

d , by [GGNS23, Lemma 3.1], there exists a polynomial-

time computable function f : FO(µm1+1/d)
2 → Fm

2 whose range contains all vectors of sparsity at
most s, such that each output of f is a degree-d polynomial.

Now consider the following generator g : FO(µm1+1/d)+n
2 → Fm

2 . The input of g consists of
−−→eenc ∈ FO(µm1+1/d)

2 and s⃗ ∈ Fn
2 . The output is As⃗+ f(−−→eenc) (where A is hardwired in the circuit

computing g). It is easy to see that every output bit of g is computable by a degree-d polynomial
over F2, and the range of g contains every vector of the form As⃗+ e⃗ where e⃗ is (µ ·m)-sparse and
s⃗ ∈ Fn

2 . The input length of g is O(µm1+1/d) + n ≤ O(n1+ε/2), which is polynomially smaller
than the output length m = n1+ε.

11This is true for s(n) = 2Ω(n). If super-bits generators with subexponential security exist, then TT is a secure
demi-bits generator even for s(n) = poly(n).
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9.5.3 Constant-Degree Demi-Bits Generators from Goldreich’s Generator

Goldreich’s generator is an influential candidate pseudorandom generator with large stretch
that is computable with constant locality (i.e., in NC0) [Gol11a]. To define the generator G :

{0, 1}n → {0, 1}m, fix a d-uniform hypergraph with n vertices and m (ordered) hyperedges each
of size d, and a predicate P : {0, 1}d → {0, 1}. For each i ∈ [m], the i-th output bit is obtained
by applying P to the input bits on the i-th hyperedge. That is, suppose the i-th hyperedge
contains vertices vi,1, vi,2, . . . , vi,d, then on input x ∈ {0, 1}n, the i-th output bit is

G(x)i := P (xvi,1 , xvi,2 , . . . , xvi,d).

It seems plausible to conjecture that Goldreich’s generator is a secure demi-bits generator
when instantiated with a suitable hypergraph and a suitable predicate P :

Assumption 9.5.4. There exist constants c, d > 1, a predicate P : {0, 1}d → {0, 1}, and a
non-uniform family of d-hypergraphs {Gn}n∈N with nc hyperedges such that Goldreich’s PRG
G : {0, 1}n → {0, 1}nc instantiated with P and {Gn} is a secure demi-bits generator.

Clearly, Assumption 9.5.4 implies Assumption 9.2.3.
In fact, the following predicate P : F5

2 → F2 is frequently considered in the literature:

PMST06(x1∼5) := x1 + x2 + x3 + x4x5.

Note that PMST06 is a degree-2 function over F2. It was shown in [MST06] that some instantiation
of Goldreich’s PRG with PMST06 fools linear tests. Instantiations using this predicate were
also conjectured to be secure against polynomial-time adversaries in [BKR23]. Instantiating
Goldreich’s PRG with the predicate PMST06 and a suitable family of 5-hypergraphs gives us a
candidate demi-bits generator computable by degree-2 polynomials over F2.

To summarise, we have:

Proposition 9.5.5 (Informal). Assumption 9.2.3 follows from either:

• the demi-hardness of Learning Parity with Noise in certain parameter regimes; or

• the demi-hardness of certain suitably instantiated Goldreich’s generator.

9.6 Hardness of Range Avoidance from Predictable Arguments

Ilango, Li, and Williams [ILW23] proved Avoid ̸∈ FP assuming the existence of JLS-secure
iO and NP ̸= coNP. Given our main result that the existence of demi-bits generators implies
the hardness of Avoid, it is natural to ask whether the iO assumption used in [ILW23] can be
weakened to a “Minicrypt” assumption. In particular, we conjecture:

Conjecture 9.6.1. Avoid ̸∈ FP follows from the existence of one-way functions and NP ̸=
coNP.

Unfortunately, we are not able to prove Conjecture 9.6.1. Instead, in this section, we present
an alternative interpretation of [ILW23]. Although the results and proofs are not new, we hope
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that our new perspective helps make progress towards proving Conjecture 9.6.1, or in general,
basing Avoid ̸∈ FP from minimal assumptions.

Witness encryptions. Instead of iO, what [ILW23] actually needs is a primitive called witness
encryption [GGSW13]. Let L ∈ NP (usually we take L to be an NP-complete language such as
SAT). A witness encryption scheme for L is a pair of algorithms (Enc,Dec) with the following
interface:12

• Given an instance x ∈ {0, 1}n, a message m, a security parameter 1λ, and some random
coins r, Enc(x, b, 1λ; r) outputs the encryption of m under x.

• Given an instance x ∈ {0, 1}n, a witness w that x ∈ L, a ciphertext ct, and the security
parameter 1λ, Dec(x,w, ct, 1λ) outputs the encrypted message m. (We assume that Dec is
deterministic.)

We require (Enc,Dec) to be correct and 2−λ
ε-secure for some constant ε > 0; here we say

• (Enc,Dec) is (perfectly) correct if for every x ∈ L, witness w for x, bit b, and randomness
r, it is the case that

Dec(x,w,Enc(x, b, 1λ; r), 1λ) = b.

• (Enc,Dec) is δ(·)-secure if for every x ̸∈ L, message m, and every non-uniform adversary
A of size poly(n),

∣∣∣Pr[A(Enc(x,m, 1λ)) = 1]− Pr[A(U) = 1]
∣∣∣ < δ(n).

Hardness of Avoid from predictable arguments. Witness encryption implies the follow-
ing predictable argument system [FNV17] for L. Let x ∈ {0, 1}n be an instance known to both
the prover and the verifier. Recall that in an argument system, the prover is computationally
bounded. If x ∈ L, then the prover also has access to a witness w ∈ {0, 1}m. Let ℓ > m be a
parameter and λ := ℓ2/ε.

• First, the Verifier picks a random message m← {0, 1}ℓ, encrypts m as ct← Enc(x,m, 1λ),
and sends ct to the Prover.

• Then the Prover sends a message m′. In particular, the honest Prover sends m′ ←
Dec(x,w, ct, 1λ).

• The Verifier accepts if and only if m′ = m.

Now, suppose that there is a deterministic algorithm A solving Avoid, we show that L ∈
coNP. The idea is to use A as the prover in the above argument system. In particular, let Cx,ct :

{0, 1}m → {0, 1}ℓ denote the circuit that given w ∈ {0, 1}m as input, outputs Dec(x,w, ct, 1λ).
Upon receiving ct, Prover always sends A(Cx,ct) to Verifier.

12Witness encryption schemes as defined in [GGSW13] can only encrypt a one-bit message m ∈ {0, 1}. To
obtain a witness encryption scheme that can encrypt an arbitrarily long message, one can simply encrypt each
message bit independently. The security of this new scheme follows easily from a hybrid argument.
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Claim 9.6.2. If x ∈ L, then the Prover will never convince the Verifier.

Proof. The only message that convinces the verifier is m̃ := Dec(x,w, ct, 1λ), where w is a
witness of x ∈ L. Clearly, m̃ is in the range of Cx,ct.

Claim 9.6.3. If x ̸∈ L, then the Prover has a non-zero probability of convincing the Verifier.

Proof. Let m⋆ ∈ {0, 1}ℓ be any string such that A(ct) = m⋆ with probability at least 2−ℓ

over a truly random ct. Since A runs in polynomial time (which means the security of witness
encryption holds for A), the probability over ct ← Enc(x,m⋆, 1λ) that A(ct) = m⋆ is at least
2−ℓ − 2−λ

ε
> 0.

The above claims imply a nondeterministic algorithm for deciding the complement of L.
On input x ∈ {0, 1}n, guess the Verifier’s first message m and randomness r, compute ct :=

Enc(x,m, 1λ; r), and accept if the Verifier accepts when the Prover replies with A(Cx,ct).
In summary, witness encryption implies that NP has a special type of predictable argument

system. Moreover, if Avoid ∈ FP, then plugging the Avoid algorithm as the prover results in
the following intriguing situation: if x ∈ L, then the Verifier never accepts, while if x ̸∈ L, then
the Verifier accepts with non-zero probability! This allows us to put every language with such
argument systems in coNP.

An interesting question is to identify the weakest possible argument system for NP such
that the above situation happens. Can we build such argument systems using only one-way
functions? Such an argument system would make progress towards proving Conjecture 9.6.1.
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Chapter 10

Conclusions and Future Directions

In this thesis, we studied explicit construction problems through the lens of complexity
theory. Our results reveal an intimate and bidirectional connection between the two: techniques
from complexity theory yield new algorithms for explicit construction problems, and conversely,
understanding the complexity of explicit construction problems has important consequences back
to complexity theory as well.

A central computational problem arising from the study of explicit construction problems is
the Range Avoidance problem (Avoid). Our findings suggest that understanding the complexity
of Avoid is a key step towards resolving many important open questions, both in explicit
constructions and in complexity theory more broadly.

We conclude by highlighting several future research directions that emerge from this thesis:

Algorithmic Methods for small-stretch Avoid. A drawback of the framework developed
in Chapter 3 is that, even given the best possible Satisfying-Pairs algorithms, it could only
solve Avoid instances with large stretch, i.e., circuits C : {0, 1}n → {0, 1}ℓ where ℓ ≥ n1+Ω(1).
Many (if not most) interesting explicit construction problems reduce to Avoid with small stretch,
where our Algorithmic Method does not appear to be helpful for obtaining FPNP-explicit con-
structions for them.

Consider, for instance, the problem of constructing Ramsey graphs:

Example 10.0.1. A graph G = (V,E) over n = |V | vertices is a Ramsey graph if it does not
contain cliques or independent sets of size at least (say) 10 log n. It requires N :=

(
n
2

)
bits to encode

an n-vertex graph G. However, if G is not Ramsey and S ⊆ V is a clique or independent set of
size 10 log n in G, then G can be described more succinctly: specify S, a bit b ∈ {0, 1} (indicating
whether S is a clique or an independent set), and the

(
n
2

)
−
(
10 logn

2

)
edges outside S. This description

uses M := (10 log n) · log n+ 1 +
(
n
2

)
−
(
10 logn

2

)
≤ N − 30 log n bits.

Let CRamsey : {0, 1}M → {0, 1}N be the circuit that maps a length-M succinct encoding of a
non-Ramsey graph G into its adjacency matrix. Then, explicitly constructing a Ramsey graph is
equivalent to solving the Range Avoidance problem on the instance CRamsey.

Note that every output bit of CRamsey can be computed in polylog(n) time, so CRamsey has
very low circuit complexity. However, its stretch is very small (there are only Θ(logN) more
output bits than input bits), preventing us from obtaining FPNP-explicit constructions of Ramsey
graphs using Chapter 3. What kind of circuit-analysis algorithms are sufficient for handling such
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small-stretch Avoid instances? Is there a generic Algorithmic Method for solving Avoid when
the stretch is small?

Toward optimal win-win arguments in complexity theory. The results in Chapter 6
and Chapter 7 suggest that many complexity-theoretic results based on win-win arguments can
be improved to near-optimal by an iterative win-win approach.

An immediate open problem in this direction is to prove an exponential circuit lower bound
for MA-E/1, the exponential-time analogue of MA with one-bit advice. Buhrman, Fortnow, and
Thierauf [BFT98] proved a super-polynomial lower bound for this class using a single-step win-
win argument. Can we obtain a near-optimal lower bound via an iterative win-win argument?

Another example comes from Impagliazzo and Wigderson [IW01], who showed that if EXP ̸=
BPP, then BPP admits subexponential-time heuristic derandomisation on infinitely many in-
put lengths. It is unclear whether a “high-end” analogue of this result holds: if EXP ̸⊆
BPTIME[2n

o(1)
], does it follow that BPP admits infinitely-often quasi-polynomial time heuristic

derandomisation? A related question is to prove the prRP-hardness of Implicit-Heavy-Avoid
(Theorem 8.4.8) in the polynomial-time regime, i.e., showing that a polynomial-time algorithm
for Implicit-Heavy-Avoid implies an infinitely-often∗ polynomial-time algorithm for Gap-SAT
(instead of only a subexponential-time algorithm).

We briefly list additional win-win arguments whose current bounds are non-optimal, with
the hope that the iterative win-win method may strengthen them to optimal results:

• Easy-witness lemma. Impagliazzo, Kabanets, and Wigderson [IKW02] showed that if
NEXP ⊆ P/poly, then NEXP has “easy witnesses” in the sense that every accepting NEXP

computation has an (exponentially-long) witness that is the truth table of a polynomial-
size circuit. Is there an analogue for subexponential size bounds? That is, if NEXP ⊆
SIZE[2n

o(1)
], is it true that every accepting NEXP computation has a witness with circuit

complexity ≤ 2n
o(1)?

• ACC0 lower bounds. Williams [Wil14] proved NEXP ̸⊆ ACC0 using non-trivial circuit-
analysis algorithms for ACC0. These circuit-analysis algorithms are able to handle ACC0

circuits of subexponential size, but converting this into a subexponential ACC0 circuit
lower bound for NEXP remains open.

As shown in [MW20,Che19], ACC0 lower bounds for NEXP follow from (variants of) the
easy-witness lemma, which in turn follows from (refined versions of) circuit lower bounds
for MA/1 and MA-E/1 [BFT98, San09]. Thus, progress on any one of these fronts could
unlock progress on the others.

• Circuit lower bounds for BPEXPMCSP. Impagliazzo, Kabanets, and Volkovich [IKV18]
proved that ZPEXPMCSP ̸⊆ P/poly. Partially inspired by this result, Hirahara, Lu, and
Ren [HLR23] obtained a near-maximum circuit lower bound for BPEXPMCSP with 2εn

bits of advice, where ε > 0 is an arbitrary constant. Can we prove an exponential lower
bound for BPEXPMCSP (possibly with one bit of advice), improving the circuit lower bound
in [IKV18] to near-optimal and getting rid of the 2εn advice bits in [HLR23]?
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• RP vs. ZPP. Kabanets [Kab01] showed that every RP algorithm can be simulated by a
subexponential-time ZPP algorithm infinitely often that “appears correct” to every efficient
adversary. Williams [Wil16] later gave a worst-case simulation but with a fixed polynomial
amount of advice bits, i.e., he showed that there exists a constant c > 0 such that RP ⊆
i.o.-ZPSUBEXP/nc . Can we improve these simulations to only have a polynomial overhead?
In particular, can we show that RP ⊆ i.o.-ZPP/nc?
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